Business Cycle Fluctuations and the Life Cycle: How Important is On-The-Job Skill Accumulation?

Gary D. Hansen
UCLA, Department of Economics, 8283 Bunche Hall
Los Angeles, CA 90095-1477

Selahattin İmrohoroğlu
USC, Marshall School of Business, Bridge Hall 308
Los Angeles, CA 90089-0804

July 31, 2008

Abstract

We study the effects of on-the-job skill accumulation on average hours worked by age and the volatility of hours over the life cycle in a calibrated general equilibrium model. Two forms of skill accumulation are considered: learning by doing and on-the-job training. In our economy with learning by doing, individuals supply more labor early in the life cycle and less as they approach retirement than they do in an economy without this feature. The impact of this feature on the volatility of hours over the life cycle depends on the value of the intertemporal elasticity of labor supply. When individuals accumulate skills by on-the-job training, there are only weak effects on both the steady-state labor supply and its volatility over the life cycle.

We thank Larry Jones, Burhanettin Kuruşçu, Bob Lucas, Ed Prescott and two anonymous referees for comments on an earlier version of the paper.
1 Introduction

Inspired by the research agenda proposed by Lucas (1980), the equilibrium business cycle literature demonstrates that surprisingly simple model economies display fluctuations with quantitative properties like those of business cycles experienced by actual economies. Most of this literature, beginning with Kydland and Prescott (1982), has studied versions of the infinite horizon stochastic growth model calibrated to match secular growth facts. Ríos-Rull (1996) showed that this basic claim extends to stochastic life cycle economies where individuals respond to aggregate shocks differently depending on age.¹

This work, as well as work by Gomme, Rogerson, Rupert and Wright (2004), has used these models to study time averages of hours worked by age and the volatility of hours worked by age due to business cycle shocks.² A striking finding from this literature is that age-specific human capital seems essential for this type of model to account for the statistical properties of hours worked by age found in U.S. data. In the existing literature these human capital differences are modeled by multiplying individual hours worked by exogenous efficiency weights calibrated to match relative hourly earnings by age.³ These calibrated efficiency weights increase while young, peak at prime age, and decline towards the end of an individual’s working life.

The goal of this paper is to evaluate the usefulness of this abstraction by exploring how the quantitative-theoretical findings of this literature are changed when the efficiency weights are endogenous rather than exogenous. In actuality, differences in productivity by age are the result of human capital accumulation, much of it obtained on-the-job. While young workers may be less productive than prime age workers and therefore earn less per hour, they also take into account whatever return from experience they receive from working. That is, their effective wage may be much higher than their

¹Understanding why and how individuals respond to business cycle shocks as they grow older is arguably important for understanding how the properties of business cycles change as the population ages and for evaluating government policies that affect individuals differently depending on age or, immigration policies for example, that might change the age composition of the population. See Jaimovich and Siu (2007) for evidence that demographic change has had a significant effect on business cycle volatility.

²These papers follow the real business cycle tradition of measuring business cycle volatility by computing the percent standard deviation of time series that have been detrended using the Hodrick-Prescott filter.

³For example, see Hansen (1993).
current wage given that they will be compensated with higher wages in the future. These returns from experience are ignored when exogenous efficiency weights are assumed. In addition, the efficiency weights themselves will vary in response to shocks, potentially affecting the business cycle behavior of other endogenous variables.

We study two forms of on-the-job skill accumulation in the context of a stochastic life cycle growth model: learning by doing (LBD) and on-the-job training (OJT). In the first case, human capital is perfectly complementary with providing productive labor services—human capital is accumulated simply as a result of working. This contrasts with the second case where no productive labor services are provided while spending time engaged in OJT.

We then compare the results obtained with on-the-job skill accumulation with those from an economy with exogenous age-specific wage parameters. All three economies are calibrated so that the steady state values for the age-specific wage parameters are identical.

We find that introducing OJT gives steady state and business cycle properties that are essentially identical to the case without skill accumulation. LBD, on the other hand, affects both sets of properties significantly. In particular, the impact of learning by doing is greater when labor supply is more elastic. The reason for this difference is that, in our calibrated economy, LBD affects labor market decisions at all ages, while OJT turns out to be important only during the early years of an individual’s working life. Hence, exogenous efficiency weights appear to be a useful abstraction when studying the relationship between business cycles and the life cycle if skill accumulation occurs through OJT. If LBD is important for skill accumulation, exogenous efficiency weights may not be a good modeling assumption for studying this issue.

The remainder of this paper is organized as follows. The model is described in the next section and the third section describes the calibration.

4We assume the human capital production function used by Chang, Gomes, and Schorfheide (2002) in their analysis of learning by doing in an infinite horizon business cycle model. We modify this function to allow for OJT in addition to LBD.

5Both forms of on-the-job skill accumulation have been extensively studied in the micro labor literature. Early papers on OJT include Ben-Porath (1967), Becker (1964), Blinder and Weiss (1976), Heckman (1976), Mincer (1974), and Rosen (1976). Shaw (1989) estimates a dynamic labor supply model with LBD. Imai and Keane (2004) estimate a structural model of labor supply with LBD and find that this feature can reconcile the relatively high labor supply elasticity that is consistent with aggregate data with the low elasticity typically found in the micro literature.
The findings are discussed in section 4 and concluding comments are provided in section 5.

2 Model

The economic setup follows the overlapping generations structure of Diamond (1965). Time is discrete and the economy is subject to random fluctuations arising from shocks to the production technology as in Kydland and Prescott (1982).

2.1 Demographics

At each date t a new generation of individuals is born that faces an uncertain life span. The population of new agents born each period grows at the time invariant rate n. We study the equilibrium properties of the model assuming stationary demographics (constant cohort shares), in which case n is also the growth rate of the total population. Let ψ_i denote the conditional probability of surviving from age i to age $i+1$. Conditional on survival, individuals retire exogenously at age I_R. The maximum life span is I. Given $\{n, \{\psi_i\}_{i=1}^I\}$, the time invariant cohort shares, $\{\mu_i\}_{i=1}^I$, are given by

$$\mu_i = \frac{\psi_{i-1}}{(1 + n)} \mu_{i-1}, \text{ for } i = 2, ..., I,$$

and μ_1 is determined such that

$$\sum_{i=1}^I \mu_i = 1.$$

2.2 Technology

There is a representative firm with access to a constant returns to scale Cobb-Douglas production function:

$$Y_t = e^{z_t} K_t^\alpha H_t^{1-\alpha}$$

where K_t and H_t are aggregate physical capital and labor inputs, respectively, and α is capital’s share of income. Total factor productivity follows an $AR(1)$
process:

\[z_{t+1} = \rho z_t + \nu_{t+1}, \quad \nu_{t+1} \sim N(0, \sigma^2_{\nu}), \quad 0 < \rho < 1, \quad z_0 \text{ given.} \]

The capital stock depreciates at the rate \(\delta \) and follows the law of motion

\[K_{t+1} = (1 - \delta)K_t + X_t, \]

where \(X_t \) is aggregate investment in period \(t \).

The firm is assumed to behave competitively, choosing capital and labor to maximize profits while taking the wage rate and rental rate of capital as given.

2.3 Households’ Problem

An individual born at time \(t \) maximizes expected discounted lifetime utility

\[
\sum_{i=1}^{I} \beta^{i-1} \left[\prod_{j=0}^{i-1} \psi_j \right] \left[\ln(c_{i,t+i-1}) + A \frac{(1 - h_{i,t+i-1} - u_{i,t+i-1})^{1-\gamma}}{1-\gamma} \right],
\]

where \(\beta \) is the subjective discount factor, \(c_{i,t+i-1} \), \(h_{i,t+i-1} \), and \(u_{i,t+i-1} \) are consumption, hours worked in production, and time spent in on-the-job training (OJT) for an age-\(i \) individual at time \(t + i - 1 \), respectively. The variable \(h \) represents time spent producing goods in return for which an individual receives current labor income. OJT is also part of measured hours worked, but the individual is only compensated by higher wages in the future. Measured labor supply is equal to \(h_{i,t+i-1} + u_{i,t+i-1} \). The parameter \(A \) represents the importance of leisure in the period utility function and \(\gamma \) determines the elasticity of labor supply. It can be shown that the compensated elasticity of labor supply is given by \((1 - h_{i,t+i-1} - u_{i,t+i-1})/(\gamma(h_{i,t+i-1} + u_{i,t+i-1}))\).\(^6\)

At each age, the individual faces the following budget constraint:

\[c_{i,t+i-1} + a_{i+1,t+i} = R_{t+i-1}(a_{i,t+i-1} + b_{t+i-1}) + w_{t+i-1}s_{i,t+i-1}h_{i,t+i-1}, \]

where \(R_{t+i-1} \) is the interest factor, \(a_{i,t+i-1} \) is the amount of assets available at age \(i \), \(a_{i+1,t+i} \) is the amount of assets to be available at age \(i + 1 \), \(b_{t+i-1} \)

\(^6\)An implication of using this utility function is that the labor supply elasticity will change over the life cycle as the fraction of time spent working changes. We have also experimented with a utility function which implies a constant elasticity but found that utility function (5) delivered somewhat better results.
is a lump sum distribution of accidental bequests, w_{t+i-1} is the real wage at time $t+i-1$, and $s_{i,t+i-1}$ is the efficiency or human capital of an individual at age i and time $t+i-1$.

We assume that all individuals are born with zero wealth. Furthermore, conditional on survival, the lack of a bequest motive will lead the individuals to exhaust their wealth in their last period of life. That is, we have $a_{1,t} = a_{I+1,t+I} = 0$ for all t.

Human capital evolves due to learning while on-the-job according to the following equation,

$$s_{i+1,t+i} = A_i s_{i,t+i-1}^{\phi_1} x_{i,t+i-1}^{\phi_2}, \quad (7)$$

for $i = 1, 2, \ldots, I_{R-1}$. In addition, $s_{1,t} = \bar{s}_1$ for all t, $\phi_1 \in (0, 1)$, and $\phi_2 > 0$. Here $x_{i,t}$ is the time spent on human capital accumulation by an age i individual at time t. Note that all individuals are born with the same amount of human capital.\(^7\) The sequence $\{A_i\}_{i=1}^{I_{R-1}}$ is a set of age-specific parameters that permits us to calibrate the model to target an empirically plausible steady state sequence $\{\bar{s}_i\}_{i=1}^{I_{R-1}}$.

We consider two versions of this technology for on-the-job skill accumulation. The first has the property that skill accumulation is the result of only LBD and, in the second, skill accumulation is the result of only OJT.\(^8\) In particular,

$$x_{i,t+i-1} = \begin{cases} h_{i,t+i-1} & \text{for learning-by-doing}, \\ u_{i,t+i-1} & \text{for on-the-job training}, \end{cases}$$

where the parameters ϕ_1, ϕ_2, and A_i in equation (7) for each i are assumed to have different values depending on whether skill accumulation is LBD or OJT.

The parameters $\{A_i\}_{i=1}^{I_{R-1}}$ are set equal to $A_i = \bar{s}_i^{\phi_1} \bar{x}_i^{\phi_2}$, where variables with bars above them indicate steady state values for the corresponding perfect foresight economy with $\sigma_\nu = 0$. With this assumption, we can rewrite

\(^7\)This functional form for human capital accumulation is similar to ones used in the empirical human capital literature. Much of this literature, however, follows Ben-Porath (1967) who uses a nonlinear functional form that our numerical solution procedure cannot handle. Hence we restrict ourselves to a log-linear law of motion as in Chang, Gomes and Schorfheide (2002).

\(^8\)We are unaware of any empirical studies that would guide us in calibrating an accumulation technology with both types of skill accumulation active simultaneously.
as follows

$$\ln \left(\frac{s_{i+1,t+i}}{s_{i+1}} \right) = \phi_1 \ln \left(\frac{s_{i,t+i-1}}{s_i} \right) + \phi_2 \ln \left(\frac{x_{i,t+i-1}}{x_i} \right).$$ \qquad (8)$$

Note that this equation disappears in steady state, so our specification for A_i is not self-referential.

Equation (8), as part of the household’s optimization problem, implies that when the individual is making the leisure-labor choice at time $t + i - 1$ he takes into account not only the market wage rate per efficient unit of labor, w_{t+i-1}, but the impact of his hours decision on future compensation $w_{t+i+j-1}s_{i+j,t+i+j-1}$, for $j \geq 1$.

2.4 Stationary Equilibrium

A stationary competitive equilibrium for a given set of demographic parameters \(\{n, \{\psi_i\}_{i=1}^I\} \) consists of sequences indexed by t for unintended bequests b_t, household allocations
\(\{c_{i,t}, a_{i+1,t+1}, h_{i,t}, u_{i,t}, s_{i+1,t+1}\}_{i=1}^I \), factor demands K_t and H_t, and factor prices w_t and R_t such that

1. The household allocation solves the individuals’ problem of maximizing (5) subject to (6) and (8) where \(\{s_{i,t}\}_{i=1}^{I_{a-1}} \) follows equation (8).

2. Factor demands solve the stand-in firm’s profit maximization problem, which implies that

$$w_t = (1 - \alpha)e^{z_t} \left(\frac{K_t}{H_t} \right)^{\alpha},$$

$$R_t = \alpha e^{z_t} \left(\frac{H_t}{K_t} \right)^{1-\alpha} + 1 - \delta.$$

3. Aggregate quantities are obtained as weighted averages of optimal co-
hort decision rules where the weights are the constant population shares.

\[
K_t = \sum_{i=1}^{I_t} (a_{i,t} + b_t) \mu_i, \\
H_t = \sum_{i=1}^{I_{R-1}} \mu_i s_i h_{i,t}, \\
b_t = \sum_{i=1}^{I_{R-1}} \mu_i (1 - \psi_i) a_{i+1,t} + \frac{1}{1 + n}.
\]

3 Calibration

To be consistent with the majority of the real business cycle literature, we calibrate the model so that one model period is equal to one quarter of a year.

3.1 Demographics

We first need to specify an actual age that corresponds to the first period of economic life \(i = 1\), the retirement age \(I_R\), and the maximum age \(I\).\(^9\) While the maximum age is set equal to 100 years in all experiments, the beginning and retirement ages are chosen independently in each case in order to ensure that individuals do not choose zero or negative hours before they reach age \(I_R\). Our goal is to make the working life as long as possible subject to the restriction that our solution procedure cannot handle inequality constraints \(h_{i,t} \geq 0\) that are only sometimes binding. Hence, we choose \(i = 1\) to correspond to age 18 or, if \(h_{1,t} \geq 0\) is binding in some states, we choose \(i = 1\) to be the minimum age where this constraint never binds in our simulations. Similarly we choose \(I_R\) to be the maximum age satisfying this condition for the last working age, \(i = I_{R-1}\). Therefore, while retirement age is exogenous in our model, it varies across experiments since, as \(\gamma\) is reduced, individuals choose to retire earlier.

The conditional survival probabilities \(\{\psi_i\}_{i=1}^{I}\) are taken from the life tables provided by the Social Security Administration (SSA) [see Bell and

\(^9\)More specifically, suppose an individual starts economic life at some age \(A_0\) (e.g. 18) and lives to some maximum age \(A_1\) (e.g. 100). Then, given our assumption of a quarterly time interval, \(I = 4(A_1 - A_0 + 1)\).
Miller (2002)]. They are the averages between males and females for the
cohort born in 1950. The population growth rate, \(n \), is assumed to be 1.2
percent per year, which is the U.S. average from 1950-2000. The steady-state
efficiency profile, \(\{\pi_i\}_{i=1}^{I_k-1} \), is calculated as in Hansen (1993) using updated
data. This yields seven data points over the life cycle, corresponding to av-
erages over seven age ranges, which we then interpolate to obtain human
capital weights for specific ages.

3.2 Technology and Preferences

Many of the parameters of our model are standard in the real business cycle
literature, so we calibrate them following standard practice. In particular,
capital’s share (\(\alpha \)), the depreciation rate (\(\delta \)), the discount factor (\(\beta \)), and
the preference parameter \(A \) are chosen so that the steady state of the model
matches long-run averages computed from U.S. aggregate time series data.
The four statistics targeted are an average capital share of 0.36, an average
investment to output ratio of 0.25, an average capital to output ratio of 3.0,
and an average time spent working \((h + u) \) across all ages equal to 0.33. In
addition, the persistence parameter for the Solow residual (\(\rho \)) is taken to be
0.95 and the standard deviation of its innovation (\(\sigma_\nu \)) is set to 0.007.

We consider three different values of \(\gamma \): 2, 1, and 0.67. This parameter is
directly related to the intertemporal elasticity of substitution in labor (IES)
in our model, which is \((1 - h_{i,t} - u_{i,t})/\left(\gamma(h_{i,t} + u_{i,t})\right) \) for an individual of age
\(i \). Estimates of this parameter vary considerably and range from close to 0
[MaCurdy (1981), Altonji (1986), and Browning, Deaton, and Irish (1985)] to
3.8 [Imai and Keane (2004)]. If we evaluate the labor supply elasticity at the
average time spent working in our experiments (0.33), then these elasticity
estimates imply values for \(\gamma \) from infinity to 0.53. Given the findings of Imai
and Keane (2004), who estimate this parameter under learning by doing, lower
values of \(\gamma \) may be of interest. For computational reasons, we do not
consider values below 0.67.\(^\text{10}\)

Table 1 below summarizes the aspects of our calibration which are invari-
ant to the choice of \(\gamma \).

\(^{10}\)In fact, to compute results for the \(\gamma = 0.67 \) case, we needed not only to reduce the
retirement age to avoid negative hours worked in some states, but to increase the age at
which individuals start working.
Table 1. Benchmark Calibration

Demographics

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum age</td>
<td>1</td>
</tr>
<tr>
<td>Calendar age 100</td>
<td>100</td>
</tr>
<tr>
<td>population growth rate</td>
<td>0.012</td>
</tr>
<tr>
<td>(annual rate)</td>
<td></td>
</tr>
<tr>
<td>conditional survival probabilities</td>
<td>{\psi_{i}}_{i=1}</td>
</tr>
<tr>
<td>steady state efficiency weights</td>
<td>{\pi_{i}}_{i=1}</td>
</tr>
</tbody>
</table>

Technology

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>capital share parameter</td>
<td>0.36</td>
</tr>
<tr>
<td>depreciation rate</td>
<td>0.0713</td>
</tr>
<tr>
<td>(annual rate)</td>
<td></td>
</tr>
<tr>
<td>shock persistence</td>
<td>0.95</td>
</tr>
<tr>
<td>shock standard deviation</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Table 2 summarizes the calibrated values of preference parameters, first age and retirement age for given values of γ. In all cases, the calibration targets for choosing β and A are identical: $K/Y = 3.0$ and $h + u = 0.33$.

Table 2. Preference Parameters

<table>
<thead>
<tr>
<th>IES</th>
<th>β (annual)</th>
<th>A</th>
<th>$i = 1$</th>
<th>I_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma = 2$</td>
<td>1</td>
<td>0.9631</td>
<td>0.890</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>2</td>
<td>0.9622</td>
<td>1.380</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 0.67$</td>
<td>3</td>
<td>0.9557</td>
<td>1.511</td>
<td>22</td>
</tr>
<tr>
<td>LBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma = 2$</td>
<td>1</td>
<td>0.9905</td>
<td>1.347</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>2</td>
<td>0.9900</td>
<td>2.090</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 0.67$</td>
<td>3</td>
<td>0.9883</td>
<td>2.270</td>
<td>22</td>
</tr>
<tr>
<td>OJT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma = 2$</td>
<td>1</td>
<td>0.9638</td>
<td>0.950</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 1$</td>
<td>2</td>
<td>0.9629</td>
<td>1.472</td>
<td>18</td>
</tr>
<tr>
<td>$\gamma = 0.67$</td>
<td>3</td>
<td>0.9564</td>
<td>1.613</td>
<td>22</td>
</tr>
</tbody>
</table>

IES (Intertemporal Elasticity of Substitution) = $(1 - 0.33)/(\gamma \times 0.33)$

NSA: No Skill Accumulation
LBD: Learning-by-Doing
OJT: On-the-job Training
3.3 Skill Accumulation

The skill accumulation technology (8) in the LBD case becomes,

$$\ln \left(\frac{s_{i,t+1}}{s_{i+1}} \right) = \phi_1 \ln \left(\frac{s_{i,t+i-1}}{s_i} \right) + \phi_2 \ln \left(\frac{h_{i,t+i-1}}{h_i} \right).$$

Our calibration of this version of the skill accumulation function follows Chang, Gomes, and Schorfheide (2002) who use PSID data set to estimate this equation. In particular, we use their posterior point estimates of $\phi_1 = 0.7973$ and $\phi_2 = 0.1106$.

When skill accumulation takes the form of OJT, equation (8) becomes,

$$\ln \left(\frac{s_{i,t+i}}{s_{i+1}} \right) = \phi_1 \ln \left(\frac{s_{i,t+i-1}}{s_i} \right) + \phi_2 \ln \left(\frac{u_{i,t+i-1}}{u_i} \right).$$

In this case, we follow Heckman, Lochner, and Taber (1998) and Kuruşcu (2006) who estimate a skill accumulation process originally proposed by Becker (1964) and Ben-Porath (1967). Their estimates imply that the lifetime profile for the ratio of time spent for OJT to market hours starts at about 40-50% at ages 20-22 and then sharply declines to near zero by age 45. Furthermore, the ratio of the average time spent for OJT over the lifetime to market hours is about 6%. In order to reproduce these calibration targets, we set $\phi_1 = 1$ and $\phi_2 = 0.001$ in equation (8). Our choice of $\phi_1 = 1$ is in line with most of the empirical literature that assumes zero depreciation of human capital when skill accumulation is the result of OJT.\footnote{See, for example, Heckman, Lochner, and Taber (1998) or Kuruşcu (2006).}

A value of unity for ϕ_1 provides an incentive to accumulate skills relatively early in the life cycle.

4 Results

4.1 The Importance of Age-Specific Human Capital

As discussed in the introduction, previous work [Ríos-Rull (1996) and Gomme, Rogerson, Rupert and Wright (2004)] has established the importance of assuming a hump-shaped labor efficiency profile in order for labor market behavior in a quantitative general equilibrium life cycle model to be similar.
to behavior in actual economies. While the focus of this paper is to document how the properties of the model are affected if these efficiency weights are determined by on-the-job skill accumulation, it is useful to review why age specific efficiency weights are important in the context of our particular model.

Figure 1. Steady-state Hours Profiles, $\gamma = 2$

Figure 1 exhibits the age-specific human capital weights we use $\{s_i\}_{i=1}^{l-1}$ (dotted curve measured along the right vertical axis) that were constructed using the methodology of Hansen (1993). The dashed line shows steady state hours worked by age computed from our model when $\gamma = 2$ and equation (8) is ignored, setting $s_{i,t} = \overline{s}_i$ for all t. The figure shows that hours in our model increase early in life, decrease slightly during the prime ages, and then declines more sharply as the individual nears retirement. As will be shown in the next subsection, this is not too different from a life cycle hours profile computed from U.S. data. The solid line in Figure 1 shows steady state hours worked by age when the efficiency weights are independent of
both time and age, \(s_{i,t} = \bar{s} \equiv \left(\frac{1}{R-1} \sum_{i=1}^{R-1} \mu_i \bar{s}_i \right) \left(\frac{1}{\sum_{i=1}^{R-1} \mu_i} \right) \) for all \(t \). In this case, the hours profile is basically flat throughout the life cycle.

Figure 2 displays the volatility of hours worked by age groups using the two time invariant efficiency profiles described above. In particular, we report the means from 500 simulations of our model where the simulated data have been logged and detrended using the Hodrick-Prescott filter. With human capital constant over the life cycle, the volatility of hours rises monotonically with age. However, when the empirical hump-shaped profile is used, the standard deviation of hours over the life cycle displays a U-shape, similar to what one finds in U.S. data on hours worked by age (see next subsection).

![Standard Deviation of Hours](image)

Figure 2. Hours Volatility, \(\gamma = 2 \)

Given the importance of human capital that changes over the life cycle for both the steady state hours profile and the volatility of hours by age, we are motivated to explore the role of on-the-job skill accumulation that gives rise to differences in human capital by age.

In the remainder of this section we first examine the impact of on-the-job skill accumulation on the steady state life cycle profile of hours worked and
then consider its impact on the volatility of hours worked by age. In all cases, we compare the statistics computed from the model economy with analogous statistics from U.S. data. We use quarterly averages of monthly time series on total hours at work in non-agricultural industries derived from the Current Population Survey and available from the Bureau of Labor Statistics. In particular, using this data, it is possible to construct quarterly time series for four age groups (18-24, 25-44, 45-64, 65+) from 1955Q3 to 2002Q4 and time series for seven age groups (18-19, 20-24, 25-34, 35-44, 45-54, 55-64, 65+) from 1976Q3 to 2002Q4.\footnote{Both Ríos-Rull (1996) and Gomme et. al. (2004) use annual data. Our data stop at the end of 2002 because the BLS ceased publishing hours data for all seven age groups.}

4.2 Steady-State Hours Profiles with Skill Accumulation

Our empirical measure of the life cycle hours profile is the average over time of \(\frac{h_i/\text{pop}_i}{h/\text{pop}} \) for each of the seven age groups, where the numerator is average hours worked per capita for age group \(i \) and the denominator is average hours worked per capita for the total population. We have chosen this particular statistic because this ratio is stationary and it allows us to correct for the fact that hours worked are measured in different units in the model and in U.S. data. In constructing the profiles for the model economies, we extend the retirement age as far as possible without causing steady state hours worked to be negative and report the same measure as computed from actual data.

What we find is that LBD causes individuals to work more early in life and to work less later in life. This can be seen in Figures 3a-3c. This effect becomes more pronounced as labor supply becomes more elastic (as \(\gamma \) is reduced). This follows from the fact that the effective wage is higher early in life since workers are not only paid their current wage, but are rewarded in the future with higher wages due to the skill accumulated while working. It is interesting how closely the profiles match those computed from U.S. data (see especially Figure 3b).

The life cycle hours profiles with OJT, however, are essentially identical to the profiles with no skill accumulation whatsoever. This is true for all values of \(\gamma \) considered. This follows from the calibration of equation (8). Both the high value for \(\phi_1 \) and low value for \(\phi_2 \) implied by our calibration contribute to this result. In particular, since human capital does not depreciate, individuals
can accumulate skills early in life and spend relatively little time on OJT later in their working life. This can be seen in the time allocated on OJT by age shown in Figure 4. In addition, the fraction of work time spent on OJT decreases rapidly with age. This is consistent with what has been found in the applied micro literature.

Figure 3a. Steady-state Hours Profiles, $\gamma = 2$
Figure 3b. Steady-state Hours Profiles, $\gamma = 1$

Figure 3c. Steady-state Hours Profiles, $\gamma = 0.67$
4.3 Business Cycle Properties with Skill Accumulation

Table 3 presents business cycle statistics from U.S. data and the calibrated models. As is standard in the literature, both the actual and the simulated quarterly series are first transformed to natural logarithms and Hodrick-Prescott filtered with a smoothing parameter of 1600. The statistics displayed are the means of statistics computed from 500 simulations of the model. The volatilites are percent standard deviations from the Hodrick-Prescott trend.
Table 3. Fluctuations in U.S. Data and the Models

<table>
<thead>
<tr>
<th>Ages at work:</th>
<th>$\gamma = 2$</th>
<th>$\gamma = 1$</th>
<th>$\gamma = 0.67$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-67 NSA</td>
<td>18-62 NSA</td>
<td>22-57 NSA</td>
</tr>
<tr>
<td>(\sigma_Y)</td>
<td>1.60 1.12</td>
<td>1.21 1.35</td>
<td>1.24 1.28</td>
</tr>
<tr>
<td>(\sigma_C)</td>
<td>0.81 0.31</td>
<td>0.32 0.36</td>
<td>0.33 0.36</td>
</tr>
<tr>
<td>(\sigma_X)</td>
<td>4.56 3.75</td>
<td>4.11 4.64</td>
<td>4.23 4.28</td>
</tr>
<tr>
<td>(\sigma_H)</td>
<td>1.51 0.35</td>
<td>0.52 0.83</td>
<td>0.56 0.56</td>
</tr>
<tr>
<td>(\sigma_{Y/H})</td>
<td>1.01 0.77</td>
<td>0.71 0.74</td>
<td>0.70 0.73</td>
</tr>
<tr>
<td>(\sigma_{H(18-24)})</td>
<td>2.65 0.43</td>
<td>0.94 0.70</td>
<td>1.49 2.02</td>
</tr>
<tr>
<td>(\sigma_{H(25-44)})</td>
<td>1.46 0.28</td>
<td>0.38 0.30</td>
<td>0.49 0.38</td>
</tr>
<tr>
<td>(\sigma_{H(45-64)})</td>
<td>1.25 0.39</td>
<td>0.58 2.17</td>
<td>0.53 0.69</td>
</tr>
<tr>
<td>(\sigma_{H(65+)})</td>
<td>2.55 0.82</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
<tr>
<td>(\rho_{Y,C})</td>
<td>0.83 0.89</td>
<td>0.88 0.87</td>
<td>0.88 0.91</td>
</tr>
<tr>
<td>(\rho_{Y,X})</td>
<td>0.91 0.99</td>
<td>0.99 0.99</td>
<td>0.99 0.99</td>
</tr>
<tr>
<td>(\rho_{Y,H})</td>
<td>0.79 0.98</td>
<td>0.98 0.88</td>
<td>0.98 0.99</td>
</tr>
<tr>
<td>(\rho_{Y,Y/H})</td>
<td>0.40 1.00</td>
<td>0.99 0.85</td>
<td>0.99 0.99</td>
</tr>
<tr>
<td>(\rho_{Y,H(18-24)})</td>
<td>0.81 0.98</td>
<td>0.98 0.91</td>
<td>0.99 0.88</td>
</tr>
<tr>
<td>(\rho_{Y,H(25-44)})</td>
<td>0.78 0.98</td>
<td>0.98 0.93</td>
<td>0.98 0.95</td>
</tr>
<tr>
<td>(\rho_{Y,H(45-64)})</td>
<td>0.59 0.99</td>
<td>0.99 0.73</td>
<td>0.98 0.96</td>
</tr>
<tr>
<td>(\rho_{Y,H(65+)})</td>
<td>0.18 0.99</td>
<td>– – – –</td>
<td>– – – –</td>
</tr>
</tbody>
</table>

Given that the initial age and the retirement age matter for these statistics, and given that as γ is reduced (the labor supply elasticity increased) the computationally feasible age range is narrowed (especially for the learning by doing case), we use a different initial age and retirement age for each value of γ considered (see Table 2).

The first column of Table 3 displays the volatilities of key aggregate variables and their contemporaneous correlations with real GDP. The data over the period 1955Q3 and 2002Q4 yield a standard deviation of 1.604 for real GDP which is slightly lower than that in earlier studies, including Ríos-Rull (1996) and Gomme et al. (2004), reflecting the moderation in fluctuations since the mid-1980s and our use of quarterly data as opposed to annual data.
Consumption is about half as volatile as real GDP and investment is about three times as volatile as output. Total hours volatility is 94% of that of real GDP, somewhat higher than what is reported in both Ríos-Rull (1996) and Gomme et. al. (2004). Productivity is about two-thirds as volatile as output. The contemporaneous correlations of aggregate consumption, investment, hours and productivity are very similar to what has generally been reported in the real business cycle literature.

Volatility of hours over the life cycle has the U-shape that has been well documented in the previous literature. Hours volatility is high in the 18-24 group, falls considerably in the next age group and even more so in the prime ages of 45-64 but rises sharply after age 65. Contemporaneous correlations of output and hours worked monotonically decline over the life cycle.

Table 3 also reports business cycle statistics from our calibrated economies. Our models explain about 75 percent of the fluctuations in output, although this varies somewhat depending on γ and skill accumulation. As is typical in the real business cycle literature, model consumption is too smooth relative to data. Volatility in total hours is between 23 and 37% of that in the data and increases with a higher compensated labor supply elasticity (lower γ). Skill accumulation has little impact on total hours volatility except for the γ = 1 case when learning by doing substantially increases volatility.\footnote{Comparisons across the three values of γ is complicated by the fact that the range of working ages differs for the three cases. This definitely matters for the results obtained [see discussion in Gomme et. al. (2004)].} In general, skill accumulation has little effect on volatilities and correlations of aggregate variables.

Skill accumulation does, however, impact the volatility of hours worked by specific age groups. Our calibrated models deliver the general U-shape of hours volatilities over the life cycle seen in the U.S. data. However, in all cases, the volatility of hours in the 45-64 age group is higher than the volatility of the 25-44 age group, which is the opposite of what is observed in the U.S. data. This anomaly is shared in common with Ríos-Rull (1996) and Gomme et. al. (2004), and continues to hold with endogenous skill accumulation. Similarly, the model economies do not exhibit the decreasing correlation as age increases between output and hours worked by age observed in the U.S. data.

We now turn to a more detailed examination of the role played by skill accumulation on the volatility of hours worked by age (see Figure 5). In
particular, we focus on the seven age groups for which we have data from 1976Q3 to 2002Q4. In order to display the effect of skill accumulation on the volatility of hours by age, we compute the standard deviation of hours for the seven age subgroups and divide that by the standard deviation of total hours. For each value of γ, we report results from the model with no skill accumulation (NSA), the model with learning by doing (LBD) and the model with on-the-job training (OJT). For comparison, we also report the same statistic computed from the U.S. data.

We find that for all values of γ considered, OJT makes no difference for hours volatility by age relative to the no skill accumulation (NSA) case. Once again, the main reason for this is our calibrated version of equation (8) which provides an incentive to allocate time on OJT very early in life and reduce this time to essentially zero after the first decade of working life.

![Normalized Standard Deviation of Hours (gamma = 2.0)](image)

Figure 5a. Hours Volatility, $\gamma = 2$

When skills are accumulated with LBD, there is some impact on hours volatility. For $\gamma = 2$, there is little impact except for workers aged 65 to 67 and somewhat for workers aged 18-19. When γ is reduced to 1, learning by doing significantly reduces the volatility of hours for most age groups.
relative to the case without this feature. The exception is for the oldest age group, in which case learning by doing significantly increases volatility. We speculate that, with LBD, a given technology shock has a larger percentage effect on the compensation of workers closer to retirement than it has on the compensation of younger workers. This is because the return from learning is lower for someone close to retirement and this aspect of compensation, since it is function of expected future wages, is less impacted by the shock than is the period wage rate.

Our final case, \(\gamma = 0.67 \), might be the most empirically relevant given the findings of Imai and Keane (2004) on labor supply elasticities with learning by doing. In this case, learning by doing reduces volatility for age brackets from 25 to 54. Again, as in the \(\gamma = 1 \) case, learning by doing significantly increases volatility for the 55-64 bracket. However, unlike with the other values of \(\gamma \), volatility also increases for the youngest age group.

![Normalized Standard Deviation of Hours (gamma = 1.0)](image)

Figure 5b. Hours Volatility, \(\gamma = 1 \)
By adding skill accumulation to a life cycle model, we can evaluate the extent to which this feature changes the business cycle properties of the model relative to the standard (NSA) case that has been studied in the previous literature. If skills are accumulated by time devoted to OJT, then our theory predicts little impact of skill accumulation on the business cycle properties. However, if LBD is important for human capital accumulation, skill accumulation does matter. In particular, in the LBD case, the gap between the business cycle properties implied by the model and those computed from actual data is widened, primarily because individuals at the end of their working life respond more strongly to shocks.

Finally, we considered an experiment to see if our conclusions regarding OJT were dependent on the strong assumption that $\phi_1 = 1$. In particular, we lowered this parameter to $\phi_1 = 0.98$ in the $\gamma = 1$ case leaving all other parameters the same. We found that the business cycle properties are virtually the same as when $\phi_1 = 1.0$. Hence, our findings concerning OJT seem robust to allowing for some depreciation of skills each quarter.
5 Concluding Remarks

Hours volatility exhibits a U-shape over the life cycle. At young and old ages, individuals seem more willing to intertemporally substitute labor than when at prime working ages. Consistent with the previous literature, we document that this U-shape emerges from a calibrated general equilibrium life cycle model in which human capital is exogenous. When human capital changes exogenously over their working life, an individual’s response to a wage shock today only affects the usual static labor/leisure trade-off and ignores the impact of current labor market decisions on future wages.

In this paper, we explore the impact of endogenizing human capital over the life cycle on the steady-state hours profile and the volatility of hours by age. We concentrate on these properties because these are features of the data present in life cycle economies, but which are absent in standard business cycle models based on the infinite horizon stochastic growth model. We consider two different technologies for skill accumulation; learning-by-doing and on-the-job training. In the former case, skill accumulation occurs as a by-product of providing market hours, whereas in the latter case the individual has to devote time for training during which no productive labor services are provided. In both cases, the individual fully incorporates the future impact of current hours decision on future wages through a higher stock of skills in the future. We calibrate our general equilibrium life cycle economy to key long-run U.S. aggregates and relevant micro studies. In particular, we use microeconometric estimates in the labor literature to calibrate our parsimonious specification of the skill accumulation process. Future work may want to consider other forms of the human capital production function that have been explored in the micro literature, especially ones where the ability to learn might be age dependent.

Our main finding is that the introduction of OJT gives steady state and business cycle properties that are essentially identical to the case without skill accumulation. On the other hand, LBD affects both sets of properties significantly. In particular, when labor supply is more elastic, the impact of learning by doing is greater. The reason for this difference is that, in our calibrated economy, LBD affects labor market decisions at all ages, while OJT turns out to be important only during the early years of an individual’s working life.

We have shown that, at least in some cases, incorporating human capital does not change the business cycle properties of our life cycle economy much.
compared to the case in which human capital is exogenous. Still, the life cycle model does not completely account for the pattern of hours volatility by age and the correlations of output with hours worked by age observed in the data, which leaves room for additional work on this topic.
References

