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FINITE SAMPLE EVIDENCE SUGGESTING A HEAVY
TAIL PROBLEM OF THE GENERALIZED EMPIRICAL
LIKELIHOOD ESTIMATOR

Patrik Guggenberger

Department of Economics, U.C.L.A., Los Angeles, California, USA

� Comprehensive Monte Carlo evidence is provided that compares the finite sample properties
of generalized empirical likelihood (GEL) estimators to the ones of k-class estimators in the linear
instrumental variables (IV) model. We focus on sample median, mean, mean squared error,
and on the coverage probability and length of confidence intervals obtained from inverting a t-
statistic based on the various estimators. The results indicate that in terms of the above criteria,
all the GEL estimators and the limited information maximum likelihood (LIML) estimator
behave very similarly. This suggests that GEL estimators might also share the “no-moment”
problem of LIML. At sample sizes as in our Monte Carlo study, there is no systematic bias
advantage of GEL estimators over k-class estimators. On the other hand, the standard deviation
of GEL estimators is pronouncedly higher than for some of the k-class estimators. Therefore,
if mean squared error is used as the underlying loss function, our study suggests the use of
computationally simple estimators, such as two-stage least squares, in the linear IV model rather
than GEL. Based on the properties of confidence intervals, we cannot recommend the use of
GEL estimators either in the linear IV model.

Keywords Generalized empirical likelihood estimator; Generalized method of moments; Monte
Carlo simulation; No-moment problem.

JEL Classification C13; C15; C30.

1. INTRODUCTION

The class of generalized empirical likelihood (GEL) (Smith, 1997)
estimators enjoys some desirable theoretical asymptotic properties relative
to generalized method of moments (GMM) (Hansen, 1982) estimators.1

Received April 2004; Accepted December 2006
Address correspondence to Patrik Guggenberger, Bunche Hall 8385, Department of Economics

UCLA, Box 951477, Los Angeles, CA 90095-1477; E-mail: guggenbe@econ.ucla.edu
1Particular examples of GEL estimators include the continuous updating (CU) estimator of

Hansen et al. (1996), the empirical likelihood (EL) estimator of Owen (1988) and Qin and Lawless
(1994), and the exponential tilting (ET) estimator, see, e.g., Imbens (1997) and Kitamura and
Stutzer (1997).
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Finite Sample Evidence 527

For example, Newey and Smith (2004) (NS henceforth) show that for
many models the dominant asymptotic bias of the empirical likelihood
(EL) estimator does not grow with the number of moment restrictions,
while that of the GMM estimator grows without bound.

On the other hand, very little is known about the theoretical finite
sample properties of the GEL estimator and it is unclear whether
the higher order advantages of GEL over GMM estimators translate into
improved finite sample performance at empirically relevant sample sizes.2

The goal of this article then is to shed more light on the finite sample
properties of GEL estimators via Monte Carlo simulation. More precisely,
we study the properties of the continuous updating (CU), EL, and
exponential tilting (ET) estimator and compare them to k-class estimators,
namely, two-stage least squares (2SLS), limited information maximum
likelihood (LIML) and Fuller’s (1977) estimator with respect to several
loss functions all in the context of a linear instrumental variables model.
We are interested in how different GEL estimators perform compared to
each other and compared to k-class estimators. We investigate whether
the higher order bias advantages of GEL estimators are reflected in
their finite sample performance. How does the mean and median bias
compare to the one of classical k-class estimators, how is the bias affected
by an increase in the number of instruments and do the finite sample
results indicate a “no-moment problem” of the GEL estimator? How do
the estimators perform with respect to a mean squared error (MSE) loss
function and how reliable and precise are inference methods based on
these estimators?

The main findings are summarized as follows. The finite sample
properties of CU, EL, and ET are virtually identical with respect to all
the above criteria under investigation in the Monte Carlo study. They
are overall very similar to the properties of LIML. This suggests that

2With respect to moments, Mariano and Sawa (1972), Fuller (1977), and Kinal (1980)
show that the limited information maximum likelihood (LIML) estimator �̂LIML does not have
any moments finite, i.e. E‖�̂LIML‖ = ∞, the two-stage least squares (2SLS) estimator has as many
moments finite as there are overidentifying restrictions and Fuller’s estimator has at least two
moments finite, E‖�̂Fuller ‖2 < ∞. To obtain a corresponding result for GEL estimators, �̂GEL , in the
general case, is very difficult. GEL estimators are not given in closed form which makes theoretical
finite sample analysis very complicated. In a linear IV model, it is easily shown that the CU estimator
coincides with LIML and 2SLS in the just-identified case (under weak conditions that guarantee
that the weighting matrix in the CU criterion function is positive definite) and therefore does not
have moments in this case. However, even for the simplest overidentified case, where the parameter
of interest is of dimension 1 and there are two instruments, a theoretical investigation into the
moment question becomes extremely difficult. Kunitomo and Matsushita (2003) attempts a proof
for the nonexistence of moments of the EL estimator for the overidentified linear model. However,
in their proof they do not really consider the EL estimator because they artificially bound the
empirical probabilities (pi in their notation) away from zero (see their condition 0 < � ≤ pi < 1 on
p. 4, line 7↑ in their article for some sufficiently small � > 0). It is therefore still an unresolved
task to analytically prove the conjectured nonexistence of moments of GEL estimators.
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528 P. Guggenberger

GEL estimators may have a “no-moment problem,” E‖�̂GEL‖ = ∞, just like
LIML, which corroborates findings in Guggenberger and Hahn (2005).3

In accordance with NS, our Monte Carlo results suggest that the finite
sample bias of the GEL estimators is not negatively affected in a systematic
manner by an increase in the number of moment conditions. While there
is no clear ranking of GEL and k-class estimators with respect to bias
properties, the standard deviation (Std) of GEL often exceeds the Std of
2SLS and Fuller, oftentimes by several magnitudes. Therefore, if MSE is the
relevant loss function, we cannot recommend the use of GEL estimators
in the linear instrumental variables model based on our simulation results.
If interest focuses on the coverage probability of a confidence interval
(CI) based on inverting a t -statistic based on a particular estimator, we
find that, in an overall sense, Fuller-based CIs perform best, but they
are not uniformly better than those based on 2SLS or GEL. As an
important extension, one should study the finite sample performance of
GEL estimators in several nonlinear models, because in nonlinear models
they may have bias advantages over k-class estimators that potentially
offset their higher Std, see NS.

Unfortunately, the definition of GEL estimators as the solution of a
(potentially high-dimensional) saddle point problem (the argmin− sup
problem in (2.3)) also makes the finite sample investigation of GEL
estimators via Monte Carlo study extremely difficult. While the “inner
maximization” problem is globally concave and one can rely on derivative-
based maximization routines such as the Newton–Raphson algorithm,
solving the “outer minimization” routine is much more challenging because
several local minimamay exist. Instead of relying on a minimization routine,
such as Nelder–Meade, we evaluate the criterion function of the GEL
estimators for all values in the parameter space on a very fine grid. This
approach guarantees numerical stability and works successfully even in very
weakly identified models to which we pay particular attention in our study.
Obviously, this approach is very time consuming and would be too expensive
in terms of computation time for Monte Carlo setups where the structural
parameter vector is of dimension bigger than one and therefore we restrict
attention to the scalar case. While grid search routines have been suggested
elsewhere for isolated problem cases where minimization routines did not
converge, see, e.g., Hansen et al. (1996) and Imbens et al. (1998) for further

3If an estimator does not have any finite moments, then its finite sample risk is infinite for
many loss functions, including mean squared error loss. However, as discussed in a very interesting
article by Zaman (1981), the use of estimators with no moments can be appropriate for other loss
functions. For example, if the goal is to estimate � = �−1 given iid data from a N (�, �2) distribution
with known variance �2, (Zaman, 1981, p. 291) proves that “asymptotically, for any interval around
the true value, the maximum likelihood estimator has greater probability of being in that interval
than any other asymptotically median unbiased estimator”—a very nice optimality result. However,
the MLE estimator in this example does not have any finite moments.
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Finite Sample Evidence 529

discussion, to my knowledge, this is the first large scale systematic Monte
Carlo study of the finite sample properties of GEL estimators that is based
on this grid search approach. When implementing a grid search approach,
the set over which the search is performed, necessarily, has to be restricted
to a bounded set and therefore, strictly speaking, our Monte Carlo study
investigates the properties of the truncated version of the GEL estimators. We
choose the relatively large set [−25, 25] for our search, where the true value
of the structural parameter coefficient is 0. To simplify notation, rather than
talking about the truncated GEL estimator, we will simply talk about the
GEL estimator from now on, even though, strictly speaking this is wrong.

An important question that has intrigued finite sample theorists
concerns the interpretation of sample moments of random variables whose
moments are infinite, see Phillips (2003, p. 508), for a more detailed
discussion of this issue. Even if an estimator has infinite moments, finite
pseudomoments of the estimator, also called approximations, (Nagar,
1959), can be defined as the corresponding moments of an Edgeworth
expansion of the estimator. Sargan (1988) collects several articles by
Sargan that give conditions under which these moment approximations
are valid. For the case when an estimator has infinite moments, Sargan
(1982) shows that Monte Carlo sample moments are in fact estimating
these moments of the Edgeworth approximation. See also Maasoumi
(1977) for additional work on this subject matter.

We now briefly discuss various other recent articles that are concerned
with Monte Carlo simulation of the finite sample properties of GEL in the
linear instrumental variables model, namely, Mittelhammer et al. (2005),
Kunitomo and Matsushita (2003), Anderson et al. (2005), Guggenberger
(2005), and Guggenberger and Hahn (2005). Guggenberger and Hahn
(2005) investigate the finite sample properties of EL indirectly by studying
the finite sample properties of its two-step version that has a closed
form solution and the same relevant higher order bias properties as
EL. They find strong evidence for a “no-moment problem” of the EL
estimator. Analogous findings are obtained in the small simulation study
Guggenberger (2005) for the CU estimator. Mittelhammer et al. (2005)
calculate GEL estimators using a combination of minimization routines
including Nelder–Meade. They consider only relatively strongly identified
scenarios (with R 2 > 0�25) and while evidence for higher variance of GEL
estimators compared to 2SLS is reported, based on the strongly identified
models in their Monte Carlo setup, no “no-moment problem” of the GEL
estimators is suspected. If R 2 is very small, the criterion function for the GEL
estimator is typically very flat and any of the standard minimization routines
is known to run into problems. Either the routine does not converge or
if it does, suspicion remains whether the true minimizer has been found.
Kunitomo and Matsushita (2003) perform Monte Carlo simulations for an
EL type and GMM estimator in the linear instrumental variables model
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530 P. Guggenberger

with one included exogenous and one included endogenous variable.4

They find that the EL type estimator is approximately median unbiased
but—consistent with our findings—has a fat tailed distribution. Anderson
et al. (2005) provide further evidence on these findings. Besides normal
errors they allow for a variety of other error distributions and also consider
conditional heteroskedasticity. They advocate the use of LIML because they
find that it shares the nice median bias properties of EL but has tighter tails
and is computationally simpler than EL.

2. MONTE CARLO EXPERIMENT

2.1. Model and Theoretical Properties

We investigate the finite sample properties of the EL, ET, and CU
estimator applied to a simple linear instrumental variables model as in, for
example, Hahn and Hausman (2002)

yi = xi�0 + �i ,

xi = z ′
i� + ui , i = 1, � � � ,n, (2.1)

where yi , xi , and zi denote the dependent variable, an (endogenous) scalar
regressor and the vector of instrumental variables and n is the sample size.
The value of �0 is set equal to 0. Let zi and (�i ,ui)

′ be independent and IID
� (0, IK ) and � (0,�), respectively, where IK is the K -dimensional identity
matrix and � is a 2 × 2-matrix with diagonal and off diagonal elements
1 and 	, respectively. Let

�2 ≡ E 
(�′zi)2�/(E 
(�′zi)2� + E 
v2
i �) = �′�/(�′� + 1)

denote the theoretical R 2 of the first stage regression. Assume
� = (�, �, � � � , �)′ and thus

�2 = K · �2
K · �2 + 1

� (2.2)

We simulate data for all the possible parameter combinations of

n = 100, 200,

K = 1, 5, 20,

4As explained in an earlier footnote, a version of the EL estimator is used in which the empirical
probabilities are bounded away from zero. It is not specified how the calculation of the EL estimator
is implemented. In their case, the outer minimization problem in (2.3) is two-dimensional which
probably makes a grid search routine too costly. Other numerical procedures face the just described
problems of numerical stability especially in weakly identified scenarios.



D
ow

nl
oa

de
d 

B
y:

 [C
D

L 
Jo

ur
na

ls
 A

cc
ou

nt
] A

t: 
04

:1
3 

30
 M

ay
 2

00
8 

Finite Sample Evidence 531

�2 = �001, �01, �1, and

	 = 0, �3, �5, �9�

Different choices of K allow us to investigate how the degree of over-
identification affects the performance of the estimators. The parameter
	 determines the degree of endogeneity that ranges from none (	 = 0)
to very strong (	 = 0�9). Finally, equation (2.2) implies � = (�2/(K (1 −
�2)))1/2 and therefore �2 (together with K ) pins down the strength of the
instruments.

Like GMM, the GEL estimators exploit the moment condition
Ei(�0) = 0, where i(�) ≡ (yi − xi�)zi � The general definition of GEL
estimators is as follows. Let � be a real-valued function Q → R , where Q
is an open interval of the real line that contains 0 and �̂n(�) := �� ∈ RK :
�′i(�) ∈ Q for i = 1, � � � ,n�� Set �j(v) := (�j�/�vj)(v) and �j := �j(0) for
non-negative integers j . The GEL estimator is the solution to the saddle
point problem

�̂� := argmin
�∈B

sup
�∈�̂n (�)

P̂�(�, �), (2.3)

where

P̂�(�, �) :=
(
2

n∑
i=1

�(�′i(�))/n
)

− 2�0 (2.4)

and B is the parameter space for �. The CU, EL, and ET estimators
correspond to �(v) = −(1 + v)2/2, �(v) = ln(1 − v) and �(v) = − exp v,
respectively. In case of CU, one can explicitly solve for �(�), the � that for
a given � solves the inner maximization problem in (2.3). For other GEL
estimators, it can be shown that �(�) exists with probability approaching 1,
see NS and Guggenberger and Smith (2005). For CU it follows that5

�̂CU ≡ argmin
�∈B

Qn(�), for

Qn(�) ≡
[ n∑

i=1

i(�)

]′[ n∑
i=1

i(�)i(�)
′
]−1[ n∑

i=1

i(�)

]
�

Under technical conditions satisfied in our simulations, NS (Corollary
4.3, p. 229) show that the dominant higher order bias of the EL estimator
equals the asymptotic bias for the (infeasible) GMM estimator that uses

5NS (2004, p. 222) show that this definition of the CUE �̂CU coincides with the one given in
Hansen et al. (1996), where in Qn(�) the term

∑n
i=1 i(�)i(�)

′ is replaced by
∑n

i=1 i(�)i(�)
′ −∑n

i=1 i(�)
∑n

i=1 i(�)
′.
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532 P. Guggenberger

the optimal (asymptotic variance minimizing) linear combination.6 On the
other hand, in general, there are additional bias terms for GMM that
stem from the estimation of the Jacobian and second moment matrices
and from the use of a preliminary estimator needed to implement the
two-step GMM estimator. Based on these theoretical asymptotic findings,
one would expect the bias of EL to be smaller than the bias of GMM; this
is to be expected especially in nonlinear models, where the estimation of
the nonconstant Jacobian matrix constitutes an important source of bias.7

NS (Theorem 4.5, p. 230) also show that the bias of EL is bounded as
a function of the number of overidentifying restrictions, while—at least
in certain heteroskedastic models—the bias of GMM grows linearly in K .
It would therefore be instructive to also consider heteroskedastic designs
and/or to study nonlinear models to see if this leads to a different bias
behavior of GMM and EL in finite samples.

2.2. Implementation and Results

In the simulations, when implementing the grid search, it is obviously
impossible to allow for the unbounded search interval B = R for �.
We choose B = [−c , c] for c = 25 which results in a truncated version of
the GEL estimator. In a “brute force” approach, we calculate P̂�(�, �(�))
for all � ∈ B on a grid with stepsize 0.01 and pick �̂� as the � that
minimizes P̂�(�, �(�)) on this grid. Sensitivity analysis with respect to the
stepsize shows that there is virtually no change in the results by using even
smaller stepsizes than 0.01.

While for CU, P̂�(�, �(�)) is given in closed form, for EL and ET the
maximization problem max�∈�̂n (�) P̂�(�, �) has to be solved numerically for
each � ∈ B. However, in this inner maximization problem in (2.3), the
function to be maximized is globally concave. We implement a variant
of the Newton–Raphson algorithm with implemented step size control,
see Hamilton (1994, Chapter 5) for a reference. The maximization
algorithm is initialized by setting � equal to the zero K -vector and then at
each iteration the algorithm tries several shrinking stepsizes in the search
direction and accepts the first one that increases the value of the criterion
function compared to the previous value for �. This procedure enforces an
“uphill climbing” feature of the algorithm and turns out to be very stable
and reliable.

6Denote by ij (�) the j th component of i(�)� Under the third moment condition
Ei(�0)

′
i(�0)ij (�0) = 0 the higher order asymptotic bias of all GEL estimators coincides, see NS

(Corollary 4.4, p. 229).
7But note that even in the linear model with symmetric erros, GEL estimators have a

theoretical higher order bias advantage over GMM if the preliminary estimator for two-step GMM
is inefficient (see NS, p. 230).
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Finite Sample Evidence 533

For GEL estimators, the criterion function P̂�(�, �) can be very flat
and/or have multiple local extrema and therefore optimization routines
(for the outer minimization in (2.3)), such as Newton–Raphson or
Nelder–Meade, can be unstable and can often lead to wrong results. The
heavy computational burden and unreliability of minimization routines
for GEL estimators has been widely recognized, see, e.g., Hansen et al.
(1996), Imbens et al. (1998), and Mittelhammer et al. (2005). That is why
in our simulations we employ the stable but extremely time consuming
“brute force” approach of grid evaluation, that has been suggested also
by Hansen et al. (1996) for certain problem scenarios but, to our
knowledge, has never been used in a comprehensive Monte Carlo study
to investigate the finite sample properties of GEL. In scenarios where
instruments are only weakly correlated with the endogenous regressor,
the saddle point problem of the GEL estimator becomes particularly
intractable. However, the grid search approach used here, finds the
correct minimizer within the specified compact set. Of course, we do not
recommend such a time consuming algorithm in practice when � is of
high dimension. It is implemented here, because for scalar �, it is still
feasible.

All the results reported below are based on 5,000 simulation
repetitions. For each repetition, we calculate the EL, ET, CU estimators
and, for comparison, the LIML, 2SLS, and Fuller’s estimator. (We choose
� = 1 in the definition of the Fuller estimator, see, Fuller, 1977, p. 942).
We restrict the latter estimators to B as well, that is, if, for example, the
LIML estimator is bigger (smaller) than c (−c) for a given data sample, it
is set equal to c (−c).

We then calculate the sample mean, median, Std, and root mean
squared error (RMSE) of the estimators over the 5,000 samples. To gain
insight into how binding the restriction onto the interval [−c , c] is, we also
calculate the percentage of times that the estimators fall into the “10%-tail”
[−c ,−0�9c] ∪ [0�9c , c] of the interval [−c , c]� We call this probability the
“10%-tail-probability.” Finally, we report actual coverage probability and
median length of nominal 95% two-sided symmetric CIs based on inverting
a t -statistic based on the various estimators. The 95% two-sided symmetric
CI based on an estimator �̂ is given by

{
� ∈ R : |�̂ − �|< 1�96

[
n−1

n∑
i=1

(yi − xi �̂)2/(x ′z(z ′z)−1z ′x)
]1/2}

and its length is given by 2 × 1�96[n−1
∑n

i=1(yi − xi �̂)2/(x ′z(z ′z)−1z ′x)]1/2,
where x = (x1, � � � , xn)′ and z = (z1, � � � , zn)′.

Tables 1–4 below contain a subset of the simulation results, namely,
all combinations of n = (100, 200), �2 = (0�001, 0�1), K = (1, 5, 20) and
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534 P. Guggenberger

TABLE 1(a) �2 = 0�001, 	 = 0�3, n = 100

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL 0.36 0.30 5.24 5.25 1.00 7.37 0.03
LIML 0.36 0.30 5.24 5.25 1.00 7.37 0.03
2SLS 0.36 0.30 5.24 5.25 1.00 7.37 0.03
Fuller 0.29 0.29 0.38 0.48 1.00 5.73 0.00

K = 5
EL 0.26 0.27 5.11 5.12 0.82 2.55 0.02
LIML 0.21 0.28 5.25 5.26 0.82 2.55 0.02
2SLS 0.29 0.29 0.55 0.63 0.95 1.90 0.00
Fuller 0.29 0.28 0.63 0.69 0.90 2.05 0.00

K = 20
EL 0.29 0.30 5.35 5.36 0.27 1.18 0.03
LIML 0.19 0.30 5.31 5.32 0.27 1.17 0.02
2SLS 0.30 0.30 0.22 0.37 0.72 0.85 0.00
Fuller 0.29 0.30 0.86 0.91 0.39 1.02 0.00

	 = (0�3, 0�9). Tables 1(a)–4(a) contain the results for n = 100,
Tables 1(b)–4(b) those for n = 200. The remaining results are
available from the author upon request. The columns of each table report
the sample mean, median, Std, RMSE, actual coverage probability, and
median length of nominal 95% CIs and the 10%-tail-probabilities for the
estimators EL, LIML, 2SLS, and Fuller. To save space, we do not explicitly
report results for ET and CU because they coincide numerically (with
very few exceptions) to the ones of EL for the median, the 10%-tail

TABLE 1(b) �2 = 0�001, 	 = 0�3, n = 200

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL 0.23 0.22 5.18 5.18 1.00 7.19 0.02
LIML 0.24 0.22 5.18 5.18 1.00 7.20 0.02
2SLS 0.24 0.22 5.18 5.18 1.00 7.20 0.02
Fuller 0.28 0.28 0.39 0.48 1.00 5.55 0.00

K = 5
EL 0.13 0.24 5.70 5.70 0.82 2.50 0.03
LIML 0.15 0.25 5.48 5.48 0.83 2.48 0.03
2SLS 0.29 0.29 0.56 0.63 0.95 1.87 0.00
Fuller 0.28 0.27 0.62 0.68 0.90 2.04 0.00

K = 20
EL 0.21 0.28 5.44 5.45 0.27 1.20 0.03
LIML 0.25 0.29 5.30 5.30 0.27 1.17 0.03
2SLS 0.30 0.30 0.22 0.37 0.71 0.86 0.00
Fuller 0.30 0.29 0.86 0.91 0.39 1.02 0.00
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TABLE 2(a) �2 = 0�1, 	 = 0�3, n = 100

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL −0�03 0.01 0.71 0.71 0.97 1.20 0.00
LIML −0�03 0.01 0.71 0.71 0.97 1.20 0.00
2SLS −0�03 0.01 0.71 0.71 0.97 1.20 0.00
Fuller 0�02 0.03 0.29 0.29 0.97 1.18 0.00

K = 5
EL −0�05 0.01 1.68 1.68 0.86 1.04 0.00
LIML −0�06 0.00 1.59 1.59 0.88 1.04 0.00
2SLS 0�07 0.09 0.28 0.29 0.95 1.00 0.00
Fuller 0�02 0.03 0.37 0.37 0.92 1.03 0.00

K = 20
EL −0�04 0.03 3.10 3.10 0.46 0.78 0.01
LIML −0�05 0.03 2.81 2.81 0.52 0.75 0.01
2SLS 0�19 0.19 0.18 0.26 0.79 0.69 0.00
Fuller 0�04 0.05 0.56 0.56 0.58 0.74 0.00

probability, the coverage probability, and median length of CIs and are
qualitatively identical to the ones of EL for the other measures.

We now discuss the relative performance of each estimator with
respect to the various different measures under investigation using the
data from the tables and including additional insight from the simulation
results not contained in the tables. We also discuss the effect of n, �2, K ,
and 	 on the performance of the estimators.

TABLE 2(b) �2 = 0�1, 	 = 0�3, n = 200

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL −0�02 0.00 0.23 0.24 0.96 0.84 0.00
LIML −0�02 0.00 0.23 0.24 0.96 0.84 0.00
2SLS −0�02 0.00 0.23 0.24 0.96 0.84 0.00
Fuller 0�00 0.02 0.22 0.22 0.97 0.83 0.00

K = 5
EL −0�02 0.00 0.50 0.50 0.91 0.77 0.00
LIML −0�02 0.00 0.32 0.32 0.92 0.77 0.00
2SLS 0�04 0.05 0.20 0.21 0.95 0.76 0.00
Fuller 0�00 0.01 0.24 0.24 0.93 0.77 0.00

K = 20
EL −0�09 0.01 1.31 1.31 0.65 0.63 0.00
LIML −0�06 0.00 1.27 1.27 0.71 0.62 0.00
2SLS 0�14 0.14 0.16 0.21 0.83 0.59 0.00
Fuller 0�00 0.02 0.35 0.35 0.73 0.62 0.00
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536 P. Guggenberger

TABLE 3(a) �2 = 0�001, 	 = �9, n = 100

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL 0.69 0.79 3.90 3.96 0.75 3.75 0.01
LIML 0.72 0.79 3.90 3.96 0.75 3.75 0.01
2SLS 0.72 0.79 3.90 3.96 0.75 3.75 0.01
Fuller 0.87 0.87 0.20 0.89 0.72 2.70 0.00

K = 5
EL 0.80 0.85 3.65 3.74 0.36 1.22 0.01
LIML 0.91 0.85 3.96 4.06 0.36 1.23 0.01
2SLS 0.88 0.88 0.26 0.92 0.13 0.87 0.00
Fuller 0.88 0.88 0.30 0.93 0.19 0.95 0.00

K = 20
EL 0.77 0.88 3.86 3.94 0.14 0.55 0.01
LIML 0.82 0.88 3.76 3.85 0.14 0.56 0.01
2SLS 0.90 0.90 0.10 0.90 0.00 0.39 0.00
Fuller 0.89 0.88 0.41 0.98 0.10 0.47 0.00

Mean Bias: While oftentimes the bias of EL is smaller than the bias of
the k-class estimators (see, e.g., Table 3(a)), this advantage is not systematic
and there are scenarios, where the bias of k-class estimators is smaller
than the one of EL. E.g., for n = 100, �2 = 0�001, K = 1, 	 = 0�3 the
bias of EL is 0�36 while the one of Fuller is 0�29. The bias of 2SLS can
be substantially larger than the biases of the other estimators in relatively
strongly identified scenarios with many instruments, see Tables 2 and 4

TABLE 3(b) �2 = 0�001, 	 = 0�9, n = 200

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL 0.62 0.72 4.10 4.14 0.76 3.79 0.01
LIML 0.64 0.72 4.09 4.14 0.76 3.80 0.01
2SLS 0.64 0.72 4.09 4.14 0.76 3.80 0.01
Fuller 0.84 0.85 0.23 0.87 0.72 2.68 0.00

K = 5
EL 0.87 0.80 3.85 3.94 0.37 1.25 0.01
LIML 0.80 0.79 4.15 4.22 0.37 1.24 0.02
2SLS 0.87 0.87 0.26 0.91 0.13 0.86 0.00
Fuller 0.86 0.84 0.31 0.91 0.20 0.96 0.00

K = 20
EL 0.83 0.85 3.95 4.04 0.15 0.58 0.02
LIML 0.78 0.84 3.87 3.95 0.16 0.57 0.01
2SLS 0.89 0.89 0.10 0.90 0.00 0.39 0.00
Fuller 0.87 0.85 0.42 0.96 0.11 0.48 0.00
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TABLE 4(a) �2 = 0�1, 	 = 0�9, n = 100

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL −0�11 0.00 0.67 0.68 0.92 1.17 0.00
LIML −0�11 0.00 0.67 0.68 0.92 1.17 0.00
2SLS −0�11 0.00 0.67 0.68 0.92 1.17 0.00
Fuller 0�04 0.08 0.26 0.26 0.89 1.09 0.00

K = 5
EL −0�18 0.00 1.06 1.07 0.88 1.00 0.00
LIML −0�14 0.00 1.01 1.02 0.89 1.00 0.00
2SLS 0�22 0.25 0.23 0.31 0.68 0.79 0.00
Fuller 0�03 0.08 0.27 0.27 0.87 0.94 0.00

K = 20
EL −0�18 0.03 2.87 2.87 0.59 0.72 0.01
LIML −0�17 0.00 1.82 1.82 0.68 0.72 0.00
2SLS 0�57 0.57 0.12 0.58 0.02 0.41 0.00
Fuller 0�04 0.08 0.31 0.31 0.74 0.66 0.00

with K = 20; e.g., for n = 100, �2 = 0�1, K = 20, 	 = 0�9 the bias of 2SLS
and Fuller is 0�57 and 0�04, respectively.

As to be expected from the theoretical results in NS, for EL there is no
systematic increase in the bias with K increasing. Fuller’s estimator seems
to be affected even less by the number of instruments and the bias of LIML
sometimes even decreases in K , see Table 1(a). On the other hand, the
mean bias for 2SLS typically increases with the number of instruments, e.g.,

TABLE 4(b) �2 = 0�1, 	 = 0�9, n = 200

Mean Med Std RMSE CovPr Length Tail prob

K = 1
EL −0�05 0.00 0.26 0.26 0.94 0.83 0.00
LIML −0�05 0.00 0.26 0.26 0.94 0.83 0.00
2SLS −0�05 0.00 0.26 0.26 0.94 0.83 0.00
Fuller 0�01 0.04 0.21 0.21 0.92 0.80 0.00

K = 5
EL −0�06 -0.01 0.30 0.30 0.92 0.77 0.00
LIML −0�06 -0.01 0.28 0.29 0.93 0.77 0.00
2SLS 0�11 0.14 0.18 0.21 0.81 0.67 0.00
Fuller 0�00 0.03 0.22 0.22 0.91 0.74 0.00

K = 20
EL −0�09 0.00 0.52 0.53 0.78 0.61 0.00
LIML −0�06 0.00 0.30 0.31 0.83 0.61 0.00
2SLS 0�42 0.42 0.11 0.43 0.08 0.40 0.00
Fuller 0�00 0.04 0.23 0.23 0.83 0.59 0.00
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538 P. Guggenberger

in Table 3(a) the bias increases from 0�72 to 0�88 to 0�90 when the number
of instruments increases from 1 to 5 to 20.

Typically, but not always, for all estimators, the bias increases as a
function of 	 (compare Tables 1 with 3 and 2 with 4) and decreases as
a function of �2 (compare Tables 1 with 2 and 3 with 4) and n. As one
exception, compare Tables 3(a) and 3(b) for the case of K = 5 and 20.
Here, the mean bias of EL increases from 0�80 to 0�87 and from 0�77 to
0�83 for K = 5 and 20, respectively, when n is increased from 100 to 200.

Median Bias: Typically, the median bias of all the estimators is very
similar with the exception of 2SLS which can be substantially more biased
than the other estimators in overidentified scenarios, especially when there
is high endogeneity. For example, see Table 4 for K = 20, where the bias of
2SLS is 0�57 and 0�42 when n = 100 and 200, respectively, while the bias
of the other estimators is negligible.

Again, for EL, there does not seem to be a systematic increase in the
bias as a function of K—however, for some cases, we note a slight growth in
the bias when K increases. For example, see Table 3. The same observation
is true for LIML and Fuller but not for 2SLS whose bias increases in K
in the strongly identified case, see Tables 2 and 4. As for the mean bias,
we typically observe an increase/decrease/decrease in the median bias as
a function of 	/�2/ and n, respectively.

Std: The Std of EL and LIML are qualitatively very similar across all
parameter combinations; sometimes the Std of EL is considerably larger
than the one of LIML, see, e.g., Table 4(a) when K = 20. Furthermore,
the Std of EL and LIML are considerably larger than the corresponding
Std of 2SLS (if K = 5 or 20) and Fuller (sometimes by several magnitudes!,
see for example Tables 1 and 3) and are very similar to 2SLS when K =
1. Since LIML has no moments finite, 2SLS has no moments finite when
K = 1 and >2 moments finite in the overidentified situations considered
here and Fuller always has two moments finite, our simulations show that
if an estimator has no moments its Std is considerably larger relative to
estimators with moments. These findings then also suggest that the GEL
estimators suffer from a no-moment problem.

Typically, Std is a decreasing function of 	 and �2. The dependence on
n is more complicated. While in the strongly identified case, Std decreases
with increasing n, the opposite is typically true in the weakly identified
case.

RMSE: In general, the findings for Std remain valid for the RMSE of
the estimators as well, because in most cases, the Std dominates the bias.
Therefore, in terms of RMSE, Fuller, and in overidentified models also
2SLS are to be recommended over GEL; in many scenarios, their RMSEs
are smaller by several magnitudes.
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Coverage Probability and Median Length of CIs: The coverage
probability and median length of CIs are virtually identical for EL and
LIML. CIs based on 2SLS have higher coverage probability for small 	
(and significantly so when K is large, see Tables 1 and 2 for K = 20) but
much lower coverage probability when 	 is large and K is big (see Tables 3
and 4). CIs based on Fuller’s estimator are arguably the best ones in an
overall sense in terms of coverage probability. They have lower coverage
probability in weakly identified and strongly endogenous situations than
EL- and LIML-based CIs (see Table 3) but typically dominate those CIs
otherwise. In terms of median length, Fuller clearly dominates EL and
LIML. 2SLS is best in terms of median length in overidentified situations.

Typically, both coverage probability and median length are decreasing
functions of K . Typically, but not always, coverage probability increases in
�2 while median length decreases in �2. Median length decreases in n
in strongly identified cases, coverage probability increases in n in strongly
identified cases for large K , and otherwise there is not much dependence
on n = 100 or n = 200. Median length typically decreases in 	. Finally,
coverage probability decreases in 	 in weakly identified situations (and in
all situations for 2SLS).

10%-Tail-Probabilities: In analogy to the results for Std, we find
that estimators without moments have relatively high-tail probabilities. For
example, for the parameter combinations in Table 1(a) we find that for
K = 1, in about 3% of the cases, the EL, LIML, and 2SLS estimator, take
on values that are larger than 22�5 in absolute value. The corresponding
number for Fuller is 0%. The dependence of the tail probabilities on the
parameters 	, �2, and n, is as for Std.

3. CONCLUSION

The similarity of GEL and LIML with regards to their Std and outlier
probabilities suggest a “no-moment problem” of the GEL estimator. The
Std and RMSE of GEL and LIML are very similar and considerably larger
than the one of 2SLS (in the overidentified case) and Fuller. In agreement
with the theoretical findings in NS, we find that the bias of GEL is not
much affected by the number of moment conditions; the same is true
for LIML and Fuller. We do not find a systematic bias advantage of GEL
estimators over k-class estimators.

If the relevant loss function is MSE, then our results indicate that
GEL estimators do not have an advantage over computationally simpler
estimators, such as 2SLS, in the linear model, on the contrary they perform
much worse. Based on the properties of CIs we cannot recommend the
use of GEL estimators either, because Fuller-based CIs have overall better
properties.
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540 P. Guggenberger

In sum, based on our study, GEL estimators should not be used for
the linear model. In nonlinear models however, they may have a bias
advantage that might offset (or maybe even more than that) their poorer
performance in terms of Std. It would be important to adapt this study
and to provide a comprehensive investigation for several nonlinear models
in order to assess the comparative dis/advantage of GEL estimators over
GMM estimators in these models.

Other criteria may be relevant for the choice of the estimator.
For example, it is known that the finite sample distribution of LIML
approximates its asymptotic normal distribution much faster than 2SLS,
see Anderson et al. (1982, 2005). A similar finding was obtained in the
Monte Carlo studies of Kunitomo and Matsushita (2003) for the EL
estimator compared to the GMM estimator.
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