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Abstract

In the standard model of dynamic interaction, players are assumed
to observe public signals according to some exogenous distributions for
free. We deviate from this assumption in two directions to model mon-
itoring structure in a more realistic way. We assume that signals are
private rather than public and that each player needs to actively mon-
itor the other player with some costs. In each stage, a player decides
whether to monitor the other player with some costs in addition to
which action to take. We first provide a class of strategies which
approximate efficiency and examine its interesting properties, among
them are (1) each player monitors the other player randomly like “ran-
dom auditing” to reduce monitoring costs and (2) players cheat and
monitor at the same time in their cooperative phase. In particular,
this implies that cheating may happen (randomly) during collusion for
the sake of efficiency.
Then we discuss multi-task partnership games with endogenous

monitoring, where two players play H games (tasks) instead of one.
The additional twist is that we allow each player to choose freely which
tasks to monitor. Our main result is that, how large the monitoring
cost per task is, the efficient outcome can be approximated as play-
ers become patient when there are enough many tasks. This result
suggests that the size of a partnership may tend to be large when
monitoring is not free.

∗We would like to thank the audience at 2004 SED conference at Florence. Obara
gratefully aknowledges support from NSF Grant #0417833.
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1 Introduction

In any long term relationship, the nature of available information is critical
for successful cooperation or collusion. For example, any kind of trigger
strategy based on retaliation can be useful only when there exists a reliable
signal which helps a player to detect the other players’ cheating. Thus many
researchers have been led to investigate what effects different information
structure may have on long term relationships. Many works has shown that
information structure indeed has a significant impact on the nature of long
term relationships. One of the most famous such examples is a paper by
Green and Porter [10], which showed that price war is necessary for collusion
with imperfect monitoring unlike perfect monitoring case.

In this paper, we also propose to study an information structure which
has not been explored thoroughly before in the context of long term relation-
ships, namely, endogenous (costly) monitoring. The standard assumption
is that players receive public signals according to some exogenous distribu-
tions for free. There are at least two important aspects of real information
processing which are missing from this picture. First, signals are often
private rather than public. It is rarely the case that every player knows
what the other players know. Second, the process of acquiring information
and the costs of monitoring are not present. We explicitly assume that
players can obtain reasonably accurate private signals by paying some costs
in addition to free private/public signals available. Players play a given
stage game and, at the same time, also decide whether to monitor the other
players with some costs or not. We also assume that monitoring reveals
enough (imperfect) information about the other player’s monitoring activity
as well.

We first provide a class of strategies which approximate efficiency and
describe some of its interesting properties. First, we find that a player
monitors the other player randomly like “random auditing” to reduce mon-
itoring costs. If no monitoring is done, proper incentive for cooperation is
not provided. On the other hand, if monitoring occurs every period, the
efficiency is not obtained due to monitoring costs. Thus monitoring needs
to be done randomly to approximate the efficient outcomes. Second, players
cheat and monitor at the same time in their cooperative phase. In partic-
ular, this implies that cheating may happen (randomly) during collusion for
efficiency reason.1 Note that, as observed by Ellison [6] and many others,

1This can also happen for a model where cheating provides better information about
the other player’s cheating (Kandori and Obara [11]). Our extra contribution here is to
identify a more natural setting where such mixing behavior is optimal. ( it’s less clear
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standard theory predicts cheating does not occur during cooperative phase
of collusion, but cheating does happen all the time. Third, it is crucial for
our construction that the gain from cheating is larger than the monitoring
cost. In another word, we need that the monitoring cost is “financed” by a
deviation gain on the spot when they deviate and monitor at the same time.
Finally, our equilibrium is robust in the sense that it is independent of ex-
ogenous information structure. What information is available to players
besides explicit monitoring is totally irrelevant to our construction.

Then we discuss multi-task partnership games with endogenous moni-
toring, where two players play H games (tasks) instead of one. Each player
can monitor the other player with some costs as before. The additional
twist is that we allow each player to choose freely which tasks to monitor.
Our main result is that, how large the monitoring cost per task is, the effi-
cient outcome can be approximated when there is a large enough number of
tasks as players become patient. Our result is likely to hold for very general
class of stage games although we model each task as a prisoners’ dilemma
game for the sake of simple exposition. This result suggests that the size
of a partnership tends to be large when active monitoring is important.

In equilibrium, players randomize between “cooperating for all the tasks”
and “deviating for all the tasks and monitoring some randomly selected sub-
set of tasks”. Remember that one of the important conditions in the basic
model is that the monitoring cost can be financed by deviation gain. This
condition turns out to be more easily satisfied with many tasks because the
players need to monitor only a certain number of tasks independent of H
while they deviate for all H tasks. This equilibrium is based on the idea
of Ely and Välimäki [8] or Kandori and Obara [11], but more complicated
than the examples in those papers.

This multi-task model can be also interpreted as a model of multimarket
contact if we regard the two players as two big firms competing in many
separate markets. Edwards [5] argued that bigger conglomerates may have
a better ability to sustain implicit collusion between them. His claim has
been supported by many empirical works. Our result with endogenous
monitoring may provide a theoretical foundation for this claim.2

when [11]’s assumption is reasonable). This insight relies on a separation of cheating
action and monitoring action, which just happens to be one action in [11]. Note also
that our reasoning is a bit more twisted than [11]. We first argue that players need to
randomly monitor the other players in the cooperative phase, then go on to show that it
is useful to finance the cost of monitoring by cheating, thus obtaining random cheating
behavior in the cooperative phase.

2Matsushima [12] also demonstrated that multimarket contact may help to sustain
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We describe the model and some preliminary results in the next section.
In Section 3, we introduce an equilibrium which we call “two state machine
equilibrium” and discuss its interesting properties. Section 4 is devoted to
multi-task partnership games. The last section discusses related literature.

2 The Model and Some Preliminary Results

2.1 The Model

Let us suppose that there are two players i = 1, 2. An action of player i is

ai = (ei,mi) ∈ Ai ≡ Ei × {M,N}.

The first element ei is the strategy of the stage game in the usual sense, and
we call it “effort” to avoid confusion. The second elementmi represents the
monitoring activity. mi = M represents “to monitor”, while N represents
“not to monitor”. We assume that the monitoring activity entails cost
K > 0 and perfectly reveals both (1) the rival’s action and (2) monitoring
activity. Both assumptions are basically made for the sake of simplicity. We
can allow almost perfect private monitoring of actions, for which our results
holds approximately. (2) is even less crucial than (1). Indeed we only
need that monitoring activity reveals enough information about the rival’s
monitoring activity as we will argue.

The stage game payoff is

gi(a) =

½
ui(e1, e2)−K if mi =M
ui(e1, e2) if mi = N

Let ωi = (yi,baj) ∈ Ωi ≡ Yi × {Aj ∪ {0}} be player i’s signal, where baj = aj
with probability one if monitoring action mi = M is taken, and otherwisebaj = 0 with probability one. Free signals yi can be either pubic or pri-
vate. Player i0s strategy is a mapping from all t-period private histories
hit = ((ai,1,ωi,1) , ..., (ai,t−1,ωi,t−1)) to Ai. We assume that players’ payoffs
are given by average discounted stage game payoffs, and employ sequential
equilibrium as the equilibrium concept.

Remark

• Note that monitoring is in general essential for sustaining any level of
cooperation. An extreme example would be a stage game for which

implicit collusion using a model with imperfect public monitoring.
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yi is almost uninformative. For such games, you can only support
a repetition of the stage game Nash equilibrium without monitoring.
On the other hand, if players monitor the other players every period,
this game is reduced to one of the games with perfect monitoring, thus
every payoff profile (minus monitoring cost) can be supported by Folk
Theorem [9].3 However, it may not be wise to monitor every period
because it is costly. This suggests that we need to find more creative
way of monitoring than such crude one to approximate fully efficient
outcomes.

2.2 Kandori and Obara (2003)

In this subsection, we briefly describe some of the results from Kandori
and Obara [11], which are relevant to this project. In [11], we proposed an
equilibrium called “two state machine” for repeated games with two players.
It consists of two states; “Reward state” R and “Punishment state” P . In
the beginning of the game, players are at R. They play a behavior strategy
αR in R and move to P with different probabilities according to different
realizations of action-signal pair. Similarly, they play a behavior strategy
αP in P and move back to R in a similar way. The trick is to choose
transition probabilities so that players have the incentive to choose αR and
αP in respective states.

We found a necessary and sufficient condition for such machine to be an
equilibrium. It consists of a few lines of linear (in)equalities;

(LI) For i, j = 1, 2, there exist xRi : Ωi×ARj → [0,∞) and xPi : Ωi×APj →
[0,∞) such that

∀ai ∈ A∗i V Ri = gi(ai,α
R
j )−E[xRi (ωj , aj)|ai,αRj ] (1)

∀ai /∈ A∗i V Ri = gi(ai,αRj )−E[xRi (ωj , aj)|ai,αRj ] (2)

∀ai ∈ A∗i V Pi = gi(ai,α
P
j ) +E[x

P
i (ωj , aj)|ai,αPj ], (3)

∀ai /∈ A∗i V Pi = gi(ai,αpj ) +E[xPi (ωj , aj)|ai,αPj ], and (4)

V Ri > V Pi . (5)

where A∗i is the union of the support of α
R
i and αPi .

3However, if monitoring is almost perfect but not perfect, some information remain
private through the game. Many simple equilibria based on perfect information cease
to be an equilibrium even with such slight perturbation of information structure. Our
equilibrium is robust to any such perturbation of information structure.

5



Here we give only a brief intuition as the space is limited. You can regard
xRi (ωj , aj) as punishments and x

P
i (ωj , aj) as rewards for player i. (1) and

(2) implies that, if player j is in state R (hence playing αRj ), player i
0s total

payoff is V Ri independent of the action in A∗i player i choose, and it is lower
than V Ri if player i plays anything else. Similarly, (3) and (4) implies that,
if player j is in state P, player i0s total payoff is V Pi independent of the action
in A∗i , and it is lower than V

P
i otherwise. In conclusion, these inequalities

guarantee that player i is always indifferent among any action in A∗i given
that player j is playing this two state machine. This in turn implies that
this two state machine is indeed a best response to itself. Note that, since a
player does not need any information about the other player’s state, this two
state machine equilibrium is an equilibrium even though many information
is not public.

Condition (LI) reveals that there is a certain restriction on αR and αP

that can be used for a two state machine equilibrium:

Proposition 1 The (potentially mixed) actions used in a two-state machine
equilibrium αRi and αPi , and their support A

∗
i must satisfy the separation

condition
min
ai∈A∗i

gi(ai,α
R
j ) > max

ai∈Ai
gi(ai,α

P
j ) (6)

Proof. Condition (1) and the non-negativity of xRi implies gi(ai,α
R
j ) ≥

V R for all ai ∈ A∗i . In contrast, (3), (4), and the non-negativity of xPi shows
V P ≥ gi(ai,αPj ) for all ai ∈ Ai. Then we can obtain minai∈A∗i gi(ai,αRj ) ≥
V R > V Pi > maxai∈Ai gi(ai,αPj ).

The separation condition is necessary for a two-state machine equilib-
rium, but it is also sufficient under “good observability”. “Good observ-
ability” roughly means that, for any j0s action aj ∈ Aj , there exists an
action-signal pair (ωi, ai) for i 6= j such that ωi is very unlikely to be ob-
served when ai is chosen but aj is NOT chosen (that is,

Pr ob(ωi|(ai,aj))
Pr ob(ωi|(ai,a0j))

is

very large for any a0j 6= aj).

Proposition 2 The separation condition is sufficient for existence of
two state machine equilibrium which uses αRi ,α

P
i and achieves V

R
i = minai∈A∗i gi(ai,α

R
j ),

i = 1, 2 under good observability.

Proof. See Kandori and Obara [11].
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3 Endogenous Monitoring

Now we apply the above result to repeated games with endogenous moni-
toring to obtain our first result. The key is to treat a pair (ei,mi) as an
action ai in (LI).

Theorem 3 Let e∗ be an efficient profile and suppose that the following
separation conditions hold for i = 1, 2, j 6= i, with some “punishing
actions” ePi ;

max
ei
ui(ei, e

∗
j )−K ≥ ui(e∗), (7)

ui(e
P
i , e

∗
j ) ≥ ui(e∗), and (8)

ui(e
∗) > max

ei
ui(ei, e

P
j ). (9)

Then, (u1(e∗), u2(e∗)) is approximately attained as the discount factor tends
to unity.

Proof. See Appendix.

The proof is a relatively straightforward adaptation of the above results
from [11] To provide a flavor of the result, below we describe an explicit
example of equilibria we use in the proof.

Suppose that the stage game is given by Prisoners’ Dilemma game, whose
payoff

ui(ei) = E[πi(ei, yi)|ei]
is represented by the following payoff table:

C D

C 1, 1 −l, 1 + d
D 1 + d,−l 0, 0

(10)

where d, l > 0 (D is a dominant strategy) and 2 > 1 + d − l ((C,C) is
efficient). We interpret C as e∗i and D as ePi in terms of the above sufficient
condition.

We consider the following two state machine; (1) In state R, player
i chooses (C,N) with probability (1− ε) and (D,M) with probability ε.
He moves to P only when D is observed, with probability one for (D,N)
and probability ρR ∈ [0, 1] for (D,M) . (2) In state P, player i chooses
(D,M), and moves back to R with probability ρPC when C is observed and
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with probability ρPD when (D,M) is observed (stay in P when (D,N) is
observed).

The parameters
¡
ε, ρR, ρPC , ρ

P
D

¢
are chosen so that the following inequal-

ities are satisfied for some V R > V P

V R = (1− δ)u
¡
C,αRε

¢
+ δV R (11)

V R = (1− δ)
¡
u
¡
D,αRε

¢−K¢+ δ
©¡
1− ερR

¢
V R + ερRV P

ª
(12)

V R ≥ (1− δ)u
¡
D,αRε

¢
+ δ

©
(1− ε)V R + εV P

ª
(13)

V P = (1− δ) (−l) + δ
©
ερPCV

R +
¡
1− ερPC

¢
V P
ª

(14)

V P = (1− δ) (−K) + δ
©
ερPDV

R +
¡
1− ερPD

¢
V P
ª

(15)

V P ≥ δV P (16)

where the incentive constraints for (C,M) are omitted as they are trivial.
This system of inequalities basically corresponds to (LI).4

When d ≥ K ((7)), we can find a solution for (11), (12), (14), and (15)
for any small ε as δ → 1 and (13) is automatically satisfied for large δ. It
is clear that this two state machine is a sequential equilibrium with such
parameters (Ely and Välimäki [8], [11]). Moreover, the equilibrium payoff
is V R = u

¡
C,αRε

¢
from (11), which converges to 1 as ε→ 0.

3.1 Examples

We examine when the separation conditions (7), (8) and (9) are satisfied
through some examples.

Example 1: Cournot Competition.
Consider a standard symmetric cournot competition model with two

firms (for example, with an inverse demand functionDi (q, ε) with
∂Di(q)
∂ql

, ∂Di(q)∂qj
<

0 and a smooth convex cost function Ci (qi)). We assume strategic substitu-
tion. Let qCN and q∗ be the unique Cournot-Nash equilibrium and the most
collusive symmetric output profile respectively. Let qDi = argmaxqi π

³
qi, q

∗
j

´
=

Di

³
qi, q

∗
j

´
qi − Ci (qi) . We can check separability condition by setting

e∗ = q∗, ePi = qCNi , and eDi = qDi . (7) is satisfied if monitoring cost is
4For example, (13) can be transformed to

V R ≥ u
³
D,αRε

´
− εδ

(1− δ)

³
V R − V P

´
where δ

(1−δ)
¡
V R − V P

¢
corresponds to x ((D,N) , (D,M)) .
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small enough because. (9) is satisfied as the right hand side is at most the
Cournot-Nash equilibrium payoff and πi (q∗) > πi

¡
qCN

¢
. (8) holds because

0 ≤ πi
¡
qCN

¢− πi
¡
q∗i , q

CN
j

¢ ≤ πi(q
CN
i , e∗j )− πi(q

∗)

where strategic substitution is used in deriving the second inequality.

Example 2: Bertrand Competition (Secret Price Cutting)
Consider a simple symmetric Bertrand model with linear demand func-

tions Di (p) = α − βpi + γpj + εi and linear cost functions C (qi) = cqi
(α > c > 0,β > γ > 0) . The unique Nash equilibrium is given by pBN =³
α+βc
2β−γ ,

α+βc
2β−γ

´
and the efficient price profile is p∗ =

³
α+(β−γ)c
2(β−γ) ,

α+(β−γ)c
2(β−γ)

´
.

(7) is clearly satisfied if the monitoring cost is small. It is easy to verify

that the set of pi which satisfies πi
³
pi, p

∗
j

´
≥ πi (p

∗) (for (8)) is an interval£
p, p∗

¤
. So we can find the punishment action ePi to satisfy (8) and (9) if

and only if p = p∗ − γ(p∗−c)
β satisfies πi (p∗) > maxpi πi

¡
pi, p

¢
. Whether

this condition is satisfied or not depends on parameters. For example,
(α,β, γ) = (1, 2, 1) satisfies this condition.

Note that efficiency can be achieved without monitoring if the joint dis-
tribution of private signals (quantities) satisfies a certain type of conditional
independency as shown in Matsushima [13]. Our contribution lies in the
case where such restriction is not satisfied.

Remark.

• Note that in the price competition case efficiency is achieved if the
joint distribution of quantities satisfies a certain condition (a weaker
version of conditional independence: see Matsushima’s paper about
Secret Price Cuts). Our contribution lies in the case where such
restriction is not satisfied.

3.2 Imperfect Monitoring of Monitoring

As we mentioned, perfect monitoring of monitoring is not necessary. Sup-
pose that each player observes the rival’s effort level perfectly, but receives
an imperfect signal zi which only depends on the rival’s monitoring activity.
As long as there is some information contained in zi, we can pick a function
zi → f (zi) ∈ [0, 1] such that 0 ≤ E [f (zi) |mj =M ] < E [f (zi) |mj = N ] ≤
1.5 Let E [fi (zi) |mj = N ] = ηN , E [f (zi) |mj =M ] = ηM . We can mod-
ify the above two state machine as follows. In R, players move to P with

5We assume symmetry here for the sake of simplicity.
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probability ρRf (zi) after D is observed. In P, players move back to R with
probability ρPD (1− f (zi)) when D is observed.

Now we need to replace (12), (13), (15), and (16) with the following four
inequalities;

V R = (1− δ)
¡
u
¡
D,αRε

¢−K¢+ δ
©¡
1− ερRηM

¢
V R + ερRηMV

P
ª
(17)

V R ≥ (1− δ)u
¡
D,αRε

¢
+ δ

©¡
1− ερRηN

¢
V R + ερRηNV

P
ª

(18)

V P = (1− δ) (−K) + δ
©
ερPD (1− ηM)V

R +
¡
1− ερPD (1− ηM)

¢
V P
ª
(19)

V P ≥ δ
©
ερPD (1− ηN)V

R +
¡
1− ερPD (1− ηN )

¢
V P
ª

(20)

We can show that (18) and (20) are automatically satisfied if ηN
ηM

is large
enough, that is, each player’s monitoring is enough informative about the
rival’s monitoring activity ( ηNηM =∞ when monitoring is perfectly observed).
Again, when d ≥ K, we can find a solution for (11), (13), (17), and (19) for
any small ε as δ → 1, thus obtaining efficiency.6

4 Multi-task Partnership Games

In this section, we study multi-task partnership game with endogenous mon-
itoring, where two players play many games (tasks) instead of one. In the
previous model, there are only two options for players; “monitor” or “not
to monitor”. Here we assume that each player can also decide which task
to monitor. Note that the level of cooperation they can achieve may be
affected in a nontrivial way by the number of the tasks in which they are
involved. There are two opposing effects from increasing the number of the
tasks. First, if there are more tasks, the stake for the partnership is larger,
which might facilitate more cooperation. On the other hand, monitoring
gets more difficult and costly as the number of different tasks is increasing.
We are interested in whether more dependence (more tasks) leads to more
cooperation or vice versa. Below we illustrate that the efficient outcome
is asymptotically achieved (so the first effect dominates the second) as the
number of the tasks increases. Moreover, this result holds however large the
monitoring cost per task is. This suggests that the “size” of a partnership
tends to be large when it is difficult to obtain useful (public) information
about the partner’s behavior without active monitoring.

6Note that almost perfect monitoring of monitoring is not necessary for our efficiency
result, while (almost) perfect monitoring of the effort level is crucial for the (almost)
efficiency result.
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Let h = 1, ...,H be an index for different tasks. We assume that each
task corresponds to the above Prisoner’s dilemma game for simplicity, but
it can be generalized to a very broad class of games. Player i’s effort vector
is given by ei = (e1i , e

2
i , ..., e

H
i ). The vector of outcomes observed by player

i is yi = (y1i , ..., y
H
i ). The signal for each task depend on the effort profile

in that task only, independently over the tasks. We assume that, if player
i monitors task h, i observes (1) the rival’s effort in task h and (2) whether
the rival monitors task h. As we claimed before, these assumptions are
basically made for simplicity. Formally, player i’s signal is represented as
ωi = (yi,baj), where baj = nba1j , ...,baHj o ,bahj ∈ Aj ∪ {0}. It is assumed that
the cost per task is K.

First, let’s try to apply the previous theorem directly to the current
situation as a benchmark. If the counterparts of the separation conditions
(7)-(9), namely

H (1 + d)−KH ≥ H (21)

H (1 + d) ≥ H

H > 0

are satisfied, the efficient payoff is approximately achieved by a strategy
which cheats & monitor in all the tasks simultaneously with a small prob-
ability. The last two conditions are by definition satisfied. The first
(“financing”) condition is equivalent to

d ≥ K (22)

Note that this is equivalent to the condition with one task case and indepen-
dent of the number of the tasks. Thus there is no advantage or disadvantage
of having many tasks with such a strategy profile.

Nonetheless, we can approximate the efficient outcome by employing a
slightly different strategy which cheats in all the tasks and monitor some
randomly selected subset of tasks simultaneously with a small probability.
Moreover we can do so how large the monitoring cost per task is, as long as
there are enough tasks. Notice the subtlety involved in our construction of
equilibrium two state machine. Suppose that players are playing some two
state machine and indifferent between the full cooperation and cheating &
monitoring in all the tasks as in the above benchmark case. Then one of the
optimal strategy for each player is to cheat & monitor in all the tasks after
every history. However, this implies that each player’s discounted average
payoff cannot exceed H (1 + d)−KH, which is far below the efficient payoff
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H if K > d. Therefore it should be suboptimal to cheat and monitor
in all the tasks to approximate the efficient outcome. On the other hand,
every task needs to be monitored with some probability. No task without
monitoring contributes to the efficiency for obvious reason. This observation
compels us to construct a two state machine where players monitor in some
randomly selected subset of tasks simultaneously with a small probability.

Note that the strategy we propose is much more complicated than a
simple two state machine in Ely and Välimäki [8] or examples in Kandori
and Obara [11] in the sense that playing certain actions are not optimal.
It is not a trivial matter to incorporate such strict incentive compatibilities
while explicitly constructing two state machine7, and that is indeed the main
technical contribution of the following theorem.

Theorem 4 For any level of monitoring cost K, there exists H such that,
for any H ≥ H, the efficient outcome (H,H) is approximately attained as
the discount factor tends to unity.

Proof. See Appendix.

4.1 Generalization

While we used a rather special class of game; Prisoners’ Dilemma, our ef-
ficiency result survives in much more general settings. The above result
can be generalized in two directions. First, the stage game can be any two
person normal form game as long as appropriate separation conditions
are satisfied. Second, the cost of monitoring can be represented by a con-
vex functions Ci (h) .i = 1, 2 rather than linear functions. Let HG be a
multi-task partnership game where each task of the H tasks corresponds to
normal form game G. We can obtain the following more general theorem.

Theorem 5 8 Let G be any two person normal form game and e∗ be an
efficient profile of G. Suppose that the following separation conditions
hold for i = 1, 2, j 6= i, with some “punishing actions” eP1 , eP2 ;

di = max
ei
ui(ei, e

∗
j )− ui(e∗) > 0, and

7Although such strict incentive compatibility can be easily incorporated into two state
machines as is clear from (LI) or a general formulation by Ely, Horner, Olszewski [7],
there are not many explicit examples. Matsushima [13] is one example of explicit two
state machines for which strict incentive compatibility plays an important role.

8Note that this result is already very close to Nash reversion Folk theorem as e∗ does
not need to be an efficient action profile.
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ui(e
∗) > max

ei
ui(ei, e

P
j ).

Suppose also that the cost functions for monitoring satisfies hdi − C 0i (h) >
0, i = 1, 2 as h→∞.9 Then there exists H such that, for any H ≥ H, the
efficient out come ((Hu1(e∗),Hu2(e∗))) for HG is approximately attained
as the discount factor tends to unity.

This result implies that efficiency is obtained for the Bertrand stage game
in Example 2 without any restriction on the parameters as long as there are
many markets in which the two firms compete.

4.2 Multimarket contact

The multi-task model can be reinterpreted as a model of multimarket con-
tact if we regard the two players as two big firms competing in H separate
markets. Edwards [5] argued that bigger conglomerates may have a bet-
ter ability to sustain implicit collusion between them. His claim has been
supported by many empirical works. Our result with endogenous monitor-
ing may provide a theoretical foundation for this claim once a theorem for
general two person stage games is developed more.

5 Related Literature

We discuss related literature briefly. The most closely related works are Ben-
Porath and Kahneman [4] and Miyagawa, Miyahara, and Sekiguchi [14]. The
first paper proves a folk theorem for general discounted repeated games with
communication when perfect monitoring is possible with some costs. While
our result is not ready to be applied to games with more than two players,
we do not allow communication among players. The second paper proves
a folk theorem for a class of stage games (without communication) when
players are patient enough. There are two main differences between our
work and their work. First, they focus on the limit case where monitoring
cost is almost negligible, while we deal with the fixed level of monitoring cost.
Second, they assume that there is no signal about monitoring activity. On
the other hand, we assume that players can observe some informative signal
about the other players’ monitoring activity while monitoring himself.

Our work is also related to works on repeated games with private mon-
itoring. The basic idea behind two state machine was first proposed by

9Note that this condition is trivially satisfied when C (H) is linear, the case treated
above.
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Piccione [16] in the context of repeated prisoners’ dilemma with imperfect
private monitoring. It was further simplified and developed to the current
style of two state machine by Ely and Välimäki [8], Obara [15], and Kandori
and Obara [11]. In particular, our Proposition in Section 2 is borrowed
directly from [11].

As for applications and extensions, we have already mentioned Mat-
sushima [12] for multimarket contact. There are a few attempts to model
collusion with private information such as Aoyagi [1], Athey, Bagwell and
Sanchirico [3] and Athey and Bagwell [2]. But they are different from our
model in that they use communication extensively.
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Appendix.

Proof of Proposition 3.

Proof. The proof is a direct application of our Linear Inequality char-
acterization of two-state machines. We use R and P to denote “reward” and
“punishment” states. Let AZi be the support of α

Z
i for Z = R,P. Set A

R
i =©

(e∗i , N),
¡
eDi ,M

¢ª
, and αRi (e

∗
i , N) = 1 − ε, αRi (e

D
i ,M) = ε, where eDi ∈

argmaxei ui(ei, e
∗
j ) (i.e. cheat and monitor at the same time with a small

probability). Similarly, set APi =
©¡
ePi ,N

¢
,
¡
eDi ,M

¢ª
, and αPi (e

P
i , N) = 1−

ε, αPi (e
D
i ,M) = ε. Then these αRi and αPi , i = 1, 2 satisfy separation condi-

tion. Since the quality of monitoring is very good when monitoring action is

used
µ
Pr ob(ωi=(yi,aj)|((eDi ,M),aj))
Pr ob(ωi=(yi,aj)|((eDi ,M),a0j))

=∞ for any
³
a0j , aj

´
such that a0j 6= aj

¶
,

the separation condition is also sufficient. Hence there exists a two state ma-
chine equilibrium with such αRi and α

P
i to achieve V

R
i = minai∈A∗i gi(ai,α

R
j ), i =

1, 2, j 6= i, which is approximately ui(e∗) if we choose ε very small.
The following argument, which follows a general line of proof of Propo-

sition 2, shows how to find x (·) to satisfy (LI) for such αRi and αPi , i = 1, 2.
For simplicity, suppose that (7) and (8) holds with strict inequality. First,
we can set xRi ((yi,bai), aj) = 0 when either player j is choosing the efficient
action

³
aj = (e

∗
j ,N)

´
or he deviates and monitors at the same time, but

finds that player i is not cheating
³
(bai, aj) = ³(e∗j , N), (eDj ,M),´´. This im-

plies that V Ri is gi
³
e∗i , eRj

´
, which is approximately efficient. For (bai, aj) =³

(eDi ,M), (e
D
j ,M)

´
or
³
(ePi , N), (e

D
j ,M)

´
, we can choose xRi (·) (= 0) so

that

∀ai ∈ A∗i V Ri = gi
¡
e∗i , e

R
j

¢
= gi(ai,α

R
j )−E[xRi (ωj , aj)|ai,αRj ]

This can be done because the conditions (7) and (8) hold strictly and ε is
small. Finally, for any other bai with aj = (eDi ,M), x

R
i (·) can be set very

large so that (2) is satisfied. In this way, we can find xRi to satisfy both (1)
and (2) given (7) and (8).

In a similar way, we can arrange xPi (·) = 0 so that

∀ai ∈ Ai V Pi = max
ei
ui(ei, e

P
j ) = gi(ai,α

P
j ) +E[x

P
i (ωj , aj)|ai,αPj ]

, hence both (3) and (4) are trivially satisfied.
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Then, the last condition (5) is satisfied because V Ri = gi

³
(e∗i , N) ,α

R
j

´
>

maxei ui(ei, e
P
j ) = V

P
i by (9) as gi

³
(e∗i , N) ,α

R
j

´
≈ ui (e∗).

Proof of Theorem 4.

Proof. Fix an integer G so that d > K
G for i = 1, 2. We use the following

two state machine. Let CN = ((C,N) , ..., (C,N)) and DMG be playing D
for all the tasks and monitoring some G tasks. At state R, player i plays
CN with probability 1−ε and play one of DMG with equal probability with
probability ε.10 Let dεi = ui

³
D,αRj

´
− ui

³
C,αRj

´
be i0s deviation gain for

each task when player j is in state R. At state P, player i just plays DMG.
We define xR as follows;

xRi ((yj ,bai), aj)

=



0 if (1) aj = CN or (2) aj = DMG and observe only (C,N)

XR − Y 0R if (1) aj = DMG and (2) observe (D,M)
1 ∼ G− 1 times and (D,N) for the rest

XR + Y
00
R if (1) aj = DMG and (2) observe (D,M) G times

XR if (1) aj = DMG and (2) observe only (D,N)

XR + Y
000
R otherwise

Since xR = 0 when CN is played, this machine clearly approximates the
efficient payoff profile (H,H) as ε → 0. We show that (LI) is satisfied for
an appropriate choice of XR, Y 0R, Y

00
R , Y

000
R . We omit subscript from now on.

First of all, we only need to deal with deviations which play either (D,M)
or (D,N) for each task. Any other deviation can be deterred by setting
Y 000R large enough.

Then the part of (LI) for xR is satisfied if the following conditions are
met;

XR, Y
0
R, Y

00
R , Y

000
R ,XR − Y 0R = 0 (23)

Hdε −Km (24)

5 ε
©
XR − (1− p0 (m)− pG (m))Y 0R + pG (m)Y 00R

ª
for all m

= ε
©
XR − (1− p0 (m)− pG (m))Y 0R + pG (m)Y 00R

ª
for m = G

10Each set of G tasks are chosen with equal probability; ε (H−G)!G!
H! .
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where ph (m) is the probability that exactly hmonitoring activities are found
out by the other player when you pick (D,M) for m tasks and (D,N) for
H −m tasks. More explicitly, they are given as follows;

p0 (m) =

(
(H−m)...(H−m−G+1)
H(H−1)...(H−G+1) for m ≤ H −G+ 1
0 for m ≥ H −G+ 1

pG (m) =

(
0 for m ≤ G− 1

m...(m−G+1)
H(H−1)...(H−G+1) for m ≥ G− 1

The left hand side of (24) is the gain from playingDMm instead of CN. The
right hand side is the expected loss from such deviations. These conditions
mean that players are indifferent between CN and DMG and prefer DMG

to DMm,m 6= G as required by (LI).
Let f (m) = ε {XR − (1− p0 (m)− pG (m))Y 0R + pG (m)Y 00R} +Km. A

sufficient condition for (24) is

Hdε = f (G) (25)

G = arg min
0≤m≤H

f (m) (26)

Note that f is not differentiable at m = G − 1 and H − G + 1. Since
f 00 (m) > 0 for any m 6= G− 1 and H −G+ 1, The following conditions are
enough for (26) to be satisfied.

ε
©
p00 (G)Y

0
R + p

0
G (G)

¡
Y 0R + Y

00
R

¢ª
+K = 0 (First order condition)(27)

εp00 (G− 1)Y 0R +K ≤ 0 (28)

εp0G (G− 1)
¡
Y 0R + Y

00
R

¢
+K ≥ 0 (29)

It is easy to see that (29) is automatically satisfied. In the following, we
find XR, Y 0R, Y

00
R , Y

000
R to satisfy (23), (25), (27) and (28).

We can solve for XR and Y 0R in terms of Y
00
R from (25), and (27)

XR =

½
−(1− p0 (G)− pG (G)) p

0
G (G)

p00 (G) + p0G (G)
− pG (G)

¾
Y 00R

+
1

ε

½
Hdε −Km− (1− p0 (G)− pG (G))K

p00 (G) + p0G (G)

¾
Y 0R = − p0G (G)

p00 (G) + p0G (G)
Y 00R −

1

ε

K

p00 (G) + p0G (G)

The coefficient of Y 00R and the constant for Y
0
R is strictly positive for large H

because p0G(G)
p00(G)

→ 0 as H → ∞, p00 (G) < 0 and p0G (G) > 0. Note also that
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the coefficient of Y 00R is smaller for XR. These imply that XR, Y 0R and Y
00
R

which satisfy (23) can be found by choosing appropriate Y 00R if and only if
the constant of XR is larger than the constant of Y 0R, that is,

Hdε −KG− (1− p0 (G)− pG (G))K
p00 (G) + p0G (G)

≥ − K

p00 (G) + p0G (G)

dε − KG
H

+
(p0 (G) + pG (G))K

H
¡
p00 (G) + p0G (G)

¢ ≥ 0 (30)

Since we can show that (p0(G)+pG(G))

H(p00(G)+p0G(G))
→ − 1

G as H → ∞,11 if we choose
H large enough, d− KG

H + (p0(G)+pG(G))K

H(p00(G)+p0G(G))
> 0 holds by assumption. Then

(30) is satisfied for any small enough ε for any such large H.
Since Y 0R is at least −1ε K

p00(G)+p
0
G(G)

, (28) is also satisfied if

p00 (G− 1)
p00 (G) + p0G (G)

K +K ≤ 0

which is indeed satisfied for largeH because p
0
0(G−1)
p00(G)

< −1 and p00(G)
p00(G)+p

0
G(G)

↓
1 as H →∞.

Take anyH such that (30) and (28) are satisfied for eachH ≥ H. Since ε
can be arbitrary small, the efficient outcome can be arbitrarily approximated
for each such H.

Since a similar proof works for XP , the theorem is proved.
11Since H pG(G)

p0(G)
→ 0 as H →∞,

(p0 (G) + pG (G))

H (p00 (G) + p
0
G (G))

=
(p0 (G) + pG (G))

−Hp0 (G)
³PG−1

s=0
1

H−G−s
´
+HpG (G)

³PG−1
s=0

1
G−s

´
=

³
1 + pG(G)

p0(G)

´
−HPG−1

s=0
1

H−G−s +H
pG(G)
p0(G)

³PG−1
s=0

1
G−s

´
→ − 1

G

18



References

[1] M. Aoyagi. Collusion in dynamic bertrand oligopoly model with corre-
lated private signals and communication. Journal of Economic Theory,
102:229—248, 2002.

[2] S. Athey and K. Bagwell. Optimal collusion with private information.
RAND Journal of Economics, 32(3):428—465, 2001.

[3] S. Athey, K. Bagwell, and C. Sanchirico. Collusion and price rigidity.
Forthcoming in Review of Economic Studies, 2002.

[4] E. Ben-Porath and M. Kahneman. Communication in repeated games
with costly monitoring. Games and Economic Behavior, 44:227—250,
2003.

[5] C. Edwards. Conglomerate business as a source of power. In Busi-
ness Concentration and Price Olicy. Princeton University Press, 1955.
NBER Conference Report.

[6] G. Ellison. Theories of cartel stability and the joint executive commit-
tee. RAND Journal of Economics, 25(1):37—57, 1994.

[7] J. C. Ely, J. Horner, andW. Olszewski. Belief-free equilibria in repeated
games. mimeo, 2003.

[8] J. C. Ely and J. Välimäki. A robust folk theorem for the prisoner’s
dilemma. Journal of Economic Theory, 102(1):84—105, 2002.

[9] D. Fudenberg and E. Maskin. The folk theorem in repeated games
with discounting or incomplete information. Econometrica, 54:533—554,
1986.

[10] E. Green and R. Porter. Noncooperative collusion under imperfect price
formation. Econometrica, 52:87—100, 1984.

[11] M. Kandori and I. Obara. Efficiency in repeated games revisited: The
role of private strategies. Technical report, 2003. Working Paper No.
826, UCLA.

[12] H. Matsushima. Multimarket contract, imperfect monitoring, and im-
plicit collusion. Journal of Economic Theory, 98:158—178, 2001.

[13] H. Matsushima. Repeated games with private monitoring: Two players.
Mimeo, 2003.

19



[14] E. Miyagawa, Y. Miyahara, and T. Sekiguchi. Repeated games with ob-
servation costs. Discussion Paper No. 565, Kyoto Institute of Economic
Research, 2003.

[15] I. Obara. Private strategy and efficiency: Repeated partnership game
revisited. University of Pennsylvania, 1999.

[16] M. Piccione. The repeated prisoner’s dilemma with imperfect private
monitoring. Journal of Economic Theory, 102(1):70—83, 2002.

20


