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1 Introduction

Suppose the government wants to allocate a given amount of funds between two entities (e.g. munici-

palities, villages, or families) in a way that maximizes their weighted welfare for a given set of weights.

It can achieve this by directly allocating the resources or by delegating the task to two independent

organizations (e.g. NGOs, charities, or local politicians) that also allocate resources by maximizing

the two entities’ welfare. The two organizations can be of one of two types: (i) with some probability,

they assign a higher weight to the first region than the government; (ii) with the remaining probability

they assign a lower weight to that region. The organizations know their own type, but not the type of

the other one, only the probability distribution. If each one of the two organizations were to allocate

the entire budget on its own, the organizations’ weights are such that, on average, they would allocate

the funds in the same way as the government. But, what is the outcome in the presence of uncertainty

about the other organization’s type? On average, do the organizations allocate the funds in the same

way as the government? Do they allocate systematically more or less to one of the entities?

The main contribution of the paper is to answer the previous questions. We show that for all welfare

functions that belong to the Hyperbolic Absolute Risk Aversion (HARA) class, the two organizations

always allocate resources differently from the government’s allocation. We also show that the difference

always go in the same direction: the region with the higher weight according to the government always

receives a smaller share of resources than the government’s allocation would entail. As the HARA class

includes the most commonly used welfare functions – logarithmic, constant absolute risk aversion,

constant relative risk aversion, and quadratic – the result is fairly general.
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There may be reasons for delegating the allocation of public funds to local organizations. Some

examples are better knowledge of local conditions and lower costs of implementing the allocation.

Moreover, if the local organizations are small in size, the government may decide to delegate the

allocation to more than one of them. The paper’s results indicate that delegating this task is costly

as the entity more in need of resources will always receive less than it is optimal. Governments should

therefore weigh the costs against the benefits of delegation.

Several papers have a connection to the paper’s results. Finan and Mazzocco (2020) estimate a

model in which politicians choose independently and simultaneously the allocation of a fixed budget

across regions using data on decisions by federal politicians. They find that about one quarter of the

transfers are missallocated. The two main reasons behind the missallocations are electoral incentives

and the uncertainty about the other deputies’ types, with the uncertainty accounting for about 50%

of the missallocations. The main result of this paper indicates that the missallocations generated by

type uncertainty is not a consequence of the parameter estimates that characterize their context, but

a general result that applies to all HARA welfare functions.

There is a large literature that studies the efficient allocation of resources across individuals or

households that started in the nineties with Altug and Miller (1990), Cochrane (1991), Mace (1991),

Altonji, Hayashi, and Kotlikoff (1992), and Townsend (1994), and was studied more recently in Ogaki

and Zhang (2001), Blundell, Pistaferri, and Preston (2008), Schulhofer-Wohl (2011), Mazzocco and

Saini (2012), and Chiappori et al. (2014). This literature’s main interests is mostly on the derivation

of tests of efficient risk sharing under different settings, whereas the present paper studies the actual

allocation of funds under incomplete information.

The literature on distributive politics focuses for the most part on the effect of elections on the

distribution of resources (see for instance Myerson (1993), Lizzeri and Persico (2001), Atlas et al.

(1995), and Rodden (2002)). Instead, this paper focuses on the impact of welfare considerations on

the allocation of funds.

2 Optimal Allocation of Resources

Consider and economy with two regions and a number of organizations that are in charge of allocating

Q funds across the regions. We will consider two cases. One in which a single organization, the
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social planner, is in charge of allocating Q. A second case in which two organizations are in charge

of distributing half of the resources to the two regions. Region i has welfare function Wi. It depends

on the amount of resources qi received from the entities. Entity j assigns weight µj to Region 1 and

1−µj to Region 2. The welfare function Wi is increasing and concave in the total amount of resources

received.

We will assume that the two regions have identical welfare functions that belong to the Hyperbolic

Absolute Risk Aversion (HARA) class, that is

W (q) =
(αq + η)δ

δ
,

where δ determines the curvature of the welfare function and η the region’s subsistence level. The most

popular welfare functions belong to the HARA class: the Constant Absolute Risk Aversion (CARA),

the Constant Relative Risk Aversion (CRRA) and, hence, the logarithmic, and the quadratic welfare

functions. For the HARA welfare function to be well defined, δ must be different from 0. Moreover,

α > 0 and δ < 1 are required for the HARA welfare function to be increasing and concave. In the

CRRA case, the restriction δ < 1 is equivalent to the standard assumption that the relative risk aversion

parameter is positive.

Throughout the paper we will use the first, second, and third derivatives of the HARA welfare

function. They take the following form:

W ′ (q) = α (αq + η)δ−1 > 0,

W ′′ (q) = −α2 (1− δ) (αq + η)δ−2 < 0,

and

W ′′′ (q) = α3 (1− δ) (2− δ) (αq + η)δ−3 > 0,

where the inequality follows from δ < 1.
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3 Social Planner’s Allocation

We consider first the optimal allocation of funds when only one entity, the social planner, is in charge

of Q. Her or his objective is to maximize the total welfare in the economy by choosing the allocation

of Q that solves the following problem:

max
q

µW (q) + (1− µ)W (Q− q) .

The optimal choice qµsp is the solution to the following first order condition:

µW
′
(q)− (1− µ)W

′
(Q− q) = 0.

For a HARA welfare function, the first order condition becomes

µα (αq + η)δ−1 − (1− µ)α (α (Q− q) + η)δ−1 = 0. (1)

or, equivalently, (
α (Q− q) + η

αq + η

)1−δ
=

1− µ
µ

. (2)

By solving for q, we obtain the social planner allocation

qµsp =
µ

1
1−δ

µ
1

1−δ + (1− µ)
1

1−δ
Q+

µ
1

1−δ − (1− µ)
1

1−δ

µ
1

1−δ + (1− µ)
1

1−δ

η

α
.

The social planner’s choice has intuitive features. Everything else equal, the region with larger weight

receives more resources, but the importance of the weights declines with the curvature parameter δ.

The subsistence level has also the expected impact of increasing the amount of allocated resources,

with an effect that rises with the region’s weight.

4 Allocation with Two Organizations and Incomplete Information

Now suppose that the decision to allocate the resources is made by two organizations, each endowed

with half the total budget Q/2. Organizations i can be one of two types based on the weight assigned
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to region 1. It assigns with probability p a low weight µL to region 1 and with probability 1− p a high

weight µH . An organization knows its type when choosing the allocation, but it does not know the

weight of the other organization, only the probability p.

We characterize the optimal choices of the two organizations using a Bayesian Nash Equilibrium

(BNE). Let an organization i’s strategy qi (µ) =
[
qi
(
µL
)
, qi
(
µH
)]

be an organization’s allocation

for any possible type, and an organization’s profile q (µ) = [q1 (µ) , q2 (µ)] the set of organizations’

strategies. Then, the Bayesian-Nash equilibrium that characterizes our model can be defined as follows.

Definition 1 The strategy profile q∗ (µ) is a Bayesian-Nash equilibrium if, given q∗j (µ), q∗i
(
µk
)

max-

imize organization i’s expected welfare, for i = 1, 2 and µk = µL, µH , i.e.

q∗i

(
µk
)

= arg maxE
[
µW

(
qi + q∗j

)
+ (1− µ)W

(
Q−

(
qi + q∗j

))
|k
]

for i = 1, 2 and µk = µL, µH .

To characterize the BNE, suppose first that organization 1 is a low type. Then, its optimal allocation

must be a best response to organization 2’s strategy q2 (µ). It therefore solves the following problem:

max
qL1

p
[
µLW

(
qL1 + q2

(
µL
))

+
(
1− µL

)
W
(
Q−

(
qL1 + q2

(
µL
)))]

+

+ (1− p)
[
µLW

(
qL1 + q2

(
µH
))

+
(
1− µL

)
W
(
Q−

(
qL1 + q2

(
µH
)))]

,

Under the assumption that W (q) belongs to the HARA class, the organization’s first order condition

takes the following form:

p
[
µL
(
α
(
qL1 + q2

(
µL
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− qL1 − q2

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µL
(
α
(
qL1 + q2

(
µH
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− qL1 − q2

(
µH
))

+ η
)δ−1

]
= 0.

If, instead, organization’s i is a high-type, it solves the following problem:

max
qH1

p
[
µHW

(
qH1 + q2

(
µL
))

+
(
1− µH

)
W
(
Q−

(
qH1 + q2

(
µL
)))]

+

+ (1− p)
[
µHW

(
qH1 + q2

(
µH
))

+
(
1− µH

)
W
(
Q−

(
qH1 + q2

(
µH
)))]

.
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If the welfare function is of the HARA type, the corresponding first order condition is

p
[
µH
(
α
(
qH1 + q2

(
µL
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− qH1 − q2

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µH
(
α
(
qH2 + q

(
µH
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− qH1 − q2

(
µH
))

+ η
)δ−1

]
= 0.

For the strategies q1

(
µk
)

and q2

(
µk
)
, for k = L, H, to be an equilibrium, it must be that

qL1 = q1

(
µL
)

and qH1 = q1

(
µH
)
.

By replacing in the first order conditions we have

p
[
µL
(
α
(
q1

(
µL
)

+ q2

(
µL
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− q1

(
µL
)
− q2

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µL
(
α
(
q1

(
µL
)

+ q2

(
µH
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− q1

(
µL
)
− q2

(
µH
))

+ η
)δ−1

]
= 0.

and

p
[
µH
(
α
(
q1

(
µH
)

+ q2

(
µL
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− q1

(
µH
)
− q2

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µH
(
α
(
qH1
(
µH
)

+ q2

(
µH
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− q1

(
µH
)
− q2

(
µH
))

+ η
)δ−1

]
= 0.

Since the two organizations, if of the same type, are identical, we will consider a symmetric equilibrium

with q1

(
µK
)

= q2

(
µK
)

= q
(
µK
)
, for k = L, H. In this case, the two first order conditions can be

rewritten as follows

p
[
µL
(
α
(
2q
(
µL
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− 2q

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µL
(
α
(
q
(
µL
)

+ q
(
µH
))

+ η
)δ−1 −

(
1− µL

) (
α
(
Q− q

(
µL
)
− q

(
µH
))

+ η
)δ−1

]
= 0.

and

p
[
µH
(
α
(
q
(
µH
)

+ q
(
µL
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− q

(
µH
)
− q

(
µL
))

+ η
)δ−1

]
+

+ (1− p)
[
µH
(
α
(
2qH

(
µH
))

+ η
)δ−1 −

(
1− µH

) (
α
(
Q− 2q

(
µH
))

+ η
)δ−1

]
= 0.
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The solution to these first order conditions establishes the Bayesian Nash Equilibrium (BNE).

To derive the main result of the paper, we will make use of the function inside the brackets of the

first order conditions

fµ (q) = µ (αq + η)δ−1 − (1− µ) (α (Q− q) + η)δ−1 .

We will refer to the function fµ (q) as the efficiency function, as the allocation of a social planner with

weight µ, qµsp makes the function equal to zero. The following Proposition establishes properties of the

efficiency function that will be used later in the paper.

Proposition 1 The efficiency function fµ (q) satisfies the following properties:

(i) It is strictly decreasing in q;

(ii) There is a quantity qµ0 such that fµ (q) is strictly convex for q < qµ0 and strictly concave for q > qµ0 ;

(iii) The quantity qµ0 satisfies the following conditions:

qµ0


> qµsp, if µ < 1

2 < 1− µ

= qµsp, if µ = 1
2 = 1− µ

< qµsp, if µ > 1
2 > 1− µ.

(iv) The derivative of fµ (q) evaluated at the left and right of qµ0 satisfies the following conditions:

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0−φ



> − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if µ < 1
2 < 1− µ

= − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if µ = 1
2 = 1− µ

< − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if µ > 1
2 > 1− µ.

Proof. In the Appendix.

Using the efficiency function, we can write the two equations characterizing the BNE as follows:

pfµL
(
2q
(
µL
))

+ (1− p) fµL
(
q
(
µL
)

+ q
(
µH
))

= 0 (3)
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and

pfµH
(
q
(
µL
)

+ q
(
µH
))

+ (1− p) fµH
(
2q
(
µH
))

= 0. (4)

We start by considering the case in which the two types have identical probability p = 1
2 . To

make the comparison between the social planner’s allocation and the agents’ allocation meaningful, we

assume that the weights µL and µH satisfy the following condition:

qµsp = pqµ
L

sp + (1− p) qµHsp ,

i.e. if a social planner has weight µL with probability p and weight µH with probability 1 − p, on

average she or he chooses the same allocation as a social planner that has weight µ with probability

1. If the welfare function is the logarithmic function, the weights takes the following intuitive form:

µL = µ − ∆
p with probability p and µH = µ + ∆

1−p with probability 1 − p. The following Proposition

uses equations (3) and (4) to establish the main result of the paper.

Proposition 2 If the social planner and the two organizations assign less weight to region 1 (µL <

µ < µH ≤ 1
2), then, on average, region 1 receives more resources from the two organizations than the

social planner would optimally allocate.

Proof. In the Appendix.

The result described in Proposition 2 is explained by the interaction between the uncertainty

about the type of the other organization and the curvature of the welfare function. Suppose the first

organization is a low type. Then, its optimal allocation entails transfering fewer funds to region 1

than the social planner’s allocation. To achieve this, it has to account for the possibility that the

second organization is a high type and, hence, will transfer more resources to region one than the

social planner’s allocation. It does this by transferring fewer funds than it would have without the

type uncertainty, i.e. fewer resources than a social planner with weight µL would have transferred. If

instead the first organization is a high type, the optimal choice is to allocate more funds to region 1

than the social planner would choose to transfer. But, as for the low type, it has to account for the

likelihood that the second organization is a low type and, hence, transfers too few resources. This is

achieved by transferring more resources to region 1 than it would be optimal without type uncertainty.

The under-transferring of the low type and over-transferring of the high types are not equivalent since
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they take place at points of the welfare function with different degrees of curvature. If the low type

reduces its transfer relative to the social planner by the same amount that the high type increases its

transfer, the reduction has larger effects because it is done at a point of the welfare function that has

more curvature. The uncertainty in types has larger effects on the low-type organization. It therefore

decreases the allocation by less relative to the social planner, which explains the result.

5 Conclusions

This paper show that the delegation to local organizations of the allocation of public funds and resources

to regions, villages, or families has a cost if the organizations are uncertain about how the other

organizations will allocate their own budget. The cost is that the regions, villages, or families with to

which the government assigns the higher weight receive a lower share of resources than the government

would like them to receive. This result is of particular importance for developing countries where public

resources are scarce and even a small missallocation can have significant effects on individual welfare.
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A Proof of Proposition 1

Property (i). It is satisfied by any concave welfare function. Indeed, the derivative of fµ (q) with

respect to q takes the following form:

∂fµ (q)

∂q
= µW

′′
(q) + (1− µ)W

′′
(Q− q) < 0,

as long as W
′′

(q) < 0 for any q.

Property (ii). For any welfare function,

∂2fµ (q)

∂q2
= µW

′′′
(q)− (1− µ)W

′′′
(Q− q) .

For a HARA function,

W
′′′

(q) = α3 (1− δ) (2− δ) (αq + η)δ−3 > 0,

with δ < 1. Hence, ∂2fµ(q)
∂q2

fµ (q) ≥ 0 if

µ (αq + η)δ−3 ≥ (1− µ) (α (Q− q) + η)δ−3 ,

or (
α (Q− q) + η

αq + η

)3−δ
≥ 1− µ

µ
.

There is only one q that satisfy the previous condition as an equality. It takes the following form:

qµ0 =
µ

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ
Q+

µ
1

3−δ − (1− µ)
1

3−δ

µ
1

3−δ + (1− µ)
1

3−δ

η

α
,

with ∂2fµ(q)
∂q2

fµ (q) > 0 for q < qµ0 and ∂2fµ(q)
∂q2

fµ (q) < 0 for q > qµ0 .

Property (iii). Consider first the case µ < 1
2 . In this case, the social planner’s allocation must

satisfies qµsp < Q − qµsp, i.e. the region with lower weight receives less than half of total resources. We

therefore have,

1− µ
µ

=

(
α (Q− qµsp) + η

αqµsp + η

)1−δ
<

(
α (Q− qµsp) + η

αqµsp + η

)3−δ
,

where the equality follows from the first order condition of the social planner and the inequality from
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α(Q−qµsp)+η

αqµsp+η
> 1 and δ < 1. We also have,

(
α (Q− qµ0 ) + η

αqµ0 + η

)3−δ
=

1− µ
µ

.

Hence, since
(
α(Q−q)+η
αq+η

)3−δ
decreases with q, we have qµsp > qµ0 . Applying the same steps for µ = 1

2

and µ > 1
2 , we have qµsp = qµ0 and qµsp < qµ0 , respectively.

Property (iv). Remember that, by properties (i)-(iii), ∂fµ(q)
∂q < 0, ∂2fµ(q)

∂q2
> 0 for q < qµ0 , and

∂2fµ(q)
∂q2

< 0 for q < qµ0 . Since ∂2fµ(q)
∂q2

is continuous, we can apply the fundamental theorem of calculus

to have

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0−φ

=

∫ qµ0

qµ0−φ

∂2fµ (q)

∂q2
dq − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0

.

and

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

= −
∫ qµ0 +φ

qµ0

∂2fµ (q)

∂q2
dq − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0

.

Hence,

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0−φ



> − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if
∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

> − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

for 0 ≤ ψ ≤ φ.

= − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if
∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

= − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

for 0 ≤ ψ ≤ φ.

< − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +φ

, if
∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

< − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

for 0 ≤ ψ ≤ φ..

The function
∂2fµ (q)

∂q2
takes the following form:

∂2fµ (q)

∂q2
= α3 (1− δ) (2− δ)

(
µ (αq + η)δ−3 − (1− µ) (α (Q− q) + η)δ−3

)
.

Since α3 (1− δ) (2− δ) > 0 and independent of q, we will ignore this term for the rest of the proof.
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Thus, we have

∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

= µ (α (qµ0 − ψ) + η)
δ−3 − (1− µ) (α (Q− qµ0 + ψ) + η)

δ−3

= µ

(
α

(
µ

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ
Q+

µ
1

3−δ − (1− µ)
1

3−δ

µ
1

3−δ + (1− µ)
1

3−δ

η

α
− ψ

)
+ η

)δ−3

− (1− µ)

(
α

(
Q− µ

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ
Q− µ

1
3−δ − (1− µ)

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ

η

α
+ ψ

)
+ η

)δ−3

= µ

(
α

(
µ

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ
Q+

2µ
1

3−δ

µ
1

3−δ + (1− µ)
1

3−δ

η

α
− ψ

))δ−3

− (1− µ)

(
α

(
(1− µ)

1
3−δ

µ
1

3−δ + (1− µ)
1

3−δ
Q+

2 (1− µ)
1

3−δ

µ
1

3−δ + (1− µ)
1

3−δ

η

α
+ ψ

))δ−3

= µ

(
µ

1
3−δ (αQ+ 2η)

µ
1

3−δ + (1− µ)
1

3−δ
− αψ

)δ−3

− (1− µ)

(
(1− µ)

1
3−δ (αQ+ 2η)

µ
1

3−δ + (1− µ)
1

3−δ
+ αψ

)δ−3

=

(
µ−

1
3−δµ

1
3−δ (αQ+ 2η)

µ
1

3−δ + (1− µ)
1

3−δ
− αψ

µ
1

3−δ

)δ−3

−

(
(1− µ)−

1
3−δ (1− µ)

1
3−δ (αQ+ 2η)

µ
1

3−δ + (1− µ)
1

3−δ
+

αψ

(1− µ)
1

3−δ

)δ−3

=

(
αQ+ 2η

µ
1

3−δ + (1− µ)
1

3−δ
− αψ

µ
1

3−δ

)δ−3

−

(
αQ+ 2η

µ
1

3−δ + (1− µ)
1

3−δ
+

αψ

(1− µ)
1

3−δ

)δ−3

= (g (µ)− v (µ))δ−3 − (g (µ) + u (µ))δ−3 .

Following the same steps we also have

∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

= (g (µ) + v (µ))δ−3 − (g (µ)− u (µ))δ−3 .

The easiest case to consider is µ = 1/2, since in this case

v (µ) =
αψ

µ
1

3−δ
=

αψ

(1− µ)
1

3−δ
= u (µ)

14



As a consequence,

∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

= (g (µ)− u (µ))δ−3 − (g (µ) + u (µ))δ−3

= −
(

(g (µ) + u (µ))δ−3 − (g (µ)− u (µ))δ−3
)

= − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

,

which implies

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0−ψ

= − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +ψ

.

Consider now the case µ < 1/2. We have

∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

> − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

.

if

(g (µ)− v (µ))δ−3 − (g (µ) + u (µ))δ−3 > −
[
(g (µ) + v (µ))δ−3 − (g (µ)− u (µ))δ−3

]
or, equivalently,

(g (µ)− v (µ))δ−3 + (g (µ) + v (µ))δ−3 > (g (µ)− u (µ))δ−3 + (g (µ) + u (µ))δ−3 . (5)

The left- and right-hand sides of the previous inequality correspond to the function

(g (µ)− x)δ−3 + (g (µ) + x)δ−3

with x = v (µ) > 0 for the left-hand side and x = u (µ) > 0 for the right-hand side. Then, since with

µ < 1/2 we have

v (µ) =
αψ

µ
1

3−δ
>

αψ

(1− µ)
1

3−δ
= u (µ) ,

inequality (5) is satisfied if

∂

∂x

(
(g (µ)− x)δ−3 + (g (µ) + x)δ−3

)
= − (δ − 3)

(
(g (µ)− x)δ−4 − (g (µ) + x)δ−4

)
> 0.

15



This is always the case, as δ − 3 < 0, δ − 4 < 0, and x > 0. Hence,

∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0−ψ

> − ∂2fµ (q)

∂q2

∣∣∣∣
q=qµ0 +ψ

,

and

− ∂fµ (q)

∂q

∣∣∣∣
q=qµ0−ψ

> − ∂fµ (q)

∂q

∣∣∣∣
q=qµ0 +ψ

.

The case µ > 1/2 can be dealt with by noticing that in this situation

v (µ) =
αψ

µ
1

3−δ
<

αψ

(1− µ)
1

3−δ
= u (µ)

and following the steps used for µ < 1/2.

B Proof of Proposition 2

Let qL0 and qH0 be the quantities that satisfy property (ii) Proposition 1 for µ = µL and µ = µH ,

respectively. We start with the simplest case to consider: a situation where qL0 > q∗L+q∗H and qH0 > 2q∗H ,

i.e. the function fµL is convex from 2q∗L to q∗L+q∗H , the lower and higher points in the low-type efficiency

condition, and fµH is convex from q∗L + q∗H to 2q∗H .

Suppose the result established in the Proposition is not true and instead the two organizations

allocate on average fewer resources to region 1 than the social planner, i.e.

2

(
1

2
q∗L +

1

2
q∗H

)
= q∗L + q∗H ≤ qµsp =

1

2
qLsp +

1

2
qHsp,

where the first term is multiplies by two to consider that in the model there are two organizations, each

one endowed with half of total resources, and the last equality follows from the weights µL and µH

being such that the social planner’s allocation is equal to the average allocation of the organizations in

case of complete information. The efficiency condition for the high type (4) for p = 1
2 implies that

fµH (q∗L + q∗H) = −fµH (2q∗H) .

16



Since fµH is continuous and fµH
(
qHsp
)

= 0, the fundamental theorem of calculus implies that

fµH (q∗L + q∗H) = fµ
H (

qHsp
)
−
∫ qHsp

q∗L+q∗H

∂fµH (q)

∂q
dq =

∫ qHsp

q∗L+q∗H

−∂f
µH (q)

∂q
dq.

Also,

−fµH (2q∗H) = −
∫ 2q∗H

qHsp

∂fµH (q)

∂q
dq − fµH

(
qHsp
)

=

∫ 2q∗H

qHsp

−∂f
µH (q)

∂q
dq.

Property (ii) and (iii) in Proposition 1 imply that −∂f
µH (q)

∂q
is strictly decreasing for q < 2q∗H < qH0

due to the convexity of fµH for q < qH0 . Then, it must be that

qHsp − (q∗L + q∗H) < 2q∗H − qHsp.

To see why, suppose that qHsp − (q∗L + q∗H) ≥ 2q∗H − qHsp. Then, there is a q∗L + q∗H ≤ q̄ < qHsp such that

2q∗H − qHsp = qHsp − q̄ ≤ qHsp − (q∗L + q∗H). Then,

−fµH (2q∗H) =

∫ 2q∗H

qHsp

−∂f
µH (q)

∂q
dq <

∫ qHsp

q̄
−∂f

µH (q)

∂q
dq ≤

∫ qHsp

q∗L+q∗H

−∂f
µH (q)

∂q
dq = fµH (q∗L + q∗H) ,

where the first inequality follows from −∂f
µH (q)

∂q
being strictly decreasing and 2q∗H − qHsp = qHsp − q̄ ,

and the second from qHsp − q̄ ≤ qHsp − (q∗L + q∗H). Hence, we have

−fµH (2q∗H) < fµH (q∗L + q∗H) ,

which contradict the efficiency condition for a high type (4). It must therefore be qHsp − (q∗L + q∗H) <

2q∗H − qHsp.

We now apply similar arguments to show that 2q∗L− qLsp < (q∗L + q∗H)− qLsp. The efficiency condition

for the low type (3) for p = 1
2 implies that

−fµL (q∗L + q∗H) = fµL (2q∗L) .

17



We also have

fµL (2q∗L) = −
∫ qLsp

2q∗L

∂fµL (q)

∂q
dq + fµL

(
qLsp
)

=

∫ qLsp

2q∗L

−∂f
µL (q)

∂q
dq

and

−fµL (q∗L + q∗H) = −
∫ q∗L+q∗H

qLsp

∂fµL (q)

∂q
dq − fµL

(
qLsp
)

=

∫ q∗L+q∗H

qLsp

−∂f
µL (q)

∂q
dq.

Using the same argument used for the high type, it must then be that

q∗L + q∗H − qLsp > qLsp − 2q∗L.

To see why, suppose that q∗L + q∗H − qLsp ≤ qLsp − 2q∗L. Then, there is a 2q∗L ≤ q̄ < qLsp such that

q∗L + q∗H − qLsp = qLsp − q̄ ≤ qLsp − 2q∗L. Hence,

−fµL (q∗L + q∗H) =

∫ qLsp

q∗L+q∗H

−∂f
µL (q)

∂q
dq <

∫ qLsp

q̄
−∂f

µL (q)

∂q
dq ≤

∫ qLsp

2q∗L

−∂f
µL (q)

∂q
dq = fµL (2q∗L) ,

where the first inequality follows from −∂f
µL (q)

∂q
being strictly decreasing and q∗L + q∗H − qLsp = qLsp− q̄,

and the second from qLsp − q̄ ≤ qLsp − 2q∗L. Hence, we have

−fµL (q∗L + q∗H) < fµL (2q∗L) ,

which contradicts the efficiency condition for a low type (3). It must therefore be q∗L + q∗H − qLsp >

qLsp − 2q∗L.

To summarize, we have: (i) qHsp − (q∗L + q∗H) < 2q∗H − qHsp; (ii) q∗L + q∗H − qLsp > qLsp − 2q∗L; and, given

the initial assumption, (iii) q∗L + q∗H ≤ q
µ
sp = 1

2q
L
sp + 1

2q
H
sp. Condition (iii) implies that

2q∗H − qHsp ≤ qLsp − 2q∗L,

whereas conditions (i) and (ii) imply that

2q∗H − qHsp > qLsp − 2q∗L,

creating a contradiction. It must therefore be q∗L + q∗H > qµsp = 1
2q
L
sp + 1

2q
H
sp.
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We now consider the case qLsp < qL0 < q∗L+q∗H and qHsp < qH0 < 2q∗H . The previous proof applies with

a couple of modifications. Suppose the result established in the Proposition is not true and instead the

two organizations allocate on average fewer resources to region 1 than the social planner, i.e.

2

(
1

2
q∗L +

1

2
q∗H

)
= q∗L + q∗H ≤ qµsp =

1

2
qLsp +

1

2
qHsp,

The efficiency condition for the high type (4) for p = 1
2 implies that

fµH (q∗L + q∗H) = −fµH (2q∗H) .

Since fµH is continuous and fµH
(
qHsp
)

= 0, the fundamental theorem of calculus implies that

fµH (q∗L + q∗H) = fµH
(
qHsp
)
−
∫ qHsp

q∗L+q∗H

∂fµH (q)

∂q
dq =

∫ qHsp

q∗L+q∗H

−∂f
µH (q)

∂q
dq.

Also,

−fµH (2q∗H) = −
∫ 2q∗H

qHsp

∂fµH (q)

∂q
dq−fµH

(
qHsp
)

=

∫ 2q∗H

qHsp

−∂f
µH (q)

∂q
dq =

∫ qH0

qHsp

−∂f
µH (q)

∂q
dq+

∫ 2q∗H

qH0

−∂f
µH (q)

∂q
dq.

where the last equality follows from properties (ii) and (iii) in Proposition 1.

Property (ii) and (iii) in Proposition 1 imply that −∂f
µH (q)

∂q
is strictly decreasing for q < qH0 < 2q∗H

due to the convexity of fµH for q < qH0 . Moreover, property (iv) of Proposition 1 implies that

− ∂fµH (q)

∂q

∣∣∣∣
q=qH0 −ψ

> − ∂fµH (q)

∂q

∣∣∣∣
q=qH0 +ψ

for ψ > 0. (6)

Then, it must be that

qHsp − (q∗L + q∗H) < 2q∗H − qHsp.

To see why, suppose that qHsp − (q∗L + q∗H) ≥ 2q∗H − qHsp. Then, there is a q∗L + q∗H < q̄ < qHsp such that
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2q∗H − qHsp = qHsp − q̄ ≤ qHsp − (q∗L + q∗H). Hence,

−fµH (2q∗H) =

∫ qH0

qHsp

−∂f
µH (q)

∂q
dq +

∫ 2q∗H

qH0

−∂f
µH (q)

∂q
dq <

∫ qHsp

qHsp−qH0
−∂f

µH (q)

∂q
dq +

∫ qHsp−qH0

q̄
−∂f

µH (q)

∂q
dq

≤
∫ qHsp

q∗L+q∗H

−∂f
µH (q)

∂q
dq = fµH (q∗L + q∗H) ,

where the first inequality follows from −∂f
µH (q)

∂q
being strictly decreasing and 2q∗H − qHsp = qHsp − q̄,

and the second from qHsp − q̄ ≤ qHsp − (q∗L + q∗H). Hence, we have

−fµH (2q∗H) < fµH (q∗L + q∗H) ,

which contradict the efficiency condition for a high type (4). It must therefore be qHsp − (q∗L + q∗H) <

2q∗H − qHsp.

We now apply similar arguments to show that 2q∗L− qLsp < (q∗L + q∗H)− qLsp. The efficiency condition

for the low type (3) for p = 1
2 implies that

−fµL (q∗L + q∗H) = fµL (2q∗L) .

We also have

fµL (2q∗L) = −
∫ qLsp

2q∗L

∂fµL (q)

∂q
dq + fµ

L (
qLsp
)

=

∫ qLsp

2q∗L

−∂f
µL (q)

∂q
dq

and

−fµL (q∗L + q∗H) = −
∫ q∗L+q∗H

qLsp

∂fµL (q)

∂q
dq − fµL

(
qLsp
)

=

∫ q∗L+q∗H

qLsp

−∂f
µL (q)

∂q
dq

=

∫ qL0

qLsp

−∂f
µL (q)

∂q
dq +

∫ q∗L+q∗H

qL0

−∂f
µL (q)

∂q
dq.

Using the same argument used for the high type, it must then be that

q∗L + q∗H − qLsp > qLsp − 2q∗L.

To see why, suppose that q∗L + q∗H − qLsp ≤ qLsp − 2q∗L. Then, there is a 2q∗L ≤ q̄ < qLsp such that
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q∗L + q∗H − qLsp = qLsp − q̄ ≤ qLsp − 2q∗L. Hence,

−fµL (q∗L + q∗H) =

∫ qL0

qLsp

−∂f
µL (q)

∂q
dq +

∫ q∗L+q∗H

qL0

−∂f
µL (q)

∂q
dq <

∫ qLsp

qLsp−qL0
−∂f

µL (q)

∂q
dq +

∫ qLsp−qL0

q̄
−∂f

µL (q)

∂q
dq

≤
∫ qLsp

2q∗L

−∂f
µL (q)

∂q
dq = fµL (2q∗L) ,

where the first inequality follows from −∂f
µL (q)

∂q
being strictly decreasing and q∗L + q∗H − qLsp = qLsp− q̄,

and the second from qLsp − q̄ ≤ qLsp − 2q∗L. Hence, we have

−fµL (q∗L + q∗H) < fµL (2q∗L) ,

which contradict the efficiency condition for a low type (3). It must therefore be q∗L+q∗H−qLsp > qLsp−2q∗L.

Then, by applying the step used for the previous case, we have

2q∗H − qHsp > qLsp − 2q∗L,

which contradict the initial assumption. It must therefore be q∗L + q∗H > qµsp = 1
2q
L
sp + 1

2q
H
sp.

There are other two cases to consider: (i) qLsp < qL0 < q∗L + q∗H and qH0 > 2q∗H ; and (ii) qL0 > q∗L + q∗H

and qHsp < qH0 < 2q∗H . Their proof can be obtain by combining the previous two proof.
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