Reconstructing Macroeconomics: A Perspective from Statistical Physics and Combinatorial Stochastic Processes

M.Aoki and H.Yoshikawa

December 9, 2005

1. Chapter 1 Introduction—A New Approach to Macroeconomics

(a) Equilibrium as Distribution—The Role of Demand in Macroeconomics
(b) Uncertainty Trap, Policy Ineffectiveness, and Long Stagnation of the Macroeconomy
(c) Slow Dynamics of Macro System—Inflexible Prices
(d) Business Cycles
(e) Labor Market Dynamics
(f) Demand Saturation/Creation and Economic Growth
(g) The Types of Investors and Stock Market
(h) Stock Prices and the Real Economy
(i) Summing Up

2. Chapter 2 The Methods—Jump Markov Processes and Exchangeable Random Partitions

(a) First Class of Methods: Stochastic Dynamics
 i. States
 ii. Jump Markov Process
 A. Example: Pure Death Process with Immigration
 B. Example: A Business-Cycle Model
 iii. Setting Up Master Equations
 A. Example: Pure Death Process with Immigration
 iv. Solving Master Equations
 A. Example: Pure Death Process with Immigration
 v. Probability Generating Function
 A. Definition: Probability Generating Function
 B. Example: Pure Death Process with Immigration
 vi. Cumulant Generating Function
 A. Definition: Cumulant Generating Function
B. Example: Pure Death Process with Immigration

vii. Taylor Expansion
 A. Example: Pure Death Process with Immigration
 B. Fokker-Planck Equation

viii. The Potential Representation and Multiple Equilibria
 A. Example: A Binary Choice Model
 B. Dynamics about an Equilibrium Point

(b) Second Class of Methods: Random Cluster Formation
 i. Dynamics of Cluster Processes
 A. Example: K-dimensional Pólya Distribution
 ii. Partition Vector
 A. Definition Partition Vector
 B. Example: Ewens Sampling Formula
 iii. Poisson-Dirichlet Distribution: The Distribution of Order Statistics of Market Shares
 iv. Appendix 1: Alternate Derivation of Ewens Sampling Formula
 v. Appendix 2: Cluster Size Distributions and Stirling Numbers
 vi. Appendix 3: Application of Generating Function to Random Processes of the Number of Types

3. Chapter 3 Equilibrium as Distributions—The Role of Demand in Macroeconomics

 (a) Microeconomic Foundations
 i. Binary Choice Model
 ii. Microeconomic Foundations for Transition Rates
 iii. Representation of Relative Merits of Alternatives
 iv. Discrete Choice Theory and Extreme Value Distributions
 v. Value Function and Dynamic Optimization
 vi. Diamond Search Model

 (b) Equilibrium in the Macroeconomy
 i. Distribution of Productivity in Equilibrium—The Boltzmann-Gibbs Distribution
 ii. The Boltzmann-Gibbs Distribution
 iii. The Old Keynesian Cross
 iv. Differences in Productivity
 v. Concluding Remarks

4. Chapter 4 Uncertainty Trap—Policy Ineffectiveness, and Long Stagnation of the Macroeconomy

 (a) The Model
 i. The Master Equation
(b) Uncertainty and Policy Ineffectiveness
 i. Multiple Equilibria
 ii. The Effectiveness of Policy

(c) The Japanese Economy during the 1990’s—A Case Study
 i. The Economy
 ii. Monetary Policy and Investment
 iii. Inflation Targeting and All That
 iv. Some Suggestive Evidence

(d) Concluding Remarks

5. Chapter 5 Slow Dynamics of Macro System—No Mystery of Inflexible Prices
 (a) Tree Models for Spill-over of Exogenous Shocks
 i. Trees
 ii. Ultrametric Dynamics of Spill-over probabilities
 iii. Two-level Tree
 iv. One-level Tree
 v. Power Law
 vi. Economic Temperature
 (b) Inflexible Prices
 (c) "Flat Landscape” Problems and Slow Dynamics
 i. The Metropolis Algorithm
 ii. Model
 (d) Concluding Remarks
 (e) Appendix
 i. Two-state Example
 ii. Three-state Example
 iii. Incomplete Gamma Function

6. Chapter 6 Business Cycles—An Endogenous Stochastic Approach
 (a) Introduction
 (b) The Model
 i. Transition Rates
 ii. Holding Time of Continuous-Time Markov Chains
 iii. Output and Excess Demand
 (c) Zero Excess Demand Conditions and Stationary Equilibrium
 (d) Two Sector Model
 i. The Expected Value of GDP
 (e) Simulation
 i. Aggregate Fluctuations
ii. Demand, GDP, and Employment
iii. Allocative Disturbances
iv. Probability of Sector Size Changes
v. Emergence of New Sectors

(f) Discussion
(g) Appendix: Dynamics of the Two-Sector Model
 i. Master Equation
 ii. Two-sector Dynamics
 iii. Most Likely Path and Stationary Distributions

7. Chapter 7 Labor Market—A Look at the Beveridge Curve and the Okun’s Law
 (a) Background
 (b) The Model
 i. Total Output and Excess Demand
 ii. State of Each Sector
 iii. Unemployment Pools
 (c) Simulation
 (d) Discussion
 i. The Beveridge Curve
 ii. Okun’s Law
 iii. Procyclical Productivity

8. Chapter 8 Demand Saturation-Creation and Economic Growth
 (a) Introduction
 (b) The Model
 i. Final Goods
 ii. Intermediate Good
 iii. Emergence of New Final Goods or Industries
 (c) Growth of the Macroeconomy
 i. The Basic Result
 ii. An Extension: The Non-Poisson ’Polya urn’ model
 (d) Foundations for the Logistic Growth of Demand
 i. The Firm’s Investment Decisions
 ii. The Consumer’s Consumption/Saving Decisions
 iii. The Ramsey Model
 iv. Diffusion of Final Goods among Different Households
 (e) Discussion

9. Chapter 9 The Types of Investors and Volatility in Financial Market—
 -Analyzing Clusters of Heterogeneous Agents
(a) Introduction

(b) Cluster Formation in Financial Market
 i. The Distribution of Agent Types
 ii. The Number of Clusters and Values of θ
 iii. Fractions
 iv. The Expected Share of the Largest Fraction
 v. Two Largest Fractions

(c) Market Volatility
 i. Market Excess Demand
 ii. Market Equilibrium
 iii. Power law for the Distribution of Prices

(d) Concluding Remarks

(e) Appendix 1: Joint Probability Density for r Largest Fractions

(f) Appendix 2: The Calculation of the Expected Share of the Largest Fraction

10. Chapter 10 Stock Prices and the Real Economy—Exponential and Power-Law Distributions

(a) Introduction

(b) The Power Law Behavior of Stock Prices and Returns
 i. power Law
 ii. Asset prices
 iii. Growth of Real Variables

(c) The Problems with the Standard Asset Pricing Model
 i. Theorem (Kesten-Goldie)
 ii. Model of "Rational Bubbles"
 iii. The Difficulty Faced by the Standard Model

(d) Underlying Mechanism—A Levy Flight Model
 i. The Real Economy
 ii. Exponential Distribution
 iii. Financial Returns

(e) Concluding Remarks on Real and Financial Markets

(f) Appendix 1: power Laws Derived from the Langevin Equation

(g) Appendix 2: Examples of power Laws in Clusters
 i. Large Deviations and Power Laws
 ii. Yule process
 iii. Birth-Death Process with Second-Order Balanced Rates
 iv. Yule-Simon Model
 v. Chinese Restaurant Process and Its Variants