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Abstract

Shrinkage Methods for Automated Econometric
Model Determination

Zhipeng Liao

2012

The �rst chapter of my dissertation proposes a GMM shrinkage method to e¢ ciently

estimate the unknown parameters �o identi�ed by some moment restrictions, when

there is another set of possibly misspeci�ed moment conditions. I show that my

method enjoys oracle-like properties, i.e. it consistently selects the correct moment

conditions in the second set and at the same time, its estimator achieves the semi-

parametric e¢ ciency bound implied by all correct moment conditions. For empirical

implementation, I provide a simple data-driven procedure for selecting the tuning

parameters of the penalty function. Several extensions are also studied. First, I

establish the oracle properties of the GMM shrinkage method in the practically

important scenario where the moment conditions in the �rst set fail to strongly

identify �o. Second, I show that this shrinkage technique can be used in GMM

to perform grouped variable selection and moment selection simultaneously. The

simulation results show that the method works remarkably well in terms of correct

moment selection and the �nite sample properties of its estimators. As an empirical

illustration, I apply my method to estimate the life-cycle labor supply equation

studied in MaCurdy (1981) and Altonji (1986). My empirical �ndings support the

validity of the IVs used in both papers and con�rm that wage is an endogenous

variable in the labor supply equation. Moreover, my estimate of the labor supply

elasticity enjoys the smallest standard error with its value being very close to those

in the literature.



The moment selection methods proposed in the �rst chapter focus only on the

orthogonality restriction of a moment condition. As a result, the moment conditions

which satisfy the orthogonality restriction but fail to improve the e¢ ciency of the

GMM estimate may be selected by the GMM shrinkage estimation with high prob-

ability in the �nite samples. Such moment conditions are called irrelevant moment

conditions. Irrelevant moment conditions may enlarge the �nite sample bias of the

GMM estimate, although they do not a¤ect its asymptotic properties. Chapter 2

provides a new adaptive penalty that serves as the basis for which the GMM shrink-

age estimation can consistently select the correctly speci�ed and relevant moment

conditions. As a result, misspeci�ed and irrelevant moment conditions are not se-

lected with probability approaching 1 and the GMM shrinkage estimate is not only

asymptotically e¢ cient but also robust against the irrelevant moment conditions in

�nite samples.

The third chapter studies the joint determination of cointegrating rank and au-

toregressive lag order in vector error correction (VEC) models. In cointegrated sys-

tem modeling, empirical estimation typically proceeds in a stepwise manner that

involves the determination of cointegrating rank and autoregressive lag order in

a reduced rank vector autoregression followed by estimation and inference. This

chapter proposes an automated approach to cointegrated system modeling that uses

adaptive shrinkage techniques to estimate VEC models with unknown cointegrating

rank structure and unknown transient lag dynamic order. These methods enable

simultaneous order estimation of the cointegrating rank and autoregressive order

in conjunction with oracle-like e¢ cient estimation of the cointegrating matrix and

transient dynamics. As such, they o¤er considerable advantages to the practitioner

as an automated approach to the estimation of cointegrated systems. This chapter

develops the new methods, derives their limit theory and reports simulation results.
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Introduction

Model selection presents a primary challenge in all applied econometric research.

Sometimes the choice is between competing models, sometimes the choice involves

the restrictions to be imposed, sometimes it can involve the selection of moment

conditions �as in generalized method of moment (GMM) estimation �and sometimes

it may be the number of equilibrium relations (or cointegrating rank) as in an error

correction model (ECM). The danger of misspeci�cation from the imposition of an

incorrect choice is biased and inconsistent empirical results, while the risk from over-

speci�cation is loss of information and ine¢ ciency in estimation.

In my dissertation, I propose a new automated approach to address selection

issues of this type. My method employs adaptive shrinkage techniques that have the

interesting and novel property that they can perform consistent model selection and

e¢ cient estimation simultaneously. In e¤ect, potential problems of misspeci�cation

and ine¢ ciency are resolved by successfully shrinking an unrestricted speci�cation

towards the correct restricted speci�cation in a �nite sample of data.

The �rst chapter of my dissertation addresses the issue of selecting valid moment

conditions from a set that includes both correctly and incorrectly speci�ed moment

conditions. Suppose that there is a set of correctly speci�ed moment conditions (set-

1) to identify unknown parameters �o and at the same time, one has another set of

possibly misspeci�ed moment conditions (set-2). Using only the moment conditions
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in set-1 ignores the information contained in the potentially valid moment conditions

of set-2, while including the misspeci�ed moment conditions of set-2 into GMM will

lead to inconsistent estimation. This chapter proposes a method for simultaneously

selecting the correct moment conditions in set-2 and e¢ ciently estimating �o.

To proceed, I reparametrize the moment functions in set-2 by taking deviations

from their expectations. The parameterized expectations �o are treated as potential

nuisance parameters, whose zero/nonzero components signal correct/incorrect mo-

ment conditions corresponding to those in set-2. I estimate (�o; �o) by minimizing

a GMM shrinkage criterion. This construction adds a penalty function of �o to the

usual GMM criterion of the moment functions. In the estimation, any zero compo-

nents in �o are shrunk to zero by the penalty function and this information about

exclusion of the corresponding moment functions is used in estimating �o.

I show that my method can consistently select the correct moment conditions

and, at the same time, the estimator can achieve the semi-parametric e¢ ciency bound

implied by all correct moment conditions. I establish similar properties of my method

in scenarios where there are grouped variable and moment selection formulations and

when there are potentially weak moment conditions in set-1. Moreover, I provide

simple data-driven procedures for selecting the tuning parameters in the penalty

function, thereby making the procedures fully adaptive for empirical implementation.

I apply my method to estimate the life-cycle labor supply equation, where wage is

assumed to be endogenous. Using parents�economic status as a valid IV, my method

selects the IVs used in MaCurdy (1981) and Altonji (1986), while discarding wage

as an IV for itself. My estimators of the labor supply elasticity have the smallest

variance and their values are close to those in the literature.

The second chapter of my dissertation studies the GMM shrinkage estimation

with `-1 type of penalty functions, which includes the Lasso and adaptive Lasso
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penalty functions as special examples. I show that the GMM Lasso estimation is

conservative in moment selection. A similar result is established for the GMM adap-

tive Lasso estimation, when the tuning parameter converges to zero fast enough.

Both the consistent moment selection procedures proposed in chapter 1 and the

conservative moment selection methods presented in this chapter focus only on the

orthogonality restriction of a moment condition, ignoring the possibility that the se-

lected moment conditions may contain no information about the structural coe¢ cient

�o. The uninformative moment conditions are called irrelevant moment conditions,

because they fail to improve the e¢ ciency of the GMM estimate.

The key di¤erence between the GMM Lasso and GMM adaptive Lasso estima-

tions gives us the inspiration for devising a new adaptive penalty to ensure that the

valid and relevant moment conditions are consistently selected in the GMM shrink-

age estimation. The new adaptive penalty depends on a measure of information

contained in the moment condition. I show that such an information measure can be

consistently estimated and its estimate is termed the empirical information measure.

The new adaptive penalty is constructed as a product of a power function of the

empirical information measure and the adaptive Lasso penalty. Under certain regu-

larity conditions, I show the GMM shrinkage estimation based on the new adaptive

penalty is consistent in selecting the valid and relevant moment conditions. As a

result, the misspeci�ed and irrelevant moment conditions are not selected with prob-

ability approaching 1, the GMM shrinkage estimate is robust against the irrelevant

moment conditions in the �nite samples and it is asymptotically e¢ cient in the large

samples.

The third chapter (joint with Peter C. B. Phillips) of my dissertation studies the

joint determination of cointegrating rank and autoregressive lag order in vector error

correction (VEC) models. In cointegrated system modeling, empirical estimation
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typically proceeds in a stepwise manner that involves the determination of cointe-

grating rank and autoregressive lag order in a reduced rank vector autoregression

followed by estimation and inference. This chapter proposes an automated approach

to cointegrated system modeling that uses adaptive shrinkage techniques to esti-

mate vector error correction models with unknown cointegrating rank structure and

unknown transient lag dynamic order.

We �rst study the cointegration rank selection and e¢ cient estimation in a sim-

ple �rst-order VEC model with iid innovation term. The cointegrating matrix is

estimated as the minimizer of the penalized generalized least square (GLS) criterion,

which is constructed by attaching adaptive Lasso penalty functions of the eigenvalues

of the cointegrating matrix to the GLS criterion. Under some regularity conditions

on the cointegrating matrix, we show that the GLS shrinkage estimation can consis-

tently select the cointegration rank. More importantly, the GLS shrinkage estimate

has the same asymptotic distribution as the oracle reduced rank regression (RRR)

estimate informed by knowledge of the true rank (see, e.g., Phillips, 1998 and Ander-

son, 2002). We extend the result of consistent cointegration selection to a scenario in

which the innovation term is weakly dependent. In this case, the cointegrating matrix

can not be consistently estimated, but we show that the GLS shrinkage estimation is

consistent in cointegration rank selection, even if the rank of the probability limit of

the LS shrinkage estimate of the cointegrating matrix is strictly less than that of the

true cointegrating matrix. As a further extension, we show that in the general VEC

models our methods enable simultaneous order estimation of the cointegrating rank

and autoregressive order in conjunction with oracle-like e¢ cient estimation of the

cointegrating matrix and transient dynamics. As such they o¤er considerable advan-

tages to the practitioner as an automated approach to the estimation of cointegrated

systems.
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Chapter 1

Adaptive GMM Shrinkage

Estimation with Consistent

Moment Selection

1.1 Introduction

The generalized method of moments (GMM) is a popular methodology for estimat-

ing structural equations in economics and �nance. It is particularly attractive when

moment conditions appear naturally in model formulation. The statistical properties

of the GMM estimators rely heavily on the quality of these moment conditions. For

example, the GMM estimator based on misspeci�ed moment conditions is inconsis-

tent. On the other hand, including strong and valid moment conditions in GMM

can help to reduce �nite-sample bias and improve e¢ ciency of the GMM estimator.

Hence, whenever an empirical researcher has a set of moment conditions and there

is no prior information about their validity, it is important to have some procedure

to select the correctly speci�ed moment conditions in that set and include them in

1



estimation. This chapter proposes a new method to achieve this goal.

Speci�cally, we are interested in estimating some unknown parameter �o identi�ed

by the following moment restrictions

E [gq(Z; �o)] = 0; (1.1)

where fZigi�n is stationary and ergodic, Z is used generically for Zi, the subscript q

of gq (�; �) denotes the number of moment conditions in (1.1) and gq (�; �) : Rdz�Rd� !

Rq. Suppose there is another set of possibly misspeci�ed moment conditions

E [gk(Z; �o)]
?
= 0; (1.2)

where " ?=" signi�es that equality may hold for some elements but not others, the

subscript k of gk (�; �) denotes the number of moment conditions in (1.2) and gk (�; �) :

Rdz � Rd� ! Rk1. When the moment conditions in set-2 (or some of them) are

correctly speci�ed, including them into estimation can improve the asymptotic e¢ -

ciency of the estimator for �o. However, if they are misspeci�ed, then using these

moment conditions will lead to inconsistent estimation. The goal of this chapter is to

consistently select the correct moment conditions in set-2 and automatically include

them into GMM estimation to improve the e¢ ciency of estimating �o.

To reduce the risk of misspeci�cation, one can employ the Sargan/Hansen test

(Sargan (1958) and Eichenbaum, Hansen, and Singleton (1988)) to check the validity

of the set-2 moment conditions. In addition to the Sargan/Hansen test, there are

other moment selection procedures in the literature for empirical researchers to use.

For example, Andrews (1999) de�nes moment selection criterion (MSC) using the

1Hereafter, the moment conditions in (1.1) are cited as set-1 moment conditions and those in
(1.2) are cited as set-2 moment conditions.
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J-test statistic and shows that consistent moment selection 2 can be achieved by

choosing the moment selection vector minimizing the MSC. Based on the J-test

statistic, Andrews (1999) also proposes downward testing (DT) and upward testing

(UT) moment selection procedures and shows their consistency. Hong, Preston, and

Shum (2003) construct the MSC, DT and UT procedures using generalized empirical

likelihood (GEL) statistic and show that these procedures are consistent in moment

selection.

The above methods performmoment selection in a stepwise manner and break the

moment selection and e¢ cient estimation into two separate procedures. Moreover,

when the number of moment conditions in set-2 is large, there may be too many

candidate subsets of moment conditions for these methods to investigate, which

makes them computationally intensive in practice. This chapter embeds the moment

selection in GMM estimation and once a certain moment condition is selected, our

method will automatically include it into estimating �o. Hence, our method not only

selects the correct moment conditions in set-2 in one step, but also deals with the

moment selection issue and e¢ cient estimation simultaneously.

The automatic moment selection method proposed in this chapter is closely re-

lated to the Lasso-type of variable selection methods in the statistics literature. This

chapter shows how the Lasso-type of variable selection techniques can be generalized

in a GMM framework to perform moment selection. Under some regularity condi-

tions, we show that the penalized GMM estimator (which is called as GMM shrinkage

estimator thereafter in this chapter) is root-n consistent and asymptotically normal.

Moreover, we show that consistent moment selection is automatically achieved in

the penalized GMM estimation and the GMM shrinkage estimator is asymptotically

2In this chapter, we call a moment selection procedure is consistent if it can select the set of
valid moment conditions in set-2 with probability approaching 1.
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oracle-e¢ cient (i.e. as e¢ cient as the GMM estimator based on all potentially valid

moment conditions). As an extension of the main results of this chapter, we study

the properties of the GMM shrinkage estimation in the scenario where the moment

conditions in set-1 are nearly weak. The GMM estimators based on nearly weak

moment conditions usually have a convergence rate slower than
p
n (see e.g. Hahn

and Kuersteiner (2002)). However, we show that if there are potentially valid and

strong moment conditions in set-2, the GMM shrinkage estimator can retain the
p
n

convergence rate. As an another extension, we show that the shrinkage technique can

be used in GMM to perform grouped variable selection and moment selection simul-

taneously. For the empirical implementation, we provide simple and data-dependent

tuning parameters which are easy to compute in practice. The results from our

simulation studies and empirical application show that the GMM shrinkage estima-

tion based on the data-driven tuning parameters works well in terms of the moment

selection and �nite sample properties of the GMM shrinkage estimator.

There are some recent works in the econometrics literature which are related to

this chapter. In the linear instrumental variable (IV) models, Belloni, Chernozhukov

and Hansen (2011) and Belloni, Chen, Chernozhukov and Hansen (2011) apply the

Lasso-type of estimation to the �rst-stage high dimensional reduced form equations.

They show the optimal IV can be well approximated by the selected IVs from the �rst-

stage Lasso-type of estimation and the resulting IV estimators based on these selected

IVs are asymptotically oracle-e¢ cient. This chapter is di¤erent from the above two

papers, because when speci�ed in linear IV models, our goal is to distinguish the

potentially valid IVs from the invalid ones. To the best of our knowledge, this chapter

is the �rst work to show how the Lasso-type technique can be used in GMM to select

potentially valid moment conditions. In a more recent work, Gautier and Tsybakov

(2011) propose a Danzig selector based IV estimator in high dimensional models.

4



They derive an upper bound of estimation error for the structural coe¢ cients under

the assumption that all IVs are valid. When there exist consistent estimates of the

structural coe¢ cients, Gautier and Tsybakov (2011) also derive an upper bound of

estimation error for the moment selection coe¢ cients (see the de�nition in Section

1.2) for the invalid IVs.

The rest of this chapter is organized as follows. Section 1.2 describes our method

and gives some examples from applied econometrics, which arise naturally from the

framework of this chapter. Section 1.3 establishes the main asymptotic properties of

the GMM shrinkage estimators. We show that our method can consistently select

the valid moment conditions in set-2 and the GMM shrinkage estimator is asymp-

totically oracle-e¢ cient. We also give the data-dependent tuning parameter in this

section. Section 1.4 studies the GMM shrinkage estimation with nearly weak moment

conditions in set-1. Section 1.5 investigates the grouped variable selection and mo-

ment selection method using an adaptive group Lasso penalty in the GMM shrinkage

estimation. Section 1.6 conducts several Monte Carlo experiments to check the �nite

sample properties of our method. Section 1.7 applies our method to a life-cycle labor

supply model to illustrate how the GMM shrinkage method works with real data.

Section 1.8 concludes this chapter. Proofs and technical derivations are included in

Appendix 1.9.
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1.2 GMM Shrinkage Estimation and Some Exam-

ples

To incorporate moment selection into estimation, we �rst introduce a set of auxiliary

unknown parameters �o and reparametrize the moment conditions in set-2 to be

E [gk(Z; �o)� �o] = 0. (1.3)

From (1.3), we see that if the j-th (j = 1; :::; k) moment condition in (1.2) is correctly

speci�ed (or misspeci�ed), then �o;j = 0 (or �o;j 6= 0). Hence, the zero/nonzero com-

ponents in �o can be used to identify the correctly speci�ed/misspeci�ed moment

conditions in set-2 and consistent moment selection is equivalent to consistent selec-

tion of the zero components in �o
3.

We can stack the moment conditions in (1.1) and (1.3) to get

E [�(Z; �o; �o)] � E

264
0B@ gq(Z; �o)

gk(Z; �o)� �o

1CA
375 = 0. (1.4)

The GMM shrinkage estimator (b�n; b�n) of (�o; �o) is de�ned as
(b�n; b�n) = argmin

(�;�)2��B

�Pn
i=1 �(Zi; �; �)p

n

�0
Wn

�Pn
i=1 �(Zi; �; �)p

n

�
+n

kX
j=1

bP�n(�j); (1.5)
where ��B is the parameter space where (�o; �o) lies; Wn is a (q + k) � (q + k)

3Andrews (1999) notes that one can specify di¤erent � which takes some of its components as
zero and the rest as unknown. �o and the unknown components in � can be estimated using GMM.
Di¤erent speci�cations of � will give di¤erent sets of GMM estimators (b�n; b�n) and di¤erent values
of the MSC. Consistent moment selection is indicated by the zero components in b�n, if (b�n; b�n)
asymptotically minimizes the MSC. Instead of using di¤erent speci�cations of �, this chapter treats
�o as unknown nuisance parameters and we use the shrinkage method to consistently identify the
zero components in �o. Hence, in place of multiple sets of GMM estimations, the shrinkage approach
uses only a single step revised GMM estimation.
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weight matrix, �n is the tuning parameter in some general penalty function bP�n(�).
The success of our method in simultaneous moment selection and e¢ cient estimation

relies on the "oracle properties" of the shrinkage techniques. That is to say, if

�o;j = 0 for some j 2 f1; :::; kg, our method will estimate �o;j as zero with probability

approaching 1 (w.p.a.1.). When �o;j is estimated as zero w.p.a.1., the information

contained in the j-th moment condition of (1.2) is used in estimating �o w.p.a.1. On

the other hand, the nonzero components in �o are consistently estimated and their

estimators are nonzero w.p.a.1. Hence our method can consistently distinguish the

zero and nonzero components in �o and is consistent in moment selection. Moreover,

it estimates �o as if we knew all potentially correct moment conditions in set-2.

There are many popular choices for the penalty function bP�n(�) in the statistics
literature. For example, the bridge penalty is de�ned as bP�n(�) = �n j�j, where

 2 (0; 1); the adaptive Lasso penalty is de�ned as bP�n(�) = �n bw�j�j, where bw� =
jb�1stj�! (! > 0) and b�1st is some �rst-step consistent estimator of �o; and the
smoothly clipped absolute deviation (SCAD) penalty is de�ned as

bP�n(�) =
8>>>><>>>>:

�nj�j
�naj�j
a�1 �

�2+�2n
2(a�1)

(a+1)�2n
2

j�j � �n

�n < j�j � a�n

a�n < j�j

; (1.6)

where a is some positive real number strictly larger than 2. In the variable selection

literature (i.e., when an investigator seeks to select the relevant variables to appear

in the statistic model), Knight and Fu (2000) show that least squares (LS) shrinkage

estimation based on the bridge penalty has positive possibility of shrinking the es-

timators of zero regression coe¢ cients towards zero. Zou (2006) shows that the LS

shrinkage estimator based on the adaptive Lasso penalty has the oracle properties. In

a more general framework, Fan and Li (2001) study penalized maximum likelihood

7



estimation (PMLE) using the SCAD penalty and they establish the oracle properties

of their procedure in variable selection.

In the GMM framework, Caner (2009) studies variable selection using the bridge

penalty function. However, there is no conservative or consistent variable selection

result derived in that paper 4. Caner and Zhang (2009) study variable selection

in a scenario where the number of moment conditions and the number of structural

coe¢ cients grow with the sample size, where an adaptive elastic net penalty function

is used to achieve consistent variable selection 5. Moment selection is not addressed

in Caner (2009) and Caner and Zhang (2009), either in the theory development or

in the simulation studies of these papers.

Let S� � fj : �o;j 6= 0; j = 1; :::; kg and S�;n � fj : b�n;j 6= 0; j = 1; :::; kg to be
the index sets of the non-zero components in �o and b�n respectively. Under some
regularity conditions, we show that the GMM shrinkage estimator (b�n; b�n) enjoys
oracle-like properties in the sense that

lim
n!1

Pr (S�;n = S�) = 1 (1.7)

and
p
n
�b�n � �o�!d N(0;�

�); (1.8)

where �� is the semi-parametric e¢ ciency bound, implied by all the correct moment

conditions. The results in (1.7) and (1.8) imply both consistent moment selection

4Theorem 2 of Caner (2009) shows that the centered GMM bridge estimator converges in dis-
tribution to some nonstandard random variable at the

p
n rate. The nonstandard random variable

has positive probability measure on the point zero. Hence, Theorem 2 of Caner (2009) only implies
that the GMM bridge estimator of the zero coe¢ cients converge to zero at a rate faster than

p
n

and therefore does not explain why zero coe¢ cients are estimated as zero with positive probability
in �nite samples.

5The adaptive elastic net penalty function is de�ned as bP�n(�) = �1;nj�j=jb�1stj! + �2;nj�j2,
where ! > 0 and b�1st is some �rst-step estimator of �o.
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and e¢ cient estimation.

We use two well-known examples to illustrate the moment selection issue and

show how our method can be applied in practice. The �rst example is a dynamic

panel model with �xed e¤ects. In this model, di¤erent speci�cation assumptions

give di¤erent sets of moment conditions. As noted in Arellano and Bover (1995)

and Blundell and Bond (1998), the �rst-di¤erenced moment conditions may contain

weak information about the structural coe¢ cient. On the other hand, the moment

conditions based on the initial value are strong but their validity depends on a

stationarity assumption.

Example 1.2.1 (Dynamic Panel Model) Consider the following dynamic panel

model with �xed e¤ects

�Yi;t = Yi;t�1�1;o +X
0
i;t�2;o + "i;t and "i;t = �i + ui;t; (1.9)

where j�1;oj < 1, Yi;t is the dependent variable of individual i at the beginning of

period t, �Yi;t = Yi;t � Yi;t�1, Xi;t is a set of predetermined control variables, �i is

an unobservable individual e¤ect and ui;t is a time varying error term. Under the

assumption

E[ui;tYi;0] = 0, E[ui;tui;s] = 0 and E [(Xi;1; :::; Xi;t�1)ui;t] = 0 (1.10)

for all i, t and t 6= s, one can estimate the equation in (1.9) using GMM with the

following moment conditions

E[(Yi;0; :::; Yi;t�2)�"i;t] = 0 and E[(Xi;1; :::; Xi;t�2)�"i;t] = 0: (1.11)

However, Arellano and Bover (1995) argues that the GMM estimate based on (1.11)

9



may su¤er from large �nite-sample bias, because the moment conditions in (1.11)

are weak if �1;o is close to zero. They suggest to estimate the equation in (1.9) by

GMM with moment conditions in (1.11) and the following moment conditions

E["i;t�Yi;t�1]
?
= 0; (1.12)

which is implied by speci�cation assumptions

E[�iui;t] = 0 and E[�iYi;1] = E[�iYi;0]

for all t and i. In this example, the moment conditions in (1.11) and (1.12) are

our set-1 and set-2 moment conditions respectively. We can use our method to pick

up the valid moment conditions in (1.12) and automatically include them into the

estimation of (�1;o; �2;o).

Our second example is the linear IV model. Empirical researchers sometimes can

�nd credibly valid IVs from a so-called natural experiment. For example, one can use

quarter of birth as the IV for education (Angrist and Krueger (1991)) and rainfall as

the IV for the economic growth (Miguel, Satyanath, and Sergenti (2004)). On the

other hand, they may have other candidate IVs, which are strongly correlated with

the endogenous variables, but may not be exogenous.

Example 1.2.2 (Linear IV Model) Consider the following model

Yi = Xi�1;o +W
0
i�2;o + ui, (1.13)

Xi = Z1;i�1;o + Z
0
2;i�2;o +W

0
i�o + vi; (1.14)

where Yi, Xi are scaler endogenous variables, Wi contains a set of exogenous variable

10



and Z1;i denotes an instrumental variable for Xi. Suppose that the following moment

conditions hold

E[uiZ1;i] = 0 and E[uiWi] = 0 (1.15)

which can be used to identify and consistently estimate �o = (�1;o; �2;o). Z2;i can also

be a valid IV for estimating �o under the following condition E[uiZ2;i]
?
= 0. More-

over, if Xi is exogenous, then the OLS estimator is consistent and more e¢ cient.

The OLS estimator of (�1;o; �2;o) can be viewed as a GMM estimator based on the mo-

ment conditions in (1.15) and the following possibly misspeci�ed moment conditions

E[uiXi]
?
= 0. In this example, set-1 moment conditions are in (1.15) and the mo-

ment conditions constructed using Z2;i and Xi are in set-2. Our method can be used

to check whether Z2;i are valid IVs. Moreover, our method can automatically detect

the endogeneity of Xi. The GMM shrinkage estimator will asymptotically become the

GLS estimator if the moment condition E[uiXi]
?
= 0 is valid.

1.3 Asymptotic Properties of the GMM Shrink-

age Estimator

This section establishes the asymptotic properties of the GMM shrinkage estimator.

For ease of notation, we sort the elements in �o in the following way �o = (�o;+; �o;�),

where �o;+ 6= 0 and �o;� = 0. We denote the unknown parameter (�o; �o) as �o,

i.e. �o = (�o; �o). Accordingly, the GMM shrinkage estimator of �o is denoted as

b�n = (b�n; b�n). We use k�kE to denote the Euclidean norm in the Euclidean space.

11



1.3.1 Consistency and the Rate of Convergence

We �rst present and discuss the su¢ cient conditions for consistency of b�n. The
assumptions imposed on the moment functions are similar to these ensuring the

consistency of the GMM estimator, while some extra conditions are needed to make

sure that attaching a penalty function to the GMM criterion function will not lead

to inconsistent estimation.

Assumption 1.3.1 (i) E[gk(Z; �)] is continuous in � and for any " > 0, there exists

some �" > 0 such that

inf
f�2�:k���okE�"g

kE[gq(Z; �)]kE > �"; (1.16)

(ii) the following uniform law of large numbers (ULLN) holds

sup
�2�

"
n�1

nX
i=1

fgl(Zi; �)� E [gl(Zi; �)]g
#
= op(1) (1.17)

for l = q; k; (iii) there exists some symmetric, nonrandom and positive de�nite

matrix Wo such that

Wn !p Wo; (1.18)

(iv) the penalty function bP�n(�) is non-negative and bP�n(�o;j) = op(1) for all j =

1; :::; k.

Condition (1.16) in Assumption 1.3.1.(i) is the identi�able uniqueness condition

for �o. By de�nition �o = E[gk(Z; �o)], thus �o is locally uniquely identi�ed under

(1.16) and the continuity of E[gk(Z; �)]. Assumption 1.3.1.(ii) is a high-level condi-

tion, because it does not specify the data structure and the properties of the moment

functions. The advantage of this high-level condition is it makes our results applica-
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ble to models with a general data structure and general moment functions (e.g.,

non-smooth moment functions). Assumption 1.3.1.(iii) is also a high-level condition,

because it does not specify the form of the weight matrix Wn and its probability

limit Wo. It is clear that when Wn is an identity matrix, this assumption holds

automatically. Assumption 1.3.1.(iv) implies that the shrinkage e¤ect of the penalty

function on the moment selection coe¢ cients converges in probability to zero as

n ! 1. We show that the bridge, adaptive Lasso and SCAD penalty functions

satisfy Assumption 1.3.1.(iv) in Appendix 1.9.

Lemma 1.3.1 Under Assumption 1.3.1, the GMM shrinkage estimator is consis-

tent, i.e., (b�n; b�n)!p (�o; �o).

From the consistency of b�n, we can deduce that if j 2 S�, then b�n;j will be
estimated as nonzero w.p.a.1 and we have j 2 S�;n w.p.a.1. Hence under Assumption

1.3.1, the misspeci�ed moment conditions in set-2 will not be selected asymptotically.

However consistent moment selection also requires that if j 2 Sc�, then j 2 Sc�;n

w.p.a.1. The latter result can not be deduced from the consistency of b�n, because
what we need to show is b�n;j (j 2 Sc�) concentrates on zero w.p.a.1, while the

consistency only indicates that b�n;j (j 2 Sc�) concentrates on local neighborhoods of
zero w.p.a.1.

Remark 1.3.2 In Corollary 1.10.1 in Appendix 1.10, we show that if �n = o(1),

then the bridge, adaptive Lasso and SCAD penalty functions satisfy Assumption

1.3.1.(iv). We next show that �n = o(1) is also a necessary condition for the consis-

tency of the GMM shrinkage estimator based on these penalty functions. First, note

that if �n !1, then bP�n(�)!1 unless � = 0. Hence, if �n !1, we can invoke

the epi-convergence theorem in Geyer (1994) and Knight (1999) to deduce that the
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GMM shrinkage estimator (b�n; b�n) satis�es b�n !p 0 and

b�n !p argmin
�2�

E [�(Z; �; 0)]0WoE [�(Z; �; 0)] : (1.19)

From (1.19), we see that (b�n; b�n) is inconsistent if �o is a non-zero vector. On the
other hand, if �n ! �0 2 (0;1), then using the argmax continuous mapping theorem

(ACMT) we can show that the GMM shrinkage estimator based on the bridge penalty

satis�es

b�n !p argmin
�2A

(
E [�(Z; �)]0WoE [�(Z; �)] + �0

kX
j=1

j�jj
)
; (1.20)

where � = (�; �) and A = ��B, and the GMM shrinkage estimator based on the

SCAD penalty satis�es

b�n !p argmin
�2A

(
E [�(Zi; �)]

0WoE [�(Zi; �)] +
kX
j=1

P�0(�j)

)
; (1.21)

where

P�0(�j) =

8>>>><>>>>:
�0j�jj

�0aj�j j
a�1 � �2j+�

2
0

2(a�1)

(a+1)�20
2

j�jj � �0

�0 < j�jj � a�0

a�0 < j�jj

: (1.22)

Using the epi-convergence theorem, we can show that the GMM shrinkage estimator

based on the adaptive Lasso penalty satis�es

b�n ! p argmin
�2A

8>><>>:
E [�(Z; �)]0WoE [�(Z; �)] + �0

P
j2S�

j�j j
j�o;j j!

1

if �j = 0 8j 2 Sc�

otherwise
:

(1.23)

From the results in (1.20), (1.21) and (1.23), we see that if �n ! �0 2 (0;1),
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then (b�n; b�n) is inconsistent. Thus for the bridge, SCAD and adaptive Lasso penalty
functions, �n = o(1) is also a necessary condition for the consistency of (b�n; b�n).
We next present conditions needed to derive the convergence rate of (b�n; b�n).

Assumption 1.3.2 (i) The following functional central limit theorem (FCLT) holds

sup
�2�

"
n�

1
2

nX
i=1

fgl(Zi; �)� E [gl(Zi; �)]g
#
= Op(1) (1.24)

for l = q; k; (ii) E[gl(Z; �)] is continuously di¤erentiable in some neighborhood of �o

for l = q; k; (iii) @E[gq(Z; �o)]/ @�
0 has full column rank; (iv) the penalty functionbP�n(�) satis�es bP�n(0) = 0 and is continuously twice di¤erentiable at �o;j with

��� bP 00�n(�o;j)��� = op(1) (1.25)

for all j 2 S�.

Assumption 1.3.2.(i) is a high-level condition, which can be veri�ed by applying

the Donsker�s theorem in speci�c models. Assumption 1.3.2.(ii) imposes a local dif-

ferentiability condition on the expectation of the moment function gl(Z; �) (l = q; k).

Assumption 1.3.2.(iii) is a local identi�cation condition for �o. If this assumption fails,

the resulting estimator (b�n; b�n) may not bepn-consistent. Assumption 1.3.2.(iv) im-
poses some local smoothness conditions on the penalty function bP�n(�). Intuitively,
this condition implies that attaching a penalty function to the GMM criterion func-

tion does not cause any local identi�cation problem for the unknown parameter

(�o; �o). We show that the bridge, adaptive Lasso and SCAD penalty functions

satisfy Assumption 1.3.2.(iv) in Appendix 1.10.
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Lemma 1.3.3 Under the Assumption 1.3.1 and Assumption 1.3.2, we have

(b�n; b�n) = (�o; �o) +Op(�n) (1.26)

where �n = maxfbn; n�
1
2g and bn = maxj2S� j bP 0�n(�o;j)j.

It is interesting to see that the convergence rate of (b�n; b�n) may also depend on
the rate of the tuning parameter �n converging to zero. Intuitively, the �nite sample

bias of the shrinkage estimator comes from two sources. The �rst is the stochastic

error, which converges (in probability) to zero with the
p
n rate. The second bias is

due to the shrinkage e¤ect of the penalty function on the estimators of the non-zero

components in �o. The shrinkage bias converges (in probability) to zero with the

rate bn. Hence, the convergence rate of (b�n; b�n) is of the order �n.
Remark 1.3.4 If bP�n(�) is the bridge or adaptive Lasso penalty function, then bn =
Op(�n). The condition imposed on �n to show the consistency of (b�n; b�n), i.e. �n =
o(1), is insu¢ cient to deduce that (b�n; b�n) is pn-consistent. For example, if �n =
o(1) and

p
n�n !1, then from Lemma 1.3.3, we have

(b�n; b�n) = (�o; �o) +Op(�n)
which implies the convergence rate of (b�n; b�n) may be slower than pn. Hence, we
need to impose stronger condition on �n to ensure that the GMM shrinkage estimator

is
p
n-consistent. However, if bP�n(�) is the SCAD penalty function, then under the

condition �n = o(1), we can deduce that bn = maxj2S� j bP 0�n(�o;j)j = 0 when n is

su¢ ciently large. So in this case, �n = o(1) is a su¢ cient condition for the
p
n-

consistency of (b�n; b�n).

16



1.3.2 Consistent Moment Selection and Asymptotic Nor-

mality

In this subsection, we derive the consistent moment selection and the centered joint

limiting distribution of (b�n; b�n;+), where b�n;+ denotes the GMM shrinkage estimator

of the nonzero components �o;+ in �o. We �rst present and discuss the assumptions

needed to show consistent moment selection.

Assumption 1.3.3 (i) The tuning parameter �n satis�es

p
nmax
j2S�

��� bP 0�n(�o;j)��� = op(1); (1.27)

(ii) the penalty function satis�es

lim inf
n!1

" bP 0�n(b�n;j)
rn�n

#
> 0 a:e: (1.28)

for all j 2 Sc�, where rn is some non-negative sequence such that n
1
2�nrn !1.

Assumption 1.3.3.(i) indicates that the convergence rate of j bP 0�n(�o;j)j for all j 2
S� is faster than

p
n. Under this assumption, Lemma 1.3.3 implies that

p
n (b�n � �o) = Op(1) (1.29)

i.e., the convergence rate of b�n is pn. Assumption 1.3.3.(ii) is a generalized version
of the condition (3.5) in Fan and Li (2001). Intuitively, Assumption 1.3.3.(ii) implies

that the shrinkage estimator b�n;j of �o;j (j 2 Sc�) is the minimizer of bP�n(�) w.p.a.1.
From Assumptions 1.3.1.(iv) and 1.3.2.(iv), we know that bP�n(�) is locally minimized
at 0. Hence Assumption 1.3.3.(ii) is the key condition needed for showing consistent
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moment selection. We show that the bridge, adaptive Lasso and SCAD penalty

functions satisfy Assumption 1.3.3 in Appendix 1.10.

Theorem 1.3.5 Under the Assumption 1.3.1, Assumption 1.3.2 and Assumption

1.3.3, we have

Pr
�b�n;j = �o;j�! 1 (1.30)

for all j 2 Sc�.

From the consistency of b�n and Theorem 1.3.5, we can immediately deduce that

lim
n!1

Pr (S� = S�;n) = 1; (1.31)

i.e. the consistent moment selection.

Assumption 1.3.4 Let gq+k(Z; �) denote the stacked moment functions from set-1

and set-2, i.e. g0q+k(Z; �) �
�
g0q(Z; �); g

0
k(Z; �)

�
. The following central limit theorem

(CLT) holds

n�
1
2

X
i�n
fgq+k(Zi; �o)� E [gq+k(Zi; �o)]g !d 	(�o) (1.32)

where 	(�o) is a q + k dimensional Gaussian random vector.

Assumption 1.3.4 is a high-level condition, which can be veri�ed by applying CLTs

in speci�c models with speci�c moment functions and data structure. Let gd�� (Z; �)

and gd�+(Z; �) denote the potentially valid and misspeci�ed moment functions in

set-2 respectively. Denote

@m(�o)

@�0S
=

264 @E[gq+d��
(Z;�o)]

@�0 0
@E[gd�+

(Z;�o)]

@�0 �IdS�

375
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where gq+d�� (Z; �) =
h
g0q(Z; �); g

0
d��
(Z; �)

i0
, dS� is the cardinality of the index set S�

and IdS� denotes a dS��dS� identity matrix. If we de�neM11 =
h
@m(�o)
@�S

i
Wo

h
@m(�o)
@�0S

i
,

then under Assumption 1.3.1.(iii) and Assumption 1.3.2.(iii), M11 is non-singular.

Theorem 1.3.6 (
p
n-Normality) Under the Assumption 1.3.1, Assumption 1.3.2,

Assumption 1.3.3 and Assumption 1.3.4, we have

p
n
h
(b�n; b�n;+)� (�o; �o;+)i!d N(0;M

�1
11 �11M

�1
11 ) (1.33)

where

�11 =

�
@m(�o)

@�S

�
WoE [	(�o)	

0(�o)]Wo

�
@m(�o)

@�0S

�
and 	(�o) is de�ned in (1.32).

1.3.3 Oracle Properties

The oracle properties state that the GMM shrinkage estimation can consistently

identify all potentially valid moment conditions in set-2 and its estimator of �o can

attain the semi-parametric e¢ ciency bound implied by all correct moment condi-

tions. As the consistent moment selection is directly implied by the consistency ofb�n established in Lemma 1.3.1 and the sparsity of b�n established in Lemma 1.3.5,
the oracle properties follow if we can show that b�n is semi-parametric e¢ cient.
If we had prior information about the validities of the moment conditions in set-2,

then there would be q + dS� moment conditions to estimate �o. We can stack these

moment conditions as

me(�o) = E

264 gq(Z; �o)
gd�� (Z; �o)

375
(q+dS� )�1

= 0: (1.34)
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From the moment conditions in (1.34), we can compute the semiparametric e¢ ciency

bound of �o as

(��)�1 =

�
@me(�)

@�0o

�0
V �1e;o

�
@me(�)

@�o

�0
; (1.35)

where Ve;o is the leading (q + dS�)� (q + dS�) sub-matrix of E [	(�o)	0(�o)].

If we choose the asymptotically e¢ cient weight matrixW �
n in the GMM shrinkage

estimation such that

W �
n !p Wo = fE [	(�o)	0(�o)]g�1 ; (1.36)

then an interesting question is whether the resulting GMM shrinkage estimator b�n of
�o asymptotically attains the semi-parametric e¢ ciency bound in (1.35). The answer

to the above question is a¢ rmative, as illustrated in the following theorem.

Theorem 1.3.7 (Oracle Properties) Under the Assumption 1.3.1, Assumption

1.3.2 and Assumption 1.3.3, we have

lim
n!1

Pr (S� = S�;n) = 1: (1.37)

Furthermore, if the weight matrixWn satis�es (1.36) and the Assumption 1.3.4 holds,

then we have
p
n
�b�n � �o�!d N(0;�

�); (1.38)

where �� is de�ned in (1.35).

Remark 1.3.8 In �nite samples, the naive con�dence intervals (CIs) for �o are

constructed using the asymptotic distribution in (1.38) and "plug-in" estimator of

the variance covariance matrix �� based on the shrinkage estimator b�n and the se-
lected moment conditions. It should be noted that the results in (1.37) and (1.38)
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are pointwise asymptotic properties. Hence in �nite samples, the naive CIs fail to

take the moment selection errors into account, though the moment selection errors

are integrated into the plug-in estimator of ��. That is to say, the naive CIs may

be mistakenly centered if some misspeci�ed moment conditions are selected in �nite

samples. One should note that the post moment selection estimators based on other

moment selection procedures also su¤er from this problem. Ignoring the errors in mo-

ment selection may lead to poor coverage probabilities of naive CIs and size distortion

of hypothesis tests, which represents a well-known challenge in the model/moment se-

lection literature as recently overviewed in Leeb and Pötscher (2005). The treatment

of the PMS inference is beyond the scope of this chapter and is recently studied in

Liao (2012).

1.3.4 Selection of the Tuning Parameter

From the results of previous subsections, we see that the tuning parameter �n plays

an important role in deriving the asymptotic properties of GMM shrinkage estimator.

Assumptions 1.3.1.(iv), 1.3.2.(iv) and 1.3.3.(i)-(ii) are su¢ cient conditions imposed

on �n for the oracle properties. However, these conditions do not give a straightfor-

ward way of selecting the tuning parameter �n in �nite samples. In this subsection,

we provide explicit data-dependent tuning parameters for the GMM shrinkage es-

timation. The proposed tuning parameters not only satisfy Assumption 1.3.1.(iv),

Assumption 1.3.2.(iv) and Assumption 1.3.3.(i)-(ii) but also take the �nite sample

performance of the GMM shrinkage estimates into account. We use the adaptive

Lasso penalty as the illustrating example, as this penalty is used in the simulation

study and empirical application of this chapter. The same idea applies to the other

penalty functions.

From the Karush-Kuhn-Tucker (KKT) optimality condition, we know that the
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nonzero �o;j will be estimated as zero only if the following inequality hold

�����Wn(j)

"
n�

1
2

nX
i=1

�(Zi;b�n; b�n)
#����� <

p
n�n

2jb�1st;jj! (1.39)

where Wn(j) denotes the j-th row of the weight matrix Wn. However, if nonzero

�o;j is estimated as zero, then the left handside of the above inequality will be

asymptotically close to a nonzero real number because the invalid moment condition

is used in estimation. To ensure the shrinkage bias and error of selecting the invalid

moment conditions are small in the �nite samples, one would like to have
p
n�n=2

converge to zero as fast as possible.

On the other hand, the zero �o;j will be estimated as zero only if the same

inequality in (1.39) is satis�ed. As b�ols;j = Op(n� 1
2 ), we can rewrite the inequality

in (1.39) as �����Wn(j)

"
n�

1
2

nX
i=1

�(Zi;b�n; b�n)
#����� < n

1+!
2 �n

2j
p
nb�1st;jj! : (1.40)

As the left handside of the above inequality is asymptotically a linear combination of

Gaussian random variables, one would like to have n
1+!
2 �n=2 diverge to in�nite as fast

as possible to ensure that valid moment conditions are selected with high probability

in �nite samples. We choose �n = 2cn�
1
2
�!
4 by balancing the requirement that

p
n�n=2 converges to zero and n

1+!
2 �n=2 diverges to in�nite as fast as possible. We

next discuss the selection of the loading term c in the above �n.

As �n = 2cn�
1
2
�!
4 satis�es Assumption 1.3.1.(iv), Assumption 1.3.2.(iv) and As-

sumption 1.3.3.(i)-(ii), we can use the arguments in the proof of Theorem 1.3.6 and
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Theorem 1.3.7 to deduce that

n�
1
2

nX
i=1

�(Zi; b�n) = vn [�(Z; b�n)� �(Z; �o)] + vn [�(Z; �o)] + n 1
2E [�(Z; b�n)]

= vn [�(Z; �o)] +
@m(�o)

@�0S

h
n
1
2 (b�n;S � �o;S)i+ op(1)

=

�
Iq+k �

�
@m(�o)

@�0S

�
M�1
11

�
@m(�o)

@�S

�
Wo

�
W

� 1
2

o Bq+k(1) + op(1);

(1.41)

where Bq+k(1) denotes a q + k dimensional standard Brownian motion. The consis-

tency of Wn and (1.41) imply that

Wn(j)

"
n�

1
2

nX
i=1

�(Zi; b�n)# = W 1
2
o (j)�q+kBq+k(1) + op(1); (1.42)

where

�q+k =

�
Iq+k �W

1
2
o

�
@m(�o)

@�0S

�
M�1
11

�
@m(�o)

@�S

�
W

1
2
o

�
(1.43)

is an idempotent matrix with rank q+d���d�. We propose to choose the loading termbcj;n = jjW 1
2
n (j)b�q+kjjE to normalize the linear combination of the projected Brown-

ian motion in (1.42), where b�q+k can be estimated by a �rst step GMM shrinkage

estimation with �n = 2
p
log(q)n�

1
2
�!
4 for example. To sum up the above discussion,

we propose to select the tuning parameter

b�n;j = 2jjW 1
2
n (j)b�q+kjjEn� 1

2
�!
4 (1.44)

for the j-th moment selection coe¢ cient.
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1.4 GMMShrinkage Estimation underWeak Iden-

ti�cation

In this section, we study the properties of the GMM shrinkage estimator when

the moment conditions in set-1 fail to strongly identify the unknown parameter �o.

Speci�cally, we assume that we have the following moment conditions in set-1

E [gn;q(Z; �)] = n
��Gn;q(�); (1.45)

where gn;q (�; �) : Rdz �Rd� ! Rq, Gn;q(�o) = 0 and � 2 [0; 12). At the same time, we

have another set of possibly misspeci�ed moment conditions

E [gn;k(Z; �o)] = Gk(�o)
?
= 0; (1.46)

where gn;k (�; �) : Rdz � Rd� ! Rk. Hahn and Kuersteiner (2002) study a linear

IV model where the moment conditions constructed from the IVs are similar to

these in (1.45). They show that the IV estimators have the convergence rate n
1
2
�� , if

� 2 [0; 1
2
). Caner (2009) shows that the GMM bridge estimator based on the moment

condition (1.45) has the same rate.

In this section, we show that if there are strong and correctly speci�ed moment

conditions in (1.46), then these moment conditions can be consistently selected by

the shrinkage method. More importantly, we show that the GMM shrinkage esti-

mator b�n has faster rate of convergence and hence better stochastic properties than
the estimators only using the moment conditions in (1.45). The intuition is that

when the valid and strong moment conditions in (1.46) are consistently selected,

the information contained in these moment conditions is included into estimating �o

w.p.a.1.
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Assumption 1.4.1 (i) Gk(�) is continuous in � and there exists some continuous

function Gq(�) such that

sup
�2�

kGn;q(�)�Gq(�)kE = o(1) (1.47)

as n!1; (ii) for any " > 0, there exists some �" > 0 such that

inf
f�2�:k���okE�"g

kGq(�)kE > �"; (1.48)

(iii) for l = q; k, the following FCLTs hold,

sup
�2�

�����n�1
nX
i=1

fgn;l(Zi; �)� E [gn;l(Zi; �)]g
����� = Op(n� 1

2 ); (1.49)

(iv) Gl(�) (l = q; k) is continuously di¤erentiable in the local neighborhood of �o and

there is

sup
�2�

@Gn;q(�)@�
� @Gq(�)

@�


E

= o(1); (1.50)

where @Gq(�o)

@�0 has full column rank; (v) the penalty function bP�n(�) is non-negative
and satis�es n2� bP�n(�o;j) = op(1) for all j.
Assumption 1.4.1.(i) imposes continuity condition on Gk(�) and assumes the ex-

istence of uniform limit function Gq(�) for Gn;q(�). The uniform approximation in

(1.47) is a regularity condition in the weak moment condition literature (e.g., Stock

and Wright (2000)). Assumption 1.4.1.(ii) is a identi�able uniqueness condition of �o.

Assumption 1.4.1.(iii) and (iv) are the generalized versions of Assumption 1.3.1.(ii)

and Assumption 1.3.2.(ii)-(iii) respectively. Compared with Assumption 1.3.1.(iv),

Assumption 1.4.1.(v) imposes a stronger restriction on the tuning parameter �n.

When the moment conditions in (1.45) are nearly weak, their information about �o
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is vanishing at the rate n�� and the information contained in GMM criterion function

is vanishing at the rate n�2� , hence bP�n(�o;j) must converge to zero faster than n�2�
to ensure the consistency of the GMM shrinkage estimator b�n.
Lemma 1.4.1 (Rate of Convergence) Under Assumption 1.3.1.(iii), Assumption

1.3.2.(iv) and Assumption 1.4.1, we have

b�n � �o = Op�n2� max
j2S�

��� bP 0�n(�o;j)���+ n�� 1
2

�
:

It�s clear that if n
1
2
+� maxj2S�

��� bP 0�n(�o;j)��� = Op(1), then
b�n � �o = Op(n�� 1

2 )

which gives the optimal convergence rate of the estimators based on the moment

conditions in (1.45). However, we next show that if the tuning parameter �n con-

verges to zero not very fast, then not only the shrinkage method can consistently

select the valid moment conditions in (1.46), but also the GMM shrinkage estimatorb�n has the rate of convergence faster than n�� 1
2 .

Assumption 1.4.2 (i) The penalty function bP�n(�) satis�es
n
1
2
+� max

j2S�

��� bP 0�n(�o;j)��� = op(1); (1.51)

(ii) there exists some sequence rn such that

lim inf
n!1

" bP 0�n(b�n;j)
rn�n

#
> 0 a:e: (1.52)

for any j 2 Sc�, and n
1
2
���nrn !1.
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Intuitively, Assumption 1.4.2.(i) requires that the tuning parameter �n converge

to zero fast enough such that the shrinkage bias converges to zero faster than the

stochastic error. However, Assumption 1.4.2.(ii) requires that �n converge to zero

slow enough such that the estimators of zero components in �o are shrunk to zero

w.p.a.1. We verify Assumption 1.4.1.(v) and Assumption 1.4.2 using the bridge,

adaptive Lasso and SCAD penalty functions in Appendix 1.10.

Lemma 1.4.2 Under the conditions of Lemma 1.4.1 and Assumption 1.4.2, there

is

Pr
�b�n;j = 0�! 1; (1.53)

for all j 2 Sc�.

Lemma 1.4.2 implies that �o;j (j 2 Sc�) is estimated as zero w.p.a.1. This result,

combined with the following local identi�cation Assumption, enables us to improve

the convergence rate of b�n. Denote the potentially valid moment functions and

misspeci�ed moment functions in (1.46) to be gd�� (Z; �) and gd�+ (Z; �) respectively.

Assumption 1.4.3 Denote Gk(�) =
h
G0d��

(�) G0d�+
(�)
i0
, then @Gd�+ (�o)=@�

0 has

full column rank.

Assumption 1.4.3 is important for deriving the
p
n convergence rate of b�n. If this

condition does not hold, then the moment conditions in set-1 are needed to achieve

the local identi�cation of �o. In that case, the convergence rate of b�n is not pn, but
is still faster than the rate n

1
2
�� .

Lemma 1.4.3 Under the conditions of Lemma 1.4.2 and Assumption 1.4.3, we have

(b�n; b�n;+)� (�o; �o;+) = Op(n� 1
2 ): (1.54)
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Let Wo;kk denote the right-lower k � k sub-matrix of Wo,

M+ =

�
@mk(�o)

@�S

�
Wo;kk

�
@mk(�o)

@�0S

�
and

@mk(�o)

@�0S
=

0B@ @Gd��
(�o)

@�0 0
@Gd�+

(�o)

@�0 �IdS�

1CA :
As @Gd�� (�o)=@�

0 has full column rank, so combined with the Assumption 1.3.1.(iii),

we can deduce that the matrix M+ is invertible.

Corollary 1.4.4 (
p
n-Normality) Under the conditions of Lemma 1.4.3 and As-

sumption 1.3.4, we have

p
n
h
(b�n; b�n;+)� (�o; �o;+)i!d N(0;M

�1
+ �+M

�1
+ ); (1.55)

where

�+ =

�
0;
@mk(�o)

@�S

�
WoE [	(�o)	

0(�o)]Wo

�
0;
@mk(�o)

@�S

�0
and 	(�o) is de�ned in (1.32).

Remark 1.4.5 If the weight matrix Wn satis�es (1.36), then there is

�+ =

�
0;
@mk(�o)

@�S

�
Wo

�
0;
@mk(�o)

@�S

�0
=

�
@mk(�o)

@�S

�
Wo;kk

�
@mk(�o)

@�0S

�
=M+:

So from Corollary 1.4.4, we can deduce that

p
n
h
(b�n; b�n;+)� (�o; �o;+)i!d N(0;M

�1
+ ):

We can similarly prove the e¢ ciency result for the GMM shrinkage estimator b�n,
where the semiparametric e¢ ciency bound of �o is implied by the potentially correct

and strong moment conditions in (1.46).
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1.5 Grouped Variable and Moment Selection via

Adaptive Group Lasso

In this section, we study the grouped variable selection and moment selection in

GMM using the shrinkage method. In some econometric models, variables and mo-

ment conditions are selected in groups, instead of being selected individually. One

example is the selection of lagged di¤erences in the VAR model. Another example is

the selection of moment conditions in dynamic panel models, where one speci�cation

assumption usually implies several moment conditions. In the latter example, the

moment conditions implied by the same speci�cation assumption should be accepted

or rejected altogether. However, if these moment conditions are treated individually,

contradictory results may appear in empirical studies, when some of the moment

conditions are accepted and the others are rejected.

To perform the grouped variable and moment selection, we need to impose some

extra restrictions on the general penalty function bP�n(�). For the brevity of this
chapter, we only consider the adaptive group Lasso penalty function in this section.

The adaptive group Lasso penalty is de�ned as

bP�n(�) = �n bw� k�k2 ; (1.56)

where bw� = kb�nk�!2 (! > 0), b�n is a �rst-step consistent estimator of � and k�k2
denotes the l2-norm. The adaptive group Lasso is originally proposed in Wang (2008)

to perform consistent grouped variable selection and e¢ cient estimation in LS re-

gression models. It is clear that when � is a scale, the adaptive group Lasso penalty

is reduced to be the adaptive Lasso penalty. Intuitively, the adaptive group Lasso

can perform grouped variable or moment selection because by de�nition, it delivers
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the shrinkage e¤ect groupwisely and the estimators of the grouped parameters will

be shrunk to zero only when all of them are zero.

Suppose that the unknown parameter �o can be decomposed into J� groups i.e.

�o = (�1;o; :::; �J�;o). There are J�+ sub-groups indexed by S� such that k�o;jk2 6= 0

for all j 2 S� and there are J�� sub-groups indexed by Sc� such that k�o;jk2 = 0

for all j 2 Sc� . Similarly, suppose that the moment selection coe¢ cient �o can be

decomposed into J� groups i.e. �o = (�1;o; :::; �J� ;o) with J�+ sub-groups (indexed

by S�) such that
�o;j2 6= 0 for all j 2 S� and J�� sub-groups (indexed by Sc�) such

that
�o;j2 = 0 for all j 2 Sc�. Denote S� = fj : k�o;jk2 6= 0, j = 1; :::; J� + J�g be

the index set of the grouped non-zero components in �o, then by de�nition there is

S� = S� [ S� and Sc� = Sc� [ Sc�.

The GMM shrinkage estimator b�n with grouped variable and moment condition
selection is de�ned as

b�n = argmin
�2A

�Pn
i=1 �(Zi; �)p

n

�0
Wn

�Pn
i=1 �(Zi; �)p

n

�
+

J�+J�X
j=1

bP�n(�j); (1.57)

whereA is parameter space where �o lies and �j denotes the j-th group of parameters

in �. Let Sn;� = fj : kb�n;jk2 6= 0; j = 1; :::; J� + J�g denote the index set of groups
of nonzero components in b�n. For the ease of notation, we sort the groups in �o in
the following way �o = (�o;+; �o;�), where �o;+ = f�o;j : j 2 S�g and �o;� = f�o;j : j 2

Sc�g. Under some regularity conditions, we show the GMM shrinkage estimation can

perform consistent grouped variable selection and moment selection, i.e.

lim
n!1

Pr (S� = Sn;�) = 1; (1.58)
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and the GMM shrinkage estimator b�n;+ of �o;+ is semi-parametric e¢ cient, i.e.
p
n
�b�n;+ � �o;+�!d N(0;�

+); (1.59)

where �+ is the semi-parametric e¢ ciency bound, implied by the true model with

all correct moment conditions. We �rst derive the convergence rate of b�n.
Lemma 1.5.1 If �n = o(1) and Assumption 1.3.1.(i)-(iii) are satis�ed, then the

GMM shrinkage estimator de�ned in (1.57) is consistent. If we further assume that

Assumption 1.3.2.(i)-(iii) are satis�ed, then

b�n = �o +Op(�n); (1.60)

where �n = max
n
�n; n

� 1
2

o
.

From the convergence rate in (1.60), we can deduce that if
p
n�n = O(1), then

p
n (b�n � �o) = Op(1)

and hence b�n is root-n consistent. We next establish the sparsity of b�n.
Assumption 1.5.1 (i) For l = c; k, the moment function gl(z; �) is continuously

di¤erentiable in � for almost all z; (ii) the following ULLNs hold

sup
�2�

����� 1n
nX
i=1

�
@gl(Z; �)

@�
� E

�
@gl(Z; �)

@�

������� = op(1): (1.61)

Assumption 1.5.1.(i) imposes di¤erentiability condition on the moment function

gl(z; �) (l = c; k), which is needed to invoke the Karush-Kuhn-Tucker (KKT) optimal-

ity condition to derive the sparsity of b�n. Note that by de�nition, �(Z; �) = �(Z; �; �)
31



and �(Z; �; �) is trivially di¤erentiable in �. Hence from Assumption 1.5.1.(i), we

can deduce that the stacked moment function �(z; �) is di¤erentiable in � for almost

all z. The ULLNs in (1.61) are useful to derive the probability limit of the score

process of the GMM criterion function evaluated at the GMM shrinkage estimator.

Theorem 1.5.2 Suppose that Assumption 1.3.1.(i)-(iii), Assumption 1.3.2.(i)-(iii)

and Assumption 1.5.1 are satis�ed and the �rst-step estimator b�n is root-n consistent.
If the tuning parameter �n satis�es

p
n�n = O(1) and n

1+!
2 �n !1, then

Pr
�
kb�n;jk2 = 0�! 1 (1.62)

for all j 2 Sc�.

By the consistency of b�n, we can deduce that
Pr
�
kb�n;jk2 6= 0�! 1 (1.63)

for all j 2 S�. Hence, the results in (1.62) and (1.63) imply that

Pr (S�;n = S�)! 1 (1.64)

as n!1, which gives the consistent grouped variable selection and moment selec-

tion.

Denote �o;+ = f�o;j : j 2 S�g and let (b�n;+; b�n;+) be the GMM shrinkage estima-

tor of (�o;+; �o;+). De�ne MS� =
h
@m(�o)
@�S�

i
Wo

h
@m(�o)
@�0S�

i
and

@m(�o)

@�0S�
=

264
@E[gc+d

��
(Z;�o)]

@�0S�
0

@E[gd
�+
(Z;�o)]

@�0S�
�IdS�

375 ,
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where gc+d�� (Z; �o) =
h
g0c(Z; �o); g

0
d��
(Z; �o)

i0
, gd�� (Z; �o) and gd�+ (Z; �o) are the

correctly speci�ed and misspeci�ed moment conditions in set-2 respectively, �S� =

f�j : j 2 S�g, dS� is the cardinality of the index set S� and IdS� is a dS��dS� identity

matrix. We next derive the centered joint limiting distribution of (b�n;+; b�n;+).
Corollary 1.5.3 Under the conditions of Theorem 1.5.2 and Assumption 1.3.4, we

have
p
n
h
(b�n;+; b�n;+)0 � (�o;+; �o;+)0i!d N

�
0;M�1

S� �S�M
�1
S�
�
;

where

�S� =

�
@m(�o)

@�S�

�
WoE [	(�o; �o)	

0(�o; �o)]Wo

�
@m(�o)

@�0S�

�
:

The proof of this corollary is similar to that of Theorem 1.3.6 and thus is omitted.

If we knew the true model and all correct moment conditions in set-2, then there

would be q+ dSc� moment conditions to estimate �o;+, where dSc� is the cardinality of

the index set Sc�. The moment conditions in set-1 and the valid moment conditions

in set-2 can be stacked in the following way

me(�o;+) = E [�e(Z; �o;+)] = E

264 gc(Z; �o;+)
gd�� (Z; �o;+)

375
(q+dSc

�
)�1

= 0: (1.65)

The semiparametric e¢ ciency bound for �o;+ is

�
��+
��1

=

�
@me(�o;+)

@�+

�
fE [�e(Z; �o;+)�e(Z; �o;+)0]g

�1
�
@me(�o;+)

@�0+

�
: (1.66)

Next, we show that if the weight matrix Wn in the GMM shrinkage estimation

satis�es (1.36), then the GMM shrinkage estimator b�n;+ can asymptotically attain
the semiparametric e¢ ciency bound de�ned in (1.66).
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Corollary 1.5.4 Suppose that the assumptions in Theorem 1.5.3 are satis�ed. If

the weight matrix Wn satis�es (1.36), then we have

p
n
�b�n;+ � �o;+�!d N

�
0;��+

�
; (1.67)

where ��+ is de�ned in (1.66).

The proof of this corollary is similar to the proof of Theorem 1.38 and thus is

omitted. The limiting distribution established in (1.67) is also a pointwise asymptotic

property. The model selection and moment selection errors do not enter into this

asymptotic distribution, because our consistent model/moment selection procedure

implies the probability that these errors e¤ect the limiting distribution of b�n;+ goes
to zero when sample size n goes to in�nity. Hence in �nite samples, the naive

CIs constructed using (1.67) fail to take the model and moment selection errors into

account and their coverage probabilities may be poor. In the extreme case, the GMM

shrinkage estimator b�n;j of certain nonzero group �o;j (j 2 S�) may be shrunk to zero
in �nite samples. In that scenario, the naive CIs have the zero coverage probability.

One should note that the PMS estimators based on other model/moment selection

procedures also su¤er from this problem. The treatment of the PMS inference is

beyond the scope of this chapter and is recently studied in Liao (2012).

1.6 Simulation Study

In this simulation study, the data are generated from the following linear IV model

Yi = Xi�1;o +W1;i�2;o +W2;i�3;o + ui; (1.68)

Xi = Z1;i�1;o +W
0
i�2;o + Z

0
2;i�3;o + vi; (1.69)
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where Yi is a scaler dependent variable, Xi is a scaler endogenous variable, Z1;i is the

IV whose validity is assumed to be known, Wi = (W1;i;W2;i) contains two exogenous

variables, Z 02;i = (Z21;i; :::; Z25;i) is a set of potentially valid IVs, ui and vi are error

terms which are correlated with each other.

Suppose a econometrician speci�es the model

Yi = Xi�o +W1;i�2;o +W2;i�3;o + ui

with the following set-1 moment conditions

E [ui(Z1;i;W1;i;W2;i)] = 0 (1.70)

to identify and consistently estimate �o = (�1;o; �2;o; �3;o). The potentially valid IVs in

Z2;i are mixed with 20 invalid IVs F 0i = (F1;i; :::; F20;i) to construct the set-2 moment

conditions

E
�
ui(Z

0
2;i; F

0
i )
� ?
= 0: (1.71)

To generate the simulated data, we �rst generate (W 0
i ; Z1;i; Z

0
2;i; ui; vi; F

�
i ) from

a multivariate normal distribution with mean 0 and variance-covariance matrix �,

where F �i = (F �1;i; :::; F
�
20;i), � = diag(�Z ;�u;v; I20), �Z is a 8 � 8 matrix with the

i; j-th element being 0:2ji�jj, �u;v is a 2 � 2 matrix with diagonal elements 1 and

o¤-diagonal elements 0:6, I20 is a 20 � 20 identity matrix. Let cl to be some value

between 0 and 0:8 and l be a 1�20 vector with the j-th (j = 1; :::; 20) element being

cl + (0:8� cl) � (j � 1)=19. The invalid IV is generated in the following way

F 0i = F
�
i + ui � l:
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It is clear that when cl is close to zero, the IVs in Fi with larger index numbers

(e.g. F20;i and F19;i) behave more like valid IVs and it becomes more di¢ cult to

distinguish these IVs from the potentially valid ones. We choose di¤erent values

for cl (cl = 0:2 or 0:5) to see how our method works in di¤erent scenarios. The

parameters in the model (1.68)-(1.69) take the following values

�o = (0:5; 0:4; 0:3), �2;o = (0:1; 0:1) and �3;o = (0:15; 0:15; 0:2; 0:2; 0:25):

When �1;o is close to zero, Z1;i may contain weak information about the unknown

parameter �1;o, which may also e¤ect the performance of our method in moment

selections. In the simulation studies, we choose di¤erent values for �1;o (�1;o = 0:2 or

0:8) to see how our method is e¤ected by the signal strength of Z1;i.

For each speci�cation of (cl; �1;o), we use the simulated samples with sample

sizes n = 250, 500 and 1000 respectively and for each sample size, 10,000 simulated

samples are drawn from the data generating mechanism. The adaptive Lasso penalty

with ! = 2 is used to construct the criterion of GMM shrinkage estimation. We use

the projected scaled sub-gradient method (active-set variant) method proposed in

Schmidt (2010) to solve the minimization problem in the GMM shrinkage estimation.

It is remarkable that in this simulation study, there are 25 moment conditions in set-

2 and hence 225 subsets of moment conditions to be investigated by the traditional

moment selection procedures.

With each simulated sample, we calculate four di¤erent GMM estimators, which

include the oracle estimator, GMM estimator with set-1 moment conditions, GMM

shrinkage estimator and GMM estimate based on set-1 and the moment conditions

selected by GMM shrinkage estimation. The oracle estimator is a GMM estimator

based on the moment conditions in set-1 and all valid moment conditions in set-2. We
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call the second and the last estimates as feasible GMM estimate and post-shrinkage

GMM (PSGMM) estimate respectively. Given the speci�cation of (cl; �1;o) and the

sample size n, we get 10,000 estimators of �o for each of the four estimators using the

10,000 simulated samples. We use these 10,000 values of each estimator to calculate

its �nite sample bias, standard error and root of mean square error.

Table 1.1 Performance of GMM Shrinkage Method in Moment Selection1

�1;o = 0:2
n = 250 n = 500 n = 1000

cl = 0:2 (.5429 .3699 .0872) (.0857 .8182 .0961) (.0015 .9503 .0482)
cl = 0:5 (.0022 .8145 .1833) (.0000 .9012 .0988) (.0000 .9541 .0459)

�1;o = 0:8
n = 250 n = 500 n = 1000

cl = 0:2 (.4973 .4709 .0318) (.0743 .9012 .0245) (.0010 .9862 .0128)
cl = 0:5 (.0000 .9312 .0688) (.0000 .9726 .0274) (.0000 .9872 .0128)

Table 1.1: 1. The three numbers in each bracket are the estimated �nite sample
probabilities of selecting subsets of moment conditions in set-2 from three di¤erent
categories respectively. The �rst category includes the subsets of moment conditions
which contain at least one invalid moment condition. The second category contains
and only contains the subset of all potentially valid moment conditions in set-2. The
third category includes the subsets which do not have the invalid moment condi-
tions, but fail to contain all valid moment conditions in set-2. The �nite sample
probabilities are computed based on 10,000 replications.

For the ease of describing the simulation results, we divide all possible subsets of

moment conditions in set-2 into three categories. The �rst category includes subsets

of moment conditions which contain at least one invalid moment condition. The

second category has only one subset which contains and only contains all potentiality

valid moment conditions in set-2. The third category includes the subsets of moment

conditions which do not have any invalid moment conditions but fail to include all

valid ones in set-2. The GMM estimates based on the subsets of moment conditions

from the �rst category are inconsistent. On the other hand, the GMM estimates

based on the subsets of moment conditions from the second or third categories (and
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Table 1.2 Finite Sample Bias (BS), Standard Deviations (SD) and RMSEs (RE)1

(cl; �1;o) = (0:2; 0:2)

Oracle GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0316 .1125 .1169 .0158 .0804 .0819 .0066 .0569 .0573
�2o -.0035 .0671 .0672 -.0016 .0460 .0460 -.0008 .0329 .0329
�3o -.0029 .0673 .0674 -.0024 .0478 .0478 -.0016 .0333 .0334

GMM Shrinkage Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .1184 .2467 .2737 .0293 .0931 .0976 .0067 .0588 0592
�2o -.0124 .0714 .0725 -.0029 .0462 .0463 -.0008 .0329 .0329
�3o -.0160 .0754 .0771 -.0043 .0482 .0484 -.0016 .0334 .0334

Post-Shrinkage GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0539 .2640 .2694 .0155 .0918 .0931 .0057 .0594 .0597
�2o -.0061 .0727 .0730 -.0015 .0463 .0463 .0007 .0329 .0329
�3o -.0061 .0781 .0783 .0023 .0483 .0483 -.0015 .0335 .0335

Consistent GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o -.0633 .4173 .4221 -.0228 .2178 .2190 -.0133 .1462 .1468
�2o .0053 .0841 .0843 .0022 .0521 .0521 .0012 .0358 .0358
�3o .0110 .0948 .0954 .0034 .0582 .0583 .0012 .0390 .0390

Table 1.2: 1. The �nite sample bias, standard error and mean square error are
computed using the corresponding estimates from 10,000 replications.

the moment conditions in set-1) are consistent, while the subset of moment conditions

in the second category (and the moment conditions in set-1) gives the most e¢ cient

estimate.

Table 1.1 presents the �nite sample (estimated) probabilities of our method se-

lecting subsets from the �rst category (the �rst number in each bracket), the second

category (the second number in each bracket) and the third category (the third num-

ber in each bracket) respectively. Within each row, we see that the probability of

selecting the subset of moment conditions from the second category increases with
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Table 1.3 Finite Sample Bias (BS), Standard Deviations (SD) and RMSEs (RE)1

(cl; �1;o) = (0:5; 0:2)

Oracle GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0316 .1125 .1169 .0158 .0804 .0819 .0066 .0569 .0573
�2o -.0035 .0671 .0672 -.0016 .0460 .0460 -.0008 .0329 .0329
�3o -.0029 .0673 .0674 -.0024 .0478 .0478 -.0016 .0333 .0334

GMM Shrinkage Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0247 .2290 .2304 .0134 .0859 .0869 .0058 .0588 .0591
�2o -.0030 .0708 .0708 -.0014 .0462 .0462 -.0007 .0329 .0329
�3o -.0020 .0731 .0731 -.0020 .0480 .0481 -.0015 .0334 .0335

Post-Shrinkage GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0151 .2514 .2518 .0117 .0888 .0896 .0055 .0594 .0596
�2o -.0020 .0719 .0719 -.0012 .0463 .0463 -.0007 .0329 .0329
�3o -.0005 .0750 .0750 -.0017 .0482 .0482 -.0014 .0335 .0335

Consistent GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o -.0633 .4173 .4221 -.0228 .2178 .2190 -0133 .1462 .1468
�2o .0053 .0841 .0843 .0022 .0521 .0521 .0012 .0358 .0358
�3o .0110 .0948 .0954 .0034 .0582 .0583 .0012 .0390 .0390

Table 1.3: 1. The �nite sample bias, standard error and mean square error are
computed using the corresponding estimates from 10,000 replications.
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Table 1.4 Finite Sample Bias (BS), Standard Deviations (SD) and RMSEs (RE)1

(cl; �1;o) = (0:2; 0:8)

Oracle GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0110 .0661 .0670 .0058 .0466 .0470 .0020 .0332 .0333
�2o -.0016 .0672 .0672 -.0007 .0457 .0457 -.0004 .0325 .0326
�3o -.0012 .0680 .0680 -.0015 .0482 .0482 -.0012 .0334 .0334

GMM Shrinkage Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0378 .0721 .0814 .0094 .0474 .0483 .0020 .0333 .0333
�2o -.0043 .0684 .0685 -.0010 .0458 .0458 -.0004 .0326 .0326
�3o -.0087 .0694 .0699 -.0024 .0483 .0484 -.0012 .0334 .0334

Post-Shrinkage GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0173 .0692 .0713 .0060 .0470 .0474 .0019 .0333 .0334
�2o -.0023 .0677 .0678 -.0006 .0457 .0457 -.0003 .0326 .0326
�3o -.0030 .0687 .0688 -.0016 .0483 .0483 -.0012 .0334 .0335

Consistent GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o -.0031 .0780 .0781 .0000 .0552 .0552 -.0012 .0391 .0392
�2o -.0001 .0667 .0667 .0000 .0455 .0455 .0000 .0325 .0325
�3o .0025 .0683 .0683 .0003 .0488 .0488 -.0003 .0337 .0337

Table 1.4: 1. The �nite sample bias, standard error and mean square error are
computed using the corresponding estimates from 10,000 replications.
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Table 1.5 Finite Sample Bias (BS), Standard Deviations (SD) and RMSEs (RE)1

(cl; �1;o) = (0:5; 0:8)

Oracle GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0110 .0661 .0670 .0058 .0466 .0470 .0020 .0332 .0333
�2o -.0016 .0672 .0672 -.0007 .0457 .0457 -.0004 .0325 .0326
�3o -.0012 .0680 .0680 -.0015 .0482 .0482 -.0012 .0334 .0334

GMM Shrinkage Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0101 .0663 .0671 .0056 .0466 .0469 .0020 .0332 .0333
�2o -.0015 .0671 .0671 -.0006 .0457 .0457 -.0004 .0326 .0326
�3o -.0010 .0679 .0679 -.0015 .0482 .0482 -.0012 .0334 .0335

Post-Shrinkage GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o .0096 .0670 .0677 .0054 .0468 .0472 .0019 .0333 .0334
�2o -.0015 .0671 .0672 -.0006 .0457 .0457 -.0003 .0326 .0326
�3o -.0008 .0681 .0681 -.0014 .0483 .0483 -.0012 .0334 .0335

Consistent GMM Estimate
n=250 n=500 n=1000

BS SD RE BS SD RE BS SD RE
�1o -.0031 .0780 .0781 .0000 .0552 .0552 -.0012 .0391 .0392
�2o -.0001 .0667 .0667 .0000 .0455 .0455 .0000 .0325 .0325
�3o .0025 .0683 .0683 .0003 .0488 .0488 -.0003 .0337 .0337

Table 1.5: 1. The �nite sample bias, standard error and mean square error are
computed using the corresponding estimates from 10,000 replications.
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the sample size growing. When the sample size is 1000, this probability is close to 1,

which is predicted by the consistent moment selection result established in Section

1.3. Both the signal strength of the IVs in set-1 and the severity of misspeci�cation of

IVs in set-2 e¤ect the �nite sample performance of our method in moment selection.

When the misspeci�ed moment conditions in set-2 are close to be valid (i.e. cl = 0:2)

and the sample size is small (i.e. n = 250), the probabilities of selecting the subset

of moment conditions from the second category become small. This problem is ex-

acerbated by the weak information contained in the IV in set-1. On the other hand,

when the invalid moment conditions in set-2 are severely misspeci�ed, i.e. cl = 0:5,

the probabilities of selecting invalid moment conditions are small. Finally, when the

IVs in set-1 are strong (i.e. �1;o = 0:8) and the invalid IVs in set-2 are severely

misspeci�ed, the GMM shrinkage method performs very well even when the sample

size is small (i.e. n = 250).

Table 1.2 to Table 1.5 describe the �nite sample properties of the above four

GMM estimates in terms of �nite sample bias, standard deviation and root of mean

square error. We summarize the main results in these tables by comparing the

GMM shrinkage estimate with the oracle estimate, the feasible GMM estimate and

the post-shrinkage GMM estimate respectively. In all scenarios, the �nite sample

bias, standard error and mean square error of the GMM shrinkage estimate approx-

imate these of the oracle estimate with the sample size growing. The �nite sample

properties of the two estimates are almost identical when the sample size n = 1000.

Compared with the GMM estimator, the GMM shrinkage estimator has much smaller

standard error, particularly when the IV in set-1 is weak, i.e. �1;o = 0:2. The �nite

sample bias of the GMM shrinkage estimate is larger than the GMM estimate in

some scenarios (e.g. when cl = 0:2). For the GMM shrinkage estimate, one source

of the �nite sample bias is the shrinkage bias. To get rid of this shrinkage bias, one
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can apply GMM estimation based on the set-1 and moment conditions in set-2 se-

lected by the GMM shrinkage estimation to get the post-shrinkage GMM estimator.

Although generally speaking, the post-shrinkage GMM estimate enjoys smaller �nite

sample bias, its �nite sample standard error may be larger than the GMM shrinkage

estimate. This phenomenon is recovered in Table 1.2 and 1.3, when the potentially

valid moment conditions contain strong information about the endogenous variable.

The underlying reason for this phenomenon is that when the moment selection coe¢ -

cients of invalid moment conditions are shrunk towards zero, part of the information

contained in these moment conditions are used in the GMM shrinkage estimation,

which helps to reduce the variance but at the same time introduces new bias to the

GMM shrinkage estimate.

1.7 An Empirical Example

In this section, we apply the GMM shrinkage method to the life-cycle labor supply

model studied in MaCurdy (1981) and Altonji (1986). Both papers estimate the

following labor supply equation

� log(hi;t) = �o;t +� log(wi;t)�o + "i;t; (1.72)

where hi;t is the annual hours working for money and wi;t is the hourly wage rate

of individual i at period t, �o;t is a time varying constant (invariant across the

individuals) and "i;t is the time varying error term. As discussed in MaCurdy (1981),

the coe¢ cient �o measures the intertemporal substitution elasticity of labor supply

with respect to the evolutionary wage changes and the theoretical prediction for its

sign is positive.
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Due to the measurement errors in wi;t, the OLS estimator of (1.72) may be in-

consistent. MaCurdy (1981) proposes to use a set of family background variables

(father�s education, mother�s education and parents�economic status when individ-

ual i was young, education, age and the interaction between education and age of

individual i) as IVs for � log(wi;t). However, Altonji (1986) argues that the fam-

ily background variables and education may only contain weak information about

� log(wi;t) and the age of individual i may not even be a valid IV. Altonji (1986)

proposes to use an alternative measure of wage w�i;t to construct a IV for � log(wi;t).

However, for � log(w�i;t) being a valid IV for � log(wi;t), one need to impose the

strong assumption that the measurement errors in wi;t and w�i;t are independent
6.

Instead of using all the IVs in MaCurdy (1981) to construct the set-1 moment

conditions, we only use the parents�economic status as the credibly valid IV and

include the rest of them into set-2. We also include the alternative measure of wage

w�i;t and the wage wi;t itself into set-2. This speci�cation at least enables us to answer

the following four questions. First, are the other IVs in MaCurdy (1981), especially

the age and education of individual i, valid for � log(wi;t)? If they are not, then

the results of MaCurdy (1981) may su¤er from bias incurred not only by the weak

moment conditions but also by the misspeci�ed moment conditions. Second, is the

IV� log(w�i;t), constructed by w
�
i;t, valid for� log(wi;t)? If it is not, then the results of

Altonji (1986) may be inconsistent. Third, is there measurement error in � log(wi;t)

which causes it to be an endogenous variable? If � log(wi;t) is endogenous, then the

OLS estimator of �o is inconsistent. On the other hand, if it is exogenous then OLS

estimator is not only consistent but also more e¢ cient. Fourth, are the lagged wages

rates, i.e. � log(wi;s) and � log(w�i;s) (s < t), potentially valid IVs for � log(wi;t)?

6In MaCurdy (1981) and Altonji (1986), wi;t is constructed by dividing the annual labor income
of individual i by the product of annual labor supply and GNP price de�ator. In Altonji (1986),
w�i;t is the hourly wage rate of individual i if this person is paid based on hours.
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Table 1.6. GMM Estimation for the Labor Supply Equation1

IV: � logwi;t MaCurdy (1981) 2 Altonji (1986) 3

(1) (2) (3) (4) (3) (4)

a
-.0008
(.0040)

-.0164
(.0189)

-.0123
(.0069)

-.0233
(.0204)

-.0125
(.0061)

-.0217
(.0212)

�o
-.3937
(.0276)

-.3992
(.0278)

.0703
(.2730)

.2743
(.4396)

.1638
(.1967)

.2032
(.2234)

dt?4 No Yes No Yes No Yes

Table 1.6: 1. Standard errors are in parentheses and the sample size n=3487; 2. the
moment conditions are constructed using following IVs: father�s education, parents�
economic status when the individual was young, education, education square, age,
age square and the interaction between age and education; 3. the moment condition
is constructed using an alternative measure of hour wage; 4. dt refers to the set of
time dummy variables for the years from 1971 to year 1981.

These lagged wage variables would provide some extra information about � log(wi;t)

if the shocks to the wage process were dependent. To investigate the validities of

� log(wi;s) and � log(w�i;s) and at the same time avoid the potential pitfall of using

weak IVs, we include the previous 3 period di¤erenced wages (i.e., � log(wi;s) and

� log(w�i;s), s = t� 1, t� 2 and t� 3) variables in set-2.

Our sample is constructed from the Michigan Panel Study of Income Dynamics

(PSID) data set from year 1970 to year 1981. The sample is selected according to

the following criterion. First, it is limited to men with stable marriage status for the

years 1970-1981. Second, individuals below age 25 in 1970 or above age 60 in 1981

are excluded to minimize the complication incurred by schooling and retirement.

Third, the observations in certain year are excluded if the data are missing for the

variables used in estimation 7.

Table 1.6 presents the GMM estimators of �o based on the moment conditions

7Following the criterion used in Altonji (1986), the imputed wage wi;t was treated as missing if
the wage measures increased by 250 percent or more than $13 or fell by 60 percent or more than
$13 from one year to another. They were also treated as missing if the real wage was less than $0.40
in 1972 dollars. The same criterion was applied to w�i;t. The 250 percent, 60 percent limits were
also used for labor supply. In addition, the labor supply variable was treated as missing if annual
hours exceeded 4,860.
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constructed by wi;t, IVs used in MaCurdy (1981) and IV used in Altonji (1986) re-

spectively. The results in Table 1.6 can be summarized as follows. First, the GMM

estimation using moment conditions constructed by wi;t gives highly misleading re-

sults, because its estimators of �o are negative and very signi�cant. Second, the

GMM estimation using the IVs in MaCurdy (1981) provides reasonable results, as

the sign of its estimators are positive. But the estimators have large standard errors,

which indicates that these IVs only contain weak information about the endogenous

variable wi;t. Third, the GMM estimators using Altonji (1986)�s IV are reasonable

and have smaller standard errors.

We next apply the GMM shrinkage estimation to the labor supply equation (1.72).

The estimation results are presented in Table 1.7. As a comparison, we also include

the GMM estimators based on the moment condition in set-1 and the post-shrinkage

GMM estimators in Table 1.7. Columns (1)-(2) of Table 1.7 present the GMM es-

timators of �o based on the following IV: parent�s economic status when individual

was young, which provides the moment condition in set-1. Compared with other

estimators in Table 1.7, the GMM estimators in columns (1)-(2) not only are larger

in magnitude, but also have larger standard errors. Columns (3) and (5) of Ta-

ble 1.7 contain the results of GMM shrinkage estimation with the rest IVs (i.e.

education, square of education, age and age square, father�s education and the in-

teraction between education and age of individual i) from MaCurdy (1981), the IV

(i.e. � log(w�i;t)) from Altonji (1986), the �rst di¤erence of wage � log(wi;t) and the

lagged di¤erences of wage rates � log(wi;s) and � log(w�i;s), s = t� 1, t� 2 and t� 3

in set-2. All moment conditions in set-2, except the � log(wi;t), are selected in the

GMM shrinkage estimation. The GMM shrinkage estimates of the moment selection

coe¢ cients of � log(wi;t) are -0.0301 (with standard error 0.0079) and -0.0340 (with

standard error 0.0098) in columns (3) and (5) respectively. The GMM shrinkage
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estimators have much smaller standard errors, because the moment conditions in

set-2 are selected and automatically included into estimation by the GMM shrink-

age method. The post-shrinkage GMM estimates in columns (4) and (6) are free of

shrinkage bias, but are only slightly di¤erent from the GMM shrinkage estimates in

columns (3) and (5) respectively.

From columns (3)-(6), we see that when �o;t is treated as a time invariant constant

term, the standard errors of the GMM estimates are relatively small, though the

di¤erences between the estimates in columns (3) and (5) (or columns (4) and (6))

are nontrivial. The smaller standard errors in columns (3) and (4) bene�t from

the assumption that �o;t is constant across the time, which reduces the number

of parameters to be estimated. If such assumption is miss-speci�ed, then extra

bias will be introduced to the GMM estimates. We next use the shrinkage method

to test if �o;t is constant or variant across the time, i.e. we penalize j�t � �t�1j

(t = 2; :::; 11) together with the moment selection coe¢ cients in the GMM shrinkage

estimation. The results of this GMM shrinkage estimation are included in column

(7). The constraints found in the GMM shrinkage estimation are �1 = ::: = �5

and �6 = ::: = �11 and all IVs, except � log(wi;t), are selected. The GMM shrinkage

estimate of �o in column (7) is between the GMM shrinkage estimates of �o in column

(3) and (5) (or column (4) and (6)) in the magnitude and standard errors. The post-

shrinkage GMM estimates based on the selected moment conditions and the selected

constraints on �o;t are included in column (8).

We summarize our �ndings in this empirical example as follows. First, our method

selects the IVs used in MaCurdy (1981), which relives the concern in Altonji (1986)

that age and education may be invalid IVs. Second, our method picks up the IV

used in Altonji (1986) and hence con�rms the validity of � log(w�i;t) as an IV for

� log(wi;t). Third, our method does not pick up the moment condition constructed
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by wi;t, which indicates that � log(wi;t) is an endogenous variable in the labor supply

equation. Fourth, our method selects the lagged di¤erences of wage rates � log(w�i;s)

and � log(wi;s) as valid IVs and hence provides extra moment conditions to more

e¢ ciently estimate �o. Fifth, our method does not assume that �o;t is constant across

time and detects a structural break in �o;t. Hence our estimate of �o is more robust

compared with the estimates based on the time invariant assumption of �o;t, and at

the same time more e¢ cient than the estimates based on the assumption that �o;t

changes over time. Finally, the GMM shrinkage estimator, though consistent and

asymptotically e¢ cient, may contain some shrinkage bias in �nite samples. However,

we recommend to use the post-shrinkage GMM estimator, which is as e¢ cient as the

GMM shrinkage estimator but has smaller �nite sample bias.

1.8 Conclusion

This chapter proposes a GMM shrinkage method to e¢ ciently estimate the unknown

parameter �o identi�ed by some moment restrictions, when there is another set of

possibly misspeci�ed moment conditions. We show that our GMM shrinkage method

enjoys oracle properties, i.e. it consistently selects the correct moment conditions in

the second set and at the same time, the estimator achieves the semi-parametric

e¢ ciency bound implied by all the correct moment conditions. When the moment

conditions in the �rst set fail to strongly identify �o, we show that the GMM shrinkage

method can still consistently select the correctly speci�ed moment conditions in the

second set and more importantly, the GMM shrinkage estimator has better stochastic

properties compared with estimators that only use the moment conditions in the

�rst set. We also show that the shrinkage technique can be used in GMM to perform

grouped variable selection and moment selection simultaneously. We provide a simple
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and data-driven procedure of selecting the tuning parameters in �nite samples, which

makes our method fully adaptive for empirical implementation.

We check the �nite sample properties of the GMM shrinkage method in simu-

lation experiments and in an empirical example from labor economics. Simulations

show that our method performs well in terms of the correct moment selection and

the �nite sample properties of its estimators. As an empirical illustration, we apply

the GMM shrinkage method to estimate the life-cycle labor supply equation studied

in MaCurdy (1981) and Altonji (1986). Our method selects the moment conditions

constructed by the IVs in MaCurdy (1981) and Altonji (1986), thereby supporting

the validity of these IVs. However, our method does not pick up the moment con-

dition constructed by the imputed hourly wage, which indicates that � log(wi;t) is

an endogenous variable in the labor supply equation. Hence, our empirical �ndings

support continued use of the IVs in MaCurdy (1981) and Altonji (1986) to consis-

tently estimate the life-cycle labor supply equation. In addition to the existing IVs

in MaCurdy (1981) and Altonji (1986), our method also �nds that lagged wage rates

are valid IVs for � log(wi;t). Moreover, our estimators of the intertemporal substi-

tution elasticity have smaller standard deviations, though their values are close to

those in the literature.

1.9 Appendix A

Throughout the appendix, the symbols "!p" and "!d" stand for "convergence in

probability" and "convergence in distribution" respectively. Let m(�) = E [�(Z; �)]

and de�ne an empirical process indexed by the function g as �n(g) = 1p
n

Pn
i=1[g(Zi)�

E(g(Zi)]. For any sequences (an; bn)n of random variables, an � bn means that

(1 + op(1))bn = an or vice versa.
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1.9.1 Two Useful Lemmas

We �rst prove two lemmas which are useful for deriving the asymptotic properties

of the GMM shrinkage estimator. Denote

V
(n)
1 (�; �) =

"
n�1

nX
i=1

�(Zi; �; �)

#0
Wn

"
n�1

nX
i=1

�(Zi; �; �)

#
+

kX
j=1

bP�n(�j)
= V

(n)
0 (�; �) +

kX
j=1

bP�n(�j) (1.73)

and

V0(�; �) = fE [�(Z; �; �)]g0Wo fE [�(Z; �; �)]g : (1.74)

Lemma 1.9.1 Under Assumption 1.3.1.(iii), we have

V
(n)
0 (�; �) � c1V0(�; �)� c2Rn (1.75)

and

V
(n)
0 (�; �) � c3V0(�; �) + c4Rn; (1.76)

for all (�; �) 2 �� B w.p.a.1, where

Rn � sup
(�;�)2��B

1

n
fvn [�(Z; �; �)]g0Wo fvn [�(Z; �; �)]g (1.77)

and ci (i = 1; :::; 4) denotes some generic positive constant.

Proof. By Assumption 1.3.1.(iii), we can deduce that

V
(n)
0 (�; �) � c

"
n�1

nX
i=1

�(Zi; �; �)

#0
Wo

"
n�1

nX
i=1

�(Zi; �; �)

#
(1.78)
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for all (�; �) 2 � � B w.p.a.1, where c denotes some generic positive constant. As

Wo is positive de�nite, so we have

�
2
Pn

i=1 �(Zi; �; �)

n
� E [�(Zi; �; �)]

�0
Wo

�
2
Pn

i=1 �(Zi; �; �)

n
� E [�(Zi; �; �)]

�
� 0;

which can be rewritten as

"
n�1

nX
i=1

�(Zi; �; �)

#0
Wo

"
n�1

nX
i=1

�(Zi; �; �)

#
� 1

2
V0(�; �)�Rn: (1.79)

for all (�; �) 2 ��B. Now the result in (1.75) can be deduced from the inequalities

in (1.78) and (1.79).

For the second result, note that Assumption 1.3.1.(iii) also implies

V
(n)
0 (�; �) � c

"
n�1

nX
i=1

�(Zi; �; �)

#0
Wo

"
n�1

nX
i=1

�(Zi; �; �)

#
(1.80)

w.p.a.1 and

"
n�1

nX
i=1

�(Zi; �; �)� 2E [�(Z; �; �)]
#0
Wo

"
n�1

nX
i=1

�(Zi; �; �)� 2E [�(Z; �; �)]
#
� 0

(1.81)

for all (�; �) 2 �� B. The inequality in (1.81) can be rewritten as

�Pn
i=1 �(Zi; �; �)

n

�0
Wo

�Pn
i=1 �(Zi; �; �)

n

�
� 2V0(�; �) + 2Rn: (1.82)

for all (�; �) 2 ��B. Now the result in (1.76) can be deduced from the inequalities

in (1.80) and (1.81).

The next lemma establishes the local quadratic approximation of V0(�; �) in terms

of (jj� � �ojj2E + jj� � �ojj2E)
1
2 for all (�; �) in shrinking neighborhoods of (�o; �o),
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which is useful to derive the convergence rate of the GMM shrinkage estimator.

Lemma 1.9.2 Under Assumption 1.3.1.(iii) and Assumption 1.3.2.(ii)-(iii), we have

jj� � �ojj2E + jj� � �ojj2E � E [�(Z; �; �)]
0WoE [�(Z; �; �)] (1.83)

for all (�; �) in local neighborhoods of (�o; �o).

Proof. Denote

gq(Z; �) =

�
gq;1(Z; �); :::; gq;q(Z; �)

�
and

gk(Z; �) =

�
gk;1(Z; �); :::; gk;k(Z; �)

�
:

First note that by Assumption 1.3.2.(ii)

E [�(Z; �; �)] =

0B@ E [gq(Z; �)]

E [gk(Z; �)]� �

1CA =

0B@ @E[gq(Z;e�)]
@�0 0

@E[gk(Z;e�)]
@�0 �Ik

1CA
0B@ � � �o

� � �o

1CA ; (1.84)
where

@E
h
gq(Z;e�)i
@�0

=

�
@E[gq;1(Z;e�1)]

@�
; :::;

@E[gq;q(Z;e�q)]
@�

�0
;

@E
h
gk(Z;e�)i
@�0

=

�
@E[gk;1(Z;e�p+1)]

@�
; :::;

@E[gk;k(Z;e�q+k)]
@�

�0
;

e�j (j = 1; :::; q+ k) lies between � and �o and Ik is a k� k identity matrix. As � is in
the shrinking neighborhood of �o and

@E[gl(Z;�)]
@�0 (l = q; k) is continuous in �, we can

deduce that
@E
h
gl(Z;e�)i
@�0

=
@E [gl(Z; �o)]

@�0
+ o(1); (1.85)
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for l = q; k. Denote @m(�)
@�0 =

0B@ @E[gq(Z;�)]

@�0 0

@E[gk(Z;�]
@�0 �Ik

1CA, then by (1.84), (1.85) and the
Cauchy-Schwarz inequality, we have

E [�(Z; �; �)] =
@m(�o)

@�0
(�� �o) + o(jj(�� �ojjE): (1.86)

Using Assumption 1.3.1.(iii), the result in (1.86) and the Cauchy-Schwarz inequality,

we get

E [�(Z; �)]0WoE [�(Z; �)] = (�� �o)0
@m(�o)

@�
Wo
@m(�o)

@�0
(�� �o) + o(jj(�� �ojj2E):

(1.87)

As @E[gq(Z;�o)]
@�0 has full column rank and Wo is strictly positive de�nite,

@m(�o)
@�

has full

rank and @m(�o)
@�

Wo
@m(�o)
@�0 is strictly positive de�nite. Let c1 and c2 (c1; c2 > 0) denote

the smallest and largest eigenvalues of @m(�o)
@�

Wo
@m(�o)
@�0 . From (1.87), we can deduce

that

c2jj(�� �ojj2E + o(jj(�� �ojj2E) � E [�(Z; �)]0WoE [�(Z; �)]

� c1jj(�� �ojj2E + o(jj(�� �ojj2E): (1.88)

Now, result in (1.83) follows directly from (1.88).

1.9.2 Proof of the Main Results in Section 1.3

Proof of Lemma 1.3.1. By the de�nition of (b�n; b�n), we have
V
(n)
0 (b�n; b�n) + kX

j=1

bP�n(b�n) � V (n)0 (�o; �o) +
kX
j=1

bP�n(�o;j): (1.89)
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Applying Lemma 1.9.1 and Assumption 1.3.1.(iv), we deduce from (1.89) that

V0(b�n; b�n) � kX
j=1

bP�n(�o;j) + 2cRn; (1.90)

w.p.a.1, where Rn is de�ned in Lemma 1.9.1 and c is some generic constant.

From Assumption 1.3.1.(ii) and the de�nition of �(Z; �; �), we get

sup
(�;�)2��B

vn [�(Z; �; �)]p
n

= sup
�2�

n�1
nX
i=1

fgq+k(Zi; �)� E [gq+k(Zi; �)]g = op(1) (1.91)

where g0q+k(Z; �) =
�
g0q(Z; �); g

0
k(Z; �)

�
. By the triangle inequality, ULLN in (1.91),

Assumption 1.3.1.(iii)-(iv), we have

Rn = op(1) and
kX
j=1

bP�n(�o;j) = op(1): (1.92)

From the Assumption 1.3.1.(iii) and results in (1.90) and (1.92), we can deduce

that E[gq(Z;b�n)]
E
= o(1) and

E[gk(Z;b�n)]� b�n
E
= op(1) (1.93)

Now, the �rst result in (1.93) and Assumption 1.3.1.(i) imply that b�n !p �o. From

the second result in (1.93), triangle inequality, consistency of b�n and the continuity
of E[gk(Z; �)], we can deduce that

op(1) =
E[gk(Z;b�n)]� b�n

E

�
���E[gk(Z;b�n)]� E[gk(Z; �o)]

E
�
b�n � �o

E

���
=

���b�n � �o
E
+ op(1)

��� (1.94)

which implies b�n !p �o.
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Proof of Lemma 1.3.3. By the de�nition of (b�n; b�n), we have
V
(n)
0 (b�n; b�n) + kX

j=1

bP�n(b�n;j) � V (n)0 (�o; �o) +

kX
j=1

bP�n(�o;j): (1.95)

Using the inequalities in (1.75), (1.76) and (1.95), we get

c1V0(b�n; b�n) + kX
j=1

bP�n(b�n;j) � kX
j=1

bP�n(�o;j) + c2Rn; (1.96)

w.p.a.1, where c1 and c2 are some generic positive constants and Rn is de�ned in

Lemma 1.9.1.

Next, by Assumption 1.3.2.(iv), Taylor expansion, the triangle inequality and

Cauchy Schwarz inequality, we get

������
X
j2S�

h bP�n(�o;j)� bP�n(b�n;j)i
������

=

������
X
j2S�

� bP 0�n(�o;j)(b�n;j � �o;j) + 12 bP 00�n(e�j)(b�n;j � �o;j)2
�������

� max
j2S�

��� bP 0�n(�o;j)��� kb�n � �okE +maxj2S�

����� bP 00�n(�o;j)2
+ op(1)

����� kb�n � �ok2E :(1.97)
w.p.a.1, where e�j lies between �o;j and b�n;j for j 2 S�. From Assumption 1.3.1.(iv)

and Assumption 1.3.2.(iv), inequalities in (1.96) and (1.97), we can apply Lemma

1.9.2 to deduce that

kb�n � �ok2E � c3bn kb�n � �okE + c4Rn (1.98)
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w.p.a.1, where c3, c4 are some positive constants. The inequality in (1.98) implies

kb�n � �okE � c3bn + (c
2
3b
2
n + 4c4Rn)

1
2

2
= Op

�
bn + n

� 1
2

�
; (1.99)

where c5 is some positive constant. Now, for any positive M , inequality in (1.99)

enables us to deduce that

Pr

�
jjb�n � �ojjE

�n
�M

�
� Pr

�
�nM � Op

�
bn + n

� 1
2

��
+ op(1);

which establishes the desired rate.

Proof of Theorem 1.3.5. On the event fb�n;j 6= 0g for some j 2 Sc�, we have the
following Karush-Kuhn-Tucker (KKT) optimality condition:

2

"
n�

1
2

nX
i=1

@�(Zi;b�n; b�n)
@�j

#0
Wn

"
n�

1
2

nX
i=1

�(Zi;b�n; b�n)
#
+ n bP 0�n(b�n;j) = 0; (1.100)

which implies �����W (j)
n

"
n�

1
2

nX
i=1

�(Zi;b�n; b�n)
#����� =

p
n bP 0�n(b�n;j)

2
: (1.101)

where W (j)
n denotes the j-th row of the weight matrix Wn.

Note that

n�
1
2

nX
i=1

�(Zi; b�n) = vn [�(Zi; b�n)] + n 1
2E [�(Zi; b�n)]

= vn [�(Zi; b�n)] + @m(e�n)
@�0

h
n
1
2 (b�n � �o)i ;
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where

@m(e�n)
@�0

=

264 @E[gq(Z;e�n)]
@�0 0

@E[gk(Z;e�n)]
@�0 �Ik

375 ;
@E[gq(Z;e�n)]

@�0
=

 
@E[gq;1(Z;e�1;n)]

@�
; :::;

@E[gq;q(Z;e�q;n)]
@�

!
;

@E[gk(Z;e�n)]
@�0

=

 
@E[gk;1(Z;e�q+1;n)]

@�
; :::;

@E[gk;k(Z;e�q+k;n)]
@�

!
;

and e�j;n (j = 1; :::; q + k) lies between �o and b�n. From Assumption 1.3.2.(i), we

have vn [�(Z; b�n)] = Op(1). By Lemma 1.3.3 and Assumption 1.3.2.(ii), we have

n
1
2 (b�n��o) = Op(1). From Assumption 1.3.3.(iii) and the consistency of b�n, we can
deduce that

@m(e�n)@�0


E

�
@m(e�n)@�0

� @m(�o)
@�0


E

+

@m(�o)@�0


E

= Op(1):

Hence we have n�
1
2

Pn
i=1 �(Zi; b�n) = Op(1), which combined with Assumption 1.3.1.(iii),

implies that �����W (j)
n

"
n�

1
2

nX
i=1

�(Zi; b�n)#
����� = Op(1): (1.102)

While from Assumption 1.3.3.(iii), we get

p
n bP 0�n(b�n;j)

2
=
rn�nn

1
2

2

bP 0�n(b�n;j)
rn�n

!p 1: (1.103)

Now, using the results in (1.102) and (1.103), we can deduce that Pr
�b�n;j = 0�!

1 for j 2 Sc�.

Proof of Theorem 1.3.6. De�ne �o;S = (�o; �o;+) and accordingly b�n;S =�b�n; b�n;+�. For any compact subset K in Rd�+dS� , we denote any element uS 2 K
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as uS = (u�; u�+), where u� is the �rst d� elements in uS and u�+ is the last dS�

elements in uS . Denote

V2;n(uS) =

"
n�

1
2

nX
i=1

�s(Zi; �o;S +
uSp
n
)

#0
Wn

"
n�

1
2

nX
i=1

�s(Zi; �o;S +
uSp
n
)

#

�
"
n�

1
2

nX
i=1

�(Zi; �o)

#0
Wn

"
n�

1
2

nX
i=1

�(Zi; �o)

#

+n
X
j2S�

� bP�n(�o;j + u�+;jp
n
)� bP�n(�o;j)�

� V �2;n(uS) + n
X
j2S�

� bP�n(�o;j + u�+;jp
n
)� bP�n(�o;j)� ;

where �s(Zi; �o;S + uSp
n
) = �(Zi; �o +

u�p
n
; �o;+ +

u�+p
n
; �o;�). From Theorem 1.3.5, we

know that b�n;� = 0 w.p.a.1. Thus,
p
n (b�n;S � �o;S) is the minimizer of V2;n(uS)

w.p.a.1.

If we denote

Fn =
�
fnuS (Z) = �

s(Z; �o;S +
uSp
n
)� �(Z; �o) : uS 2 K

�
;

then the compactness ofK, Assumption 1.3.2.(i)-(ii) imply that Fn is a Donsker class.

As K is compact, so there exists some constant Ck, such that supuS2K
n� 1

2uS


E
�

n�
1
2Ck = o(1): Now we can use Lemma 2.17 in Pakes and Pollard (1989) to deduce

that

�n

�
�s(Z; �o;S +

uSp
n
)� �(Z; �o)

�
= op(1); (1.104)

uniformly over uS 2 K.

Next note that by Assumption 1.3.2.(iii) and the compactness of K, we have

p
n

�
E

�
�s(Z; �o;S +

uSp
n
)

�
� E [�(Z; �o)]

�
=
@m(�o)

@�0S
uS + o(1); (1.105)

59



uniformly over uS 2 K. Thus, (1.104) and (1.105) imply that uniformly over uS 2 K,

there is

n�
1
2

nX
i=1

�s(Zi; �o;S +
uSp
n
)

= �n

�
�s(Zi; �o;S +

uSp
n
)� �(Zi; �o)

�
+ �n [�(Zi; �o)]

+
p
n

�
E

�
�s(Zi; �o;S +

uSp
n
)

�
� E [�(Zi; �o)]

�
= �n [�(Z; �o)] +

@m(�o)

@�0S
uS + op(1): (1.106)

Now, we can use the result in (1.106) to deduce that

V �2;n(uS) = u
0
S
@m(�o)

@�S
Wo
@m(�o)

@�0S
uS + 2u

0
S
@m(�o)

@�S
Wo f�n [�(Z; �o)]g+ op(1); (1.107)

uniformly over uS 2 K. If j 2 S�, then by Assumptions 1.3.2.(iv) and 1.3.3.(i)

n

� bP�n(�o;j + u�+;jp
n
)� bP�n(�o;j)�

=
p
n bP 0�n(�o;j)u�+;j + h bP 00�n(�o;j) + op(1)iu2�+;j !p 0 (1.108)

uniformly in u�+;j. Using the results in (1.107)-(1.108) and triangle inequality, we

get

V2;n(uS)!d V2(uS) = u
0
SM11uS + 2u

0
S

�
@m(�o)

@�S

�
Wo	(�o) (1.109)

in l1(K). It is clear that V2(uS) is uniquely minimized at

u�S = �M�1
11

�
@m(�o)

@�S

�
Wo	(�o) (1.110)
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By Lemma 1.3.3 and Assumption 1.3.3.(i), there is

p
n (b�n;S � �o;S) = Op(1) (1.111)

Now, the asymptotic tightness of b�n;S in (1.111), the uniform convergence in

distribution in (1.109) and unique minimization in (1.110) enable us to invoke the

ACMT to deduce that

p
n (b�n;S � �o;S)!d N(0;M

�1
11 �11M

�1
11 )

Proof of Theorem 1.3.7. The �rst result is implied by Lemma 1.3.1 and Lemma

1.3.5, so we only need to show the second claim. First note that if Wn !p Wo =

fE [	(�o)	(�o)0]g�1, then the centered limiting distribution in (1.33) will be simpli-

�ed to
p
n (b�n;S � �o;S)!d N(0;M

�1
11 ) (1.112)

Denote
�o to be the �rst d�o�d�o sub-matrix ofM�1
11 and

@m�o;+
(�o)

@�
=

@E[gd�+
(Z;�o)]

@�
.

Note that

M11 =

0B@ @E[gq+d��
(Z;�o)]

@�

@E[gd�+
(Z;�o)]

@�

0 �Id
�+o
�d

�+o

1CAWo

0B@ @E[gq+d��
(Z;�o)]

@�0 0
@E[gd�+

(Z;�o)]

@�0 �Id
�+o
�d

�+o

1CA
=

0B@ @me(�o)
@�

@m�o;+
(�o)

@�

0 �Id
�+o
�d

�+o

1CA
0B@ W11 W12

W21 W22

1CA
0B@ @me(�o)

@�0 0

@m�o;+
(�o)

@�0 �Id
�+o
�d

�+o

1CA
=

0B@ �1111 �@me(�o)
@�

W12 �
@m�o;+

(�o)

@�
W22

�W21
@me(�o)
@�0 �W22

@m�o;+
(�o)

@�0 W22

1CA ;(1.113)
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where

�1111 =
@me(�o)

@�
W11

@me(�o)

@�0
+2

@me(�o)

@�
W12

@m�o;+(�o)

@�0
+
@m�o;+(�o)

@�
W22

@m�o;+(�o)

@�0
:

From (1.113), it is easy to get


�1�o =
@me(�o)

@�
W11

@me(�o)

@�0
+ 2

@me(�o)

@�
W12

@m�o;+(�o)

@�0

+
@m�o;+(�o)

@�
W22

@m�o;+(�o)

@�0
� @me(�o)

@�
W12W

�1
22 W21

@me(�o)

@�0

�2@me(�o)

@�
W12

@m�o;+(�o)

@�0
�
@m�o;+(�o)

@�
W22

@m�o;+(�o)

@�0

=
@me(�o)

@�

�
W11 �W12W

�1
22 W21

� @me(�o)

@�0

=

�
@me(�o)

@�

�
V �1e;o

�
@me(�o)

@�

�0
= (��)�1 ; (1.114)

where the last equality is due to the fact that
�
W11 �W12W

�1
22 W21

��1
= Ve;o. Now,

using results in (1.112), (1.114) and the Continuous Mapping Theorem (CMT), we

can deduce that
p
n
�b�n � �o�!d N(0;�

�);

which establishes the semi-parametric e¢ ciency of the GMM shrinkage estimator b�n.

1.9.3 Proof of the Main Results in Section 1.4

Proof of Lemma 1.4.1. Using similar arguments in the proof of Lemma 1.3.1, we

get

V0(b�n; b�n) � kX
j=1

bP�n(�o;j) + 2cRn; (1.115)
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w.p.a.1, where Rn is de�ned in Lemma 1.9.1. and c is some generic constant. Under

Assumption 1.3.1.(iii), Assumption 1.4.1.(iii) and (v), we have

n��Gq;n(b�n)2
E
+
Gk(b�n)� b�n2

E
= Op(n

�1 +max
j2S�

bP�n(�o;j)) (1.116)

which implies that
Gq;n(b�n)2

E
= Op(n

2��1+n2� maxj2S�
bP�n(�o;j)) = op(1). Hence,

using the uniform approximation in Assumption 1.4.1.(i), we get
Gq(b�n)

E
= op(1),

which combined with the identi�cation condition in 1.4.1.(i), implies the consistency

of b�n. The consistency of b�n can be proved using similar arguments in the proof of
Lemma 1.3.1.

Next, we derive the convergence rate of b�n. Using similar arguments in the proof
of Lemma 1.9.2, we can apply Assumptions 1.3.1.(iii) and 1.4.1.(iv) to deduce

V0(b�n; b�n) � cn�2� b�n � �o2
E
+ c
Gk(b�n)� b�n2

E
(1.117)

w.p.a.1, where c is some generic positive constant. From (1.115) and (1.117), we can

deduce that w.p.a.1,

b�n � �o2
E
� n2�

X
j2S�

bP�n(�o;j) + cn2�Rn; (1.118)

which implies that
b�n � �o

E
= Op(n

� maxj2S�
bP 1
2
�n
(�o;j) + n

� 1
2
+� ).

Using Assumption 1.3.2.(iii), we obtain

��� bP�n(�o;j)� bP�n(b�n;j)��� � max
j2S�

��� bP 0�n(�o;j)��� b�n � �o
E

+max
j2S�

����� bP 00�n(�o;j)2
+ op(1)

����� b�n � �o2E : (1.119)
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By the triangular inequality,

Gk(b�n)� b�n2
E
�
b�n � �o2

E
� 2

b�n � �o
E
J1;n + J

2
1;n; (1.120)

where J1;n =
Gk(b�n)�Gk(�o)

E
= Op

�b�n � �o
E

�
. Denote J2;n = cn�2�

b�n � �o2
E
,

then from (1.116), (1.117) and (1.119), we get

b�n � �o2
E
� c

�
max
j2S�

��� bP 0�n(�o;j)���+ J1;n�b�n � �o
E
� Rn � J21;n � J2;n; (1.121)

w.p.a.1. As J21;n = Op

�b�n � �o2
E

�
and J2;n = Op

�b�n � �o2
E

�
, hence from the

inequality in (1.121), we can deduce that

b�n � �o
E
= Op

�b�n � �o
E
; max

j2S�

��� bP 0�n(�o;j)���+ n� 1
2

�
: (1.122)

Note that if
b�n � �o

E
= Op

�
maxj2S�

��� bP 0�n(�o;j)���+ n� 1
2

�
, then the result is

proved. Hence we only need to consider the case that
b�n � �o

E
has the convergence

rate slower than maxj2S�
��� bP 0�n(�o;j)���+ n� 1

2 , i.e.

b�n � �o
E
= Op

�b�n � �o
E

�
: (1.123)

Now, from (1.116) and (1.117), we have

n�2�
b�n � �o2

E
�Op

�
max
j2S�

��� bP 0�n(�o;j)���� b�n � �o
E
�Rn � 0;

which implies that
b�n � �o

E
= Op

�
n2� maxj2S�

bP 0�n(�o;j) + n� 1
2
+�
�
.

Proof of Lemma 1.4.2. On the event
nb�n;j 6= 0o for some j 2 Sc�, we have the
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following KKT optimality condition:

�����W (j)
n

"
n�

1
2

nX
i=1

�(Zi; b�n)#
����� = n

1
2 bP 0�n(b�n;j)

2
: (1.124)

where W (j)
n denotes the j-th row of the weight matrix Wn. Note that

n�
1
2
��

nX
i=1

�(Zi; b�n) = n��vn [�(Zi; b�n)] + n 1
2
��E [�(Zi; b�n)] (1.125)

By Lemma 1.4.1, Assumption 1.4.1.(iv) and Assumption 1.4.2.(i), we get

n
1
2
��E

h
gn;q(Zi;b�n)i = n 1

2
�2� @Gn;q(

e�n)
@�0

�b�n � �o� = Op(1) (1.126)

where
@Gn;q(e�n)
@�0

=

�
@Gn;q;1(e�1;n)

@�
; :::; @Gn;q;q(e�q;n)

@�

�0
and e�j;n (j = 1; :::; q) lies between b�n and �o, and

n
1
2
��E

h
gk(Zi;b�n)� b�ni

= n
1
2
��
n
E
h
gk(Zi;b�n)� gk(Zi; �o)i� �b�n � �o�o

=
@Gk(e�n)
@�

h
n
1
2
��
�b�n � �o�i+Op(1) = Op(1) (1.127)

where
@Gk(e�n)
@�0

=

�
@Gk;1(e�q+1;n)

@�
; :::;

@Gk;k(e�q+k;n)
@�

�0
and e�j;n (j = q + 1; :::; q + k) lies between b�n and �o. Hence, from the results

in (1.125)-(1.127), Assumption 1.3.1.(iii) and Assumption 1.4.1.(iii), we can deduce
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that �����W (j)
n

"
n�

1
2
��

nX
i=1

�(Zi; b�n)#
����� = Op(1): (1.128)

While from Assumption 1.4.2.(ii), we can deduce that

n
1
2
�� bP 0�n(b�n;j)

2
=
n
1
2
��rn�n
2

bP 0�n(b�n;j)
rn�n

!p 1 (1.129)

Now, the KKT condition in (1.124), and (1.128) and (1.129) imply that Pr
�b�n;j = 0�!

1 for any j 2 Sc�.

Proof of Lemma 1.4.3. Applying Lemma 1.9.1, we get w.p.a.1

V0(b�n; b�n) + kX
j=1

bP�n(b�n;j) � kX
j=1

bP�n(�o;j) +Rn: (1.130)

Now, conditional on the event fb�j;n = 0; j 2 Sc�g, by Assumption 1.4.1.(iv) and

Assumption 1.4.3, we can use similar arguments in the proof of Lemma 1.9.2 to

deduce that

V0(b�n; b�n) � c �1 + n�2�� jjb�n � �ojj2E + cjjb�n;+ � �o;+jj2E � cjjb�n;S � �o;S jj2E (1.131)

w.p.a.1, where c is some generic positive constant. Following the similar arguments

in the proof of Lemma 1.3.3, we get

jjb�n;S � �o;S jj2E �max
j2S�

��� bP 0�n(�o;j)��� kb�n;S � �o;SkE � Rn (1.132)

which implies that

jjb�n;S � �o;S jjE = Op�max
j2S�

��� bP 0�n(�o;j)���+ n� 1
2

�
(1.133)
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By Assumption 1.4.2.(i), there is n
1
2 maxj2S�

��� bP 0�n(�o;j;n)��� = op(1), which combined

with (1.133) gives us jjb�n;S � �o;S jjE = Op(n� 1
2 ). From the sparsity of b�n, we know

that the event fb�j;n = 0; j 2 Sc�g has probability measure approaching 1. Hence we
can deduce that jjb�n;S � �o;S jjE = Op(n� 1

2 ), which �nishes the proof.

Proof of Corollary 1.4.4. For any compact subset K in Rd�+dS� , we denote any

element uS 2 K as uS = (u�; u�+), where u� is the �rst d� elements in uS and u�+ is

the last d�o;+� elements in uS . Denote

V3;n(uS) =

"
n�

1
2

nX
i=1

�s(Zi; �o;S +
uSp
n
)

#0
Wn

"
n�

1
2

nX
i=1

�s(Zi; �o;S +
uSp
n
)

#

�
"
n�

1
2

nX
i=1

�(Zi; �o)

#0
Wn

"
n�

1
2

nX
i=1

�(Zi; �o)

#

+n
X
j2S�

� bP�n(�o;j + u�+;jp
n
)� bP�n(�o;j)� := V �3;n(uS) + Pn

where �s(Zi; �o;S + uSp
n
) = �(Zi; �o +

u�p
n
; �o;+ +

u�+p
n
; �o;�). From Theorem 1.3.5, we

know that b�n;� = 0 w.p.a.1. Hence,
p
n (b�n;S � �o;S) is the minimizer of V3;n(uS)

w.p.a.1. Using similar arguments in the proof of Lemma 1.9.1, one can deduce that

�n

nh
�s
�
Z; �o;S + n

� 1
2uS

�
� � (Z; �o;S)

io
= op(1) (1.134)

uniformly over K. From (1.134), we get

V �3;n(uS) = n
n
E[�s(Z; �o;S + n

� 1
2uS)]

o0
Wo

n
E[�s(Z; �o;S + n

� 1
2uS)]

o
+2n

1
2 f�n [�(Z; �o)]g0Wo

n
E[�s(Z; �o;S + n

� 1
2uS)]

o
+ op(1)(1.135)
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uniformly over K. By Assumption 1.4.1.(iv), we have

E

�
gn;q

�
Z; �o +

u�p
n

��
= n���

1
2

�
@Gn;q(�o)

@�0 ; 0

�
uS + o(1) (1.136)

and

E

�
gk

�
Zi; �o +

u�p
n

�
�
�
�o;+ +

u�+p
n

��
= n�

1
2
@mk(�o)

@�0S
uS + o(1): (1.137)

Denote @m(�o)
@�0S

=
�
0; @mk(�o)

@�S

�0
, from the results in (1.135)-(1.137) and Assumption

1.4.1.(iv), we can deduce that

V �3;n(uS) =

�
@m(�o)

@�0S
uS + 2�n [�(Zi; �o)]

�0
Wo

�
@m(�o)

@�0S
uS

�
+ op(1); (1.138)

uniformly over K. Note that there is

�
@m(�o)

@�S

�
Wo

�
@m(�o)

@�S

�0
=

�
@mk(�o)

@�S

�
Wo;kk

�
@mk(�o)

@�S

�0
=M+: (1.139)

Using the same arguments used in the proof of Theorem 1.3.6, we can show that

under Assumption 1.3.2.(iv) and Assumption 1.4.2.(i), there is

Pn =
p
n bP 0�n(�o;j)u�+;j + bP 00�n(e�o;j)u2�+;j ! 0 (1.140)

uniformly over u�+;j for j 2 S�.

From the results in (1.138), (1.140) and triangle inequality, we can deduce that

V3;n(uS)!d V3(uS) � u0SM+uS + 2u
0
S

�
@m(�o)

@�0S
Wo	(�o; �o)

�
(1.141)
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uniformly over K. It is clear that V3(uS) is uniquely minimized at

uS = �M�1
+

��
0;
@mk(�o)

@�0S

�
Wo	(�o; �o)

�
(1.142)

and
p
n (b�n;S � �o;S) is asymptotically tight. Now result in (1.55) follows by ACMT.

1.9.4 Proof of the Main results in Section 1.5

Proof of Lemma 1.5.1. First note that by de�nition, bP�n(�o;j) = �n bw�j k�o;jk2 =
0 for all j 2 Sc�. By CMT and the Slutsky Theorem, we can deduce that

bP�n(�o;j) = �n bw�j k�o;jk2 !p 0; (1.143)

for any j 2 S�. Hence, Assumption 1.3.1.(iv) holds for the adaptive group Lasso

penalty function. Now, the consistency of b�n follows by the similar arguments used
in the proof of Lemma 1.3.1.

Next note that, bP�n(�) is continuously twice di¤erentiable at �o;j for any j 2 S�
and

@2 bP�n(�o;j)
@�j@�0j

= �n bw�j
 
� 1

k�o;jk22
�o;j�

0
o;j +

1

k�o;jk2
Id�o;j

!
;

where Id�o;j denotes a d�o;j � d�o;j identity matrix and d�o;j is the dimensionality of

�o;j. As k�o;jk2 6= 0 for all j 2 S� and �n = o(1), by CMT and the Slutsky Theorem,

we can deduce that
@2 bP�n (�o;j)@�j@�0j


E
= op(1) for all j 2 S�. Thus the adaptive group

Lasso penalty function satis�es Assumption 1.3.2.(iv). Now the convergence rate in

(1.60) follows by similar arguments in the proof of Lemma 1.3.3.

Proof of Theorem 1.5.2. On the event
�
kb�n;jk2 6= 0	, for some j 2 Sc�, we have
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the following KKT optimality condition

2


"
n�

1
2

nX
i=1

@�(Zi; b�n)
@�j

#
Wn

"
n�

1
2

nX
i=1

�(Zi; b�n)#

E

=

n�n bw�jb�n;jkb�n;jk2

E

: (1.144)

Following similar arguments used in the proof of Theorem 1.3.5, we can show that

n�
1
2

nX
i=1

�(Zi; b�n) = Op(1): (1.145)

If j 2 Sc�, then "
n�

1
2

nX
i=1

@�(Zi; b�n)
@�j

#
Wn = Wn;j (1.146)

where Wn;j denotes the j-th component-wise rows of Wn. Hence by Assumption

1.3.1.(iii) and the result in (1.145), we get


"
n�

1
2

nX
i=1

@�(Zi; b�n)
@�j

#
Wn

"
n�

1
2

nX
i=1

�(Zi; b�n)#

E

= Op(1): (1.147)

On the other hand denote g(Z; �) = [g0q(Z; �); g
0
k(Z; �)]

0, if j 2 Sc� , then

n�1
nX
i=1

@�(Zi; b�n)
@�j


E

�
n�1

nX
i=1

(
@g(Z;b�n)
@�j

� E
"
@g(Z;b�n)
@�j

#)
E

+

E
"
@g(Z;b�n)
@�j

#
E

�
E
"
@g(Z;b�n)
@�j

#
� E

�
@g(Z; �o)

@�j

�
E

+

E �@g(Z; �o)@�j

�
E

+ op(1)

= Op(1); (1.148)

where the �rst inequality is due to the triangle inequality, the second inequality is

by the triangle inequality and Assumption 1.5.1, the last equality is by Assumption

1.3.2.(ii). By (1.148) and Cauchy-Schwarz inequality, result in (1.147) also holds for
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j 2 Sc� . Hence, by de�nition, (1.147) holds for any j 2 Sc�.

On the other hand, as n
1+!
2 �n !1 and b�n is pn-consistent, we can deduce that

1

2

pn�n bw�jb�n;jkb�n;jk2

E

=
n
1+!
2 �n
2

1

k
p
nb�n;jk!2 !p 1: (1.149)

Now, using the results in (1.144), (1.147) and (1.149), we can deduce Pr
�
kb�n;jk2 = 0�!

1 for j 2 Sc�.

1.10 Appendix B

In this appendix, we check the general conditions imposed on bP�n(�) to derive the
oracle properties of the GMM shrinkage estimators with the bridge, adaptive Lasso

and SCAD penalty functions respectively.

Corollary 1.10.1 Suppose that �n = o(1), then the bridge and SCAD penalty func-

tions satisfy Assumption 1.3.1.(iv). If we further assume that b�n is a consistent
estimator of �o, then the adaptive Lasso penalty function also satis�es Assumption

1.3.1.(iv).

Proof of Corollary 1.10.1. First note that if bP�n(�) = �n j�j, then triviallybP�n(0) = 0 and
�n
���o;j�� !p 0

for all j. If bP�n(�) is the SCAD penalty function, then bP�n(0) = 0 and when n is

su¢ ciently large, ��� bP�n(�j)��� � (a+ 1)�2n
2

= op(1)
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for all j. Finally for the adaptive Lasso penalty bP�n(�) = �n bw� j�j, bP�n(0) = 0 and
by the consistency of b�1st and the Slutsky Theorem, we can deduce that

�n bw�j j�jj !p 0

for all j.

Remark 1.10.2 Compared with the results in Knight and Fu (2000) and Caner

(2009) where bridge penalty is used, Corollary 1.10.1 imposes the same condition

on �n to derive the consistency of the shrinkage estimator b�n. When the penalty
function is SCAD, �n = o(1) is also the su¢ cient condition in Fan and Li (2001)

to derive the consistency. In the adaptive Lasso case, Zou (2006) derives the limit

distribution of the centered adaptive Lasso LS estimator under the condition that

�n = o(1) and �nn
1+!
2 ! 1. As we later will impose the same conditions on �n to

derive the limit distribution of the GMM shrinkage estimator b�n based on adaptive
Lasso penalty, our condition imposed on �n to derive the consistency is not stronger

than that of Zou (2006).

Corollary 1.10.3 Suppose that �n = o(1), then the bridge and SCAD penalty func-

tions satisfy Assumption 1.3.2.(iv). If we further assume that b�1st is a consistent
estimator of �o, then the adaptive Lasso penalty function also satis�es Assumption

1.3.2.(iv).

Proof of Corollary 1.10.3. First note that if bP�n(�) = �n j�j, then for any

� 6= 0, there is

bP 0�n(�) = �n��1and bP 00�n(�) = ( � 1)�n��2:
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Hence bP 00�n(�oj) = ( � 1)�n��2oj = o(1)

for any j 2 S�.

Next, if bP�n(�) = �n bw�j�j, then for any � 6= 0, one trivially has
bP 0�n(�) = �n bw�;j and bP 00�n(�) = 0:

So Assumption 1.3.2.(iii) is trivially satis�ed.

Finally, if bP�n(�) is the SCAD penalty function, then on the domain (0;1), there
is

bP 0�n(�j) =
8>>>><>>>>:

�n

a�n
a�1 �

�j
a�1

0

j�jj � �n

�n < j�jj � a�n

a�n < j�jj

Note that for j 2 S�, when n is su¢ ciently large such that a�n <
���o;j��, bP�n(�) is

twice continuously di¤erentiable in local neighborhood of �o;j and we trivially havebP 00�n(�o;j) = 0.
Corollary 1.10.4 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) are satis�ed. (i) If �nn
1
2 = o(1) and �nn1�


2 !1, then the bridge penalty func-

tion satis�es Assumption 1.3.3 (i)-(ii); (ii) suppose that �nn
1
2 = o(1), �nn

1
2
(1+!) !

1 and b�1st is pn consistent, then the adaptive Lasso penalty function satis�es As-
sumption 1.3.3 (i)-(ii); (iii) suppose that �n = o(1) and �nn

1
2 !1, then the SCAD

penalty function satis�es Assumption 1.3.3 (i)-(ii).

Proof of Corollary 1.10.4. First if bP�n(�j) = �n ���j��, then
p
nmax
j2S�

��� bP 0�n(�o;j)��� = maxj2S�
n

1
2�n

���o;j���1 = o(1): (1.150)
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As Assumption 1.3.1.(iv), Assumption 1.3.2.(iv) and Assumption 1.3.3.(i) are satis-

�ed, from Lemma 1.3.3, we can deduce that b�n;j = Op(n� 1
2 ). Let rn = n

1
2
� 
2 , then

n
1
2�nrn = �nn

1� 
2 !1 and

lim inf
n!1

bP 0�n(b�n;j)
rn�n

= lim inf
n!1


���n 1

2 b�n;j����1 > 0; a:e:
for any j 2 Sc�.

Next, if bP�n(�j) = �n bw�j j�jj, then by the consistency of b�1st and the Slutsky
Theorem

p
nmax
j2S�

��� bP 0�n(�o;j)��� = maxj2S�
n
1
2�n bw�;j = op(1):

Let rn = n
!
2 , then n

1
2�nrn = �nn

1
2
(1+!) !1 and

lim inf
n!1

bP 0�n(b�n;j)
rn�n

= lim inf
n!1

���n 1
2 b�n;j����! > 0; a:e:

for any j 2 Sc�.

Finally, if bP�n(�) is the SCAD penalty function, by the de�nition of bP 0�n(�), it is
easy to see that when n is su¢ ciently large

p
nmax
j2S�

��� bP 0�n(�o;j)��� = 0:
As Assumption 1.3.1.(iv), Assumption 1.3.2.(iv) and Assumption 1.3.3.(i) are satis-

�ed, from Lemma 1.3.3, we can deduce that b�n;j = Op(n� 1
2 ). Let rn = 1 > 0, then

n
1
2�nrn = �nn

1
2 !1. As b�n;j = Op(n� 1

2 ), we have j
p
nb�n;jj � pn�n w.p.a.1. From

the de�nition of bP 0�n(�), i.e.
bP 0�n(�) = �n�I(� � �n) + (�na� �)+(a� 1)�n

I(� > �n)

�
; (1.151)
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we can deduce that bP 0�n(b�n;j) = �n, w.p.a.1 and thus
lim inf
n!1

bP 0�n(b�n;j)
rn�n

= 1; a:e:

for all j 2 Sc�.

We next check Assumption 1.4.1.(v) and Assumption 1.4.2 using the bridge, adap-

tive Lasso and SCAD penalty functions. For the bridge penalty, Assumption 1.4.1.(v)

and Assumption 1.4.2.(i) require n
1
2
+��n = o(1). Under this condition and the as-

sumptions of Lemma 1.4.1, we can deduce that b�n;j = Op(n�� 1
2 ) for all j 2 Sc�. Note

that bP 0�n(b�n;j).� = n( 12��)(1�)jn 1
2
��b�n;jj�1:

Hence rn = n(
1
2
��)(1�) and to get

n
1
2
���nrn = n

1
2
+��n � n(

1
2
��)(1�)�2� !1

we need  < 1�6�
1�2� . It is clear that when � �

1
3
, then there is no such sequence �n which

makes Assumption 1.4.1.(v) and Assumption 1.4.2.(i)-(ii) hold simultaneously. Sec-

ondly for the adaptive Lasso penalty, Assumption 1.4.1.(v) and Assumption 1.4.2.(i)

require that n
1
2
+��n = o(1). Note that

bP 0�n(b�n;j).�n = n( 12��)!jn 1
2
��b�n;jj�!:

The �rst step estimator of �o;j (j 2 Sc�) typically has the convergence rate n��
1
2 .

Hence if we take rn = n(
1
2
��)! and ! > 4�

1�2� , then we can select �n such that

n
1
2
���nrn = n

1
2
+��n � n!(

1
2
��)�2� !1:
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Finally, for the SCAD penalty, Assumption 1.4.1.(v) and Assumption 1.4.2.(i) require

n
1
2
+��n = o(1). Under the assumptions of Lemma 1.4.1, we can deduce that b�n;j =

Op(n
�� 1

2 ) for all j 2 Sc�. Note that

bP 0�n(b�n;j).� = I(b�n;j � �n) + (a�n � b�n;j)+(a� 1)�n
I(b�n;j > �n):

Hence rn = 1 and to get

n
1
2
���nrn = n

��n � n
1
2
�2� !1

we need � < 1
4
. It is clear that when � > 1

4
, then there is no such sequence �n which

makes Assumption 1.4.1.(v) and Assumption 1.4.2.(i)-(ii) hold simultaneously.
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Chapter 2

Robust GMM Estimation with

Irrelevant and Misspeci�ed

Moment Conditions

2.1 Introduction

It is well-know that the statistical properties of the generalized method of moments

(GMM) estimate heavily rely on the quality of moment conditions. For example,

misspeci�ed moment conditions lead to inconsistent estimation. On the other hand,

when the moment conditions only contain weak information about the structural

coe¢ cients, the GMM estimate will have slow rate of convergence and may not even

be consistent. In both scenarios, the GMM estimate is highly biased in the �nite

samples. The moment selection methods proposed in chapter 1 are useful in reducing

the risk of using the misspeci�ed moment conditions in the GMM estimation in the

�nite samples. However, if some moment conditions in the second set are irrelevant 1,

1In this chapter, a moment condition is called irrelevant if including it into the GMM estimation
neither produces consistent estimation nor improves the e¢ ciency of the resulting GMM estimate.
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these methods will select the irrelevant moment conditions and automatically include

them into GMM estimation with probability approaching 1 (w.p.a.1). The irrelevant

moment conditions do not e¤ect the asymptotic properties of the GMM shrinkage

estimate, but they may enlarge its bias in the �nite samples.

In this chapter, we propose a new adaptive penalty based on which the GMM

shrinkage estimation can consistently select the valid and relevant moment condi-

tions. As a result, both the misspeci�ed moment conditions and irrelevant moment

conditions are not included in estimating the structural coe¢ cients w.p.a.1. This

chapter shares similar set-up of chapter 1. Speci�cally, we are interested in estimat-

ing some unknown parameter �o identi�ed by the following moment restrictions

E [gq(Z; �o)] = 0; (2.1)

where fZigi�n is stationary and ergodic, Z is used generically for Zi and gq (�; �) :

Rdz � Rd� ! Rq. Suppose there is another set of possibly misspeci�ed or irrelevant

conditions

E [gk(Z; �o)]
?
= 0; (2.2)

where " ?=" signi�es that equality may hold for some but not others and gk (�; �) :

Rdz � Rd� ! Rk. The goal of this chapter is to consistently select the valid and

relevant moment conditions from (2.2) and include them into estimation of �o to

improve e¢ ciency.

Following the practice in chapter 1, we introduce a set of nuisance parameters �o

(which are also called moment selection coe¢ cients in this chapter) and reparametrize

A more formal de�nition can be found in section 2.3.
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the moment conditions in (2.2) to be

E [gk(Z; �o)� �o] = 0: (2.3)

We stack the moment conditions in (2.1) and (2.3) to get

E [�(Z; �o; �o)] � E

264
0B@ gc(Z; �o)

gk(Z; �o)� �o

1CA
375 = 0: (2.4)

The Lasso-type of GMM estimate (b�n; b�n) of (�o; �o) is de�ned as
(b�n; b�n) = argmin

(�;�)2��B

1

n

"
nX
i=1

�(Zi; �; �)

#0
Wn

"
nX
i=1

�(Zi; �; �)

#
+ n�n

kX
j=1

!n;j
���j�� ;
(2.5)

where ��B is the parameter space where (�o; �o) lies; �n is the tuning parameter

which directly controls the general penalty to all �j, Wn is a (q+ k)� (q+ k) weight

matrix and !n;j is some adaptive penalty related to individual �j (j = 1; :::; k). The

adaptive penalty !n;j plays the key role in consistent selection of valid and relevant

moment conditions. Ideally, we hope that !n;j would be large when the j-th moment

condition in (2.2) is valid and relevant such that �j is estimated as zero, otherwise

!n;j should be small such that adding the penalty function to the GMM criterion does

not e¤ect the asymptotic properties of the estimates of moment selection coe¢ cients

of misspeci�ed or irrelevant moment conditions.

When the adaptive penalty !n;j = 1 for all j, the penalty function in (2.5) re-

duces to the well-known Lasso penalty. As we have already discussed in the previous

chapter, when !n;j = jb�n;j;1stj�! (! > 0) with some �rst-step consistent estimatorb�n;j;1st of �j;o, the penalty function in (2.5) reduces to the adaptive Lasso penalty.
In this chapter, we show that if the tuning parameter satis�es the condition such
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that the GMM Lasso estimate is root-n consistent, the GMM shrinkage estimation is

conservative in moment selection, i.e. the probability of selecting the invalid moment

conditions approaches 0 and the probability of selecting the valid moment conditions

is strictly less than 1 when the sample size goes to in�nity. Similar result is estab-

lished for the GMM adaptive Lasso estimation, when the tuning parameter satis�es

�n = o(1) and n
1+!
2 �n ! �� 2 R+. The key di¤erence between the Lasso and adap-

tive Lasso penalty gives us the inspiration of designing the new adaptive penalty to

ensure consistent selection of relevant moment conditions.

In section 2.3, we introduce an empirical measure of the information contained

in moment condition. We show that the empirical measure converges to zero in

probability, if the corresponding moment condition fails to improve the e¢ ciency of

the GMM estimate. On the other hand, if a moment condition is helpful to reduce the

asymptotic variance of the GMM estimate, then its empirical information measure

will converge to some nonzero constant in probability. The di¤erent probability limits

of the empirical information measures of relevant and irrelevant moment conditions

are useful for us to design a new adaptive penalty !n;j in (2.5) such that !n;j is small

for the misspeci�ed or irrelevant moment condition, and !n;j is large for the valid

and relevant moment condition. We show that the GMM shrinkage estimation based

on the new adaptive penalty is consistent in selecting the valid and strong moment

conditions. As a result, the GMM shrinkage estimate is free of the misspeci�cation

risk in large samples and is robust to the irrelevant moment conditions in the �nite

samples.

The remainder of this chapter is organized as follows. Section 2.2 studies conserv-

ative moment selection in the GMM Lasso/adaptive Lasso estimation. In section 2.3,

we �rst de�ne a measure of information contained in moment condition and then,

we show that such information measure can be consistently estimated. Based on
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the empirical information measure, we propose a new adaptive penalty !n;j, which

enables the GMM shrinkage estimation in (2.5) to select the valid and relevant mo-

ment conditions in (2.2) w.a.p.1. Section 2.4 conducts some simulation experiments

to investigate the �nite sample properties of the GMM shrinkage estimation based

on the new adaptive penalty. there. Section 2.5 concludes this chapter. Proofs and

technical derivations are included in the Appendix.

2.2 GMM Shrinkage Estimation with Conserva-

tive Moment Selection

We call the GMM shrinkage estimate based on the Lasso (adaptive Lasso) penalty

as Lasso (adaptive Lasso) GMM estimate. In this section, we derive the asymptotic

properties of the GMM Lasso and GMM adaptive Lasso estimates. Following the

notation in chapter 1, we use S� � fj : �o;j 6= 0; j = 1; :::; kg to denote the index

set of the non-zero components in �o. Note that when the tuning parameter satis�es

�n = o(1) and the adaptive penalty satis�es !n;j = Op(1) for any j 2 S�, the

penalty function bP�n(�j) = �n!n;jj�jj trivially satis�es Assumption 1.3.1.(iv) and

Assumption 1.3.2.(iv). Applying Lemma 1.3.3 in chapter 1, we immediately get the

following results.

Corollary 2.2.1 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) in chapter 1 are satis�ed. If the tuning parameter satis�es
p
n�n = O(1) and

the adaptive penalty satis�es !n;j = Op(1) for any j 2 S�, then

(b�n; b�n) = (�o; �o) +Op(n� 1
2 ): (2.6)
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It is clear that both the Lasso penalty and the adaptive Lasso penalty satisfy

the requirement that !n;j = Op(1) for any j 2 S�. Thus if the tuning parameter

�n converges to zeros at the rate not slower than n�1=2, the GMM Lasso and GMM

adaptive Lasso estimates are root-n consistent. Recall that

@m(�o)

@�0
=

0B@ @E[gq(Z;�o)]

@�0 0

@E[gk(Z;�o)]
@�0 �Ik

1CA and M =
@m(�o)

@�
Wo
@m(�o)

@�0
:

We next derive the limiting distribution of the GMM Lasso estimate.

Proposition 2.2.2 Suppose Assumption 1.3.1.(i)-(iii), Assumption 1.3.2.(i)-(iii)

and Assumption 1.3.4 in chapter 1 are satis�ed. If the tuning parameter satis�es

n
1
2�n ! �o 2 [0;1) as n!1, then

p
n
h
(b�n; b�n)� (�o; �o)i!d argmin

8<:V �(u) + �o
24X
j2S�

sgn(�j;o)u�j +
X
j2Sc�

ju�j j

359=;
where V �(u) = u0Mu + 2u0

h
@m(�o)
@�

i
Wo	(�o), 	(�o) is de�ned in Assumption 1.3.4

and u0 = (u0�; u
0
�), u� and u� are d� and k dimensional real vectors respectively.

From Proposition 2.2.2, we see that when �o = 0, the GMM Lasso estimate

has the same limiting distribution as that of the regular GMM estimate. However

when �o > 0, the GMM Lasso estimate has non-standard limiting distribution which

puts non-zero probability measure on the point zero. Moreover, Proposition 2.2.2

indicates that when �o > 0, the GMM Lasso estimates of zero components in �o have

nonzero high-order bias, which may contaminate other estimates by the interaction

of the moment conditions.

Although Proposition 2.2.2 provides the joint asymptotic distribution of (b�n; b�n),
it does not give a complete story of the asymptotic properties of the GMM Lasso
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estimate. For example, no moment selection results can be deduce from Proposition

2.2.2. Because what we can learn from Proposition 2.2.2 is that with nonzero prob-

ability, the estimates of the zero moment selection coe¢ cients converge to zero with

rate faster than n�1=2. However Proposition 2.2.2 does not tell us if the zero moment

selection coe¢ cients are estimated exactly as zero with any nontrivial probability or

not. The following proposition shows that GMM Lasso estimation is conservative in

the moment selection.

Proposition 2.2.3 Under the conditions of Proposition 2.2.2, we have

lim sup
n!1

Pr
�b�j;n = 0, for all j 2 Sc�� � c(�o)

where c(�o) is some constant in [0; 1) for all �o 2 [0;1).

Proposition 2.2.3 indicates that under the condition n
1
2�n ! �o 2 [0;1), the

GMM Lasso estimation can only achieve conservative moment selection. Moreover,

from the proof of Proposition 2.2.3, we see that even if one is willing to sacri�ce the

root-n consistency of the GMM Lasso estimate and let n
1
2�n ! 1 (i.e. �o = 1),

the consistent moment selection may not be necessarily achieved. The conserva-

tive feature of the Lasso penalty is well-known in the variable selection literature.

Proposition 2.2.3 shows that similar property holds when the Lasso penalty is used

to perform moment selection.

We next derive the asymptotic distribution of the adaptive Lasso GMM estimate

under the condition that n
1+!
2 �n ! �� 2 [0;1) as n ! 1. De�ne the �rst step

estimates of the moment selection coe¢ cients as

b�1st;n = n�1 nX
i=1

gk(Zi;b�1st;n)
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where b�1st;n denotes the GMM estimate based on the moment conditions in (2.1),

i.e. b�1st;n = argmin
�2�

"
n�

1
2

nX
i=1

g0q(Zi; �)

#
Wq;n

"
n�

1
2

nX
i=1

gq(Zi; �)

#
(2.7)

andWq;n is some q by q weighting matrix which converges in probability toWq;o, the

asymptotic variance of the empirical process �n [gq(Z; �o)].

Under Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-(iii) in chapter 1, it is

a tedious excise to show that

p
n(b�1st;n � �o) =Mk�n [g(Z; �o)] + op(1) (2.8)

where

Mk =

�
Ik;�

@E[gk(Z; �o)]

@�
M�1
q

@E[gq(Z; �o)]

@�0
Wq;o

�
(2.9)

and Mq =
@E[gq(Z;�o)]

@�
Wq;o

@E[gq(Z;�o)]

@�0 .

Proposition 2.2.4 Suppose that Assumption 1.3.1.(i)-(iii), Assumption 1.3.2.(i)-

(iii) and Assumption 1.3.4 in chapter 1 are satis�ed. If the tuning parameter satis�es

n
1+!
2 �n ! �� 2 [0;1) as n!1, then

p
n
h
(b�n; b�n)� (�o; �o)i!d argmin

�
V �(u) + ��

X
j2Sc�

ju�j j
jMk(j)	(�o)j!

�

where V �(u) is de�ned in Proposition 2.2.3, 	(�o) is de�ned in Assumption 1.3.4

and Mk(j) denotes the j-th row of Mk.

Unlike the GMM Lasso estimate, the GMM adaptive Lasso estimate does not

have the high order bias. Moreover, as implied by Proposition 2.2.4, the asymptotic

distribution of the GMM adaptive Lasso estimate puts non-zero probability measure

on the zero point. We can use similar arguments in the proof of Proposition 2.2.3 to
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show that the GMM adaptive Lasso estimation is also conservative in the moment

selection, if the tuning parameter �n satis�es n
1+!
2 �n ! �� 2 [0;1).

Comparing Proposition 2.2.2 with Proposition 2.2.4, we see the adaptive penalty

!n;j (j = 1; :::; k) plays an important role in determining the asymptotic properties

of the GMM shrinkage estimate. The Lasso penalty has the same e¤ect on all

moment selection coe¢ cients, because !n;j = 1 for all j. As a result, the GMM

Lasso estimation fails to achieve consistent moment selection and its estimate su¤ers

from second order bias. On the other hand, the adaptive Lasso penalty assigns large

penalty to the estimates of zero components in �o and small penalty to the estimates

of nonzero components in �o. As a result, the GMM adaptive Lasso estimation

can achieve consistent moment selection. Moreover, even if the tuning parameter

converges to zero fast enough such that only conservative moment selection can

be achieved, the GMM adaptive Lasso estimate of �o is free of the second order

asymptotic bias. However, the adaptive Lasso penalty does not take the information

of the moment conditions into account, which is the main reason that it can not

consistently select the relevant moment conditions. To achieve consistent selection

of the relevant moment conditions, we have to revise the adaptive Lasso penalty such

that the penalty would be large only if the related moment condition is valid and

relevant, otherwise, it should be small. This intuition motivates us to �nd a measure

of the relevance or information of the moment condition in (2.2). The measure of

information should be zero if the related moment condition is irrelevant and nonzero

otherwise. In the next section, we provide one of such measures and construct the

adaptive penalty based on its estimate.
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2.3 Moment Selection with Possibly Irrelevant and

Misspeci�ed Moment Conditions

In this section, we study the moment selection problem in the scenario that there

may be irrelevant moment conditions in (2.2). We �rst introduce a measure of the

information contained in the moment conditions. The relevant/irrelevant moment

condition is de�ned using this information measure. We show that such information

measure can be consistently estimated and we derive its asymptotic properties in the

subsection 2.3.1. Using the estimate of the information measure, we construct a new

adaptive penalty for the GMM shrinkage estimation. The new adaptive penalty is

large when the corresponding moment condition is valid and relevant. On the other

hand, it is small when the related moment condition is misspeci�ed or irrelevant.

In subsection 2.3.3, we show that the GMM shrinkage estimation based on the new

adaptive penalty can consistently select the valid and relevant moment conditions.

2.3.1 Measure the Information of Moment Conditions

If we only use the moment conditions in (2.1), the asymptotic variance of the GMM

estimate will be

V arq �
�
@mq(�o)

@�
Wq;o

@mq(�o)

@�0

��1
where mq(�) � E [gq(Z; �)]. The moment conditions in (2.2) are expected to be

able to improve the e¢ ciency of the GMM estimate. Thus any set of valid moment

conditions E [gr(Z; �)] = 0 from (2.2) is relevant and should be included into the

GMM estimation only if

V arq+r �
�
@mq+r(�o)

@�
Wq+r;o

@mq+r(�o)

@�0

��1
� V arq
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and there exists some non-zero vector � 2 Rd� such that �0(V arq � V arq+r)� > 0,

where Wq+r;o is the probability limit of the e¢ cient weight matrix. As the matrix

V arq � V arq+r is always positive de�nite, its eigenvalues are always non-negative

and the relevance requires that at least one of its eigenvalues is strictly larger than

zero. Thus we can use the largest eigenvalue of V arq�V arq+r as the measure of the

information of the moment conditions E [gr(Z; �)] = 0.

De�nition 2.3.1 Any subset of moment conditions E [gr(Z; �)]
?
= 0 in (2.2) is called

redundant or irrelevant with respect to the moment conditions in (2.1) if the largest

eigenvalue � r of the matrix V arq � V arq+r satis�es � r = O(�n) where �n = o(1).

Otherwise, such subset of moment conditions is called non-redundant or relevant.

De�nition 2.3.1 is inspired by Hall, Inoue, Jana and Shin (2007) which uses the

term log jV arq+rj to de�ne the entropy of the model with moment restrictions and

uses the entropy based information criterion to select relevant moment conditions.

However, moment selection issue addressed in this chapter is in a di¤erent scenario,

because the moment conditions in (2.2) could be misspeci�ed, while the moment

conditions to be selected in Hall, Inoue, Jana and Shin (2007) are all assumed to be

valid.

We call V arq+r as pseudo asymptotic variance, because it is the asymptotic vari-

ance of GMM estimate based on the moment conditions in (2.1) and E [gq+r(Z; �)]
?
=

0 with assuming that the moment conditions E [gr(Z; �)]
?
= 0 are valid. The infor-

mation measure � r has the nice property that if a moment condition is irrelevant,

then � r = 0, otherwise, � r 6= 0.

By de�nition, a moment condition is irrelevant if it fails to improve the e¢ ciency

of the GMM estimate based on the moment conditions in (2.1). The most obvious

example of the redundant moment conditions are those constructed by linear com-
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binations of the moment conditions in (2.1). The following remark presents more

examples.

Remark 2.3.2 Consider the following linear IV model

Yi = Xi�1;o +W
0
i�2;o + ui

Xi = Z1;i�1;o + Z
0
2;i�2;o +W

0
i�o + vi;

where Xi is an endogenous variable, Wi is a set of exogenous variables, Z1;i and

Z2;i are valid IVs for Xi and �1;o is a �xed nonzero real number. It is noticed in

Breusch, Qian, Schmidt and Wyhowski (1999) that if �2;o = 0, then adding the

moment conditions constructed using Z2;i into GMM estimation of �o = (�1;o; �2;o)

does not e¤ect the asymptotic variance-covariance matrix of the GMM estimate.

Thus in this case, if we use �Z2 to measure the information of the aforementioned

moment conditions, then �Z2 = 0. On the other hand, if Z2;i are weak IVs in the

sense of Staiger and Stock (1997), then �2;o = �2n�
1
2 where �2 is some nonzero �nite

constant vector. Under some regularity conditions, one can use similar arguments in

Hall, Inoue, Jana and Shin (2007) to show that �Z2 = O(n
� 1
2 ).

In the �nite samples, � r can be estimated by the largest eigenvalue �n;r of V arn;q�

V arn;q+r, where

V arn;q =

" 
1

n

nX
i=1

@gq(Zi;b�1st)
@�

!
Wq;n

 
1

n

nX
i=1

@gq(Zi;b�1st)
@�0

!#
;

b�1st and Wq;n are de�ned in (2.7) and V arn;q+r is de�ned similarly. The following

assumption is useful for deriving the asymptotic properties of �n;r.
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Assumption 2.3.1 (i) The following functional central limit theorem (FCLT) holds

sup
�2�

"
n�

1
2

nX
i=1

�
@gl(Zi; �)

@�
� E

�
@gl(Z; �)

@�

��#
= Op(1) (2.10)

for l = q; k; (ii) E
h
@g2(Z;�)
@�@�0

i
is continuous in the local neighborhood of �o and is �nite

at �o; (iii) Wn = Wo +Op(n
�1=2) where Wo = fE [	(�o)	0(�o)]g�1.

Assumption 2.3.1.(i) is a high-level condition, which can be veri�ed by apply-

ing the Donsker�s theorem in speci�c models. Assumption 2.3.1.(ii) imposes some

smoothness condition on the expectation of the second derivative of the moment

function g(Z; �). Assumption 2.3.1.(iii) imposes some restriction on the convergence

rate of the estimate of e¢ cient weighting matrix Wo. Let S to be the index set of

the moment conditions in (2.2). Let � j and �n;j be the theoretical and empirical

information measures of the j-th moment condition in (2.2) respectively.

Lemma 2.3.3 Under Assumption 1.3.1.(i)-(iii), 1.3.2.(i)-(iii) in chapter 1 and As-

sumption 2.3.1, we have �n;j = � j +Op(n�1=2) for any j 2 S.

From Lemma 2.3.3, we know that when the j-th moment condition in (2.2) is

irrelevant, the empirical information measure satis�es �n;j = Op(�n _n�1=2). That is

an important feature for constructing the new adaptive penalty, as illustrated in the

next subsection.

2.3.2 A New Adaptive Penalty

In the GMM shrinkage estimation de�ned in (2.5), the adaptive penalty controls

the level of penalization on each individual moment selection coe¢ cient. As illus-

trated in Section 2.2, a well designed adaptive penalty is the key element for the
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GMM shrinkage estimation achieving consistent moment selection. The usual adap-

tive Lasso penalty only takes the sparsity of the moment selection coe¢ cients into

account. As a result, the GMM adaptive Lasso estimation selects not only the valid

and relevant moment conditions, but also valid and irrelevant moment conditions

with probability approaching 1.

To ensure irrelevant moment conditions are not selected in the GMM shrinkage

estimation, we need to revise the adaptive penalty such that the penalty is large

only if the moment condition is valid and relevant, otherwise it should go to zero as

fast as possible. Based on the empirical information measure devised in the previous

subsection, we propose the following adaptive penalty

!�;j;n = �
!1
n;jjb�n;j;1stj�!2 for any j 2 S (2.11)

where the constants !1 and !2 satisfy (�n _ n)
�!1
2 n

!2
2 = o(1).

If the j-th moment condition in (2.2) is valid and relevant, then �n;j !p � j 6= 0

and b�n;j;1st = Op(n�1=2). Thus in this case, we have !�;j;n !p 1. Secondly, if the

j-th moment condition in (2.2) is invalid, then

!�;j;n = �
!1
n;jjb�n;j;1stj�!2 !p �

!1
j j�j;oj�!2 <1: (2.12)

Finally, if the j-th moment condition in (2.2) is valid and irrelevant, then

!�;j;n = (�n _ n)
�!1
2 n

!2
2

�
(�n _ n)1=2�n;j

�!1 jn1=2b�n;j;1stj�!2 !p 0: (2.13)

To sum up, the new adaptive penalty diverges to in�nity only if the related

moment condition is valid and relevant. Otherwise, it will be bounded or even

converge to zero. As illustrated in the next subsection, these properties are the key
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elements for the GMM shrinkage estimation being able to distinguish the relevant

and irrelevant moment conditions.

2.3.3 Consistent Moment Selection and Robust Estimation

Using the new adaptive penalty, we de�ne the new GMM shrinkage estimate as

(b��;n; b��;n) = argmin
(�;�)2��B

1

n

"
nX
i=1

�(Zi; �; �)

#0
Wn

"
nX
i=1

�(Zi; �; �)

#
+ n�n

kX
j=1

!�;j;n
���j�� :
(2.14)

From the discussion of the previous subsection, it is clear that when the tuning

parameter �n satis�es �n = o(1), the penalty function bP�n(�j) = �n!�;j;nj�jj trivially
satis�es Assumption 1.3.1.(iv) and Assumption 1.3.2.(iv). The following corollary can

be directly deduced from Lemma 1.3.3 in chapter 1.

Corollary 2.3.4 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) in chapter 1, and Assumption 2.3.1 are satis�ed. If the tuning parameter satis�es
p
n�n = O(1), then

(b��;n; b��;n) = (�o; �o) +Op(n� 1
2 ): (2.15)

Under Assumption 1.3.1.(i)-(iii), Assumption 1.3.2.(i)-(iii) in chapter 1 and As-

sumption 1.3.4, we can use (2.8) to deduce that

p
n(b�1st;n � �o)!d Mk	(�o) (2.16)

where Mk is de�ned in (2.9) and 	(�o) is de�ned in Assumption 1.3.4. Let S�;� be

the index set of the misspeci�ed or irrelevant moment conditions in (2.2), then by

de�nition Sc�;� is the index set of valid and relevant moment conditions. By de�nition,

S� � S�;� and Sc�;� � Sc�. Let rn = n
!2
2 , from Lemma 2.3.3 and (2.16), we can show
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that
!�;j;n
rn

= �!1n;jjn1=2b�n;j;1stj�!2 > 0 a:e: (2.17)

for any j 2 Sc�;�. Thus if the tuning parameter satis�es n
1+!2
2 �n ! 1 as n ! 1,

then Assumption 1.3.3.(ii) is satis�ed for any j 2 Sc�;�. Under Lemma 2.3.3 and

(2.16), if
p
n�n = o(1), we can show that

p
n�n!�;j;n =

p
n�n�

!1
n;jjb�n;j;1stj = op(1) (2.18)

for any j 2 S�, and

p
n�n!�;j;n =

p
n�n

�
(�n _ n)1=2�n;j

�!1
n
!2
2

(�n _ n)
!1
2 jn1=2b�n;j;1stj!2 = op(1) (2.19)

for any j 2 S�=S�;�. Results in (2.18) and (2.19) imply that Assumption 1.3.3.(i) is

satis�ed for any j 2 S�;�. Note the role that the empirical information measure plays

here. Without the empirical information measure �n;j, one can show that (2.17)

also holds with rn = n
!2
2 for all j 2 S�=S�;�. Thus, from Theorem 1.3.5, we know

that Pr
�b��;n;j = �o;j� ! 1 for all j 2 S�=S�;�. The empirical information measure

changes the asymptotic properties of b��;n;j (j 2 S�=S�;�), as we will see later in this
subsection. The following corollary is an immediate result of Theorem 1.3.5.

Corollary 2.3.5 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) in chapter 1 and Assumption 2.3.1 hold. If the tuning parameter �n satis�es

n
1+!2
2 �n !1 and

p
n�n = o(1), then we have

Pr
�b��;n;j = �o;j�! 1 as n!1 (2.20)

for all j 2 Sc�;�.
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Corollary 2.3.5 implies that the potentially valid and relevant moment conditions

in (2.2) are selected w.p.a.1. On the other hand, Corollary 2.3.4 implies that the

invalid moment conditions are not selected in the GMM shrinkage estimation w.p.a.1.

Thus, to show that the irrelevant moment conditions are not selected w.p.a.1, it is

su¢ cient to show that b��;n;j 6= 0 w.p.a.1 for any j 2 S�=S�;�. Such result can be

trivially proved if we can show that
p
nb��;n;j (j 2 S�=S�;�) has non-degenerated

limiting distribution.

Without loss of generality, we sort the moment conditions in (2.2) such that

�o = (�o;+; �o;� ;�; �o;�), where �o;+ 6= 0 are the moment selection coe¢ cients of

the misspeci�ed moment conditions, �o;� ;� = 0 are the moment selection coe¢ -

cients of the valid and irrelevant moment conditions and �o;� = 0 are the mo-

ment selection coe¢ cients of the valid and relevant moment conditions. Denote

�o;� ;S = (�o; �o;+; �o;� ;�) and accordingly b�n;� ;S = (b��;n; b�n;� ;+; b�n;� ;�) to be its GMM
shrinkage estimate. For any vector , we use d to denote its dimensionality.

Theorem 2.3.6 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) in chapter 1 and Assumption 2.3.1 hold. If the tuning parameter �n satis�es

n
1+!2
2 �n !1 and

p
n�n = o(1), then we have

p
n (b�n;� ;S � �o;� ;S)!d u

�
S�;� (2.21)

where u�S�;� is a d�o+d�o;++d�o;�;� dimensional random vector with joint N(0;M
�1
�;11)

distribution, M�;11 � @m(�o)
@��;S

Wo
@m(�o)
@�0�;S

and ��;S � (�; �+; ��;�).
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From Theorem 2.3.6, we see that
p
nb��;n;j (j 2 S�=S�;�) has asymptotic normal

distribution, which implies that

lim sup
n!1

Pr
�b��;n;j = 0; j 2 S�=S�;��

= lim sup
n!1

Pr
�p
nb��;n;j = 0; j 2 S�=S�;��

� Pr
�
u���;� = 0

�
= 0

where u���;� denotes the last dS�;��dS� elements of u
�
S�;� . Thus, we immediately have

the following result.

Corollary 2.3.7 Suppose that Assumption 1.3.1.(i)-(iii) and Assumption 1.3.2.(i)-

(iii) in Chapter 1 and Assumption 2.3.1 hold. If the tuning parameter �n satis�es

n
1+!2
2 �n !1 and

p
n�n = o(1), then we have

Pr
�b��;n;j 6= 0�! 1 as n!1 (2.22)

for all j 2 S�=S�;�.

Let Scn;�;� to be the index set of the zero components in b��;n. Combining the
results in Corollary 2.3.4, Corollary 2.3.5 and Corollary 2.3.7, we can deduce that

Pr
�
Scn;�;� = Sc�;�

�
! 1 as n!1 (2.23)

which implies that the valid and relevant moment conditions in (2.2) are consistently

selected w.p.a.1. From Theorem 2.3.6, we can use similar arguments in the proof of

Theorem 1.3.7 to show that the asymptotic variance-covariance matrix of the GMM

shrinkage estimate b��;n is determined by the moment conditions in (2.1) and the
valid and relevant moment conditions in (2.2). The asymptotic properties of GMM
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shrinkage estimate b��;n are not e¤ected by the misspeci�ed or irrelevant moment
conditions.

2.4 Simulation Studies

In this simulation study, the data are generated from the following linear IV model

Yi = Xi�o + ui; (2.24)

Xi = Z 01;i�1;o + Z
0
2;i�3;o + vi; (2.25)

where Yi is a scaler dependent variable, Xi is a scaler endogenous variable, Z 01;i =

(Z11;i; Z12;i) contains the IVs whose validity are assumed to be known, Z 02;i = (Z21;i; Z22;i)

is a set of potentially valid IVs, ui and vi are error terms which are correlated with

each other.

Suppose a econometrician speci�es the model

Yi = Xi�o + ui

with the moment conditions E [uiZ1;i] = 0 to identify and consistently estimate �o.

The potentially valid IVs in Z2;i are mixed with 4 invalid IVs F 01i = (F11;i; :::; F14;i) and

4 irrelevant IVs F 02i = (F21;i; :::; F24;i) to construct the following moment conditions

E
�
ui(Z

0
2;i; F

0
i )
� ?
= 0 (2.26)

where F 0i = (F
0
1i; F

0
2i).

To generate the simulated data, we �rst generate (Z1;i; Z 02;i; ui; vi; F
�
i ) from a

multivariate normal distribution with mean 0 and variance-covariance matrix �,
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where F �i = (F �1;i; :::; F
�
8;i), � = diag(�Z ;�u;v; I8), �Z is a 3 � 3 matrix with the

i; j-th element being 0:2ji�jj, �u;v is a 2 � 2 matrix with diagonal elements (0:5; 1)

and o¤-diagonal elements (0:6; 0:6), I8 is a 8� 8 identity matrix. Let cl to be some

value between 0 and 0:8 and l be a 1� 4 vector with the j-th (j = 1; :::; 4) element

being cl + (0:8� cl) � (j � 1)=3. The invalid IVs are generated in the following way

F 01j;i = F
�
j;i + ui � l for j = 1; :::4:

The irrelevant IVs F2i are simply F �j;i (j = 5; :::; 8).

It is clear that when cl is close to zero, the IV in F1;i with smallest index number

(i.e. F11;i) behaves more like valid IVs and it becomes more di¢ cult to distinguish

it from the potentially valid ones. We choose di¤erent values for cl (cl = 0:2 or 0:5)

to see how our method works in di¤erent scenarios. The parameters in the model

(2.24)-(2.25) take the following values

�o = 0:5, �01;o = (�11;o; 0:1) and �
0
3;o = (0:5; 0:5):

When �1;o is close to zero, Z1;i may contain weak information about the unknown

parameter �o, which may also e¤ect the performance of our method in moment

selections. In the simulation studies, we choose di¤erent values for �11;o (�11;o = 0:1 or

0:3) to see how our method is e¤ected by the signal strength of Z1;i.

For each speci�cation of (cl; �11;o), we use the simulated samples with sample sizes

n = 250 and 2500 respectively and for each sample size, 5,000 simulated samples are

drawn from the data generating mechanism. The penalty function with !1 = 2 and

!2 = 3 is used to construct the criterion of GMM shrinkage estimation. We use

the projected scaled sub-gradient method (active-set variant) method proposed in

Schmidt (2010) to solve the minimization problem in the GMM shrinkage estimation.
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Table 2.1 Performance of GMM Shrinkage Method in Moment Selection
�11;o = 0:1

n = 250 n = 2500
cl = 0:2 (.0112 .4908 .4866 .0114) (.0000 .9026 .0950 .0024)
cl = 0:5 (.0016 .4944 .4932 .0108) (.0000 .9028 .0946 .0026)

�11;o = 0:3
n = 250 n = 2500

cl = 0:2 (.0006 .6874 .1884 .1236) (.0000 .9602 .0278 .0120)
cl = 0:5 (.0000 .6888 .1878 .1234) (.0000 .9606 .0284 .0011)

Table 2.1: The four numbers in each bracket (from left to right) are the estimated
�nite sample probabilities of selecting subsets of moment conditions in the second
set from four di¤erent categories respectively. The �rst category includes the subsets
of moment conditions which contain at least one invalid moment condition. The
second category contains and only contains the subset of all potentially valid and
relevent moment conditions in the second set. The third category includes the subsets
which have all the valid and relevent moment conditions and do not have the invalid
moment conditions, but fail to rule out all irrelevent moment conditions in the second
set. The fourth category includes the rest of possible subsets of moment conditions
from the second set. The �nite sample probabilities are computed based on 5,000
replications.

Table 2.1 presents the �nite sample probabilities of the GMM shrinkage estima-

tion selecting di¤erent subsets of moment conditions from (2.2). The �rst number in

each bracket is the probability of any invalid IVs to be selected in the �nite samples.

The GMM shrinkage estimation does very well in ruling out the invalid IVs. Even in

the worst scenario that the signal strength of the IVs in Z1;i is weak (i.e. �11;o = 0:1)

and the sample size is small (i.e. n = 250), the probability that invalid moment

conditions are selected is only 0.011. We see that when the sample size is small and

the IVs in Z1;i are weak, the probability of selecting the valid and relevant moment

conditions is around 0.50. Given the small sample size, this probability increases

when the IVs in Z1;i becomes strong. When the sample size is small, the severity

of misspeci�cation plays some role in ruling out the invalid IVs. However, its e¤ect

is diminishing with the sample size growing. When the sample size is large (i.e.

n = 2500), the probabilities of selecting the valid and relevant moment conditions
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approach 1 in all scenarios. Of course, such phenomenon is predicted by the result

in (2.23).

Table 2.2 summarizes the �nite sample properties of the GMM shrinkage estimate

and various GMM estimates based on di¤erent sets of moment conditions. Compared

with the GMM estimate using only the known valid IVs (i.e. the conservative GMM

estimate in the table), the GMM shrinkage estimate enjoys smaller �nite sample bias

and at the same time, smaller standard error. In all of the scenarios we considered

in the simulation, the GMM shrinkage estimate dominates the conservative GMM

estimate. Compared with the GMM estimate using all valid moment conditions

including the irrelevant ones (i.e. the pooled GMM estimate in the table), the GMM

shrinkage estimate has smaller �nite sample bias, though when the sample size is

small (i.e. n = 250), its standard error is slightly larger than that of the pooled

GMM estimate. From Table 2.1, we see that the GMM shrinkage estimation rules

out the invalid and irrelevant moment conditions with large probability, as a result,

its estimate is robust to the �nite sample bias incurred by these moment conditions.

The pooled GMM estimate is not e¤ected by the invalid IVs, but it su¤ers from the

�nite sample bias caused by the irrelevant moment conditions. This explains why the

GMM shrinkage enjoys smaller �nite sample bias. Its standard error is slightly larger

when n = 250, because there is nontrivial probability that at least one of the valid

and relevant IVs in the second set are not selected in the GMM shrinkage estimation.

When the sample size increases, we see that the GMM shrinkage estimate and the

pooled GMM estimate have the same standard error, but the �nite sample bias of

the GMM shrinkage estimate remains to be smaller. The GMM shrinkage estimate

using all available IVs (i.e. the aggressive GMM estimate) is inconsistent and su¤ers

from large �nite sample bias, as illustrated in Table 2.2. Compared with the post-

shrinkage GMM estimate, it is interesting to see that the GMM shrinkage estimate
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has smaller bias, though its standard error is slightly large. The di¤erence between

these two estimates is very small even when the sample size is small. When the sample

size is large, it is clear that the GMM shrinkage estimate, the post-shrinkage GMM

estimate and the GMM estimate based all valid and relevant moment conditions

(i.e. the Oracle GMM estimate) are almost the same in terms of the �nite sample

properties.

2.5 Conclusion

This chapter studies the GMM shrinkage estimation with `-1 type of penalty func-

tions, which includes the GMM Lasso/adaptive Lasso estimation as special examples.

We show that the GMM Lasso estimation is conservative in moment selection, which

means that with the sample size approaching in�nity, the misspeci�ed moment condi-

tions are not selected with probability approaching 1 and the valid moment conditions

are selected with probability strictly less than 1. The similar result is established for

the GMM adaptive Lasso estimation, when the tuning parameter converges to zero

fast enough (i.e. n
1+!
2 �n = O(1)). Both the consistent moment selection procedures

proposed in chapter 1 and the conservative moment selection methods presented

in this chapter can not distinguish the relevant moment conditions from the irrele-

vant moment conditions. However, the key di¤erence between the GMM Lasso and

GMM adaptive Lasso estimations gives us the inspiration for designing a new adap-

tive penalty based on which, the GMM shrinkage estimation can consistently select

the valid and relevant moment conditions from (2.2).

The new adaptive penalty depends on the measure of information contained in

the moment conditions. We show that such information measure can be consistently

estimated and its estimate is called as empirical information measure. The new
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adaptive penalty is constructed as the product of a power function of the empiri-

cal information measure and the adaptive Lasso penalty. We show that the GMM

shrinkage estimation based on the new adaptive penalty is consistent in selecting the

valid and relevant moment conditions. As a result, the misspeci�ed and irrelevant

moment conditions are not selected with probability approaching 1 and the GMM

shrinkage estimate is not only asymptotically e¢ cient, but also robust against the

irrelevant moment conditions in �nite samples.

2.6 Appendix

2.6.1 Proof of the Main Result in Section 2.2

Proof of Proposition 2.2.2. Denote

VL;n(u) =

"
n�

1
2

nX
i=1

�(Zi; �o +
up
n
)

#0
Wn

"
n�

1
2

nX
i=1

�(Zi; �o +
up
n
)

#

�
"
n�

1
2

nX
i=1

�(Zi; �o)

#0
Wn

"
n�

1
2

nX
i=1

�(Zi; �o)

#

+n�n

kX
j=1

�
j�j;o + n�

1
2u�j j � j�j;oj

�
� V �n (u) + n�n

kX
j=1

�
j�j;o + n�

1
2u�j j � j�j;oj

�
; (2.27)

then by de�nition, u��;n =
p
n(b�n � �o) and u��;n = p

n(b�n � �o) constitute the
minimizer u�0n = (u

�0
�;n; u

�0
�;n) of VL;n(u).

Using the similar arguments in the proof of Theorem 1.3.6 in Chapter 1, we can

show that

V �n (u)!d V
�(u) � u0Mu+ 2u0

�
@m(�o)

@�

�
Wo	(�o) (2.28)
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uniformly in u 2 K, where K denotes any compact subset in Rd�+k. If �j;o = 0, then

n�n

�
j�j;o + n�

1
2u�j j � j�j;oj

�
! �o

���u�j ��� (2.29)

uniformly in u�j . On the other hand, if �j;o 6= 0, then

n�n

�
j�j;o + n�

1
2u�j j � j�j;oj

�
! �osgn(�j;o)u�j (2.30)

uniformly in u�j . From the results in (2.27)-(2.30), we can deduce that

VL;n(u)!d V
�(u) + �o

�X
j2S�

sgn(�j;o)u�j +
X

j2Sc�
ju�j j

�
: (2.31)

From the root-n consistency of (b�n; b�n), we know that u��;n and u��;n are asymptotically
tight. The claimed result now follows by the argmax continuous mapping theorem

(ACMT).

Proof of Proposition 2.2.3. First note that

Pr
�b�j;n = 0, 8j 2 Sc�� = Pr�pn(b�j;n � �j;o) = 0, 8j 2 Sc�� : (2.32)

Using the weak convergence result in Proposition 2.2.2,

lim sup
n!1

Pr
�p
n(b�j;n � �j;o) = 0, 8j 2 Sc�� � Pr�u��j = 0, 8j 2 Sc�� : (2.33)

When �o = 0, u� = �M�1
h
@m(�o)
@�

i
Wo	(�o) is a continuous random vector and

thus Pr
�
u��j = 0, 8j 2 S

c
�

�
= 0. We next consider the case that �o > 0. For the ease

of the notation, we use MSS to denote the leading (d� + d�+)� (d� + d�+) submatrix

of M , MScS to denote the left-lower d�� � (d� + d�+) submatrix of M , u�S and u�Sc

to denote the �rst d� + d�+ and last d�� element of u
�. Conditional on the event
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fb�j;n = 0; j 2 Sc�g, we have the following optimality condition for u�
MSSu

�
S +	m;S(�o) = ��osgn(�S)

2
componentwise

jMScSu
�
S +	m;Sc(�o)j �

�o
2

componentwise,

where 	m;S(�o) =
h
@m(�o)
@�

Wo

i
(S)	(�o) and

h
@m(�o)
@�

Wo

i
(S) denotes the S-th row of

the matrix @m(�o)
@�

Wo. From the above two conditions, we can deduce that

����MScSM
�1
SS

�
	m;S(�o) + �o

sgn(�S)

2

�
�	m;Sc(�o)

���� � �o
2
componentwise.

Hence there exists some constant c(�o) 2 (0; 1) such that

0 < Pr

�����MScSM
�1
SS

�
	m;S(�o) + �o

sgn(�S)

2

�
�	m;Sc(�o)

���� � �o
2

�
� c(�o)

which �nishes the proof.

Proof of Proposition 2.2.4. Denote

VAL;n(u) = V
�
n (u) + n�n

kX
j=1

j�j;o + n�
1
2u�j j � j�j;oj

jb�j;1stj! ; (2.34)

where V �n (u) is de�ned in the proof of proposition 2.2.2, u
0 = (u0�; u

0
�), u� and u� are

d� and d� dimensional real vectors respectively. By de�nition, u��;n =
p
n(b�n � �o)

and u��;n =
p
n(b�n � �o) constitute the minimizer of VAL;n(u).

If �j;o = 0, then

n�n
j�j;o + n�

1
2u�j j � j�j;oj

jb�j;1stj! =
n
1+!
2 �nju�j j

j
p
n(b�j;1st � �j;o)j! !d

��

���u�j ���
jMk(j)	(�o)j!

(2.35)
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uniformly in u�j . On the other hand, if �j;o 6= 0, then

n�n
j�j;o + n�

1
2u�j j � j�j;oj

jb�j;1stj! !p 0 (2.36)

uniformly in u�j . In the proof of Proposition 2.2.2, we have shown that V
�
n (u) !d

V �(u) uniformly in u 2 K for any compact subset K 2 Rd�+k . From the results in

(2.34), (2.35) and (2.36), we can deduce that

VAL;n(u)!d V
�(u) + ��

X
j2Sc�

ju�j j
jMk(j)	(�o)j!

:

Now the claimed result follows from the ACMT.

2.6.2 Proof of the Main Result in Section 2.3

Proof of Lemma 2.3.3. First note that under Assumption 1.3.1.(i)-(iii) and

Assumption 1.3.2.(i)-(iii), it is tedious to show that b�1st;n = �o +Op(n�1=2).
jV arn;q+j � V arq+jj

=

����� 1n
nX
i=1

(
@gq+j(Zi;b�1st)

@�
� E

"
@gq+j(Zi;b�1st)

@�

#)
Wq+j;n

"
1

n

nX
i=1

@gq+j(Zi;b�1st)
@�

#�����
+

�����E
"
@gq+r(Zi;b�1st)

@�

#
(Wq+j;n �Wq+j;o)

"
1

n

nX
i=1

@gq(Zi;b�1st)
@�

#�����
+

�����E
"
@gq+r(Zi;b�1st)

@�

#
Wq+j;o

(
1

n

nX
i=1

(
@gq+j(Zi;b�1st)

@�
� E

"
@gq+j(Zi;b�1st)

@�

#))�����
+2

�����E
"
@2gq+r(Zi;e�n)

@�@�0

#
Wq+j;oE

"
@gq+j(Zi;b�1st)

@�

#����� (b�1st;n � �o) (2.37)

where e�n lies between b�1st and �o. From the decomposition in (2.37), we can apply

Assumption 2.3.1 and b�1st;n = �o + Op(n�1=2) to deduce that jV arn;q+j � V arq+jj =
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Op(n
�1=2). As � j and �n;j are the largest eigenvalues of V arq+j and V arn;q+j respec-

tively, we can invoke the Bauer-Fiker Theorem on eigenvalue sensitivity to deduce

that �n;j = � j +Op(n�1=2).

Proof of Theorem 2.3.6. For any compact subset K in Rd�+dS�;� , we denote any

element u�;S 2 K as u�;S = (u�; u�+ ; u��;�), where u� contains the �rst d� elements

in u�;S and (u�+ ; u��;�) contains the last dS�;� elements in u�;S . Denote

V2;n(u�;S) =
1

n

"
nX
i=1

�s(Zi; �o;� ;S +
u�;Sp
n
)

#0
Wn

"
nX
i=1

�s(Zi; �o;� ;S +
u�;Sp
n
)

#

�
"
n�

1
2

nX
i=1

�(Zi; �o)

#0
Wn

"
n�

1
2

nX
i=1

�(Zi; �o)

#
+n�n

X
j2S�;�

!�;j;n
����o;j + n�1=2u�;j��� ���o;j���

� V �2;n(u�;S) + n�n
X
j2S�;�

!�;j;n
����o;j + n�1=2u�;j��� ���o;j��� (2.38)

where �s(Zi; �o;� ;S +
u�;Sp
n
) = �(Zi; �o +

u�p
n
; �o;+ +

u�+p
n
; �o;� ;� +

u��;�p
n
; �o;�). From

Theorem 2.3.6, we know that b�n;� = 0 w.p.a.1. Thus
p
n (b�n;� ;S � �o;� ;S) is the

minimizer of V2;n(u�;S) w.p.a.1.

Using similar arguments to those in the proof of Theorem 1.3.5, we can show that

V �2;n(u�;S) = u
0
�;SM�;11u�;S + 2u

0
�;S

�
@m(�o)

@��;S

�
Wo	(�o) + op(1): (2.39)

If j 2 S�, then by (2.12)

n�n!�;j;n
����o;j + n�1=2u�;j��� ���o;j��� = pn�n!�;j;nu�;j + o(1) = op(1) (2.40)
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uniformly in u�;j. On the other hand, if j 2 S�nS�;�, then by (2.13)

n�n!�;j;n
����o;j + n�1=2u�;j��� ���o;j��� = pn�n!�;j;nu�;j = op(1) (2.41)

uniformly in u�;j.

Using the results in (2.38), (2.39), (2.40) and (2.41) and triangle inequality, we

get

V2;n(u�;S)!d V2(u�;S) = u
0
�;SM�;11u�;S + 2u

0
�;S

�
@m(�o)

@��;S

�
Wo	(�o) (2.42)

in l1(K). It is clear that V2(u�;S) is uniquely minimized at

u�S�;� = �M
�1
�;11

�
@m(�o)

@��;S

�
Wo	(�o) (2.43)

By Corollary 2.3.4, there is

p
n (b�n;� ;S � �o;� ;S) = Op(1) (2.44)

Now, the asymptotic tightness of b�n;� ;S in (2.44), the uniform convergence in

distribution in (2.42) and unique minimization in (2.43) enable us to invoke the

ACMT to deduce that

p
n (b�n;� ;S � �o;� ;S)!d N(0;M

�1
�;11) (2.45)

where we use the assumption that Wo = E [	(�o)	
0(�o)]. This �nishes the proof.
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Chapter 3

Automated Estimation of Vector

Error Correction Models (joint

with Peter C. B. Phillips)

3.1 Introduction

Cointegrated system modeling is now one of the main workhorses in empirical time

series research. Much of this empirical research makes use of vector error correction

(VECM) formulations. While there is often some prior information concerning the

number of cointegrating vectors, most practical work involves (at least con�rma-

tory) pre-testing to determine the cointegrating rank of the system as well as the

lag order in the autoregressive component that embodies the transient dynamics.

These order selection decisions can be made by sequential likelihood ratio tests (e.g.

Johansen, 1988, for rank determination) or the application of suitable information

criteria (Phillips, 1996). The latter approach o¤ers several advantages such as joint

determination of the cointegrating rank and autoregressive order, consistent estima-
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tion of both order parameters (Chao and Phillips, 1999), robustness to heterogeneity

in the errors, and the convenience and generality of semi-parametric estimation in

cases where the focus is simply the cointegrating rank (Cheng and Phillips, 2010).

While appealing for practitioners, all of these methods are nonetheless subject to pre-

test bias and post model selection inferential problems (Leeb and Pötscher, 2005).

The present chapter explores a di¤erent approach. The goal is to liberate the em-

pirical researcher from sequential testing procedures in inference about cointegrated

systems and in policy work that relies on impulse responses. The ideas originate

in recent work on sparse system estimation using shrinkage techniques such as lasso

and bridge regression. These procedures utilize penalized least squares criteria in re-

gression that can succeed, at least asymptotically, in selecting the correct regressors

in a linear regression framework while consistently estimating the non-zero regres-

sion coe¢ cients. While apparently e¤ective asymptotically these procedures do not

avoid post model selection inference issues in �nite samples because the estimators

implicitly carry e¤ects from the implementation of shrinkage which can result in bias,

multimodal distributions and di¢ culty discriminating local alternatives that can lead

to unbounded risk (Leeb and Pötscher, 2008). On the other hand, the methods do

radically simplify empirical research with large dimensional systems where order pa-

rameters must be chosen and sparsity is expected.

One of the contributions of this chapter is to show how to develop adaptive ver-

sions of these shrinkage methods that apply in vector error correction modeling which

by their nature involve reduced rank coe¢ cient matrices and order parameters for

lag polynomials and trend speci�cations. The implementation of these methods is

not immediate. This is partly because of the nonlinearities involved in potential re-

duced rank structures and partly because of the interdependence of decision making

concerning the form of the transient dynamics and the cointegrating rank structure.
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This chapter designs a mechanism of estimation and selection that works through

the eigenvalues of the levels coe¢ cient matrix and the coe¢ cient matrices of the

transient dynamic components. The methods apply in quite general vector systems

with unknown cointegrating rank structure and unknown lag dynamics. They per-

mit simultaneous order estimation of the cointegrating rank and autoregressive order

in conjunction with oracle-like e¢ cient estimation of the cointegrating matrix and

transient dynamics. As such they o¤er considerable advantages to the practitioner:

in e¤ect, it becomes unnecessary to implement pre-testing procedures because the

empirical results reveal the order parameters as a consequence of the �tting proce-

dure. In this sense, the methods provide an automated approach to the estimation

of cointegrated systems. In the scalar case, the methods reduce to estimation in the

presence or absence of a unit root and thereby implement an implicit unit root test

procedure, as suggested in earlier work by Caner and Knight (2009).

This chapter is organized as follows. Section 3.2 lays out the model and assump-

tions and shows how to implement adaptive shrinkage methods in VECM systems.

Section 3.3 considers a simpli�ed �rst order version of the VECM without lagged dif-

ferences which reveals the approach to cointegrating rank selection and develops key

elements in the limit theory. Here we show that the cointegrating rank ro is identi�ed

by the number of zero eigenvalues of �o and the latter is consistently recovered by

suitably designed shrinkage estimation. Section 3.4 extends this system and its as-

ymptotics to the general case of cointegrated systems with weakly dependent errors.

Here it is demonstrated that the cointegration rank ro can be consistently selected

despite the fact that �o itself may not be consistently estimable. Section 3.5 deals

with the practically important case of a general VECM system driven by indepen-

dent identically distributed (iid) shocks, where shrinkage estimation simultaneously

performs consistent lag selection, cointegrating rank selection, and optimal estima-
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tion of the system coe¢ cients. Section 3.6 considers adaptive selection of the tuning

parameter and Section 3.7 reports some simulation �ndings. Section 3.8 concludes

and outlines some useful extensions of the methods and limit theory to other models.

Proofs and some supplementary technical results are given in the Appendix.

Notation is standard. For vector-valued, zero mean, covariance stationary sto-

chastic processes fatgt�1 and fbtgt�1, �ab(h) = E[atb
0
t+h] and �ab =

P1
h=0�ab(h)

denote the lag h autocovariance matrix and one-sided long-run covariance matrix.

Moreover, we use �ab for �ab(0) and �n;ab = n�1
Pn

t=1 atb
0
t as the sample average of

�ab throughout the chapter. k�k denotes the Euclidean norm on any Euclidean space

and jAj is the determinant of square matrix A. A0 refers to the transpose of any

matrix A and kAkB � jjA0BAjj for any matrices A and B. Ik and 0l1�l2 are used to

denote k � k identity matrix and l1 � l2 zero matrices respectively. A � B means

that A is de�ned as B; the expression an = op(bn) signi�es that Pr (jan=bnj � �)! 0

for all � > 0 as n go to in�nity; and an = Op(bn) when Pr (jan=bnj �M) ! 0 as n

and M go to in�nity. As usual, "!p" and "!d" imply convergence in probability

and convergence in distribution, respectively.

3.2 Vector Error Correction and Adaptive Shrink-

age

Throughout this chapter we consider the following parametric VECM representation

of a cointegrated system

�Yt = �oYt�1 +

pX
j=1

Bo;j�Yt�j + ut; (3.1)
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where �Yt = Yt � Yt�1; Yt is an m-dimensional vector-valued time series, �o = �o�0o

has rank 0 � ro � m, Bo;j (j = 1; :::; p) are m �m (transient) coe¢ cient matrices

and ut is an m-vector error term with mean zero and nonsingular covariance matrix

�uu. The rank ro of �o is an order parameter measuring the cointegrating rank or

the number of (long run) cointegrating relations in the system. The lag order p is a

second order parameter, characterizing the transient dynamics in the system.

As �o = �o�
0
o has rank ro, we can choose �o and �o to be m� ro matrices with

full rank. When ro = 0, we simply take �o = 0. Let �o;? and �o;? be the matrix

orthogonal complements of �o and �o and, without loss of generality, assume that

�0o;?�o;? = Im�ro and �
0
o;?�o;? = Im�ro .

Suppose �o 6= 0 and de�ne Q = [�o; �o?]
0 : In view of the well known relation

(e.g., Johansen, 1995)

�o(�
0
o�o)

�1�0o + �o;?(�
0
o;?�o;?)

�1�0o;? = Im;

it follows that Q�1 =
�
�o(�

0
o�o)

�1; �o;?(�
0
o;?�o;?)

�1�,
Q�o =

264 �0o�o�0o
0

375 and Q�oQ�1 =

264 �0o�o 0

0 0

375 : (3.2)

Under Assumption RR in Section 3.3, �0o�o is an invertible matrix and hence the

matrix �0o�o�
0
o has full rank. Cointegrating rank is the number ro of non-zero eigen-

values of �o or the nonzero row vector count of Q�o. When �o = 0, then the result

holds trivially with ro = 0 and �o;? = Im. The matrices �o? and �o;? are com-

posed of normalized left and right eigenvectors, respectively, corresponding to the

zero eigenvalues in �o.

Conventional methods of estimation of (3.1) include reduced rank regression or
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maximum likelihood based on the assumption of Gaussian ut and a Gaussian like-

lihood. This approach relies on known ro and known p; so implementation requires

preliminary order parameter estimation. The system can also be estimated by unre-

stricted fully modi�ed vector autoregression (Phillips, 1995), which leads to consis-

tent estimation of the unit roots in (3.1), the cointegrating vectors and the transient

dynamics. This method does not require knowledge of r0 but does require knowl-

edge of the lag order p: In addition, a semiparametric approach can be adopted in

which ro is estimated semiparametrically by order selection as in Cheng and Phillips

(2010) followed by fully modi�ed least squares regression to estimate the cointegrat-

ing matrix. This method achieves asymptotically e¢ cient estimation of the long run

relations (under Gaussianity) but does not estimate the transient relations.

The present chapter explores the estimation of the parameters of (3.1) by Lasso-

type regression, i.e. least squares (LS) regression with penalization. The resulting es-

timator is a shrinkage estimator. Speci�cally, the LS shrinkage estimator of (�o; Bo)

where Bo = (Bo;1; :::; Bo;p) is de�ned as

(b�n; bBn) = argmin
�;B1;:::;Bp2Rm�m

8<:
nX
t=1

�Yt � �Yt�1 �
pX
j=1

Bj�Yt�j


2

+

pX
j=1

n�b;j;n

jj bBj;1stjj! kBjk+
mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
)
; (3.3)

where ! > 0 is some constant, �b;j;n and �r;k;n (j = 1; :::; p and k = 1; :::;m) are

tuning parameters that directly control the penalization, jj�k(�)jj denotes the k-th

largest modulus of the eigenvalues f�k (�)g
m
k=1 of the matrix �

1, �n;k(�) is the

k-th row vector of Qn�, and Qn denotes the normalized left eigenvector matrix of

1Throughout this chapter, for any m�m matrix �, we order the eigenvalues of � in decreasing
order by their modulus, i.e. k�1 (�)k � k�2 (�)k � ::: � k�m (�)k. When there is a pair of complex
conjugate eigenvalues, we order the one with a positive imaginary part before the other.
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eigenvalues of b�1st: The matrices bBj;1st and b�1st are some �rst step (OLS) estimates
of Bo;j and �o (j = 1; :::; p).

Let �n denote the diagonal matrix with ordered eigenvalues of b�1st. By de�nition
Qnb�1st = �nQn, which implies that the Euclidean norm of the k-th row of Qnb�1st
equals the norm of the k-th ordered eigenvalue of b�1st. Hence the adaptive penalty
jj�k(b�1st)jj! in the penalized LS estimation is equivalent to jj�n;k(b�1st)jj! for k =
1; :::;m. Let Sn;� = fk : �n;k(b�n) 6= 0g be the index set of nonzero rows in Qnb�n.
Similarly, we index the zero rows in Qnb�n using the (constrained) set Scn;� = fk :

�n;k(b�n) = 0g. For any k 2 Scn;�, the k-th row ofQn is the normalized left eigenvector
of a zero eigenvalue of b�n. Given �n, our procedure delivers a one step estimator
of the model (3.1) with an implied estimate of the cointegrating rank (based on the

number of non-zero rows of Qnb�n) and an implied estimate of the transient dynamic
order p and transient dynamic structure (that is, the non zero elements of Bo) based

on the �tted value bBn.
Let �0(�o) = [�01(�o); :::;�

0
m(�o)] denote the row vectors of Q�o. When futgt�1

is iid or a martingale di¤erence sequence, the LS estimators (b�1st; bB1st) of (�o; Bo)
are well known to be consistent. The eigenvalues and corresponding eigenspace of �o

can also be consistently estimated. Thus it seems intuitively clear that some form of

adaptive penalization can be devised to consistently distinguish the zero and nonzero

components in Bo and �(�o). We show that the shrinkage LS estimator de�ned in

(3.3) enjoys these oracle-like properties, in the sense that the zero components in Bo

and �(�o) are estimated as zeros w.p.a.1. Thus, �o and the non-zero elements in

Bo are estimated as if the form of the true model were known and inferences can be

conducted as if we knew the true cointegration rank ro.

If the transient behavior of (3.1) is misspeci�ed and (for some given lag order p)

the error process futgt�1 is weakly dependent and ro > 0, then consistent estimators
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of the full matrix (�o; Bo) are typically unavailable without further assumptions.

However, the m � ro zero eigenvalues of �o can still be consistently estimated with

an order n convergence rate, while the remaining eigenvalues of �o are estimated

with asymptotic bias at a
p
n convergence rate. The di¤erent convergence rates

of the eigenvalues are important, because when the non-zero eigenvalues of �o are

occasionally (asymptotically) estimated as zeros, the di¤erent convergence rates are

useful in consistently distinguishing the zero eigenvalues from the biasedly estimated

non-zero eigenvalues of �o. Speci�cally, we show that if the estimator of some non-

zero eigenvalue of �o has probability limit zero under misspeci�cation of the lag

order, then this estimator will converge in probability to zero at the rate
p
n, while

estimates of the zero eigenvalues of �o all have convergence rate n. Hence the

adaptive penalties associated with estimates of zero eigenvalues of �o will diverge to

in�nity at a rate faster than those of estimates of the nonzero eigenvalues of �o, even

though the latter also converge to zero in probability. As we have prior knowledge

about these di¤erent divergence rates in a potentially cointegrated system, we can

impose explicit conditions on the convergence rate of the tuning parameter to ensure

that only m� ro zero eigenvalues are adaptively shrunk to zero in �nite samples.

For the empirical implementation of our approach, we provide data-driven proce-

dures for selecting the tuning parameter of the penalty function in �nite samples. For

practical purposes our method is executed in the following steps, which are explained

and demonstrated in detail as the chapter progresses.

(1) After preliminary LS estimation of the system, perform a �rst step GLS

shrinkage estimation with tuning parameters ! = 2 and �r;k;n = �b;j;n = 2
n
log(n) for

j = 1; :::; p and k = 1; :::;m.

(2) Construct adaptive tuning parameters using the �rst step GLS shrinkage

estimates and the formulas in (3.85) and (3.86).

114



(3) Using the adaptive tuning parameters, obtain the GLS shrinkage estimator

(b�g;n; bBg;n) of (�o; Bo).
(4) The cointegration rank selected by the shrinkage method is implied by the rank

of the shrinkage estimator b�g;n and the lagged di¤erences selected by the shrinkage
method are implied by the nonzero matrices in bBg;n.
(5) The GLS shrinkage estimator contains shrinkage bias introduced by the

penalty on the nonzero eigenvalues of b�g;n and nonzero matrices in bBg;n. To re-
move this bias, run a reduced rank regression based on the cointegration rank and

the model selected in the GLS shrinkage estimation in step (iv).

3.3 First Order VECM Estimation

This section considers the following simpli�ed �rst order version of (3.1),

�Yt = �oYt�1 + ut = �o�
0
oYt�1 + ut: (3.4)

The model contains no deterministic trend and no lagged di¤erences. Our focus in

this simpli�ed system is to outline the approach to cointegrating rank selection and

develop key elements in the limit theory, showing consistency in rank selection and

reduced rank coe¢ cient matrix estimation. The theory is extended in subsequent

sections to models of the form (3.1).

We start with the following condition on the innovation ut.

Assumption 3.3.1 (WN) futgt�1 is an m-dimensional iid process with zero mean

and nonsingular covariance matrix 
u.

Assumption 3.3.1 ensures that the full parameter matrix �o is consistently es-

timable in this simpli�ed system. The iid condition could, of course, be weakened to
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martingale di¤erences with no material changes in what follows. Under Assumption

3.3.1, partial sums of ut satisfy the functional law

n�
1
2

[n�]X
t=1

ut !d Bu(�); (3.5)

where Bu(�) is vector Brownian motion with variance matrix 
u.

Assumption 3.3.2 (RR) (i) The determinantal equation jI � (I +�o)�j = 0 has

roots on or outside the unit circle; (ii) the matrix �o has rank ro, with 0 � ro � m;

(iii) if ro > 0, then the matrix R = Iro + �
0
o�o has eigenvalues within the unit circle.

Let S� = fk : �k(�o) 6= 0g be the index set of nonzero rows of Q�o and similarly

Sc� = fk : �k(�o) = 0g denote the index set of zero rows of Q�o. By the property of

Q, we know that S� = f1; :::; rog and Sc� = fro + 1; :::;mg. It follows that consistent

selection of the rank of �o is equivalent to the consistent recovery of the zero rows

in �(�o) = Q�o.

Using the matrix Q, (3.4) transforms as

�Zt = �oZt�1 + wt; (3.6)

where

Zt =

0B@ �0oYt

�0o;?Yt

1CA �

0B@ Z1;t

Z2;t

1CA ; wt =
0B@ �0out

�0o;?ut

1CA �

0B@ w1;t

w2;t

1CA
and �o = Q�oQ

�1. Assumption 3.3.2 leads to the following Wold representation

for Z1;t

Z1;t = �
0
oYt =

1X
i=0

Ri�0out�i = R(L)�
0
out; (3.7)
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and the partial sum Granger representation,

Yt = C
tX
s=1

us + �o(�
0
o�o)

�1R(L)�0out + CY0; (3.8)

where C = �o;?(�
0
o;?�o;?)

�1�0o;?. Under Assumption 3.3.2 and (3.5), we have the

functional law

n�
1
2

[n�]X
t=1

wt !d Bw(�) = QBu (�) =

264 �0oBu (�)

�0o;?Bu (�)

375 �
264 Bw1 (�)
Bw2 (�)

375
for wt = Qut; so that

n�
1
2

[n�]X
t=1

Z1;t = n
� 1
2

[n�]X
t=1

�0oYt !d �(�0o�o)�1Bw1(�); (3.9)

since R (1) =
P1

i=0R
i = (I �R)�1 = �(�0o�o)�1: Also

n�1
nX
t=1

Z1;t�1Z
0
1;t�1 = n

�1
nX
t=1

�0oYt�1Y
0
t�1�o !p �z1z1 ;

where �z1z1 � V ar [�0oYt] =
P1

i=0R
i�0o
u�oR

i0:

The shrinkage LS estimator b�n of �o is de�ned as
b�n = argmin

�2Rm�m

nX
t=1

k�Yt � �Yt�1k2 + n
Xm

k=1
�r;k;n k�n;k(�)k =jj�k(b�1st)jj!: (3.10)

The unrestricted LS estimator b�1st of �o is
b�1st = argmin

�2Rm�m

nX
t=1

k�Yt � �Yt�1k2 =
 

nX
t=1

�YtY
0
t�1

! 
nX
t=1

Yt�1Y
0
t�1

!�1
: (3.11)

The asymptotic properties of b�1st and its eigenvalues are described in the following
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result.

Lemma 3.3.1 Under Assumptions 3.3.1 and 3.3.2, we have:

(a) de�ne Dn = diag(n
� 1
2 Iro ; n

�1Im�ro), then b�1st satis�es
�b�1st � �o�Q�1D�1

n !d (Bm;1; Bm;2) (3.12)

where Bm;1 � N(0;
u 
 ��1z1z1) and Bm;2 �
R
dBuB

0
w2
(
R
Bw2B

0
w2
)�1;

(b) the eigenvalues of b�1st satisfy �k(b�1st)!p �k(�o) for k = 1; :::;m;

(c) the last m� ro eigenvalues of b�1st satisfy
n
�
�1(b�1st); :::; �m�ro(b�1st)�!d

�e�o;1; :::; e�o;m�ro� ; (3.13)

where the e�o;j (j = 1; :::;m�ro) are solutions of the following determinantal equation
������Im�r0 �

�Z
dBw2B

0
w2

��Z
Bw2B

0
w2

��1����� = 0: (3.14)

The results of Lemma 3.3.1 are useful because the OLS estimate b�1st and the re-
lated eigenvalue estimates can be used as �rst step estimates in the penalty function.

The convergence rates of b�1st and �k(b�1st) are important for delivering consistent
model selection and cointegrated rank selection.

Let Pn be the inverse of Qn. We divide Pn and Qn as Pn = [P�;n; P�?;n] and

Q0n =
�
Q0�;n; Q

0
�?;n

�
, where Q�;n and P�;n are the �rst ro rows of Qn and �rst ro

columns of Pn respectively (Q�?;n and P�?;n are de�ned accordingly). By de�nition,

Q�?;nP�?;n = Im�ro , Q�;nP�?;n = 0ro�(m�ro) and Q�?;nb�1st = ��?;nQ�?;n (3.15)

where ��?;n is an diagonal matrix with the ordered last (smallest) m�ro eigenvalues
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of b�1st. Using the results in (3.15), we can de�ne a useful estimator of �o as
�n;f = b�1st � P�?;n��?;nQ�?;n: (3.16)

By de�nition

Q�;n�n;f = Q�;nb�1st �Q�;nP�?;n��?;nQ�?;n = ��;nQ�;n (3.17)

where ��;n is an diagonal matrix with the ordered �rst (largest) ro eigenvalues ofb�1st, and more importantly
Q�?;n�n;f = Q�?;n

b�1st �Q�?;nP�?;n��?;nQ�?;n = 0(m�ro)�m: (3.18)

From Lemma 3.3.1.(b), (3.17) and (3.18), we can deduce that Q�;n�n;f is a ro �m

matrix which is nonzero w.p.a.1 and Q�?;n�n;f is always a (m� ro)�m zero matrix

for all n. Moreover

�n;f � �o = (b�1st � �o)� P�?;n��?;nQ�?;n
and so under Lemma 3.3.1.(a) and (c),

(�n;f � �o)Q�1D�1
n = Op(1): (3.19)

Thus the estimator �n;f is at least as good as the OLS estimator b�1st in terms of
its rate of convergence. Using (3.19) we can compare the LS shrinkage estimator b�n
with �n;f to establish the consistency and convergence rate of b�n.
Theorem 3.3.2 (Consistency) Suppose Assumptions WN and RR are satis�ed.
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If �r;k;n = o(1) for all k 2 S�, then the shrinkage LS estimator b�n is consistent, i.e.b�n � �o = op(1).
When consistent shrinkage estimators are considered, Theorem 3.3.2 extends The-

orem 1 of Caner and Knight (2009) who used shrinkage techniques to perform a unit

root test. As the eigenvalues �k(�) of the matrix � are continuous functions of �, we

deduce from the consistency of b�n and continuous mapping that �k(b�n)!p �k(�o)

for all k = 1; :::;m. Theorem 3.3.2 implies that the nonzero eigenvalues of �o are

estimated as non-zeros, which means that the rank of �o will not be under-selected.

However, consistency of the estimates of the non-zero eigenvalues is not necessary

for consistent cointegration rank selection. In that case what is essential is that the

probability limits of the estimates of those (non-zero) eigenvalues are not zeros or

at least that their convergence rates are slower than those of estimates of the zero

eigenvalues. This point will be pursued in the following section where it is demon-

strated that consistent estimation of the cointegrating rank continues to hold for

weakly dependent innovations futgt�1 even though full consistency of b�n does not
generally apply in that case.

Our next result gives the convergence rate of the shrinkage estimator b�n.
Theorem 3.3.3 (Rate of Convergence) Let �r;n = maxk2S�

n
�r;k;njj�k(b�1st)jj�!o.

Under Assumption WN, RR and �r;k;n = o(1) for all k 2 S�, the shrinkage LS esti-

mator b�n satis�es the following:
(a) if ro = 0, then b�n � �o = Op(n�1 + n�1�r;n);
(b) if 0 < ro � m, then

�b�n � �o�Q�1D�1
n = Op(1 + n

1
2 �r;n).

The term �r;n represents the shrinkage bias that the penalty function introduces

to the LS shrinkage estimator. If the convergence rate of �r;k;n (k 2 S�) is fast enough

such that n
1
2 �r;n = Op(1), then Theorem 3.3.3 implies that b�n��o = Op(n�1) when
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ro = 0 and
�b�n � �o�Q�1D�1

n = Op(1) otherwise. Hence, under Assumption WN,

RR and n
1
2 �r;n = Op(1), the LS shrinkage estimator b�n has the same stochastic

properties of the LS estimator b�1st. However, we next show that if the tuning

parameter �r;k;n (k 2 Sc�) does not converge to zero too fast, then the correct rank

restriction r = ro is automatically imposed on the LS shrinkage estimator b�n w.p.a.1.
Recall that Sn;� is the index set of the nonzero rows of Qnb�n and Scn;� is the index

set of the zero rows of Qnb�n. Under Lemma 3.3.1 and Theorem 3.3.2

Q�;nb�n = Q�;nb�1st + op(1) (3.20)

which means that the �rst ro rows of Qnb�n are nonzero w.p.a.1. On the other hand,
Lemma 3.3.1 and Theorem 3.3.2 imply that

Q�?;n
b�n = Q�?;nb�1st + op(1) = ��?;nQ�?;n + op(1) = op(1) (3.21)

which means that the last m � ro rows of Qnb�n are arbitrarily close to zero with
w.p.a.1. Under (3.20) we deduce that S� � Sn;�. However, (3.21) is insu¢ cient for

showing that Sc� � Scn;�, because in that case, what we need to show is Q�?;nb�n = 0
w.p.a.1.

Theorem 3.3.4 (Super-e¢ ciency) Suppose that the conditions of Theorem 3.3.3

are satis�ed. If n
1
2 �r;n = Op(1) and n!�r;k;n !1 for k 2 Sc�, then

Pr
�
Q�?;n

b�n = 0�! 1 as n!1: (3.22)

Combining Theorem 3.3.2 and Theorem 3.3.4, we deduce that

Pr (Sn;� = S�)! 1; (3.23)
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which implies consistent cointegration rank selection, giving the following result.

Corollary 3.3.5 Under the conditions of Theorem 3.3.4, we have

Pr
�
r(b�n) = ro�! 1 (3.24)

as n!1, where r(b�n) denotes the rank of b�n.
FromCorollary 3.3.5, we can deduce that the rank constraint r(�) = ro is imposed

on the LS shrinkage estimator b�n w.p.a.1. As b�n satis�es the rank constraint w.p.a.1,
we expect it has better properties in comparison to the OLS estimator b�1st which
assumes the true rank is unknown. This conjecture is con�rmed in the following

theorem.

Theorem 3.3.6 (Limiting Distribution) Under the conditions of Theorem 3.3.4

and n
1
2 �r;n = op(1), we have

�b�n � �o�Q�1D�1
n !d

�
Bm;1 �o(�

0
o�o)

�1�0oBm;2

�
(3.25)

where Bm;1 and Bm;2 are de�ned in Lemma 3.3.1.(a).

From (3.25) and the continuous mapping theorem (CMT),

Q
�b�n � �o�Q�1D�1

n !d

0B@ �0oBm;1 �0o�o(�
0
o�o)

�1�0oBm;2

�0o;?Bm;1 0

1CA : (3.26)

Similarly, from Lemma 3.3.1.(a) and CMT

Q
�b�1st � �o�Q�1D�1

n !d

0B@ �0oBm;1 �0oBm;2

�0o;?Bm;1 �0o;?Bm;2

1CA : (3.27)
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Compared with the OLS estimator, we see that in the LS shrinkage estimation, the

right lower (m � ro) � (m � ro) submatrix of Q�oQ�1 is estimated at a faster rate

than n. The improved property of the LS shrinkage estimator b�n arises from the

fact that the correct rank restriction r(b�n) = ro is satis�ed w.p.a.1, leading to the
lower right zero block in the limit distribution (3.25) after normalization.

Compared with the oracle reduced rank regression (RRR) estimator (i.e. the

RRR estimator informed by knowledge of the true rank, see e.g. Phillips, 1998

and Anderson, 2002), the LS shrinkage estimator su¤ers from second order bias in

the limit distribution (3.25), which is evident in the endogeneity bias of the factorR
dBuB

0
w2
in the limit matrix Bm;2. Accordingly, to remove the endogeneity bias we

introduce the generalized least square (GLS) shrinkage estimator b�g;n which satis�es
the weighted extremum problem

b�g;n = argmin
�2Rm�m

nX
t=1

k�Yt � �Yt�1k2b
�1u;n + n
mX
k=1

�r;k;njj�n;k(�)jj
jj�k(b�1st)jj! ; (3.28)

where b
u;n is some consistent estimator of 
u. The asymptotic distribution of b�g;n
is the same as that of the oracle RRR estimator.

Corollary 3.3.7 (Oracle Properties) Suppose Assumption 3.3.1 and 3.3.2 hold.

If b
u;n !p 
u and the tuning parameter satis�es n
1
2�r;k;n = o(1) and n!�r;k;n ! 1

for k = 1; :::;m, then as n!1,

Pr
�
r(b�g;n) = ro�! 1 (3.29)
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and b�g;n has limit distribution
�b�g;n � �o�Q�1D�1

n !d

�
Bm;1 �o(�

0
o�o)

�1 R dBu�w2B0w2(R Bw2B0w2)�1
�
;

(3.30)

where Bu�w2 � Bu � �uw2��1w2w2Bw2.

From (3.30), we can invoke CMT to deduce that

Q
�b�g;n � �o�Q�1D�1

n !d

0B@ �0oBm;1
R
dBu�w2B

0
w2
(
R
Bw2B

0
w2
)�1

�0o;?Bm;1 0

1CA (3.31)

which implies that the GLS shrinkage estimate b�g;n has the same limiting distribution
as that of the oracle RRR estimator.

Remark 3.3.8 In the triangular representation of a cointegration system studied

in Phillips (1991), we have �o = [Iro ; 0ro�(m�ro)]
0, �o = [�Iro ; Oo]0 and w2 = u2.

Moreover, we obtain

�o =

0B@ �Iro Oo

0 0m�ro

1CA , Q =
0B@ �Iro Oo

0 Im�ro

1CA and Q�1 =

0B@ �Iro Oo

0 Im�ro

1CA :
By the consistent rank selection, the GLS shrinkage estimator b�g;n can be decomposed
as b�g;nb�0g;n w.p.a.1, where b�g;n � [ bA0g;n; bB0g;n]0 is the �rst ro columns of b�g;n andb�g;n = [�Iro ; bOg;n]0. From Corollary 3.3.7, we deduce that

p
n
� bAg;n � Iro�!d N(0;
u1 
 ��1z1z1) (3.32)

and

n bAg;n � bOg;n �Oo�!d

Z
dBu1�2B

0
u2

�Z
Bu2B

0
u2

��1
(3.33)

124



where Bu1 and Bu2 denotes the �rst ro and last m � ro vectors of Bu; and Bu1�2 =

Bu1 � 
u;12
�1u;22Bu2. Under (3.32), (3.33) and CMT, we deduce that

n
� bOg;n �Oo�!d

Z
dBu1�2B

0
u2

�Z
Bu2B

0
u2

��1
: (3.34)

From the results in (3.34), we can see that the GLS estimator bOg;n of the cointegration
matrix Oo is asymptotically equivalent to the maximum likelihood estimator studied

in Phillips (1991) and has the usual mixed normal limit distribution, facilitating

inference.

3.4 Extension I: VECM Estimation with Weakly

Dependent Innovations

In this section, we study shrinkage reduced rank estimation in a scenario where the

equation innovations futgt�1 are weakly dependent. Speci�cally, we assume that

futgt�1 is generated by a linear process satisfying the following condition.

Assumption 3.4.1 (LP) Let D(L) =
P1

j=0DjL
j, where D0 = Im and D(1) has

full rank. Let ut have the Wold representation

ut = D(L)"t =

1X
j=0

Dj"t�j, with
1X
j=0

j
1
2 jjDjjj <1; (3.35)

where "t is iid (0;�"") with �"" positive de�nite and �nite fourth moments.

Denote the long-run variance of futgt�1 as 
u =
P1

h=�1�uu(h). From the Wold

representation in (3.35), we have 
u = D(1)�""D(1)0, which is positive de�nite be-

cause D(1) has full rank and �"" is positive de�nite. The fourth moment assumption
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is needed for the limit distribution of sample autocovariances in the case of misspec-

i�ed transient dynamics.

The following lemma is useful in establishing the asymptotic properties of the

shrinkage estimator with weakly dependent innovations.

Lemma 3.4.1 Under Assumption 3.3.2 and 3.4.1, (a)-(c) and (e) of Lemma 3.9.1

are unchanged, while Lemma 3.9.1.(d) becomes

n�
1
2

nX
t=1

�
utZ

0
1;t�1 � �uz1(1)

�
!d N(0; Vuz1); (3.36)

where �uz1(1) =
P1

j=0�uu(j)�o (R
j)
0
<1 and Vuz1 is the long run variance matrix

of ut 
 Z1;t�1:

As expected, under general weak dependence assumptions on ut; the simple re-

duced rank regression models (3.1) and (3.4) are susceptible to the e¤ects of potential

misspeci�cation in the transient dynamics. These e¤ects bear on the stationary com-

ponents in the system. In particular, due to the centering term �uz1(1) in (3.36),

both the OLS estimator b�1st and the shrinkage estimator b�n are asymptotically
biased. Speci�cally, we show that b�1st has the following probability limit,

b�1st !p �1 � Q�1HoQ+�o; (3.37)

where Ho = Q
�
�uz1(1)�

�1
z1z1
; 0m�(m�ro)

�
. Note that

Q�1HoQ+�o =
�
�o + �uz1(1)�

�1
z1z1

�
�0o = e�o�0o; (3.38)

which implies that the asymptotic bias of the OLS estimator b�1st is introduced via
the bias in the pseudo true value limit e�o. Observe also that �1 = e�o�0o has rank at
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most equal to ro; the number of rows in �
0
o: Denote

bS12 =
nX
t=1

Z1;t�1Z
0
2;t�1

n
, S21 =

nX
t=1

Z2;t�1Z
0
1;t�1

n
,

bS11 =

nX
t=1

Z1;t�1Z
0
1;t�1

n
and bS22 = nX

t=1

Z2;t�1Z
0
2;t�1

n
.

The next Lemma presents some asymptotic properties of the bias in b�1st.
Lemma 3.4.2 Let Hn = nQ

�
�uz1(1);0m�(m�ro)

� �Pn
t=1 Zt�1Z

0
t�1
��1

and �1;n =

Q�1HnQ+�o: Then

(a) Hn converges in probability to Ho, i.e. Hn !p Ho;

(b) nQ�1HnQ�o? has limit distribution e�1�o?�0o?, where
e�1 = �uz1(1)��1z1z1(�0o�o)�1�Z dBw1B

0
w2
+ �w1w2

��Z
Bw2B

0
w2

��1
; (3.39)

(c)
p
nQ�1 (Hn �Ho)Q�o has the limit distribution e�2�o, where

e�2 = �uz1(1)��1z1z1N(0; Vz1z1)��1z1z1�0o (3.40)

and N(0; Vz1z1) denotes the matrix limit distribution of
p
n
�bS11 � �z1z1�.

Denote the rank of �1 by r1: Then, by virtue of the expression �1 = e�o�0o,
we have r1 � ro as indicated. Without loss of generality, we decompose �1 as

�1 = e�1e�01 where e�1 and e�1 arem�r1 matrixes with full rank. Denote the orthogonal
complements of e�1 and e�1 as e�1? and e�1? respectively. Similarly, we decompose e�1?
as e�1? = (e�?; �o?) where e�? is an m� (ro � r1) matrix. By the de�nition of �1, we
know that �o;? is the right eigenvectors of the zero eigenvalues of �1. Thus, e�1 lies
in some subspace of the space spanned by �o.
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Let [�1(b�1st); :::; �m(b�1st)] and [�1(�1); :::; �m(�1)] be the ordered eigenvalues ofb�1st and �1 respectively. The next lemma provides asymptotic properties of the OLS
estimate and its eigenvalues when the data is weakly dependent.

Lemma 3.4.3 Under Assumption 3.3.2 and 3.4.1, we have the following results:

(a) the OLS estimator b�1st satis�es
h
Q
�b�1st � �o�Q�1 �HniD�1

n = Op(1); (3.41)

(b) the eigenvalues of b�1st satisfy �k(b�1st)!p �k(�o) for k = 1; :::;m;

(c) the last m� ro ordered eigenvalues of b�1st satisfy
n[�ro+1(

b�1st); :::; �m(b�1st)]!d [e�0ro+1; :::; e�0m] (3.42)

where e�0j (j = ro + 1; :::;m) are the ordered solutions of
�����uIm�ro � �0o?

"�Z
dBuB

0
w2

��Z
Bw2B

0
w2

��1
�0o? +

e�1# �o?
����� = 0; (3.43)

(d) b�1st has ro � r1 eigenvalues satisfying
p
n[�r1+1(

b�1st); :::; �ro(b�1st)]!d [e�0r1+1; :::; e�0ro ] (3.44)

where e�0j (j = r1 + 1; :::; ro) are the ordered solutions of
���uIro�r1 � e�0? �e�0 + e�2� e�?��� = 0 (3.45)

and e�0 is a random matrix with distribution N(0; Vuz1)�
�1
z1z1
�0o.
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We next derive the asymptotic properties of the shrinkage estimator b�n with
weakly dependent innovations. By the full rank of e�1 and e�1, we can de�ne

Q1 =
he�1; e�1?i and Q�11 =

he�1(e�01e�1)�1; e�1?(e�01?e�1?)�1i :
Let �1;k(�) = Q1(k)� where Q1(k) denotes the k-th row of Q1, then the index seteS� � fk : �1;k(�1) 6= 0g = f1; :::r1g is a subset of S� = fk : �k(�o) 6= 0g = f1; :::rog.
We next derive the "consistency" of b�n.
Corollary 3.4.4 Under Assumption 3.3.2, 3.4.1 and �r;k;n = o(1) for any k 2 eS�,
the shrinkage estimator b�n satis�es

b�n !p �1; (3.46)

where �1 is de�ned in (3.37).

Corollary 3.4.4 implies that the shrinkage estimator b�n has the same probability
limit as that of the OLS estimator b�1st. The next corollary provides the convergence
rate of the LS shrinkage estimate to the pseudo true parameter matrix �1.

Corollary 3.4.5 Denote e�r;n = maxk2 eS� jj�r;k;n�k(b�1st)jj�!. Under Assumptions

RR , LP and �r;k;n = o(1) for any k 2 eS�, the shrinkage LS estimator b�n satis�es
(a) if ro = 0, then b�n � �1 = Op(n�1 + n�1e�r;n);
(b) if 0 < ro � m, then

�b�n � �1�Q�1D�1
n = Op(1 + n

1
2e�r;n).

Recall that Qn is the normalized left eigenvector matrix of b�1st. Decompose Q0n
as
�
Q0e�;n; Q0e�?;n�, where Qe�;n and Qe�?;n are the �rst r1 and last m � r1 rows of Qn.

Under Corollary 3.4.4 and Lemma 3.4.1,

Qe�;nb�n = Qe�;nb�1st + op(1) = �e�;nQe�;n + op(1) (3.47)
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where �e�;n is a diagonal matrix with the ordered �rst (largest) r1 eigenvalues of b�1st.
(3.47) implies that the �rst r1 rows of Qnb�n are estimated as nonzero w.p.a.1. We
next show that the last m� ro rows of Qnb�n are estimated as zeros w.p.a.1.
Corollary 3.4.6 Under Assumption LP and RR, if n!�r;k;n ! 1 for k 2 Sc� and

n
1
2e�r;n = Op(1), then we have

Pr
�
Qn(k)b�n = 0�! 1 (3.48)

for any k 2 Sc�.

Corollary 3.4.6 implies that b�n has at least m� ro eigenvalues estimated as zero
w.p.a.1. However, the matrix �1 may have more zero eigenvalues than �o. To

ensure consistent cointegration rank selection, we need to show that the ro� r1 zero

eigenvalues of �1 are estimated as non-zeros w.p.a.1. From Lemma 3.4.3, we see

that b�1st has m � ro eigenvalues which converge to zero at the rate n and ro � r1
eigenvalues which converge to zero at the rate

p
n. The di¤erent convergence rates

of the estimates of the zero eigenvalues of �1 enable us to empirically distinguish the

estimates of the m� ro zero eigenvalues of �1 from the estimates of the ro � r1 zero

eigenvalues of �1, as illustrated in the following corollary.

Corollary 3.4.7 Under Assumption LP and RR, if n
1+!
2 �r;k;n = o(1) for k 2 fr1 +

1; :::; rog and n
1
2e�r;n = Op(1), then we have

Pr
�
Qn(k)b�n 6= 0�! 1 (3.49)

for any k 2 fr1 + 1; :::; rog.

In the proof of Corollary 3.4.7, we show that n
1
2Qn(k)b�n converges in distribution

to some non-degenerated continuous random vectors, which is a stronger result than
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(3.49). Corollary 3.4.5 and Corollary 3.4.7 implies that b�n has at least m � ro

eigenvalues not estimated as zeros w.p.a.1. Hence Corollary 3.4.5, Corollary 3.4.6

and Corollary 3.4.7 give us the following result immediately.

Theorem 3.4.8 (Super-e¢ ciency) Under the conditions of Corollary 3.4.6 and

Corollary 3.4.7, we have

Pr
�
r(b�n) = ro�! 1 (3.50)

as n!1, where r(b�n) denotes the rank of b�n.
Theorem 3.4.8 states that the true cointegration rank ro can be consistently

selected, though the matrix �o is not consistently estimable. Moreover, when the

probability limit �1 of the LS shrinkage estimator has rank less than ro, Theorem

3.4.8 ensures that only ro rank is selected in the LS shrinkage estimation. This

result is new in the shrinkage based model selection literature, as the Lasso-type of

techniques are usually advocated because of their ability of shrinking small estimates

(in magnitude) to be zeros in estimation. However, in Corollary 3.4.7, we show the

LS shrinkage estimation does not shrink the estimates of the extra ro � r1 zero

eigenvalues of �1 to be zero.

3.5 Extension II: VECM Estimation with Explicit

Transient Dynamics

This section studies estimation of the general model

�Yt = �oYt�1 +

pX
j=1

Bo;j�Yt�j + ut (3.51)
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with simultaneous cointegration rank selection and lag order selection. Using Bo =

(Bo;1; :::; Bo;p) the unknown parameters (�o; Bo) are estimated by penalized LS esti-

mation

(b�n; bBn) = argmin
�;B1;:::;Bp2Rm�m

8<:
nX
t=1

�Yt � �Yt�1 �
pX
j=1

Bj�Yt�j


2

+

pX
j=1

n�b;j;n

jj bBj;1stjj! kBjk+
mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
)
: (3.52)

For consistent lag order selection the model should be consistently estimable

and it is assumed that the given p in (3.51) is such that the error term ut satis�es

Assumption 1.3.1. De�ne

C(�) = �o +

pX
j=0

Bo;j(1� �)�j, where Bo;0 = �Im.

The following assumption extends Assumption 1.3.2 to accommodate the general

structure in (3.51).

Assumption 3.5.1 (RR) (i) The determinantal equation jC(�)j = 0 has roots on

or outside the unit circle; (ii) the matrix �o has rank ro, with 0 � ro � m; (iii) the

(m� ro)� (m� ro) matrix

�0o;?

 
Im �

pX
j=1

Bo;j

!
�o;? (3.53)

is nonsingular.

Under Assumption 3.5.1, the time series Yt has following partial sum representa-

tion,

Yt = CB

tX
s=1

us + �(L)ut + CBY0 (3.54)
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where CB = �o;?
h
�0o;?

�
Im �

Pp
j=1Bo;j

�
�o;?

i�1
�0o;? and �(L)ut =

P1
s=0 �sut�s is

a stationary process. From the partial sum representation in (3.54), we deduce that

�0oYt = �
0
o�(L)ut and �Yt�j (j = 0; :::; p) are stationary.

De�ne an m(p+ 1)�m(p+ 1) rotation matrix QB and its inverse Q�1B as

QB �

0BBBB@
�0o 0

0 Imp

�0o;? 0

1CCCCA and Q�1B =

0B@ �o(�
0
o�o)

�1 0 �o;?(�
0
o;?�o;?)

�1

0 Imp 0

1CA :

Denote �Xt�1 =
�
�Y 0t�1; :::;�Y

0
t�p
�0
and then the model in (3.51) can be written as

�Yt =

�
�o Bo

�264 Yt�1

�Xt�1

375+ ut: (3.55)

Let

Zt�1 = QB

264 Yt�1

�Xt�1

375 =
264 Z3;t�1
Z2;t�1

375 ; (3.56)

where Z 03;t�1 =
�
Y 0t�1�o �X 0

t�1

�
is a stationary process and Z2;t�1 = �0o;?Yt�1

comprises the I(1) components.

Lemma 3.5.1 Under Assumption 3.3.1 and Assumption 3.5.1, we have

(a) n�1
Pn

t=1 Z3;t�1Z
0
3;t�1 !p �z3z3;

(b) n�
3
2

Pn
t=1 Z3;t�1Z

0
2;t�1 !p 0;

(c) n�2
Pn

t=1 Z2;t�1Z
0
2;t�1 !d

R
Bw2B

0
w2
;

(d) n�
1
2

Pn
t=1 utZ

0
3;t�1 !d N(0;
u 
 �z3z3);

(e) n�1
Pn

t=1 utZ
0
2;t�1 !d

�R
Bw2dB

0
u

�0
;

and the quantities in (c), (d), and (e) converge jointly.
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Lemma 3.5.1 follows by standard arguments like those in Lemma 3.9.1 and its

proof is omitted. We �rst establish the asymptotic properties of the OLS estimator

(b�1st; bB1st) of (�o; Bo) and the asymptotic properties of the eigenvalues of b�1st. The
estimate (b�1st; bB1st) has the following closed-form solution

�b�1st; bB1st� = � bSy0y1 bSy0x0 �
0B@ bSy1y1 bSy1x0bSx0y1 bSx0x0

1CA
�1

; (3.57)

where

bSy0y1 =
1

n

nX
t=1

�YtY
0
t�1; bSy0x0 = 1

n

nX
t=1

�Yt�X
0
t�1; bSy1y1 = 1

n

nX
t=1

Yt�1Y
0
t�1;

bSy1x0 =
1

n

nX
t=1

Yt�1�X
0
t�1; bSx0y1 = bS 0y1x0 and bSx0x0 = 1

n

nX
t=1

�Xt�1�X
0
t�1.(3.58)

Denote Y� = (Y0; :::; Yn�1)m�n, �Y = (�Y1; :::;�Yn)m�n and

cM0 = In � n�1�X 0 bS�1x0x0�X,
where �X = (�X0; :::;�Xn�1)mp�n, then b�1st has the explicit partitioned regression
representation

b�1st = ��Y cM0Y
0
�

��
Y�cM0Y

0
�

��1
= �o +

�
UcM0Y

0
�

��
Y�cM0Y

0
�

��1
; (3.59)

where U = (u1; :::; un)m�n. Recall that [�1(b�1st); :::; �m(b�1st)] and [�1(�o); :::; �m(�o)]
are the ordered eigenvalues of b�1st and �o respectively, where �j(�o) = 0 (j =

ro + 1; :::;m). Let Qn be the normalized left eigenvector matrix of b�1st.
Lemma 3.5.2 Suppose Assumption 3.3.1 and Assumption 3.5.1 hold.

(a) De�neDn;B = diag(n
1
2 Iro+mp; nIm�ro), then

h
(b�1st; bB1st)� (�o; Bo)iQ�1B Dn;B
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has the following partitioned limit distribution

�
N(0;
u 
 ��1z3z3);

R
dBuB

0
w2
(
R
Bw2B

0
w2
)�1

�
; (3.60)

(b) The eigenvalues of b�1st satisfy �k(b�1st)!p �k(�o) for 8k = 1; :::;m;

(c) For 8k = ro+1; :::;m, the eigenvalues �k(b�1st) of b�1st satisfy Lemma 3.3.1.(c).
Lemma 3.5.2 is useful, because the �rst step estimator (b�1st; bB1st) and the eigen-

values of b�1st are used in the construction of the penalty function. Denote the index
set of the zero components in Bo as ScB such that kBo;jk = 0 for all j 2 ScB and

kBo;jk 6= 0 otherwise. We next derive the asymptotic properties of the LS shrinkage

estimator (b�n; bBn) de�ned in (3.52).
Lemma 3.5.3 Suppose that Assumption 3.3.1 and Assumption 3.5.1 are satis�ed.

If �r;n = op(1) and �b;n = op(1) where �b;n � maxj2SB
n
�b;j;njj bBj;1stjj�!o, then the LS

shrinkage estimator (b�n; bBn) satis�es
h
(b�n; bBn)� (�o; Bo)iQ�1B Dn;B = Op(1 + n

1
2 �r;n + n

1
2 �b;n): (3.61)

Lemma 3.5.3 implies that the LS shrinkage estimators (b�n; bBn) have the same
convergence rates as the OLS estimators (b�1st; bB1st). We next show that if the tuning
parameters �r;k;n and �b;j;n (k 2 ScB and j 2 Sc�) converge to zero but not too fast,

then the zero rows of Q�o and zero matrices in Bo are estimated as zero w.p.a.1.

Let the zero rows of bQnb�n be indexed by Scn;� and the zero matrix in bBn be indexed
by Scn;B.

Theorem 3.5.4 Suppose that Assumption 3.3.1 and Assumption 3.5.1 hold. If the

tuning parameters satisfy n
1
2 (�r;n+ �b;n) = Op(1), n!�r;k;n !1 and n

1+!
2 �b;j;n !1
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for k 2 Sc� and j 2 ScB, then we have

Pr
�
Q�;nb�n = 0�! 1 as n!1; (3.62)

and for all j 2 ScB

Pr
� bBn;j = 0m�m�! 1 as n!1: (3.63)

Theorem 3.5.4 indicates that the zero rows ofQ�o (and hence the zero eigenvalues

of �o) and the zero matrices in Bo are estimated as zeros w.p.a.1. Thus Lemma 3.5.3

and Theorem 3.5.4 imply consistent cointegration rank selection and consistent lag

order selection.

We next derive the centered limit distribution of the shrinkage estimator b�S =�b�n; bBSB�, where bBSB denotes the LS shrinkage estimator of the nonzero matrices
in Bo. Let ISB = diag(I1;m; :::; IdSB ;m) where the Ij;m (j = 1; :::; dSB) are m � m

identity matrices and dSB is the dimensionality of the index set SB: De�ne

QS �

0BBBB@
�0o 0

0 ISB

�0o;? 0

1CCCCA and Dn;S � diag(n
1
2 Iro ; n

1
2 ISB ; nIm�ro);

where the identity matrix ISB = ImdSB in QS serves to accommodate the nonzero

matrices in Bo. Let �XS;t denote the nonzero lagged di¤erences in (3.51), then the

true model can be written as

�Yt = �oYt�1 +Bo;S�XS;t�1 + ut = �o;SQ
�1
S ZS;t�1 + ut (3.64)
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where the transformed and reduced regressor variables are

ZS;t�1 = QS

264 Yt�1

�XS;t�1

375 =
264 Z3S;t�1
Z2;t�1

375 ;

with Z 03S;t�1 =
�
Y 0t�1�o �X 0

S;t�1

�
and Z2;t�1 = �0o;?Yt�1. From Lemma 3.5.1, we

obtain

n�1
nX
t=1

Z3S;t�1Z
0
3S;t�1 !p E

�
Z3S;t�1Z

0
3S;t�1

�
� �z3Sz3S :

The centred limit theory of b�S is given in the following result.
Theorem 3.5.5 Under conditions of Theorem 3.5.4, if n

1
2 (�r;n+ �b;n) = op(1), then

�b�S ��o;S�Q�1S D�1
n;S !d

�
Bm;S �o(�

0
o�o)

�1�0oBm;2

�
; (3.65)

where Bm;S � N(0;
u 
 ��1z3Sz3S ) and Bm;2 is de�ned in Lemma 3.3.1.(a).

Theorem 3.5.5 extends the result of Theorem 3.3.6 to the general VEC model

with lagged di¤erences. From Theorem 3.5.5, the LS shrinkage estimator b�S is more
e¢ cient than the OLS estimator b�n in the sense that: (i) the zero components
in Bo are estimated as zeros w.p.a.1 and thus their LS shrinkage estimators are

super e¢ cient; (ii) under the consistent lagged di¤erences selection, the true nonzero

components in Bo are more e¢ ciently estimated in the sense of smaller asymptotic

variance; and (iii) the true cointegration rank is estimated and therefore when ro < m

some parts of the matrix �o are estimated at a rate faster than root-n.

The LS shrinkage estimator b�n su¤ers from second order bias, evident in the com-
ponent U2;m of the limit (3.65). Accordingly we de�ne the GLS shrinkage estimator
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of the general VEC model as

(b�g;n; bBg;n) = argmin
�;B1;:::;Bp2Rm�m

8<:
nX
t=1

�Yt � �Yt�1 �
pX
j=1

Bj�Yt�j


2

b
�1u;n
+

pX
j=1

n�b;j;n

jj bBj;1stjj! kBjk+
mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
)
: (3.66)

To conclude this section, we show that the GLS shrinkage estimator (b�g;n; bBg;n) is
oracle e¢ cient in the sense that it has the same asymptotic distribution as the RRR

estimate assuming the true cointegration rank and lagged di¤erences are known.

Corollary 3.5.6 (Oracle Properties of GLS) Suppose the conditions of Theo-

rem 3.5.5 are satis�ed. If b
u;n !p 
u, then

Pr
�
r(b�g;n) = ro�! 1 and Pr

� bBg;j;n = 0�! 1 (3.67)

for j 2 ScB as n!1; moreover b�S has the following limiting distribution
�b�S ��o;S�Q�1S D�1

n;S !d

�
Bm;S �o(�

0
o�o)

�1 R dBu�w2B0w2(R Bw2B0w2)�1
�
(3.68)

where Bu�w2 is de�ned in Theorem 3.3.7.

Corollary 3.5.6 is proved using the same arguments of Corollary 3.3.7 and Theo-

rem 3.5.5 and its proof is omitted.

Remark 3.5.7 Although the grouped adaptive Lasso function P (B) = jj bB1stjj�! kBk
is used in the LS shrinkage estimations (3.52) and the GLS shrinkage estimation

(3.66), we remark that the adaptive Lasso penalty function can also be used and the

result GLS shrinkage estimate enjoys the same properties stated in Corollary 3.5.6.
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The GLS shrinkage estimation using the adaptive Lasso penalty takes the following

form

(b�g;n; bBg;n) = argmin
�;B1;:::;Bp2Rm�m

8<:
nX
t=1

�Yt � �Yt�1 �
pX
j=1

Bj�Yt�j


2

b
�1u;n
+

pX
j=1

mX
l=1

mX
s=1

n�b;j;njBj;lsj
j bBj;ls;1stj! +

mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
)
(3.69)

where Bj;ls and bBj;ls;1st refer to the l-th row and s-th column elements in Bj and bBj;1st
respectively. The advantage of the grouped adaptive Lasso penalty P (Bj) is that it

shrinks elements in B to zero groupwisely, which makes it a natural choice for the

lag order selection in VEC models. The adaptive Lasso penalty is more �exible and

when used in the GMM shrinkage estimation, it can not only select the zero matrices,

but also zero elements in nonzero Bo;j (j 2 SB) w.p.a.1.

Remark 3.5.8 The �exibility of the adaptive Lasso penalty enables the GLS shrink-

age estimation to achieve more goals in one-step, in addition to the model selection

and e¢ cient estimation. Suppose that the vector Yt can be divided in r and m � r

dimensional subvectors Y1;t and Y2;t, then the VECM can be rewritten as

264 �Y1;t
�Y2;t

375 =

264 �11o �12o

�21o �22o

375
264 Y1;t�1
Y2;t�1

375+ pX
j=1

264 B11o;j B12o;j

B21o;j B22o;j

375
264 �Y1;t�j
�Y2;t�j

375+ ut;
(3.70)

where �o and Bo;j (j = 1; ::; p) are partitioned in line with Yt. By de�nition, Y2;t

does not Granger-cause Y1;t if and only if

�12o = 0 and B
12
o;j = 0 for any j 2 SB.
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One can attach the (grouped) adaptive Lasso penalty of �12 in (3.70) such that the

causality test is automatically executed in the GLS shrinkage estimation.

Remark 3.5.9 In this chapter, we only consider the adaptive Lasso type of penalty

functions in the LS or GLS shrinkage estimation. The main advantage of the adaptive

Lasso penalty is that it is a convex function, which combines the convexity of the

LS or GLS criterion makes the computation of the shrinkage estimate faster and

more accurate. It is clear that as long as the tuning parameter satis�es certain rate

requirement, our main results remains to hold if one uses other penalty function (e.g.,

the bridge penalty) in the LS or GLS shrinkage estimation.

3.6 Adaptive Selection of the Tuning Parameters

This section develops a data-driven procedure of selecting the tuning parameter �n.

As presented in previous sections, the conditions imposed on �n to ensure oracle

properties in GLS shrinkage only restrict the rate at which �n goes to zero. But in

�nite samples these conditions are not precise enough to provide a clear choice of

tuning parameter for practical implementation. On one hand the tuning parameter

should converge to zero as fast as possible so that shrinkage bias in the estimation

of the nonzero components of the model is as small as possible. In the extreme case

where �n = 0 LS shrinkage reduces to LS estimation and there is no shrinkage bias in

the resulting estimators. (Of course there may still be �nite sample estimation bias).

On the other hand, the tuning parameter should converge to zero so that in �nite

samples zero components in the model are estimated as zeros with higher probability.

In the opposite extremity the tuning parameter �n =1 and then all parameters of
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the model are estimated as zeros with probability one in �nite samples. Thus there

is bias and variance trade-o¤ in the selection of the tuning parameters.

By de�nition bTn = Qnb�n and the k-th row of bTn is estimated as zero only if the
following �rst order condition holds

 1n
nX
t=1

Qn(k)b
�1u;n(�Yt � b�nYt�1 � pX
j=1

bBn;j�Yt�j)Y 0t�1
 < �r;k;n

2jj�k(b�1st)jj! : (3.71)

Let T � Q�o and T (k) be the k-th row of the matrix Q�o. If a nonzero T (k) (k � ro)

is estimated as zero, then the left hand side of the above inequality will be asymptot-

ically close to a nonzero real number because the under-selected cointegration rank

leads to inconsistent estimation. To ensure the shrinkage bias and errors of under-

selecting the cointegration rank are small in �nite samples, one would like to have

�r;k;n converge to zero as fast as possible.

On the other hand, the zero rows of T are estimated as zero only if the same

inequality in (3.71) is satis�ed. As n�k(b�1st) = Op(1), we can rewrite the inequality
in (3.71) as

 1n
nX
t=1

Qn(k)b
�1u;n(�Yt � b�nYt�1 � pX
j=1

bBn;j�Yt�j)Y 0t�1
 < n!�r;k;n

2jjn�k(b�1st)jj! : (3.72)

The sample average in the left side of this inequality is asymptotically a vector of

linear combination of non-degenerated random variables, and it is desirable to have

n!�r;k;n diverge to in�nity as fast as possible to ensure that the true cointegration

rank is selected with high probability in �nite samples. We propose to choose �r;k;n =

cr;kn
�!
2 (cr;k is some positive constant and we will discuss how to select it later in

this section.) to balance the requirement that �r;k;n converges to zero and n!�r;k;n

diverges to in�nity as fast as possible.
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Using similar arguments we see that the component Bo;j in Bo will be estimated

as zero if the following condition holds

n� 1
2

nX
t=1

b
�1u;n(�Yt � b�nYt�1 � pX
j=1

bBn;j�Yt�j)�Y 0t�j
 < n

1
2�b;j;n

2jj bB1st;jjj! : (3.73)

As Bo;j 6= 0, the left side of the above inequality will be asymptotically close to

a nonzero real number because the under-selected lagged di¤erences also lead to

inconsistent estimation. To ensure the shrinkage bias and error of under-selection of

the lagged di¤erences are small in the �nite samples, it is desirable to have n
1
2�b;j;n

converge to zero as fast as possible.

On the other hand, the zero component Bo;j in Bo is estimated as zero only if the

same inequality in (3.73) is satis�ed. As bB1st;j = Op(n
� 1
2 ) the inequality in (3.73)

can be written as

n� 1
2

nX
t=1

b
�1u;n(�Yt � b�nYt�1 � pX
j=1

bBn;j�Yt�j)�Y 0t�j
 < n

1+!
2 �b;j;n

2jjn 1
2 bB1st;jjj! : (3.74)

The sample average in the left side of this inequality is asymptotically a vector of

linear combinations of non-degenerated random variables, and again it is desirable to

have n
1+!
2 �b;j;n diverge to in�nity as fast as possible to ensure that zero components

in Bo are selected with high probability in �nite samples. We propose to choose

�b;j;n = cb;jn
� 1
2
�!
4 (cb;j is some positive constant and we will discuss how to select it

later in this section.) to balance the requirement that �b;j;n converges to zero and

n
1+!
2 �b;j;n diverges to in�nity as fast as possible.

We next discuss how to choose the loading coe¢ cients in �r;k;n and �b;j;n. As the

order of the tuning parameter ensures oracle properties of the LS shrinkage estimate,

using similar arguments in the proof of Theorem 3.5.5, we rewrite the sample average
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in the left hand side of (3.72) as

F�;n(k) �
Qn(k)b
�1u;n

n

nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)Y 0t�1
=

Qn(k)b
�1u;n
n

nX
t=1

[ut �
�b�n ��o�Q�1B Zt�1]Y 0t�1

=
Qn(k)


�1
u

n

"
nX
t=1

utY
0
t�1 � (b�S;n ��S;o)Q�1S nX

t=1

ZS;t�1Y
0
t�1

#
+ op(1)

(3.75)

where under Lemma 3.5.1, n�1
Pn

t=1 utZ
0
t�1 =

�
0m�ro

R
dBuB

0
u�o;?

�
+op(1) and

Dn;S
Pn

t=1 ZS;t�1Z
0
t�1

n
=

0B@ 0(mp+ro)�ro 0

0 �0o;?
R
dBuB

0
u�o;?

1CA+ op(1): (3.76)

Using (3.76) and the arguments in the proof of Theorem 3.5.5,

�b�S;n ��S;o�Q�1S D�1
n;SDn;S

Pn
t=1 ZS;t�1Z

0
t�1

n

=

�
0m�ro �o(�

0
o


�1
u �o)

�1�0o

�1
u

R
dBuB

0
u�o;?

�
+ op(1): (3.77)

From the results in (3.75), (3.76) and (3.77), we can deduce that

F�;n(k) = Qn(k)T1;�o

Z
dBuB

0
uT2;�o + op(1); (3.78)

where T1;�o = 

�1
u �
�1u �o(�0o
�1u �o)�1�0o
�1u and T2;�o = �o;?(�

0
o;?�o;?)

�1�0o;?. We

propose to select cr;k to normalize the random sum in (3.78), i.e.

bcr;k = 2Qn(k)bT1;�b
1=2u;n� b
1=2u;n bT2;� (3.79)
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where bT1;� and bT2;� are some estimates of T1;�o and T2;�o . Of course, the rank of �o
needs to be estimated before T1;�o and T2;�o can be estimated. We propose to run a

�rst step shrinkage estimation with �r;k;n = 2 log(n)n�
!
2 and �b;j;n = 2 log(n)n�

1
2
�!
4

to get an initial estimator of the rank ro and order of the lagged di¤erences. Then

based on this �rst-step shrinkage estimation, one can construct bT1;�, bT2;� and thus
the empirical loading coe¢ cient bcr;k.
Similarly, we can rewrite the sample average in the left hand side of (3.74)

Fb;n(j) � 1p
n

nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)�Y 0t�j
=

1p
n

nX
t=1

[ut �
�b�n ��o�Q�1B Zt�1]�Y 0t�j

=
1p
n

"
nX
t=1

ut�Y
0
t�j �

�b�S;n ��S;o�Q�1S
 

nX
t=1

ZS;t�1�Y
0
t�j

!#
;(3.80)

where under Lemma 3.5.1, n�
1
2

Pn
t=1 ut�Y

0
t�j = N(0;
u 
 ��yj�yj) + op(1) and

Dn;S
Pn

t=1 ZS;t�1�Y
0
t�jp

n
=

0B@ �z3S�yj

0

1CA+ op(1): (3.81)

Using (3.81) and the arguments in the proof of Theorem 3.5.5,

�b�S;n ��S;o�Q�1S Pn
t=1 ZS;t�1�Y

0
t�j

p
n

= N(0;
u 
 �z3Sz3S )��1z3Sz3S�z3S�yj : (3.82)

From the results in (3.80), (3.81) and (3.82), we can deduce that

Fb;n(j) = 

1=2
u

�
Bm;m�

1=2
�yj�yj

+Bm;ro+mpo�
�1=2
z3Sz3S

�z3S�yj

�
(3.83)

where Bm;m � N(0; Im 
 Im) and Bm;ro+mpo � N(0; Im 
 I(po+1)m). We propose to
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select cb to normalize the random sum in (3.83), i.e.

bcb;j = 2b
1=2u;n� �jjbS1=2�yj�yj
jj+ jjbS�1=2z3Sz3S

bS1=2z3S�yj
jj
�

(3.84)

where bS�yj�yj = n�1Pn
t=1�Yt�j�Y

0
t�j, bSz3Sz3S = n�1Pn

t=1 ZS;t�1Z
0
S;t�1 and bSz3S�yj =

n�1
Pn

t=1 ZS;t�1�Y
0
t�j. As we have discussed, bcb;j can be constructed using esti-

mates from the �rst-step shrinkage estimation with �r;k;n = 2 log(n)n�
!
2 and �b;j;n =

2 log(n)n�
1
2
�!
4 .

The choice of ! is a more complicated issue which is not pursued in this chapter.

For the empirical application, we propose to choose ! = 2 because such choice is

popular in the Lasso-based variable selection literature and our simulation results

based on ! = 2 are remarkably well. Based on the above results, we propose the

following data dependent tuning parameters for LS shrinkage estimation:

�r;k;n =
2

n

Qn(k)bT1;�b
1=2u;n� b
1=2u;n bT2;� (3.85)

and

�b;j;n =
2

n

b
1=2u;n� �jjbS1=2�yj�yj
jj+ jjbS�1=2z3Sz3S

bS1=2z3S�y
jj
�

(3.86)

for k = 1; :::;m and j = 1; :::; p.

3.7 Simulation Study

We conduct simulation analysis to assess the �nite sample performance of the shrink-

age estimates in terms of cointegration rank selection and e¢ cient estimation. Three

models are investigated in this section. In the �rst model, the simulated data are
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generated from 0B@ �Y1;t

�Y2;t

1CA = �o

0B@ Y1;t�1

Y2;t�1

1CA+
0B@ u1;t

u2;t

1CA ; (3.87)

where ut �i.i.d. N(0;
u) with 
u =

0B@ 1 0:5

0:5 0:75

1CA. The initial observation Y0 is
set to be zero for simplicity. �o will be speci�ed as

0B@ �11;o �12;o

�21;o �22;o

1CA =

0B@ 0 0

0 0

1CA ,
0B@ �1 �0:5

1 0:5

1CA and

0B@ �0:5 0:1

0:2 �0:4

1CA (3.88)

to allow for the cointegration rank to be 2, 1 and 0 respectively. Y0 is set to be zero

for simplicity.

In the second model, the simulated data fYtgnt=1 are generated from equation

(3.87)-(3.88), while the innovation term ut is generated by

0B@ u1;t

u2;t

1CA =

0B@ 1 0:5

0:5 0:75

1CA
0B@ u1;t�1

u2;t�1

1CA+
0B@ "1;t

"2;t

1CA ,
where "t �i.i.d. N(0;
") with 
" = diag(1:25; 0:75). The initial values Y0 and "0

are set to be zero.

The third model has the following form

0B@ �Y1;t

�Y2;t

1CA = �o

0B@ Y1;t�1

Y2;t�1

1CA+B1;o
0B@ �Y1;t�1

�Y2;t�1

1CA+B3;o
0B@ �Y1;t�3

�Y2;t�3

1CA+ ut; (3.89)
where ut is generated under the same condition in (3.87), �o is speci�ed similarly

in (3.88), B2;o is taken to be diag(0:4; 0:4) such that Assumption 3.5.1 is satis�ed.

The initial values (Yt; "t) (t = �3; :::; 0) are set to be zero. In the above three cases,
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Table 3.1 Probabilities of Cointegration Rank Selection
Model 1

ro=0, �o=(0 0) ro=1, �o=(0 -.5) ro=2, �o=(-.6 -.5)
n=100 n=400 n=100 n=400 n=100 n=400brn= 0 0.959 0.998 0.000 0.000 0.000 0.000brn= 1 0.041 0.002 0.995 1.000 0.000 0.000brn= 2 0.000 0.000 0.005 0.000 1.000 1.000

Model 2
ro=0, �o=(0 0) ro=1, �

�
o=(0 -0.25) ro=2, �

�
o=(-0.30 -0.15)

n=100 n=400 n=100 n=400 n=100 n=400brn= 0 0.000 0.000 0.001 0.000 0.001 0.000brn= 1 0.012 0.001 0.953 0.996 0.121 0.001brn= 2 0.988 0.999 0.046 0.004 0.878 0.999

Table 3.1: Replications=5000, ! = 2, adaptive tuning parameter �n given in eqation
(3.83). �o in each column represents the eigenvalues of the true matrix �o .

we include 50 additional observations to the simulated sample with sample size n to

eliminate start-up e¤ects from the initialization.

In the �rst two models, we assume that the econometrician speci�es the following

model 0B@ �Y1;t

�Y2;t

1CA = �o

0B@ Y1;t�1

Y2;t�1

1CA+ ut; (3.90)

where ut is i.i.d.(0;
u) with some unknown positive de�nite matrix 
u. The above

empirical model is correctly speci�ed under the data generating assumption (3.87),

but is misspeci�ed under (3.88). We are interested in investigating the performance of

the shrinkage method in selecting the correct rank of �o under both data generating

assumptions and e¢ cient estimation of �o under Assumption (3.87).

In the third model, we assume that the econometrician speci�es the following

model 0B@ �Y1;t

�Y2;t

1CA = �o

0B@ Y1;t�1

Y2;t�1

1CA+ 3X
j=1

Bj;o

0B@ �Y1;t�j

�Y2;t�j

1CA+ ut; (3.91)

where ut is i.i.d.(0;
u) with some unknown positive de�nite matrix 
u. The above
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empirical model is over-parameterized according to (3.89). We are interested in

investigating the performance of the shrinkage method in selecting the correct rank

of �o and the order of the lagged di¤erences, and e¢ cient estimation of �o and B2;o.

Table 3.2 Probabilities of Rank Selection and Lagged Order Selection
Cointegration Rank Selection

ro=0, �o=(0 0) ro=1, �o=(0 -0.5) ro=2, �o=(-.6 -.5)
n=100 n=400 n=100 n=400 n=100 n=400brn= 0 0.989 1.000 0.000 0.000 1.000 0.999brn= 1 0.011 0.000 0.998 1.000 0.000 0.001brn= 2 0.000 0.000 0.002 0.000 0.000 0.000

Lagged Di¤erence Selection
ro=0, �o=(0 0) ro=1, �o=(0 -0.5) ro=2, �o=(-.6 -.5)
n=100 n=400 n=100 n=400 n=100 n=400bpn2 T 0.907 0.979 0.980 1.000 0.910 0.979bpn2 C 0.093 0.019 0.020 0.000 0.090 0.021bpn2 I 0.000 0.002 0.000 0.000 0.000 0.000

Model Selection
ro=0, �o=(0 0) ro=1, �o=(0 -0.5) ro=2, �o=(-.6 -.5)
n=100 n=400 n=100 n=400 n=100 n=400bmn2 T 0.899 0.979 0.978 1.000 0.910 0.978bmn2 C 0.101 0.019 0.021 0.000 0.090 0.021bmn2 I 0.000 0.002 0.000 0.000 0.000 0.001

Table 3.2: Replications=5000, ! = 2, adaptive tuning parameter �n given in (6.15)
and (3.83). �o in each column represents the eigenvalues of �o. "T", "C" and
"I" denote the true lags/model, consistent lags/model and inconsistent lags/model
selected by the shrinkage estimation.

Table 3.1 presents �nite sample probabilities of our method in selecting the true

rank under di¤erent model speci�cations. Overall speaking, the LS shrinkage method

performs very well in selecting the true rank of �o. When the sample size is small

(i.e. n = 100) and the data are iid, the probability of selecting the true rank ro = 0 is

very close to 1 (around 0.96) and the probabilities of selecting the true ranks ro = 1

and ro = 2 are almost equal to 1. When the sample size is increased to 400, the

probabilities of our method selecting the true ranks ro = 0 and ro = 1 are almost

equal to 1 and the probability of selecting the true ranks ro = 2 equals 1. Similar
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results show up in the scenario when the data are weakly dependent. The only

di¤erence is that when the pseudo true eigenvalues are close to zero, the probability

of our method in false selecting these small eigenvalues is increased, as illustrated in

the weakly dependent case with ro = 2. However, with the sample size growing, the

probabilities of our method in selecting the true ranks become close to 1.

Table 3.3 Finite Sample Properties of the Shrinkage Estimates
Model 1 with ro = 0, �o = (0:0 0:0) and n = 100

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 -0.001 0.007 0.007 -0.025 0.036 0.044 0.000 0.000 0.000
�12 0.000 0.005 0.005 0.001 0.041 0.041 0.000 0.000 0.000
�21 0.000 0.004 0.007 0.000 0.030 0.030 0.000 0.000 0.000
�22 0.000 0.007 0.007 -0.024 0.035 0.043 0.000 0.000 0.000

Model 1 with ro = 0, �o = (0:0 0:0) and n = 400
Lasso Estimates OLS Oracle Estimates

Bias Std RMSE Bias Std RMSE Bias Std RMSE
�11 0.000 0.000 0.000 -0.008 0.012 0.015 0.000 0.000 0.000
�12 0.000 0.000 0.000 0.000 0.010 0.010 0.000 0.000 0.000
�21 0.000 0.000 0.000 0.000 0.013 0.013 0.000 0.000 0.000
�22 0.000 0.000 0.000 -0.008 0.012 0.014 0.000 0.000 0.000

Table 3.3: Replications=5000, ! = 2, adaptive tuning parameter �n given in equation
(3.83). �o in each column represents the eigenvalues of �o. The oracle estimate in
this case is simply a 4 by 4 zero matrix.

Tables 3.3, 3.4 and 3.5 provide the �nite sample properties of the LS shrinkage

estimate, the OLS estimate and the oracle estimate (under the �rst simulation design)

in terms of bias, standard deviation and root of mean square error. When the true

rank ro = 0, the unknown parameter �o is a zero matrix. In this case, the LS

shrinkage estimate clearly dominates the LS estimate due to the high probabilities

of the shrinkage method in selecting the true rank. When the true rank ro = 1, we

do not observe the e¢ ciency advantage of the LS shrinkage estimator over the LS

estimate, but the �nite sample bias of the shrinkage estimate is remarkably smaller.

From Corollary 3.3.7, we see that the LS shrinkage estimator is free of the high
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Table 3.4 Finite Sample Properties of the Shrinkage Estimates
Model 1 with ro = 1, �o = (0:0 -0:5) and n = 100

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 0.003 0.061 0.061 -0.007 0.055 0.056 -0.005 0.055 0.055
�12 -0.002 0.031 0.031 -0.007 0.029 0.029 -0.002 0.028 0.028
�21 0.002 0.062 0.062 -0.004 0.048 0.048 -0.002 0.048 0.048
�22 -0.001 0.031 0.031 -0.005 0.025 0.025 -0.001 0.024 0.024

Model 1 with ro = 1, �o = (0:0 -0:5) and n = 400
Lasso Estimates OLS Oracle Estimates

Bias Std RMSE Bias Std RMSE Bias Std RMSE
�11 0.001 0.034 0.034 -0.003 0.031 0.031 -0.002 0.031 0.031
�12 0.000 0.017 0.017 -0.001 0.016 0.016 -0.001 0.015 0.015
�21 -0.001 0.031 0.031 -0.003 0.028 0.028 -0.001 0.028 0.028
�22 -0.000 0.016 0.016 -0.002 0.014 0.014 0.000 0.014 0.014

Model 1 with ro = 1, �o = (0:0 -0:5) and n = 100
Lasso Estimates OLS Oracle Estimates

Bias Std RMSE Bias Std RMSE Bias Std RMSE
Q11 0.002 0.083 0.083 0.001 0.073 0.073 -0.006 0.071 0.071
Q12 -0.000 0.007 0.007 -0.013 0.024 0.028 0.000 0.003 0.003
Q21 0.001 0.078 0.078 0.001 0.066 0.066 -0.005 0.064 0.064
Q22 -0.000 0.005 0.005 -0.012 0.022 0.025 0.000 0.000 0.000

Model 1 with ro = 1, �o = (0:0 -0:5) and n = 400
Lasso Estimates OLS Oracle Estimates

Bias Std RMSE Bias Std RMSE Bias Std RMSE
Q11 0.000 0.042 0.042 0.000 0.041 0.041 -0.002 0.040 0.040
Q12 0.000 0.001 0.001 0.000 0.008 0.009 -0.002 0.001 0.001
Q21 0.000 0.037 0.037 -0.004 0.037 0.036 0.000 0.036 0.036
Q22 0.000 0.000 0.000 -0.004 0.007 0.008 0.000 0.000 0.000

Table 3.4: Replications=5000, ! = 2, adaptive tuning parameter �n given in equation
(3.83). �o in each column represents the eigenvalues of �o. The oracle estimate in
this case are the RRR estimate with rank restriction r=1.

order bias, which explains its smaller bias in �nite samples. Moreover, Lemma 3.3.1

and Corollary 3.3.7 indicate that the OLS estimator and the LS shrinkage estimator

(and hence the oracle estimator) have almost the same variance. This explains the

phenomena that the LS shrinkage estimate does not look more e¢ cient than the

OLS estimate. To better compare the OLS estimate, the LS shrinkage estimate

and the oracle estimate, we transfer the three estimates using the matrix Q and its
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Table 3.5 Finite Sample Properties of the Shrinkage Estimates
Model 1 with ro = 2, �o = (-0:6, -0:5) and n = 100

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 -0.023 0.090 0.093 -0.010 0.093 0.094 -0.010 0.093 0.094
�12 0.038 0.091 0.099 -0.001 0.090 0.090 -0.001 0.090 0.090
�21 -0.025 0.100 0.103 0.002 0.081 0.081 0.002 0.081 0.081
�22 0.051 0.146 0.154 -0.010 0.078 0.079 -0.010 0.078 0.079

Model 1 with ro = 2, �o = (-0:6, -0:5) and n = 400
Lasso Estimates OLS Oracle Estimates

Bias Std RMSE Bias Std RMSE Bias Std RMSE
�11 -0.006 0.052 0.053 -0.003 0.052 0.052 -0.003 0.052 0.052
�12 0.005 0.055 0.055 0.001 0.051 0.051 0.001 0.051 0.051
�21 -0.005 0.055 0.055 -0.002 0.046 0.046 -0.002 0.046 0.046
�22 0.008 0.075 0.075 -0.004 0.044 0.044 -0.004 0.044 0.044

Table 3.5: Replications=5000, ! = 2, adaptive tuning parameter �n given in equation
(3.83). �o in each column represents the eigenvalues of �o. The oracle estimate in
this case is simply the OLS estimate.

inverse (i.e. the estimate b� is transferred to be Qb�Q�1). Note that in this case,
Q�oQ

�1 = diag(-0:5; 0). The �nite sample properties of the transferred estimates

are presented in the last two panels of Table 3.4. We see that the elements in the last

column of the transferred LS shrinkage estimator enjoys very small bias and small

variance even when the sample size is only 100. The elements in the last column

of the OLS estimator, when compared with the elements in its �rst column, have

smaller variance but larger bias. It is clear that with the sample size growing, the

LS shrinkage estimator is approaching the oracle estimator in terms of their �nite

sample properties. When the true rank ro = 2, the LS estimator is better than the

shrinkage estimator as the latter su¤ers from the shrinkage bias in the �nite samples.

If the shrinkage bias is a concern, one can run a reduced rank regression based on

the rank selected by the LS shrinkage estimation to get the so called post-Lasso

estimator. The post Lasso estimator also enjoys the oracle properties and it is free

of the shrinkage bias in the �nite samples.
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Table 3.6 Finite Sample Properties of the Shrinkage Estimates
Model 3 with ro = 0, �o = (0:0, 0:0) and n = 400

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 0.000 0.000 0.000 -0.002 0.003 0.004 0.000 0.000 0.000
�21 0.000 0.000 0.000 0.000 0.003 0.003 0.000 0.000 0.000
�12 0.000 0.000 0.000 0.000 0.003 0.003 0.000 0.000 0.000
�22 0.000 0.000 0.000 -0.002 0.003 0.004 0.000 0.000 0.000
B1;11 -0.014 0.049 0.051 -0.007 0.054 0.054 -0.004 0.048 0.048
B1;21 -0.001 0.037 0.037 -0.001 0.046 0.046 -0.001 0.041 0.041
B1;12 -0.001 0.050 0.050 -0.002 0.063 0.063 -0.001 0.057 0.057
B1;22 -0.014 0.050 0.052 -0.008 0.054 0.055 -0.005 0.049 0.049
B2;11 0.000 0.003 0.003 -0.005 0.058 0.058 0.000 0.000 0.000
B2;21 0.000 0.003 0.003 -0.000 0.050 0.050 0.000 0.000 0.000
B2;12 0.000 0.003 0.003 0.001 0.066 0.066 0.000 0.000 0.000
B2;22 0.000 0.004 0.004 -0.004 0.058 0.058 0.000 0.000 0.000
B3;11 -0.016 0.048 0.051 -0.007 0.054 0.054 -0.006 0.047 0.048
B3;21 0.000 0.038 0.038 0.000 0.046 0.046 0.000 0.041 0.041
B3;12 0.001 0.049 0.049 0.000 0.061 0.061 0.001 0.055 0.055
B3;22 -0.016 0.049 0.051 -0.007 0.053 0.054 -0.006 0.048 0.048

Table 3.6: Replications=5000, ! = 2, adaptive tuning parameter �n given in equa-
tions (3.83) and (3.84). �o in each column represents the eigenvalues of �o. The
oracle estimate in this case is simply the OLS estimate with assuming that �o and
B2o are zero matrics.

Table 3.2 contains the �nite sample probabilities of our method in rank selection

and lagged order selection in model 3. We see that the shrinkage method performs

very well in selecting the true rank and true lagged di¤erences (and thus the true

model) in all scenarios. It is interesting to see that the probabilities of selecting the

true ranks are not negatively e¤ected either by adding lags to the model or by the

lagged order selection simultaneously performed with the rank selection. Table 3.6,

3.7 and 3.8 presents the �nite sample properties of the LS shrinkage estimate, the

OLS estimate and the Oracle estimate. When compared with the oracle estimates,

some components in the LS shrinkage estimate even have smaller variances, though

their �nite sample bias are slightly larger. As a result, their root of mean square

152



Table 3.7 Finite Sample Properties of the Shrinkage Estimates
Model 3 with ro = 1, �o = (0:0, -0:5) and n = 400

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 0.001 0.065 0.065 -0.002 0.065 0.065 -0.001 0.065 0.065
�21 -0.001 0.056 0.056 -0.001 0.056 0.056 0.000 0.056 0.056
�12 -0.001 0.033 0.033 -0.001 0.033 0.033 0.000 0.032 0.032
�22 0.000 0.028 0.028 -0.001 0.028 0.028 0.000 0.028 0.028
B1;11 -0.048 0.056 0.073 -0.003 0.057 0.057 -0.002 0.053 0.053
B1;21 -0.035 0.047 0.058 -0.002 0.049 0.049 -0.002 0.046 0.046
B1;12 -0.013 0.072 0.073 -0.002 0.077 0.077 -0.002 0.073 0.073
B1;22 -0.011 0.065 0.066 -0.002 0.067 0.067 -0.002 0.063 0.063
B2;11 0.000 0.000 0.000 -0.001 0.044 0.044 0.000 0.000 0.000
B2;21 0.000 0.000 0.000 -0.001 0.038 0.038 0.000 0.000 0.000
B2;12 0.000 0.000 0.000 -0.002 0.079 0.079 0.000 0.000 0.000
B2;22 0.000 0.000 0.000 -0.001 0.067 0.067 0.000 0.000 0.000
B3;11 -0.057 0.038 0.069 -0.003 0.042 0.043 -0.002 0.038 0.038
B3;21 -0.041 0.033 0.053 -0.003 0.037 0.037 -0.002 0.033 0.033
B3;12 -0.050 0.049 0.070 -0.002 0.070 0.070 -0.002 0.052 0.052
B3;22 -0.037 0.048 0.061 -0.003 0.061 0.061 -0.002 0.046 0.046

Table 3.7: Replications=5000, ! = 2, adaptive tuning parameter �n given in equa-
tions (3.83) and (3.84). �o in each column represents the eigenvalues of �o. The
oracle estimate in this case refers to the RRR estimate with r=1 and the restriction
that B2o = 0.

errors are smaller than these of their counterparts in the oracle estimate. Moreover,

the LS shrinkage estimate generally has smaller variance when compared with the

OLS estimate, though the �nite sample bias of the shrinkage estimate of nonzero

component is slightly larger. The main intuition behind the phenomenon that the

LS shrinkage estimate beats the Oracle estimate relies on the fact that there are some

zero components in Bo and shrinking their estimates towards zero (but not exactly

equals zero) help to reduce their bias and the variances. From this perspective,

the shrinkage estimates of the zero components in Bo share similar features of the

traditional shrinkage estimates and the �nite sample shrinkage bias is not always

harmful.
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Table 3.8 Finite Sample Properties of the Shrinkage Estimates
Model 3 with ro = 2, �o = (-0:6, -0:5) and n = 400

Lasso Estimates OLS Oracle Estimates
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�11 0.015 0.051 0.053 -0.002 0.064 0.064 -0.003 0.051 0.052
�21 0.004 0.049 0.049 0.001 0.055 0.055 0.000 0.044 0.044
�12 -0.005 0.044 0.044 0.001 0.049 0.049 0.001 0.041 0.041
�22 0.006 0.054 0.055 -0.001 0.042 0.042 -0.001 0.035 0.035
B1;11 -0.031 0.056 0.064 -0.002 0.064 0.064 -0.000 0.058 0.058
B1;21 -0.004 0.052 0.052 -0.002 0.056 0.056 -0.001 0.050 0.051
B1;12 0.003 0.050 0.050 -0.002 0.058 0.058 -0.002 0.054 0.054
B1;22 -0.018 0.050 0.053 -0.003 0.050 0.050 -0.002 0.047 0.047
B2;11 0.000 0.002 0.002 -0.001 0.058 0.058 0.000 0.000 0.000
B2;21 0.000 0.003 0.003 -0.001 0.050 0.050 0.000 0.000 0.000
B2;12 0.000 0.002 0.002 0.000 0.057 0.057 0.000 0.000 0.000
B2;22 0.000 0.003 0.003 0.000 0.050 0.050 0.000 0.000 0.000
B3;11 -0.028 0.050 0.057 -0.005 0.055 0.055 -0.004 0.052 0.052
B3;21 0.000 0.043 0.043 -0.001 0.048 0.048 -0.000 0.045 0.045
B3;12 -0.001 0.052 0.052 0.001 0.056 0.056 0.001 0.056 0.056
B3;22 -0.023 0.055 0.059 -0.003 0.048 0.048 -0.003 0.048 0.048

Table 3.8: Replications=5000, ! = 2, adaptive tuning parameter �n given in equation
(3.83) and (3.84). �o in each column represents the eigenvalues of �o. The oracle
estimate in this case is simply the OLS estimate with the restriction that B2o = 0.

3.8 Conclusion

One of the main challenges in any applied econometric work is the selection of a

good model for practical implementation. The conduct of inference and model use

in forecasting and policy analysis are inevitably conditioned on the empirical process

of model selection, which typically leads to issues of post-model selection inference.

Adaptive lasso and bridge estimation methods provide a methodology where these

di¢ culties may be partly attenuated by simultaneous model selection and estima-

tion to facilitate empirical research in complex models like reduced rank regressions

where many selection decisions need to be made to construct a satisfactory empirical

model. On the other hand, as indicated in the Introduction, the methods certainly

do not eliminate post-shrinkage selection inference issues in �nite samples because
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the estimators carry the e¤ects of the in-built selections.

This chapter shows how to use the methodology of shrinkage in a multivariate

system to develop an automated approach to cointegrated system modeling that

enables simultaneous estimation of the cointegrating rank and autoregressive order

in conjunction with oracle-like e¢ cient estimation of the cointegrating matrix and the

transient dynamics. As such the methods o¤er practical advantages to the empirical

researcher by avoiding sequential techniques where cointegrating rank and transient

dynamics are estimated prior to model �tting.

Various extensions of the methods developed here are possible. One rather ob-

vious extension is to allow for parametric restrictions on the cointegrating matrix

which may relate to theory-induced speci�cations. Lasso type procedures have so far

been con�ned to parametric models, whereas cointegrated systems are often formu-

lated with some nonparametric elements relating to unknown features of the model.

A second extension of the present methodology, therefore, is to semiparametric for-

mulations in which the error process in the VECM is weakly dependent, which is

partly considered already in Section 4. The e¤ects of post-shrinkage inference issues

also merit detailed investigation. These matters and other generalizations of the

framework will be explored in future work.

3.9 Appendix

Lemma 3.9.1 Under Assumptions 3.3.1 and 3.3.2, we have

(a) n�1
Pn

t=1 Z1;t�1Z
0
1;t�1 !p �z1z1;

(b) n�
3
2

Pn
t=1 Z1;t�1Z

0
2;t�1 !p 0;

(c) n�2
Pn

t=1 Z2;t�1Z
0
2;t�1 !d

R
Bw2B

0
w2
;

(d) n�
1
2

Pn
t=1 utZ

0
1;t�1 !d N(0;
u 
 �z1z1);
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(e) n�1
Pn

t=1 utZ
0
2;t�1 !d

�R
Bw2dB

0
u

�0
.

The quantities in (c), (d), and (e) converge jointly.

Proof of Lemma 3.9.1. See Johansen (1995) and Cheng and Phillips (2009).

3.9.1 Proof of Main Results in Section 3.3

Proof of Lemma 3.3.1. (a) From (3.11)

�b�1st � �o�Q�1D�1
n =

 
nX
t=1

utY
0
t�1Q

0

! 
nX
t=1

QYt�1Y
0
t�1Q

0

!�1
D�1
n

=

 
nX
t=1

utZ
0
t�1Dn

! 
Dn

nX
t=1

Zt�1Z
0
t�1Dn

!�1
: (3.92)

Result (a) follows directly from Lemma 3.9.1.

(b) Denote P = [�o; �o?] and Sn(�) = �Im � b�1st: Then, by de�nition, the
elements of �(b�1st) are the solutions of the determinantal equation,
0 =

����Im � b�1st��� = jP 0Sn(�)P j =
�������
��0o�o � �0ob�1st�o ��0ob�1st�o?
��0o?b�1st�o �Im�ro � �0o?b�1st�o?

������� :
(3.93)

Using (a) we deduce that

�0ob�1st�o? = �0o

�b�1st � �o� �o? = op(1); (3.94)

�0o?
b�1st�o? = �0o?

�b�1st � �o� �o? = op(1); (3.95)

and, similarly,

�0o?b�1st�o !p �
0
o?�o�o and �

0
o
b�1st�o !p �

0
o�o�o: (3.96)
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Using (3.93)-(3.96), we deduce that

����Im � b�1st���!p j�Im�ro j � j��0o�o � �0o�o�oj ; (3.97)

uniformly over any compact set in Rm. By Assumption 3.3.2.(i), �(�o) 2 U1 � f� 2

Rm; k�k � 1g and U1 is a compact set in Rm. Thus, by continuous mapping, we

have �k(b�1st)!p 0 for k = ro + 1; :::;m and

�
�1(b�1st); :::; �ro(b�1st)�!p �S�(�o); (3.98)

where �S�(�o) denotes the ordered solutions of the equation j��
0
o�o � �0o�o�oj = 0.

The determinantal equation j��0o�o � �0o�o�oj = 0 is equivalent to j�Iro � �0o�oj = 0,

so result (b) follows.

(c) Using the notation from (b), we have

jSn(�)j = j�0oSn(�)�oj �
����0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?��� :

(3.99)

Let ��k = n�k(b�1st) (k = ro + 1; :::;m), so that ��k is by de�nition a solution of the
equation

0 = j�0oSn(�)�oj �
����0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?��� ; (3.100)

where Sn(�) =
�
n
Im � b�1st.

For any compact subset K � R, we can invoke the results in (a) to show

�0oSn(�)�o =
�

n
�0o�o � �0o

�b�1st � �o� �o + �0o�o�o !p �
0
o�o�o; (3.101)
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uniformly over K. From Assumption 3.3.2.(iii), we have

j�0o�o�oj = j�0o�o�0o�oj = j�0o�oj � j�0o�oj 6= 0:

Thus, the normalized m � ro smallest eigenvalues ��k (k = ro + 1; :::;m) of b�1st are
asymptotically the solutions of the following determinantal equation,

0 =
����0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?��� ; (3.102)

where

�0oSn(�)�o? = �0o

�b�1st � �o� �o?; (3.103)

�0o?Sn(�)�o? =
�

n
Im�ro � �0o?

�b�1st � �o� �o?; (3.104)

�0o?Sn(�)�o = �0o?
b�1st�o !p �

0
o?�o�

0
o�o: (3.105)

Using the results in (3.101) and (3.103)-(3.105), we get

�0o?

n
Sn(�)� Sn(�)�o [�0oSn(�)�o]

�1
�0oSn(�)

o
�o?

=
�

n
Im�ro � �0o?

h
Im � �o (�0o�o)

�1
�0o + op(1)

i �b�1st � �o� �o?: (3.106)
Note that

�0o?

h
Im�ro � �o (�0o�o)

�1
�0o

i
Q�1 =

�
0(m�ro)�ro ; (�

0
o;?�o;?)

�1� � H1; (3.107)

and

Q�o? = [�o; �o?]
0 �o? =

�
0(m�ro)�ro ; �

0
o?�o?

�0 � H 0
2: (3.108)
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Using (3.92), we deduce that

nH1Q
�b�1st � �o�Q�1H 0

2

=

 
H1

nX
t=1

wtZ
0
t�1D

�1
n

! 
D�1
n

nX
t=1

ZtZ
0
tD

�1
n

!�1
H 0
2

! d (�
0
o;?�o;?)

�1
�Z

Bw2dB
0
w2

�0�Z
Bw2B

0
w2

��1
(�0o;?�o;?): (3.109)

Then, from (3.102)-(3.109), we obtain

���n�0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?���
! d

������Im�ro �
�Z

Bw2dB
0
w2

�0�Z
Bw2B

0
w2

��1����� ; (3.110)

uniformly over K. The result in (c) follows from (3.110) and by continuous mapping.

Proof of Theorem 3.3.2. De�ne

Vn(�) =
nX
t=1

k�Yt � �Yt�1k2 + n
Xm

k=1
�r;k;n k�n;k(�)k =jj�k(b�1st)jj!:

We can write

nX
t=1

k�Yt � �Yt�1k2 =
�
�y �

�
Y 0�1 
 Im

�
vec(�)

�0 �
�y �

�
Y 0�1 
 Im

�
vec(�)

�
where �y = vec (�Y ), �Y = (�Y1; :::;�Yn)m�n and Y�1 = (Y0; :::; YT�1)m�n.

159



By de�nition, Vn(b�n) � Vn(�n;f ) and thus
vec(�n;f � b�n)0 �Xn

t=1
Yt�1Y

0
t�1 
 Im

�
vec(�n;f � b�n)

+2vec(�n;f � b�n)0vec�Xn

t=1
Yt�1u

0
t

�
+2vec(�n;f � b�n)0 �Xn

t=1
Yt�1Y

0
t�1 
 Im

�
vec(�o � �n;f )

�
mX
k=1

n�r;k;n

h
jj�n;k(�n;f )jj � jj�n;k(b�n)jji =jj�k(b�1st)jj!: (3.111)

When ro = 0, �Yt is stationary and Yt is full rank I (1) ; so that

n�2
nX
t=1

Yt�1Y
0
t�1 !d

Z 1

0

Bu(a)B
0
u(a)da and n

�2
nX
t=1

Yt�1u
0
t = Op(n

�1): (3.112)

From the results in (3.111) and (3.112), we get

�n;minjjb�n � �n;f jj2 � 2(c1;n + c2;n)jjb�n � �n;f jj � dn � 0; (3.113)

where �n;min denotes the smallest eigenvalue of n
�2Pn

t=1 Yt�1Y
0
t�1; which is positive

w.p.a.1,

c1;n = jjn�2
Xn

t=1
Yt�1u

0
tjj; c2;n = m

n�2Xn

t=1
Yt�1Y

0
t�1

 jj�n;f � �ojj
and dn = n�1

mX
k=1

�r;k;njj�n;k(�n;f )jj=jj�k(b�1st)jj!. (3.114)

Under (3.19) and (3.112), c1;n = op(1) and c2;n = op(1). Under (3.17), (3.18), Lemma

3.3.1.(b) and �r;k;n = o(1),

dn = n
�1

roX
k=1

�r;k;njj�n;k(�n;f )jj=jj�k(b�1st)jj! = op(n�1): (3.115)

From (3.113), (3.114) and (3.115), it is straightforward to deduce that jjb�n��n;f jj =
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op(1). The consistency of b�n follows from the triangle inequality and the consistency
of �n;f .

When ro = m, Yt is stationary and we have

n�1
nX
t=1

Yt�1Y
0
t�1 !p �yy = R(1)
uR(1)

0 and n�1
nX
t=1

Yt�1u
0
t = Op(n

� 1
2 ). (3.116)

From the results in (3.111) and (3.116), we get

�n;minjjb�n � �n;f jj2 � 2n(c1;n + c2;n)jjb�n � �n;f jj � ndn � 0 (3.117)

where �n;min denotes the smallest eigenvalue of n
�1Pn

t=1 Yt�1Y
0
t�1, which is positive

w.p.a.1, c1;n, c2;n and dn are de�ned in (3.115). It is clear that nc1;n = op(1) and

nc2;n = op(1) under (3.116) and (3.19), and ndn = op(1) under (3.115). So, consis-

tency of b�n follows directly from the inequality in (3.117), triangle inequality and

the consistency of �n;f .

Denote Bn = (DnQ)
�1, then when 0 < ro < m, we can use the results in Lemma

3.9.1 to deduce that

nX
t=1

Yt�1Y
0
t�1 = Q�1D�1

n Dn

nX
t=1

Zt�1Z
0
t�1DnD

�1
n Q

0�1

= Bn

264
0B@ �z1z1 0

0
R
Bw2B

0
w2

1CA+ op(1)
375B0n;

and thus

vec(�n;f � b�n)0 nX
t=1

Yt�1Y
0
t�1 
 Im

!
vec(�n;f � b�n) � �n;minjj(b�n � �n;f )Bnjj2;

(3.118)

where �n;min is the smallest eigenvalue ofDn

Pn
t=1 Zt�1Z

0
t�1Dn and is positive w.p.a.1.

161



Next observe that

�����hvec(�n;f � b�n)i0 vec
 
BnDn

nX
t=1

Zt�1u
0
t

!����� � jj(b�n � �n;f )Bnjje1;n (3.119)

and

�����vec(�n;f � b�n)0
 

nX
t=1

Yt�1Y
0
t�1 
 Im

!
vec(�o � �n;f )

����� � jj(b�n � �n;f )Bnjje2;n
(3.120)

where

e1;n = jjDn

Xn

t=1
Zt�1u

0
tjj and e2;n = mjjDn

Xn

t=1
Zt�1Z

0
t�1Dnjj � jj(�n;f ��o)Bnjj:

(3.121)

Under Lemma 3.9.1 and (3.19), e1;n = Op(1) and e2;n = Op(1). From (3.111), (3.118),

(3.119), (3.120), we have the inequality

�n;minjj(b�n � �n;f )Bnjj2 � 2(e1;n + e2;n)jj(b�n � �n;f )Bnjj � ndn � 0; (3.122)

which implies

(b�n � �n;f )Bn = Op(1 +pnd 12n ): (3.123)

By the de�nition of Bn, (3.19) and (3.123), we deduce that

b�n � �o = Op(n� 1
2 + d

1
2
n ) = op(1);

which implies the consistency of b�n.
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Proof of Theorem 3.3.3. By the triangle inequality and (3.18), we have

�����
mX
k=1

�r;k;n
jj�n;k(�n;f )jj � jj�n;k(b�n)jj

jj�k(b�1st)jj!
�����

=

�����
roX
k=1

�r;k;n
jj�n;k(�n;f )jj � jj�n;k(b�n)jj

jj�k(b�1st)jj!
�����

� romax
k2S�

n
�r;k;njj�k(b�1st)jj�!o jjb�n � �n;f jj: (3.124)

Using (3.124) and invoking the inequality in (3.111) we get

vec(�n;f � b�n)0 �Xn

t=1
Yt�1Y

0
t�1 
 Im

�
vec(�n;f � b�n)

+2vec(�n;f � b�n)0vec�Xn

t=1
Yt�1u

0
t

�
+2vec(�n;f � b�n)0 �Xn

t=1
Yt�1Y

0
t�1 
 Im

�
vec(�o � �n;f )

� nro�r;njjb�n � �n;f jj: (3.125)

When ro = 0, we use (3.114) and (3.125) to obtain

�n;minjjb�n � �n;f jj2 � 2(c1;n + c2;n + n�1ro�r;n)jjb�n � �n;f jj � 0 (3.126)

where under (3.112) c1;n = Op(n
�1) and c2;n = Op(n

�1). We deduce from the in-

equality (3.126) and (3.19) that

b�n � �o = Op(n�1 + n�1�r;n): (3.127)

When ro = m, we use (3.125) to obtain

�n;minjjb�n � �n;f jj2 � 2n(c1;n + c2;n + n�1ro�r;n)jjb�n � �n;f jj � 0 (3.128)
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where nc1;n = jj 1
n

Pn
t=1 Yt�1u

0
tjj = Op(n

� 1
2 ) and nc2;n = Op(n

� 1
2 ) by Lemma 3.9.1

and (3.19). The inequality (3.128) and (3.19) lead to

b�n � �o = Op(n� 1
2 + �r;n): (3.129)

When 0 < ro < m, we can use the results in (3.118), (3.119), (3.120), (3.121) and

(3.125) to deduce that

�n;minjj(�n;f�b�n)Bnjj2�2(e1;n+e2;n)jj(�n;f�b�n)Bnjj � ron�r;njj�n;f�b�njj (3.130)
where e1;n = kDnQ

Pn
t=1 Yt�1u

0
tk = Op(1) and e2;n = Op(1) by Lemma 3.9.1 and

(3.19). By the de�nition of Bn,

jj(�n;f � b�n)BnB�1n jj � cn� 1
2 jj(�n;f � b�n)Bnjj (3.131)

where c is some �nite positive constant. Using (3.130), (3.131) and (3.19), we get

(b�n � �o)Bn = Op(1 + n 1
2 �r;n) (3.132)

which �nishes the proof.

Proof of Theorem 3.3.4. To facilitate the proof, we rewrite the LS shrinkage

estimation problem as

bTn = argmin
T2Rm�m

nX
t=1

k�Yt � PnTYt�1k2 + n
Xm

k=1
�r;k;n k�n;k(PnT )k =jj�k(b�1st)jj!:

(3.133)
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By de�nition, b�n = Pn bTn and bTn = Qnb�n for all n. Under (3.20) and (3.21),
bTn =

0B@ Q�;nb�n
Q�?;n

b�n
1CA =

0B@ Q�;nb�1st
Q�?;n

b�1st
1CA+ op(1): (3.134)

Results in (3.22) follows if we can show that the last m� ro rows of bTn are estimated
as zeros w.p.a.1.

By de�nition, �n;k(PnT ) = Qn(k)PnT = T (k) and the problem in (3.133) can be

rewritten as

bTn = argmin
T2Rm�m

nX
t=1

k�Yt � PnTYt�1k2 + n
Xm

k=1
�r;k;n kT (k)k =jj�k(b�1st)jj!; (3.135)

which has the following Karush-Kuhn-Tucker (KKT) optimality conditions

1

n

nX
t=1

(�Yt � Pn bTnYt�1)0Pn(k)Y 0t�1 =
�r;k;n

2jj�k(b�1st)jj!
bTn(k)
jjbTn(k)jj if bTn(k) 6= 0, 1n

nX
t=1

(�Yt � Pn bTnYt�1)0Pn(k)Y 0t�1
 � �r;k;n

2jj�k(b�1st)jj! if bTn(k) = 0, (3.136)

for k = 1; :::;m. Conditional on the event fQn(ko)b�n 6= 0g for some ko satisfying

ro < ko � m, we obtain the following equation from the KKT optimality conditions

1n
nX
t=1

(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1
 = �r;ko;n

2jj�ko(b�1st)jj! : (3.137)
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The sample average in the left hand side of (3.137) can be rewritten as

1

n

nX
t=1

(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1
=

1

n

nX
t=1

[�ut � (b�n � �o)Yt�1]0Pn(ko)Y 0t�1
=

P 0n(ko)
Pn

t=1�utY
0
t�1

n
�
P 0n(ko)(

b�n � �o)Pn
t=1 Yt�1Y

0
t�1

n
: (3.138)

Under Lemma 3.3.1, Lemma 3.9.1 and Theorem 3.3.3

P 0n(ko)
Pn

t=1�utY
0
t�1

n
= Op(1) (3.139)

and

P 0n(ko)(b�n � �o)Pn
t=1 Yt�1Y

0
t�1

n

= P 0n(ko)(
b�n � �o)Q�1D�1

n

Dn

Pn
t=1 Zt�1Z

0
t�1

n
Q0�1 = Op(1): (3.140)

Using the results in (3.138), (3.139) and (3.140), we deduce that

1n
nX
t=1

(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1
 = Op(1): (3.141)

While under Lemma 3.3.1.(c) and n!�r;ko;n !1

�r;ko;n

2jj�ko(b�1st)jj! = n!�r;ko;n

2jjn�n;ko(b�1st)jj! !p 1: (3.142)

Combining the results in (3.137), (3.141) and (3.142), we deduce that

Pr
�
Qn(ko)b�n = 0�! 1 as n!1:
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As the above result holds for any ko such that ro < ko � m, this �nishes the proof.

Proof of Theorem 3.3.6. From Corollary 3.3.5, for large enough n the shrinkage

estimator b�n can be decomposed as b�nb�0n w.p.a.1, where b�n and b�n are some m� ro
matrices. Without loss of generality, we assume the �rst ro columns of �o are linearly

independent. To ensure identi�cation, we normalize �o as �o = [Iro ; Oro ]
0 where Oro

is some ro � (m� ro) matrix such that

�o = �o�
0
o = [�o; �oOro ]: (3.143)

Hence �o is the �rst ro columns of �o which is an m� ro matrix with full rank and

Oro is uniquely determined by the equation �oOro = �o;2, where �o;2 denotes the

last m� ro columns of �o. Correspondingly, for large enough n we can normalize b�n
as b�n = [Iro ; bOn]0 where bOn is some ro � (m� ro) matrix.
From Theorem 3.3.3 and n

1
2 �r;n = op(1), we have

Op(1) =
�b�n � �o�Q�1Dn =

�b�n � �o� �pn�o(�0o�o)�1; n�o;?(�0o;?�o;?)�1� :
(3.144)

From (3.144), we can deduce that

nb�n �b�n � �o�0 �o;?(�0o;?�o;?)�1 = Op(1);
which implies

n
� bOn �Oo� = Op(1): (3.145)
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Similarly, we have

p
n

�
(b�n � �o) b�0n�o(�0o�o)�1 � �o �b�n � �o�0 �o(�0o�o)�1� = Op(1);

which combined with (3.145) implies

p
n (b�n � �o) = Op(1): (3.146)

From Corollary 3.3.5, we can deduce that b�n and b�n minimize the following
criterion function w.p.a.1

Vn(�; �) =
nX
t=1

k�Yt � ��0Yt�1k2 + n
roX
k=1

�r;k;n
jj�n;k(��0)jj
jj�k(b�1st)jj! : (3.147)

De�ne U�1;n =
p
n (b�n � �o) and U�3;n = n

�b�n � �o�0 = h
0ro ; n

� bOn �Oo�i ��
0ro ; U

�
2;n

�
, then

�b�n � �o�Q�1D�1
n =

�b�n �b�n � �o�0 + (b�n � �o) �0o�Q�1D�1
n

=
h
n�

1
2 b�nU�3;n�o(�0o�o)�1 + U�1;n; b�nU�3;n�o;?(�0o;?�o;?)�1i :

De�ne

�n(U) =
h
n�

1
2 b�nU3�o(�0o�o)�1 + U1; b�nU3�o;?(�0o;?�o;?)�1i ;

where U3 = [0ro ; U2]. Then by de�nition, U
�
n =

�
U�1;n; U

�
2;n

�
minimizes the following

criterion function w.p.a.1

Vn(U) =
nX
t=1

�
k�Yt � �oYt�1 � �n(U)DnZt�1k2 � k�Yt � �oYt�1k2

�
+n

roX
k=1

�r;k;n
jj�n;k(�n(U)DnQ+�o)jj � jj�n;k(�o)jj

jj�k(b�1st)jj! :
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For any compact set K 2 Rm�ro �Rro�(m�ro) and any U 2 K, we have

�n(U)DnQ = Op(n
� 1
2 ):

Hence, from the triangle inequality, we can deduce that for all k 2 S�

n

������r;k;n jj�n;k(�n(U)DnQ+�o)jj � jj�n;k(�o)jj
jj�k(b�1st)jj!

�����
� n�r;k;n

jj�n;k(�n(U)DnQ)jj
jj�k(b�1st)jj! = Op(n

1
2�r;k;n) = op(1); (3.148)

uniformly over U 2 K.

From (3.146),

�n(U)!p

�
U1; �oU3�o;?(�

0
o;?�o;?)

�1� � �1(U) (3.149)

uniformly over U 2 K. By Lemma 3.9.1 and (3.149), we deduce that

nX
t=1

�
k�Yt � �oYt�1 � �n(U)DnZt�1k2E � k�Yt � �oYt�1k

2
E

�
= vec [�n(U)]

0

 
Dn

nX
t=1

Zt�1Z
0
t�1Dn 
 Im

!
vec [�n(U)]

�2vec [�n(U)]0 vec
 

nX
t=1

utZ
0
t�1Dn

!

! d vec [�1(U)]
0

264
0B@ �z1z1 0

0
R
Bw2B

0
w2

1CA
 Im
375 vec [�1(U)]

� 2vec [�1(U)]0 vec [(V1;m; V2;m)] � V (U) (3.150)

uniformly over U 2 K, where V1;m � N(0;
u 
 �z1z1) and V2;m �
�R
Bw2dB

0
u

�0
.

Let �o;? = (�
0
1;o;?; �

0
2;o;?)

0 where �1;o;? is a ro � (m � ro) matrix and �2;o;? is a
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(m� ro)� (m� ro) matrix. Then by de�nition

�01;o;? + �
0
2;o;?Oro = 0 and �

0
1;o;?�1;o;? + �

0
2;o;?�2;o;? = 0

which implies that

�01;o;? = ��02;o;?Oro and �2;o;? = (Iro +OroO0ro)
� 1
2 :

By de�nition �1(U) =
�
U1; �oU2�2;o;?(�

0
o;?�o;?)

�1�, thus
vec [�1(U)] =

�
vec(U1)

0; vec(�oU2�2;o;?(�
0
o;?�o;?)

�1)0
�0

and

vec(�oU2�2;o;?(�
0
o;?�o;?)

�1) =
�
(�0o;?�o;?)

�1�02;o;? 
 �o
�
vec(U2):

Using above expression, we can rewrite V (U) as

V (U) = vec(U1)
0 [�z1z1 
 Im] vec(U1)

+vec(U2)
0
�
�2;o;?(�

0
o;?�o;?)

�1
Z
Bw2B

0
w2
(�0o;?�o;?)

�1�02;o;? 
 �0o�o
�
vec(U2)

�2vec(U1)0vec (V1;m)� 2vec(U2)0vec
�
�0oV2;m(�

0
o;?�o;?)

�1�02;o;?
�
: (3.151)

The expression in (3.151) makes it clear that V (U) is uniquely minimized at

�
U�1 ; U

�
2 (�

0
o;?�o;?)�

�1
2;o;?

�
where

U�1 = Bm;1 and U
�
2 = (�

0
o�o)

�1�0oBm;2. (3.152)
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From (3.145) and (3.146), we can see that U�n is asymptotically tight. Invoking the

Argmax Continuous Mapping Theorem (ACMT), we can deduce that

U�n = (U
�
1;n; U

�
2;n)!d

�
U�1 ; U

�
2 (�

0
o;?�o;?)�

�1
2;o;?

�
which together with (3.149) and CMT implies that

�b�n � �o�Q�1D�1
n !d

�
Bm;1 �o(�

0
o�o)

�1�0oBm;2

�
:

This �nishes the proof.

Proof of Corollary 3.3.7. The consistency, convergence rate and super-e¢ ciency

of b�g;n can be established using similarly arguments to those of Theorem 3.3.2,

Theorem 3.3.3 and Theorem 3.3.4.

Under the super e¢ ciency of b�g;n, the true rank ro is imposed in b�g;n w.p.a.1.
Thus for large enough n, the GLS shrinkage estimator b�g;n can be decomposed as
b�g;nb�0g;n w.p.a.1, where b�g;n and b�g;n are some m � ro matrices and they minimize
the following criterion function w.p.a.1

nX
t=1

(�Yt � ��0Yt�1)0 b
�1u;n (�Yt � ��0Yt�1) + n roX
k=1

�r;k;n
jj�n;k(��0)jj
jj�k(b�1st)jj! : (3.153)

Using the similar arguments in the proof of Theorem 3.3.6, we de�ne

�o = �o�
0
o = [�o; �oOro ] and �o = [Iro ; Oro ]

0

where Oro is some ro�(m�ro) matrix uniquely determined by the equation �oOro =

�o;2, where �o;2 denotes the last m� ro columns of �o.

De�ne U�1;n =
p
n (b�g;n � �o) and U�3;n = n(b�g;n � �o)0 = h0ro ; n� bOg;n �Oo�i �
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�
0ro ; U

�
2;n

�
, then

�b�n � �o�Q�1D�1
n =

�b�g;n �b�g;n � �o�0 + (b�g;n � �o) �0o�Q�1D�1
n

=
h
n�

1
2 b�g;nU�3;n�o(�0o�o)�1 + U�1;n; b�g;nU�3;n�o;?(�0o;?�o;?)�1i :

De�ne

�n(U) =
h
n�

1
2 b�g;nU3�o(�0o�o)�1 + U1; b�g;nU3�o;?(�0o;?�o;?)�1i ;

then by de�nition, U�n =
�
U�1;n; U

�
2;n

�
minimizes the following criterion function

w.p.a.1

Vn(U) =
nX
t=1

h
(ut � �n(U)DnZt�1)

0 b
�1u;n (ut � �n(U)DnZt�1)� u0tb
�1u;nuti
+n

roX
k=1

�r;k;n
jj�n;k(�n(U)DnQ+�o)jj � jj�n;k(�o)jj

jj�k(b�1st)jj! : (3.154)

Following similar arguments to those of Theorem 3.3.6, we can deduce that for any

k 2 S�

n

������r;k;n jj�n;k(�n(U)DnQ+�o)jj � jj�n;k(�o)jj
jj�k(b�1st)jj!

����� = op(1); (3.155)
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and

nX
t=1

(ut � �n(U)DnZt�1)
0 b
�1u;n (ut � �n(U)DnZt�1)�

nX
t=1

u0tb
�1u;nut
! d vec(U1)

0 ��z1z1 
 
�1u � vec(U1)
+vec(U2)

0
�
�2;o;?(�

0
o;?�o;?)

�1
Z
Bw2B

0
w2
(�0o;?�o;?)

�1�02;o;? 
 �0o
�1u �o
�
vec(U2)

�2vec(U1)0vec
�

�1u B1;m

�
� 2vec(U2)0vec

�
�0o


�1
u B2;m(�

0
o;?�o;?)

�1�02;o;?
�

� V (U) (3.156)

uniformly over U in any compact subspace of Rm�ro �Rro�(m�ro). V (U) is uniquely

minimized at
�
U�g;1; U

�
g;2

�
, where U�g;1 = B1;m�

�1
z1z1

and

U�g;2 = (�
0
o


�1
u �o)

�1 ��0o
�1u B2;m��Z Bw2B
0
w2

��1
(�0o;?�o;?)

�1��12;o;?:

Invoking the argmax continuous mapping theorem, we obtain

�b�g;n � �o�Q�1D�1
n =

�b�g;n �b�g;n � �o�0 + (b�g;n � �o) �0o�Q�1D�1
n

! d

"
B1;m�

�1
z1z1
; �o(�

0
o


�1
u �o)

�1 ��0o
�1u B2;m��Z Bw2B
0
w2

��1#
:

(3.157)

By the de�nition of w1 and w2, we can de�ne 
eu = Q
uQ0 such that


eu =
0B@ �w1w1 �w1w2

�w2w1 �w2w2

1CA and 
�1eu =

0B@ 
eu(11) 
eu(12)

eu(21) 
eu(22)

1CA :
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Note that

(�0o

�1
u �o)

�1�0o

�1
u = (�0oQ

0
�1eu Q�o)�1�0oQ0
�1eu Q
= [(�0o�o)
eu(11)(�0o�o)]�1 [(�0o�o); 0]
�1eu Q
= (�0o�o)

�1
�1eu (11) �
eu(11)�0o + 
eu(12)�0o;?� : (3.158)
Under 
eu(12) = �
eu(11)�w1w2��1w2w2,

(�0o

�1
u �o)

�1�0o

�1
u = (�0o�o)

�1(�0o � �w1w2��1w2w2�
0
o;?): (3.159)

Now, using (3.157) and (3.159), we can deduce that

�b�g;n � �o�Q�1D�1
n !d

�
Bm;1

�R
Bw2dB

0
u�w2
�0 �R

Bw2B
0
w2

��1 � :
This �nishes the proof.

3.9.2 Proof of Main Results in Section 3.4

Proof of Lemma 3.4.1. From the partial sum expression in (3.8), we get Z1;t�1 =

�0oYt�1 = R(L)�0out, which implies that f�0oYt�1gt�1 is a stationary process. Note

that

E
�
utZ

0
1;t�1

�
=

1X
j=0

E
�
utu

0
t�j
�
�o
�
Rj
�0
=

1X
j=0

�uu(j)�o
�
Rj
�0
<1:

Using a CLT for linear process time series (e.g. the multivariate version of theorem

8 and Remark 3.9 of Phillips and Solo, 1992), we deduce that

n�
1
2

nX
t=1

�
utZ

0
1;t�1 � �uz1(1)

�
!d N(0; Vuz1);
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which establishes (3.36). The results of (a)-(c) and (e) can be proved using similar

arguments to those of Lemma 3.9.1.

Proof of Lemma 3.4.2. (a). De�ne �wz1 = Q�uz1(1). By Lemma 3.4.1, we have

Hn =
�
�wz1 ; 0m�(m�ro)

�
n
1
2Dn

 
Dn

nX
t=1

Zt�1Z
0
t�1Dn

!�1
Dnn

1
2

=
�
�wz1 ; 0m�(m�ro)

� 
Dn

nX
t=1

Zt�1Z
0
t�1Dn

!�10B@ Iro 0

0 n�
1
2 Im�ro

1CA
! p (�wz1�

�1
z1z1
; 0m�(m�ro)) = Ho: (3.160)

(b). From the expression of Hn in the �rst line of (3.160), we get

nQ�1HnQ�o? = [�uz1(1); 0]

 
Dn

nX
t=1

Zt�1Z
0
t�1Dn

!�10B@ 0

n
1
2�0o?�o?

1CA
= ��uz1(1)bS�111 bS12 �n�1 bS22 � n�1 bS21 bS�111 bS12��1 �0o?�o?:(3.161)

By Lemma 3.4.1 and the CMT, we have

�bS22 � n�1 bS21 bS�111 bS12��1 !d

�Z
Bw2B

0
w2

��1
: (3.162)

Next note that

bS12 !d �(�0o�o)�1
��Z

Bw2dB
0
w1

�0
+ �w1w2

�
: (3.163)

The claimed result now follows by applying the results in (3.161)-(3.163), Lemma

3.4.1 and CMT into the expression in (3.161).
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(c). From the expression of Hn in the �rst line of (3.160), we get

p
nQ�1 (Hn �Ho)Q�o

=
p
n [�uz1(1); 0]

8><>:nDn
0B@ bS11 n�

1
2 bS12

n�
1
2 bS21 n�1 bS22

1CA
�1

Dn �

0B@ ��1z1z1 0

0 0

1CA
9>=>;Q�o

=
p
n [�uz1(1); 0]GnQ�o (3.164)

where

Gn =

0B@ (bS11 � bS12 bS�122 bS21)�1 � ��1z1z1 � bS�111 bS12
n

� bS22
n
� bS21 bS�111 bS12

n

��1
�bS�122 bS21(bS11 � bS12 bS�122 bS21)�1 1

n

� bS22
n
� bS21 bS�111 bS12

n

��1
1CA : (3.165)

From Lemma 3.4.1,

bS�111 bS12p
n

 bS22
n
�
bS21 bS�111 bS12

n

!�1
= op(1): (3.166)

Using (3.164), (3.165) and (3.166), we can deduce that

p
nQ�1 (Hn �Ho)Q�o = �uz1(1)

p
n
�
Hn;11 � ��1z1z1

�
�0o�o + op(1) (3.167)

where Hn;11 =
�bS11 � bS12 bS�122 bS21��1. Invoking the CLT and Lemma 3.4.1, we get

�uz1(1)
p
n
�
Hn;11 � ��1z1z1

�
�0o�o

= ��uz1(1)Hn;11
p
n
�
H�1
n;11 � �z1z1

�
��1z1z1�

0
o�o

= ��uz1(1)H11;n
p
n
�bS11 � �z1z1���1z1z1�0o�o + op(1)

! d �uz1(1)�
�1
z1z1
N(0; Vz1z1)�

�1
z1z1
�0o�o; (3.168)

which �nishes the proof.
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Proof of Lemma 3.4.3. (a). From the expression in (3.11) and (3.160),

h
Q
�b�1st � �o�Q�1 �HniD�1

n =

"
nX
t=1

�
wtZ

0
t�1 �H1;o

�#
Dn

 
Dn

nX
t=1

Zt�1Z
0
t�1Dn

!�1
;

(3.169)

whereH1;o =
�
Q�uz1(1); 0m�(m�ro)

�
. Now, the results in (a) are directly from Lemma

3.4.1 and CMT.

(b). Denote P =
he�1; e�1?i and Sn(�) = �Im � b�1st, then by de�nition, the

eigenvalues of b�1st are the solutions of the following determinantal equation,
0 = jP 0Sn(�)P j =

�������
�e�01e�1 � e�01b�1ste�1 �e�01b�1ste�1?
�e�01?b�1ste�1 �Im�ro � e�01?b�1ste�1?

������� : (3.170)

As �1e�1? = 0 and b�1st = �1 + op(1),
e�01b�1ste�1? = e�01 �b�1st � �1� e�1? + e�01�1e�1? = op(1): (3.171)

Similarly, we have

e�01?b�1ste�1? = e�01? �b�1st � �1� e�1? = op(1) (3.172)

and e�01?b�1ste�1 !p
e�01?�1e�1 and e�01b�1ste�1 !p

e�01�1e�1: (3.173)

From the results in (3.170)-(3.173), we can invoke the Slutsky Theorem to deduce

that ����Im � b�1st���!p j�Im�r1j �
����e�01e�1 � e�01�1e�1��� ; (3.174)

uniformly over any compact set in R, where
����e�01e�1 �p e�01�1e�1��� = 0 can equivalently
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be written as
����Ir1�ro � e�01e�1��� = 0. Hence the claimed results follow by (3.174) and

the CMT.

(c). If we denote u�n;k = n�k(b�1st), then by de�nition, u�n;k (k 2 fro + 1; :::;mg)
is the solution of the following determinantal equation

0 =
���e�01Sn(u)e�1���� ����e�01?�Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u)�e�1?���� ; (3.175)

where Sn(u) = u
n
Im � b�1st.

From the results in (3.37) and (3.38), we have

e�01Sn(u)e�1 = n� 1
2ue�01e�1 � e�01b�1ste�1 !p �e�01e�1e�01e�1; (3.176)

where e�01e�1e�01e�1 is a r1 � r1 nonsingular matrix. Hence u�n;k is the solution of the
following determinantal equation asymptotically

0 =

����e�01?�Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u)�e�1?���� : (3.177)

Denote Tn(u) = Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u), then (3.177) can be equiv-
alently written as

0 =
���e�0?Tn(u)e�?���������0o?�Tn(u)� Tn(u)e�? he�0?Tn(u)e�?i�1 e�0?Tn(u)� �o?���� : (3.178)

Note that

n
1
2 e�0?Sn(u)e�? = n�

1
2ue�0?e�? � n 1

2 e�0? �b�1st � �1;n� e�? � n 1
2 e�0?�1;ne�?;

n
1
2 e�01Sn(u)e�? = �n 1

2 e�01 �b�1st � �1;n� e�? � n 1
2 e�01�1;ne�?;e�0?Sn(u)e�1 = �e�0?b�1ste�1:
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From above expressions, we can write

n
1
2 e�0?Tn(u)e�? = n� 1

2ue�0?e�? � e�0? �Im + b�1ste�1 he�01Sn(u)e�1i�1 e�01�M1;n; (3.179)

where M1;n = n
1
2

�b�1st � �1;n� e�? + n 1
2�1;ne�?. Using Lemma 3.4.1 and the results

in (a), we can deduce that

n
1
2

�b�1st � �1;n� e�? = Q�1
h
Q
�b�1st � �1;n�Q�1D�1

n

i
n
1
2DnQe�?

! d N(0; Vuz1)�
�1
z1z1
�0o
e�? � N1

e�?: (3.180)

Using the results in Lemma 3.4.2, we get

n
1
2�1;ne�? = n

1
2 (�1;n � �1) e�? = n 1

2Q�1 (Hn �Ho)Qe�?
! d �uz1(1)�

�1
z1z1
N(0; Vz1z1)�

�1
z1z1
�0o
e�? � N2

e�?: (3.181)

From (3.179)-(3.181), we can deduce that

���pne�0?Tn(u)e�?���!d

���e�0? (N1 +N2) e�?��� 6= 0; a:e: (3.182)

Next note that

�0o?Tn(u)�o? =
u�0o?�o?

n
� �0o?

�
Im + b�1ste�1 �e�01Sn(u)e�1��1 e�01�M2;n;(3.183)

e�0?Tn(u)�o? = �e�0? �Im + b�1ste�1 �e�01Sn(u)e�1��1 e�01�M2;n; (3.184)

where M2;n =
�b�1st � �1;n� �o? +�1;n�o?. By (3.173) and (3.176), we have

�0o?Tn(u)
e�? = �0o?b�olse�? � �0o?b�1ste�1 �e�01Sn(u)e�1��1 e�01b�1ste�? = op(1): (3.185)
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Using Lemma 3.4.2, we can deduce that

n
�b�1st � �1;n� �o? = nQ�1

h
Q
�b�1st � �1;n�Q�1Dn

i
D�1
n Q�o?

= Q�1
h
Q
�b�1st � �1;n�Q�1Dn

i0B@ 0

�0o?�o?

1CA
! d

Z
dBuB

0
w2

�Z
Bw2B

0
w2

��1
�0o?�o? � e�0�o?(3.186)

Using the result in (3.39), we get

n�1n�o? = n
�
�o +Q

�1HnQ
�
�o?

= nQ�1HnQ�o? !d
e�1�o?: (3.187)

From (3.183)-(3.187), we deduce that

����n�0o?�Tn(u)� Tn(u)e�? he�0?Tn(u)e�?i�1 e�0?Tn(u)� �o?����
! d

���uIm�ro � �0o? �e�0 + e�1� �o?��� ; (3.188)

uniformly over any compact set in R. Now, the results in (c) follow from (3.188) and

the CMT.

(d) If we denote u�n;k =
p
n�k(b�1st), then by de�nition, u�n;k (k 2 fr1 + 1; :::; rog)

is the solution of the following determinantal equation

0 =
���e�01Sn(u)e�1���� ����e�01?�Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u)�e�1?���� ; (3.189)

where Sn(u) = up
n
Im � b�1st.
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Note that

e�01?Sn(u)e�1? = n�
1
2uIm�r1 � e�01?b�1ste�1?; (3.190)

e�01?Sn(u)e�1 = �e�01?b�1ste�1 and e�01Sn(u)e�1? = �e�01b�1ste�1?: (3.191)

Using expressions (3.190) and (3.191), we have

e�01?�Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u)�e�1?
= n�

1
2uIm�r1 � e�01?�Im + b�1ste�1 he�01Sn(u)e�1i�1 e�01� b�1ste�1?: (3.192)

From (3.186), we get
p
n
�b�1st � �1n� �o;? = op(1): (3.193)

Using (3.180), (3.39) and (3.40), we have

p
n
�b�1st � �1n� e�? ! d

e�3e�?; (3.194)

p
n�1n�o? = op(1); (3.195)

p
n�1ne�? ! d

e�2e�?: (3.196)

Now, using the results in (3.193)-(3.196), we get

p
nb�1ste�1? =

p
n
hb�1st � �1ni e�1? +pn�1ne�1?

! d

h
0m�(m�ro); e�3e�?i+ h0m�(m�ro); e�2e�?i

=
h
0m�(m�ro);

�e�2 + e�3� e�?i : (3.197)
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From the results in (3.192)-(3.197), it follows that

����pne�01?�Sn(u)� Sn(u)e�1 he�01Sn(u)e�1i�1 e�01Sn(u)�e�1?����
! d

����uIm�r1 � e�01? �Im + e�1 �e�01e�1��1 e�01� h0m�(m�ro); (N1 +N2) e�?i����
= juIm�r0 j �

���uIro�r1 � e�0? �e�2 + e�3� e�?��� : (3.198)

Note that the determinantal equation

juIm�r0j �
���uIro�r1 � e�0? �e�2 + e�3� e�?��� = 0 (3.199)

has m� r0 zero eigenvalues, which correspond to the probability limit of
p
n�k(b�1st)

(k 2 fr1+1; :::; rog), as illustrated in (c). Equation (3.199) also has ro�r1 non-trivial

eigenvalues as solutions of the stochastic determinantal equation

���uIro�r1 � e�0? �e�2 + e�3� e�?��� = 0;
which �nishes the proof.

Recall that Pn is de�ned as the inverse of Qn. We divide Pn and Qn as Pn =

[Pe�;n; Pe�?;n] and Q0n = �Q0e�;n; Q0e�?;n�, where Qe�;n and Pe�;n are the �rst r1 rows of Qn
and �rst r1 columns of Pn respectively (Qe�?;n and Pe�?;n are de�ned accordingly).
By de�nition,

Qe�?;nPe�?;n = Im�r1, Qe�;nPe�?;n = 0r1�(m�r1) and Qe�?;nb�1st = �e�?;nQe�?;n (3.200)

where �e�?;n is an diagonal matrix with the ordered last (smallest) m�r1 eigenvalues
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of b�1st. Using the results in (3.200), we can de�ne a useful estimator of �1 as
e�n;f = b�1st � Pe�?;n�e�?;nQe�?;n: (3.201)

By de�nition

Qe�;ne�n;f = Qe�;nb�1st �Qe�;nPe�?;n�e�?;nQe�?;n = �e�;nQe�;n (3.202)

where �e�;n is an diagonal matrix with the ordered �rst (largest) ro eigenvalues ofb�1st, and more importantly
Qe�?;ne�n;f = Qe�?;nb�1st �Qe�?;nPe�?;n�e�?;nQe�?;n = 0(m�r1)�m: (3.203)

From Lemma 3.4.3.(b), (3.202) and (3.203), we can deduce that Qe�;ne�n;f is a r1�m
matrix which is nonzero w.p.a.1 and Qe�?;ne�n;f is a (m� r1)�m zero matrix for all

n. Using (3.200), we can write

e�n;f � �1 = (b�1st � �1)� Pe�?;n�e�?;nQe�?;n
= (b�1st � �1)� Pe�?;nQe�?;n(b�1st � �1)� Pe�?;nQe�?;n�1: (3.204)

Under Lemma 3.4.3.(a),

Q
�b�1st � �1�Q�1D�1

n = Q
�b�1st � �o �Q�1HnQ�Q�1D�1

n + (Hn �Ho)D�1
n

=
h
Q
�b�1st � �o�Q�1 �HniD�1

n + (Hn �Ho)D�1
n

= (Hn �Ho)D�1
n +Op(1): (3.205)
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Under Lemma 3.4.1,

Q�1(Hn �Ho)D�1
n =

�
�uz1(1); 0m�(m�ro)

�
GnD

�1
n = Op(1) (3.206)

where Gn is de�ned in (3.165). From (3.205) and (3.206), we can deduce that

�b�1st � �1�Q�1D�1
n = Op(1): (3.207)

Using (3.207) and Lemma 3.4.3.(c) and (d), we obtain

Pe�?;nQe�?;n�1Q�1D�1
n =

p
nPe�?;nQe�?;n�1Q�1

= �
p
nPe�?;nQe�?;n

�b�1st � �1�Q�1 +pnPe�?;nQe�?;nb�1st
=

p
nPe�?;n�e�?;nQe�?;n +Op(1) = Op(1) (3.208)

Thus under (3.204), (3.207) and (3.208), we get

�e�n;f � �1�Q�1D�1
n = Op(1): (3.209)

Comparing (3.207) with (3.209), we see that e�n;f is as good as the OLS estimateb�1st in terms of its rate of convergence.
Proof of Corollary 3.4.4. First, when ro = 0, then �1 = e�o�0o = 0 = �o. Hence,
(3.46) follows by the similar arguments to those in the proof of Theorem 3.3.2. To

�nish the proof, we only need to consider the scenarios where ro = m and ro 2 (0;m).

Using the same notation for Vn(�) de�ned in the proof of Theorem 3.3.2, by
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de�nition we have Vn(b�n) � Vn(e�n;f ), which implies
h
vec(e�n;f � b�n)i0 nX

t=1

Yt�1Y
0
t�1 
 Im

!h
vec(e�n;f � b�n)i

+2
h
vec(e�n;f � b�n)i0 vec" nX

t=1

utY
0
t�1 � (�1 � �o)

nX
t=1

Yt�1Y
0
t�1

#

�2
h
vec(e�n;f � b�n)i0 nX

t=1

Yt�1Y
0
t�1 
 Im

!
vec(e�n;f � �1)

� n

(
mX
k=1

�r;k;n

h
jj�n;k(e�n;f )jj � jj�n;k(b�n)jji =jj�k(b�1st)jj!

)
: (3.210)

When ro = m, Yt is stationary and we have

1

n

nX
t=1

Yt�1Y
0
t�1 !p �yy = R(1)
uR(1)

0: (3.211)

From the results in (3.210) and (3.211), we get w.p.a.1,

�n;minjjb�n � e�n;f jj � jjb�n � e�n;f jj(c1n + c2n)� dn � 0; (3.212)

where �n;min denotes the smallest eigenvalue of
1
n

Pn
t=1 Yt�1Y

0
t�1, which is positive

w.p.a.1,

c1n =

Pn
t=1 utY

0
t�1

n
� (�1 � �o)

Pn
t=1 Yt�1Y

0
t�1

n


! p

�uy(1)� �uy(1)��1yy �yy = 0 (3.213)

by Lemma 3.4.1 and the de�nition of �1, and

c2n = m
n�1Xn

t=1
Yt�1Y

0
t�1

 jje�n;f � �1jj = op(1) (3.214)
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by Lemma 3.4.1 and (3.209), and

dn =
mX
k=1

�r;k;n
jj�n;k(e�n;f )jj � jj�n;k(b�n)jj

jj�k(b�1st)jj! �
r1X
k=1

�r;k;n
jj�n;k(e�n;f )jj
jj�k(b�1st)jj! = op(1)

(3.215)

by Lemma 3.4.3, (3.203) and �r;k;n = o(1) for k = 1; :::; r1. So result in (3.46) follows

directly from (3.209), the inequality in (3.212) and the triangle inequality.

When 0 < ro < m,

vec(b�n � e�n;f )0 nX
t=1

Yt�1Y
0
t�1 
 Im

!
vec(b�n � e�n;f )

= vec(b�n � e�n;f )0 BnDn

nX
t=1

Zt�1Z
0
t�1DnB

0
n 
 Im

!
vec(b�n � e�n;f )

� �n;minjj(b�n � e�n;f )Bnjj2 (3.216)

where �n;min denotes the smallest eigenvalue ofDn

Pn
t=1 Zt�1Z

0
t�1Dn which is positive

de�nite w.p.a.1 under Lemma 3.4.1. Next, note that

(
nX
t=1

utZ
0
t�1 �

�
(�1 � �o)Q�1

� nX
t=1

Zt�1Z
0
t�1

)
Dn

=

264 n� 1
2

Pn
t=1 Z1;t�1u

0
t

n�1
Pn

t=1 Z2;t�1u
0
t

375
0

�

264 n� 1
2

Pn
t=1 Z1;t�1Z

0
1;t�1�

�1
z1z1
�0uz1(1)

n�1
Pn

t=1 Z2;t�1Z
0
1;t�1�

�1
z1z1
�0uz1(1)

375
0

:(3.217)

From Lemma 3.4.1, we can deduce that

n�1
nX
t=1

Z2;t�1u
0
t = Op(1) and n

�1
nX
t=1

Z2;t�1Z
0
1;t�1�

�1
���

0
uz1
(1) = Op(1): (3.218)

Similarly, we get

n�
1
2

nX
t=1

�
Z1;t�1u

0
t � �0uz1(1)

�
� n 1

2 [Sn;11 � �z1z1 ] ��1z1z1�
0
uz1
(1) = Op(1): (3.219)
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De�ne e1n =
�Pn

t=1 utZ
0
t�1 � (�1 � �o)Q�1

Pn
t=1 Zt�1Z

0
t�1
	
Dn

, then from (3.217)-
(3.219) we can deduce that e1n = Op(1). By the Cauchy-Schwarz inequality, we have

���vec(b�n � e�n;f )0vec hXn

t=1
utY

0
t�1 � (�1 � �o)

Xn

t=1
Yt�1Y

0
t�1

i���
=

���vec(b�n � e�n;f )0vec hnXn

t=1
utZ

0
t�1 � (�1 � �o)Q�1

Xn

t=1
Zt�1Z

0
t�1

o
DnB

0
n

i���
� jj(b�n � e�n;f )Bnjje1n: (3.220)

Under Lemma 3.4.1 and (3.209),

e2n �
�����vec(e�n;f � b�n)0

 
nX
t=1

Yt�1Y
0
t�1 
 Im

!
vec(e�n;f � �1)

�����
=

�����vec(e�n;f � b�n)0
 
BnDn

nX
t=1

Zt�1Z
0
t�1DnB

0
n 
 Im

!
vec(e�n;f � �1)

�����
� jj(b�n � e�n;f )Bnjj � jj(e�n;f � �1)Bnjj � jjDn

Xn

t=1
Zt�1Z

0
t�1Dnjj = Op(1):

(3.221)

From results in (3.210), (3.220) and (3.221), we get w.p.a.1

�n;minjj(b�n � e�n;f )Bnjj2 � 2jj(b�n � e�n;f )Bnjj2(e1n + e2n)� dn � 0 (3.222)

where dn = op(1) by (3.215). Now, result in (3.46) follows by (3.222) and the same

arguments in Theorem 3.3.2.

Proof of Corollary 3.4.5. From Lemma 3.4.3 and Corollary 3.4.4, we deduce
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that w.p.a.1

������
X
k2 eS�

�r;k;n
jj�n;k(e�n;f )jj � jj�n;k(b�n)jj

jj�k(b�1st)jj!
������

�
X
k2 eS�

�r;k;n

����� jj�n;k(e�n;f )jj � jj�n;k(b�n)jjjj�k(b�1st)jj!
�����

� d eS�
(
max
k2 eS� �r;k;njj�k(b�1st)jj�!

)
jjb�n � e�n;f jj: (3.223)

Using (3.210) and (3.223), we have

h
vec(e�n;f � b�n)i0 nX

t=1

Yt�1Y
0
t�1 
 Im

!h
vec(e�n;f � b�n)i

+2
h
vec(e�n;f � b�n)i0 vec" nX

t=1

utY
0
t�1 � (�1 � �o)

nX
t=1

Yt�1Y
0
t�1

#

�2
h
vec(e�n;f � b�n)i0 nX

t=1

Yt�1Y
0
t�1 
 Im

!
vec(e�n;f � �1)

� c

(
max
k2 eS� �r;k;njj�k(b�1st)jj�!

)
jjb�n � e�n;f jj (3.224)

where c > 0 is a generic positive constant. When ro = 0, the convergence rate of b�n
could be derived using the same arguments in Theorem 3.3.3. Hence, to �nish the

proof, we only need to consider scenarios where ro = m or 0 < ro < m.

When ro = m, following similar arguments to those of Theorem 3.3.3, we get

�n;minjje�n;f � b�njj2 � cjje�n;f � b�njj�c1n + c2n + e�r;n� � 0; (3.225)
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where

c1n =

n�1
nX
t=1

utY
0
t�1 � n�1(�1 � �o)

nX
t=1

Yt�1Y
0
t�1


= n�

1
2

n� 1
2

nX
t=1

�
utY

0
t�1 � �uy(1)

�
� �uy(1)��1z1z1

h
n
1
2

�bS11 � �z1z1�i


= Op(n
� 1
2 ) (3.226)

by Lemma 3.4.1, and

c2n =
n�1Xn

t=1
Yt�1Y

0
t�1

e�n;f � �1 = Op(n� 1
2 ) (3.227)

by Lemma 3.4.1 and 3.209. From the results in (3.209), (3.225), (3.226) and (3.227),

we deduce that b�n � �1 = Op(n� 1
2 + e�r;n): (3.228)

When 0 < ro < m, we can use (3.220) and (3.221) in the proof of Corollary 3.4.4

and (3.224) and to get w.p.a.1

�n;minjj(e�n;f� b�n)Bnjj2�2jj(e�n;f� b�n)Bnjj(e1;n+e2;n) � cn�njje�n;f� b�njj; (3.229)
where e1;n = Op(1) and e2;n = Op(1) as illustrated in the proof of Corollary 3.4.4. By

the Cauchy-Schwarz inequality,

jj(e�n;f � b�n)BnB�1n jj � cn� 1
2 jj(e�n;f � b�n)Bnjj: (3.230)

Using (3.229) and (3.230), we obtain

�n;minjj(e�n;f � b�n)Bnjj2 � cjj(e�n;f � b�n)Bnjj(e1;n + e2;n + n 1
2e�r;n) � 0: (3.231)
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From (3.209) and the inequality in (3.231), we obtain

(b�n � �1)Bn = (b�n � e�n;f )Bn + (e�n;f � �1)Bn = Op(1 + n 1
2e�r;n);

which �nishes the proof.

Proof of Corollary 3.4.6. Using similar arguments in the proof of Theorem 3.3.4,

we can rewrite the LS shrinkage estimation problem as

bTn = argmin
T2Rm�m

nX
t=1

k�Yt � PnTYt�1k2 + n
Xm

k=1
�r;k;n kT (k)k =jj�k(b�1st)jj!: (3.232)

Result in (3.48) is equivalent to bTn(k) = 0 for any k 2 fro+1; :::;mg. Conditional on
the event fQn(ko)b�n 6= 0g for some ko satisfying ro < ko � m, we get the following
equation from the KKT optimality conditions,

 1nXn

t=1
(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1 = �r;ko;n

2jj�ko(b�1st)jj! : (3.233)

The sample average in the left hand side of (3.233) can be rewritten as

Pn
t=1(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1

n
=
P 0n(ko)

Pn
t=1[ut � (b�n � �o)Yt�1]Y 0t�1

n

=
P 0n(ko)

n

"
nX
t=1

[ut � (�1 � �o)Yt�1]Y 0t�1 � (b�n � �1) nX
t=1

Yt�1Y
0
t�1

#
: (3.234)

From the results in (3.217), (3.218) and (3.219),

P 0n(ko)
Pn

t=1[ut � (�1 � �o)Yt�1]Y 0t�1
n

= Op(1): (3.235)
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From Corollary 3.4.5 and Lemma 3.4.1,

(b�n � �1)Pn
t=1 Yt�1Y

0
t�1

n
=
(b�n � �1)BnDn

Pn
t=1 Zt�1Z

0
t�1Q

0�1

n
= Op(1): (3.236)

Using the results in (3.234), (3.235) and (3.236), we deduce that

 1nXn

t=1
(�Yt � Pn bTnYt�1)0Pn(ko)Y 0t�1 = Op(1): (3.237)

While under Lemma 3.4.3.(c) and n!�r;ko;n !1,

�r;ko;n

2jj�ko(b�1st)jj! = n!�r;ko;n

2jjn�ko(b�1st)jj! !p 1: (3.238)

Combining the results in (3.233), (3.237) and (3.238), we deduce that

Pr
�
Qn(ko)b�n = 0�! 1 as n!1:

As the above result holds for any ko such that ro < ko � m, this �nishes the proof.

Let Pro;n and Qro;n be the �rst ro columns of Pn and the �rst ro rows of Qn

respectively. Let Pro�r1;n and Qro�r1;n be the last ro � r1 columns of Pro;n and the

last ro � r1 rows of Qro;n respectively. Under Lemma 3.4.3.(c),

Qro�r1;nb�nBn = Qro�r1;n(b�n � b�1st)Bn +Qro�r1;n(b�1st � �1)Bn +Qro�r1;n�1Bn
=

p
nQro�r1;n�1Q

�1 +Op(1)

=
p
nQro�r1;n(�1 � b�1st)Q�1 +pnQro�r1;nb�1stQ�1 +Op(1)

=
p
n�ro�r1;nQro�r1;nQ

�1 +Op(1) = Op(1) (3.239)
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where �ro�r1;n is a diagonal matrix with the (r1 + 1)-th to the ro-th eigenvalues ofb�1st. Let bT�;n be the �rst ro rows of bTn = Qnb�n, then bT�;n = Qro;nb�n. De�ne
T 0�;n =

�
�01Q

0e�;n;0m�(ro�r1)�, then
�bT�;n � T�;n�Bn =

264 Qe�;n
�b�n � �1�Bn

Qro�r1;nb�nBn
375 = Op(1) (3.240)

where the last equality is by Corollary 3.4.5 and (3.239).

Proof of Corollary 3.4.7. Using the results of Corollary 3.4.6, we can rewrite the

LS shrinkage estimation problem as

bTn = argmin
T2Rm�m

nX
t=1

k�Yt � PnTYt�1k2 + n
Xro

k=1
�r;k;n kT (k)k =jj�k(b�1st)jj! (3.241)

with the constraint T (k) = 0 for k = ro+1; ::;m. Recall that bT�;n is the �rst ro rows
of bTn, then the problem in (3.241) can be rewritten as

bT�;n = argmin
T�2Rro�m

nX
t=1

k�Yt � Pro;nT�Yt�1k
2 + n

Xro

k=1
�r;k;n kT�(k)k =jj�k(b�1st)jj!

(3.242)

where Pro;n is the �rst ro columns of Pn.

Let u�n = (bT�;n�T�;n)Bn and note that the last ro� r1 rows of T�;n are zeros. By
de�nition, u�n is the minimizer of

Vn(U) =
nX
t=1

h�Yt � Pro;n(UB�1n + T�;n)Yt�1
2 � k�Yt � Pro;nT�;nYt�1k2i

+ n
Xro

k=1
�r;k;n

�UB�1n + T�;n)(k)
� kT�;n(k)k� =jj�k(b�1st)jj!

= V1;n(U) + n
Xro

k=1
�r;k;n

�UB�1n + T�;n)(k)
� kT�;n(k)k� =jj�k(b�1st)jj!:

For any U in some compact subset of Rro�m, n
1
2UDnQ = O(1). Thus n

1
2e�r;n =
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op(1) and Lemma 3.4.3.d imply that

n�r;k;n

�����k(UB�1n + T�;n)(ko)k � kT�;n(ko)k
jj�ko(b�1st)jj!

����� � n
1
2�r;k;n

n 1
2 (UB�1n )(ko)


jj�ko(b�1st)jj! = op(1)

(3.243)

for ko = 1; :::; r1. On the other hand, n
1+!
2 �r;k;n = o(1) and Lemma 3.4.3.d imply

that

n�r;k;n

�����k(UB�1n + T�;n)(ko)k � kT�;n(ko)k
jj�ko(b�1st)jj!

����� � n
1+!
2 �n

n 1
2 (UB�1n )(ko)


jjn 1

2�ko(
b�1st)jj! = op(1)

(3.244)

for any ko = 1; :::; ro. Moreover, we can rewrite V1;n(U) as

V1;n(U) = An;t(U)� 2Bn;t(U)

where

An;t(U) � vec (U)0
�
B�1n

Xn

t=1
Yt�1Y

0
t�1B

0�1
n 
 P 0ro;nPro;n

�
vec (U)

and

Bn;t(U) � vec (U)0 vec
h
P 0ro;n

Xn

t=1
(�Yt � Pro;nT�;nYt�1)Y 0t�1B0�1n

i
:

It is clear that V1;n(U) is minimized at

U�n = (P 0ro;nPro;n)
�1P 0ro;n

nX
t=1

(�Yt � Pro;nT�;nYt�1)Y 0t�1

 
nX
t=1

Yt�1Y
0
t�1

!�1
Bn

=
h
(P 0ro;nPro;n)

�1P 0ro;n
b�1st � T�;niBn:

By de�nition, Pn = [Pro;n; Pm�ro;n], where Pro;n and Pm�ro;n are the right normal-
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ized eigenvectors of the largest ro and smallestm�ro eigenvalues of b�1st respectively.
From Lemma 3.4.3.(c) and (d), we deduce that P 0ro;nPm�ro;n = 0 w.p.a.1. Thus, we

can rewrite U�n as

U�n =
h
(P 0ro;nPro;n)

�1P 0ro;nPnQn
b�1st � T�;niBn = �Qro;nb�1st � T�;n�Bn

w.p.a.1. Results in (3.243) and (3.244) imply that u�n = U
�
n+op(1). Thus the limiting

distribution of the last ro � r1 rows of u�n is identical to the limiting distribution of

the last ro � r1 rows of U�n. Let U�ro�r1;n be the last ro � r1 rows of U�n, then by

de�nition

Qro�r1;nb�nBn = U�ro�r1;n + op(1) = �ro�r1;nQro�r1;nBn + op(1) (3.245)

where �ro�r1;n � diag
h
�r1+1(

b�1st); :::; �ro(b�1st)i. From (3.245) and Lemma 3.4.3, we
obtain

n
1
2Qro�r1;nb�n = n 1

2�ro�r1;nQro�r1;n + op(1) = �ro�r1(
e�0)Qro�r1;o + op(1) (3.246)

where �ro�r1(e�0) � diag(e�0r1+1; :::; e�0ro) is a non-degenerated full rank random matrix,
andQro�r1;o denotes the probability limit ofQro�r1;n and it is a full rank matrix. From

(3.246), we deduce that

lim sup
n!1

Pr
�
n
1
2Qro�r1;nb�n = 0� = 0

which �nishes the proof.
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3.9.3 Proof of Main Results in Section 3.5

Proof of Lemma 3.5.2. (a). We start by de�ning bSuy1 = 1
n

nP
t=1

utY
0
t�1 and

bSux0 = 1
n

nP
t=1

ut�X
0
t�1. From the expression in (3.58), we get

h
(b�1st; bB1st)� (�o; Bo)iQ�1B Dn;B

=

� bSuy1 bSux0 �Q0BD�1
n;B

264D�1
n;BQB

0B@ bSy1y1 bSy1x0bSx0y1 bSx0x0
1CAQ0BD�1

n;B

375
�1

:(3.247)

Note that

� bSuy1 bSux0 �Q0BD�1
n;B = U

264QB
0B@ Y�

�X

1CA
375
0

D�1
n;B =

�
n�

1
2UZ 03 n�1UZ 02

�
(3.248)

and

D�1
n;BQB

0B@ bSy1y1 bSy1x0bSx0y1 bSx0x0
1CAQ0BD�1

n;B =

0BB@ n�1
nP
t=1

Z3;tZ
0
3;t n�

3
2

nP
t=1

Z3;tZ
0
2;t

n�
3
2

nP
t=1

Z2;tZ
0
3;t n�2

nP
t=1

Z2;tZ
0
2;t

1CCA ;
(3.249)

where Z3 = (Z3;0; :::; Z3;n�1) and Z2 = (Z2;0; :::; Z2;n�1). Now the result in (3.60)

follows by applying the Lemma 3.5.1.

(b). This result follows directly by the consistency of b�1st and CMT.
(c). De�ne Sn(�) = �Im � b�1st, then
jSn(�)j = j�0oSn(�)�oj �

����0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?��� :
(3.250)

Let ��k = n�k(b�1st) (k = ro+1; :::;m), using similar arguments in the proof of Lemma
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3.3.1.(c), we deduce that ��k is a solution of the equation

0 =
����0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?��� ; (3.251)

where Sn(�) =
�
n
Im � b�1st. Using the results in (a), we can show that

�0o?

n
Sn(�)� Sn(�)�o [�0oSn(�)�o]

�1
�0oSn(�)

o
�o?

=
�

n
Im�ro � �0o?

h
Im � �o (�0o�o)

�1
�0o + op(1)

i �b�1st � �o� �o?: (3.252)
Using the de�nitions of H1 and H2 in the proof of Lemma 3.3.1.(c), we can deduce

that

nH1Q
�b�1st � �o�Q�1H 0

2 = H1

�
QUcM0Y

0
�Q

0D�1
n

��
D�1
n QY�cM0Y

0
�Q

0D�1
n

��1
H 0
2

(3.253)

where under Lemma 3.5.1,

D�1
n QY�

cM0Y
0
�Q

0D�1
n = D�1

n Z�Z
0
�D

�1
n � n�1D�1

n Z��X
0 bS�1x0x0�XZ 0�D�1

n

! d

0B@ �z1z1 � �z1�x��1�x�x��xz1 0

0
R
Bw2B

0
w2

1CA (3.254)

and

UcM0Y
0
�Q

0D�1
n = UZ 0�D

�1
n � n�1U�X 0 bS�1x0x0�XZ 0�D�1

n

! d

�
Bu;z1 �Bu;�x��1�x�x��xz1

�R
Bw2dB

0
u

�0 � : (3.255)
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Using the results in (3.254) and (3.255), we obtain

nH1Q
�b�1st � �o�Q�1H 0

2 !d (�
0
o;?�o;?)

�1
�Z

Bw2dB
0
w2

�0�Z
Bw2B

0
w2

��1
(�0o;?�o;?):

(3.256)

Then, from (3.252)-(3.256), we obtain

���n�0o? nSn(�)� Sn(�)�o [�0oSn(�)�o]�1 �0oSn(�)o �o?���
! d

������Im�ro �
�Z

Bw2dB
0
w2

�0�Z
Bw2B

0
w2

��1����� ; (3.257)

uniformly over K. The result in (c) follows from (3.257) and by continuous mapping

theorem.

Proof of Lemma 3.5.3. Let � = (�; B) and

Vn(�) =
nX
t=1

�Yt � �Yt�1 �Xp

j=1
Bj�Yt�j

2
+
Xp

j=1

n�b;j;n

jj bBj;1stjj! kBjk+
Xm

k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k :
Set b�n = (b�n; bBn) and de�ne an infeasible estimator e�n = (�n;f ; Bo), where �n;f is
de�ned in (3.16). Then by de�nition

(e�n ��o)Q�1B Dn;B = (�n;f � �o; 0)Q�1B Dn;B = Op(1) (3.258)

where the last equality is by (3.19).
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By de�nition Vn(b�n) � Vn(e�n), so that
n
vec
h
(e�n � b�n)Q�1B Dn;B

io0
Wn

n
vec
h
(e�n � b�n)Q�1B Dn;B

io
+2
n
vec
h
(e�n � b�n)Q�1B Dn;B

io0
Wn

n
vec
�
D�1
n;B

Xn

t=1
Zt�1u

0
t

�o
+2
n
vec
h
(e�n � b�n)Q�1B Dn;B

io0
Wn

n
vec
h
(�o � e�n)Q�1B Dn;B

io
� (d1;n + d2;n) (3.259)

where

Wn = D�1
n;B

nX
t=1

Zt�1Z
0
t�1D

�1
n;B 
 Im(p+1);

d1;n = n
X

j2ScB
�b;j;n

kBo;jk � jj bBn;jjj
jj bBj;1stjj! ;

d2;n = n
X

k2Sc�
�r;k;n

k�n;k(�n;f )k � jj�n;k(b�n)jj
jj�k(b�1st)jj! :

Applying the Cauchy-Schwarz inequality to (3.259), we deduce that

�n

(b�n � e�n)Q�1B Dn;B

2 � (b�n � e�n)Q�1B Dn;B

 (c1;n + c2;n) � (d1;n + d2;n) ;

(3.260)

where �n denotes the smallest eigenvalue of Wn, which is bounded away from zero

w.p.a.1,

c1;n =
D�1

n;B

Xn

t=1
Zt�1u

0
t

 and c2;n = kWnk
(�o � e�n)Q�1B Dn;B

 : (3.261)

By the de�nition of the penalty function, Lemma 3.5.2 and the Slutsky Theorem, we
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�nd that

d1;n �
X

j2ScB

n�b;j;n kBo;jk
jj bBj;1stjj! = Op(n�b;n) and (3.262)

d2;n �
X

k2Sc�

n�r;k;n k�n;k(�n;f )k
jj�k(b�1st)jj! = Op(n�r;n): (3.263)

Using Lemma 3.5.1 and (3.258), we obtain

c1;n = Op(1) and c2;n = Op(1): (3.264)

From the inequality in (3.260), the results in (3.262), (3.263) and (3.264), we deduce

that (b�n � e�n)Q�1B Dn;B

 = OP (1 + n1=2�1=2b;n + n1=2�1=2r;n ):
which implies jjb�n � e�njj = OP (n�1=2 + �1=2b;n + �1=2r;n ) = op(1). This shows the consis-
tency of b�n.
We next derive the convergence rate of the LS shrinkage estimator b�n. Using the

similar argument in the proof of Theorem 1.3.6, we get

jd1;nj � cn
1
2 �b;n

�b�n ��o�Q�1B Dn;B

 (3.265)

and

jd2;nj � cn
1
2 �r;n

�b�n ��o�Q�1B Dn;B

 : (3.266)

Combining the results in (3.265)-(3.266), we get

jd1;n + d2;nj � cn
1
2 �n

�b�n ��o�Q�1B Dn;B

 (3.267)
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where �n = �b;n + �r;n. From the inequality in (3.260) and the result in (3.267),

�n

(b�n � e�n)Q�1B Dn;B

2 � (b�n � e�n)Q�1B Dn;B

 (c1;n + c2;n + n 1
2 �n) � 0; (3.268)

which together with (3.264) implies that
(b�n � e�n)Q�1B Dn;B

 = Op(1+n 1
2 �n). This

�nishes the proof.

Proof of Theorem 3.5.4. The �rst result can be proved using similar arguments

in the proof of Theorem 3.3.4. Speci�cally, we rewrite the LS shrinkage estimation

problem as

(bTn; bBn) = argmin
T;B1;:::;Bp2Rm�m

nX
t=1

�Yt � PnTYt�1 �Xp

j=1
Bj�Yt�j

2
+
Xm

k=1

n�r;k;n

jj�k(b�1st)jj! kT (k)k+
Xp

j=1

n�b;j;n

jj bBj;1stjj! kBjk : (3.269)
By de�nition, b�n = Pn bTn and bTn = Qnb�n for all n. Results in (3.62) follows if we
can show that the last m� ro rows of bTn are estimated as zeros w.p.a.1.
The KKT optimality conditions for bTn are (i) if bTn(k) 6= 0
nX
t=1

(�Yt�Pn bTnYt�1�Xp

j=1

bBn;j�Yt�j)0Pn(k)Y 0t�1 = n�r;k;n bTn(k)
2jj�k(b�1st)jj!jjbTn(k)jj ; (3.270)

and (ii) if bTn(k) = 01n
nX
t=1

(�Yt � Pn bTnYt�1 �Xp

j=1

bBn;j�Yt�j)0Pn(k)Y 0t�1
 < �r;k;n

2jj�k(b�1st)jj! (3.271)

for k = 1; :::;m. Conditional on the event fQ�;n(ko)b�n 6= 0g for some ko satisfying
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ro < ko � m, we obtain the following equation from the KKT optimality conditions

 1n
nX
t=1

(�Yt � Pn bTnYt�1 �Xp

j=1

bBn;j�Yt�j)0Pn(ko)Y 0t�1
 = �r;k;n

2jj�ko(b�1st)jj! :
(3.272)

The sample average in the left hand side of (3.137) can be rewritten as

1

n

nX
t=1

(�Yt � Pn bTnYt�1 �Xp

j=1

bBn;j�Yt�j)0Pn(ko)Y 0t�1
=

1

n

nX
t=1

[�ut � (b�n ��o)Q�1B Zt�1]0Pn(ko)Y 0t�1
=

P 0n(ko)
Pn

t=1�utY
0
t�1

n
�
P 0n(ko)(b�n ��o)Q�1B Pn

t=1 Zt�1Y
0
t�1

n
= Op(1)

(3.273)

where the last equality is by Lemma 3.5.1, Lemma 3.5.2.(d) and Lemma 3.5.3. How-

ever, under Lemma 3.5.2.(c)

�r;ko;n

2jj�ko(b�1st)jj! = n!�r;ko;n

2jjn�ko(b�1st)jj! !p 1: (3.274)

Combining the results in (3.272), (3.273) and (3.274), we deduce that

Pr
�
Q�;n(ko)b�n = 0�! 1 as n!1:

As the above result holds for any ko such that ro < ko � m, this �nishes the proof

of (3.62).

We next show the second result. The LS shrinkage estimators of the transient

dynamic matrices satisfy the following KKT optimality conditions: (i) if bBn;j 6= 0
nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)�Y 0t�j = n�b;j;n bBn;j
2jj bB1st;jjj!jj bBn;jjj ; (3.275)
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and (ii) if bBn;j = 0 1n
nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)�Y 0t�j
 < �b;j;n bBn;j

2jj bB1st;jjj!jj bBn;jjj (3.276)

for any j = 1; :::; p. On the event f bBn;j 6= 0m�mg for some j 2 ScB, we get the

following equation from the optimality conditions,

n� 1
2

nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)�Y 0t�j
 = n

1
2�b;j;n

2jj bB1st;jjj! : (3.277)

The sample average in the left hand side of (3.277) can be rewritten as

n�
1
2

nX
t=1

(�Yt � b�nYt�1 �Xp

j=1

bBn;j�Yt�j)�Y 0t�j
= n�

1
2

nX
t=1

[�ut � (b�n ��o)Q�1B Zt�1]�Y 0t�j
= n�

1
2

nX
t=1

�ut�Y
0
t�j � n�

1
2 (b�n ��o)Q�1B nX

t=1

Zt�1�Y
0
t�j = Op(1) (3.278)

where the last equality is by Lemma 3.5.1, Lemma 3.5.2.(d) and Lemma 3.5.3. How-

ever, as n
1+!
2 �b;j;n ! 1 for any j 2 ScB, it follows by Lemma 3.5.2 and the Slutsky

Theorem that
n
1+!
2 �b;j;n

2jjn 1
2 bB1st;jjj! !p 1: (3.279)

Now, using the results in (3.277), (3.278) (3.279), we can deduce that the event

f bBn;j 6= 0m�mg 8j 2 ScB has zero probability with n!1, which �nishes the proof.

Proof of Theorem 3.5.5. Follow the similar arguments in the proof of Theorem

3.3.6, we normalize �o as �o = [Iro ; Oro ]
0 to ensure identi�cation, where Oro is some
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ro� (m� ro) matrix such that �o = �o�0o = [�o; �oOro ]. From Lemma 3.5.3, we have

�
n
1
2 (b�n � �o)�o(�0o�o)�1 n

1
2 ( bBn �Bo) n(b�n � �o)�o;?(�0o;?�o;?)�1 � = Op(1);

which implies that

n
� bOn �Oo� = Op(1); (3.280)

n
1
2 ( bBn �Bo) = Op(1); (3.281)

n
1
2 (b�n � �o) = Op(1): (3.282)

From the results of Theorem 3.5.4, we deduce that b�n, b�n and bBSB minimize the
following criterion function w.p.a.1,

Vn(�S) =
nX
t=1

�Yt � ��0Yt�1 �X
j2SB

Bj�Yt�j


2

+
X
k2S�

n�r;k;n

jj�k(b�1st)jj! k�n;k(��0)k+
X
j2SB

n�b;j;n

jj bBj;1stjj! kBjk :
De�ne U�1;n =

p
n (b�n � �o), U2;n = �

0ro ; U
�
2;n

�0
, where U�2;n = n

� bOn �Oo� and
U�3;n =

p
n
� bBSB �Bo;SB�, then
h�b�n � �o� ;� bBSB �Bo;SB�iQ�1S Dn;S

=
h
n�

1
2 b�nU2;n�o(�0o�o)�1 + U�1;n; U�3;n; b�nU2;n�o;?(�0o;?�o;?)�1i :

Denote

�n(U) =
h
n�

1
2 b�nU2�o(�0o�o)�1 + U1; U3; b�nU2�o;?(�0o;?�o;?)�1i ;
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then by de�nition, U�n =
�
U�1;n; U

�
2;n; U

�
3;n

�
minimizes the following criterion function

Vn(U) =
nX
t=1

�ut � �n(U)D�1
n;SZS;t�1

2 � kutk2�
+n

X
k2S�

�r;k;n

�n;k ��n(U)D�1
n;SQSL1 +�o

�� k�n;k(�o)k
jj�k(b�1st)jj!

+n
X
j2SB

�b;j;n

�n(U)D�1
n;SQSLj+1 +Bo;j

� kBo;jk
jj bBj;1stjj! :

where Lj = diag(Aj;1; :::; Aj;dSB ) with Aj;j = Im and Ai;j = 0 for i 6= j and j =

1; :::; dSB .

For any compact set K 2 Rm�ro �Rro�(m�ro) �Rm�mdSB and any U 2 K, there

is

�n(U)D
�1
n;SQS = Op(n

� 1
2 ):

Hence using similar arguments in the proof of Theorem 3.3.6, we can deduce that

n
X
k2S�

�r;k;n

�n;k(�n(U)D�1
n;SQSL1 +�o)

� k�n;k(�o)k
jj�k(b�1st)jj! = op(1) (3.283)

and

n
X
j2SB

�b;j;n

�n(U)D�1
n;SQSLj+1 +Bo;j

� kBo;jk
jj bBj;1stjj! = op(1) (3.284)

uniformly over U 2 K.

Next, note that

�n(U)!p

�
U1; U3; �oU2(�

0
o;?�o;?)

�1� � �1(U) (3.285)
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uniformly over U 2 K. By Lemma 3.5.1 and (3.285), we can deduce that

nX
t=1

�ut � �n(U)D�1
n;SZS;t�1

2 � kutk2�

! d vec [�1(U)]
0

264
0B@ �z3Sz3S 0

0
R
Bw2B

0
w2

1CA
 Im
375 vec [�1(U)]

�2vec [�1(U)]0 vec [(B3;m; B2;m)] � V (U) (3.286)

uniformly over U 2 K, where B3;m = N(0;
u 
 �z3Sz3S ) and B2;m =
�R
Bw2dB

0
u

�0
.

Using similar arguments in the proof of Theorem 3.3.6, we can rewrite V (U) as

V (U) = vec(U1; U3)
0 (�z3Sz3S 
 Im) vec(U1; U3)

+vec(U2)
0
�
�2;o;?(�

0
o;?�o;?)

�1
Z
Bw2B

0
w2
(�0o;?�o;?)

�1�02;o;? 
 �0o�o
�
vec(U2)

�2vec(U1; U3)0vec (B3;m)� 2vec(U2)0vec
�
�0oB2;m(�

0
o;?�o;?)

�1�02;o;?
�
:(3.287)

The expression in (3.287) makes it clear that V (U) is uniquely minimized at (U�1 ; U
�
2 ; U

�
3 ),

where

(U�1 ; U
�
3 ) = B3;m�

�1
z3Sz3S

and U�2 = (�
0
o�o)

�1�0oB2;m

�Z
Bw2B

0
w2

��1
(�0o;?�o;?).

(3.288)

From (3.280) and (3.282), we can see that U�n is asymptotically tight. Invoking the

ACMT, we deduce that U�n !d U
�. The results in (3.65) follow by applying the

CMT.
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