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Abstract

The objective of this paper is to identify and estimate network formation

models using observed data on network structure. We characterize network for-

mation as a simultaneous-move game, where the utility from forming a link de-

pends on the structure of the network, thereby generating strategic interactions

between links. Because a unique equilibrium may not exist, the parameters are

not necessarily point identified. We leave the equilibrium selection unrestricted

and propose a partial identification approach. We derive bounds on the prob-

ability of observing a subnetwork, where a subnetwork is the restriction of a

network to a subset of the individuals. Unlike the standard bounds as in Cilib-

erto and Tamer (2009), these subnetwork bounds are computationally tractable

in large networks provided we consider small subnetworks. The information in

these bounds also converges as the network size approaches infinity. We provide

Monte Carlo evidence that bounds from small subnetworks are informative in

large networks.
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1 Introduction

Social and economic networks influence a variety of individual behaviors and out-

comes, including educational achievement (Calvó-Armengol, Patacchini, and Zenou

(2009)), employment (Calvó-Armengol and Jackson (2004)), technology adoption

(Conley and Udry (2010)), consumption (Moretti (2011)), and smoking (Nakajima

(2007)). As networks are often the result of individual decisions, understanding the

formation of networks is important for the investigation of network effects. Despite

that the theoretical literature on network formation having flourished in the past

decades (see Jackson (2008) and Goyal (2007) for a survey), econometric studies on

the identification and estimation of network formation models are still at an infant

stage. The objective of this paper is to provide insight into this latter area. More pre-

cisely, assume that we observe the network structure, i.e., who is linked with whom.

We propose new methods to identify and estimate the structural parameters in the

model of network formation.

The statistical analysis of network formation dates back to the seminal work of

Erdős and Rényi (1959), who proposed a random graph model where links are formed

independently with a fixed probability. Statisticians later extended the Erdős-Rényi

model to allow for dependence between links and developed a large class of expo-

nential random graph models (ERGM) (e.g., Snijder (2002)). While ERGMs may

well fit the observed network statistics, they usually lack microfoundations which are

essential for counterfactual analysis. Alternatively, economists view network forma-

tion as the optimal choices of individuals that maximize their utilities. A simple

and widely used empirical approach in this spirit is to employ a dyadic regression,

where the formation of a link is modeled as a binary choice of the pair involved

(e.g., Fafchamps and Gubert (2007), Mayer and Puller (2008)). In order to treat

links in a network as independent observations, this approach needs to assume that

there is no spillover from indirect friends (e.g., friends of friends), which could be

restrictive in many applications given the prevalence of clustering (e.g., Jackson and

Rogers (2007), Jackson, Barraquer and Tan (2012)). Graham (2016) extends dyadic

regressions by allowing for individual fixed effects which can create interdependence

between links. A more general class of network formation models permits utility ex-

ternalities from indirect friends, thereby giving rise to strategic interactions between

links (Christakis, Fowler, Imbens, and Kalyanaraman (2010), Mele (2011), Boucher
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and Mourifié (2013), Miyauchi (2013), Leung (2015), Ridder and Sheng (2016), De

Paula, Richards-Shubik and Tamer (2015), Menzel (2016b)). A contribution of this

paper is to provide a different approach for the identification and estimation of such

strategic network formation models.

A crucial problem in the identification of network formation models with strate-

gic interactions is the presence of multiple equilibria. Bouncher and Mourifié (2013)

get around this problem by assuming there is a unique equilibrium in the observed

data. Christakis et al. (2010) and Mele (2011) circumvent the multiplicity issue by

considering a sequential model where each link is formed in a random sequence and

myopically. The Markov chain of networks achieved in each period may converge to

a unique stationary distribution over the collection of equilibrium networks. Employ-

ing the stationary distribution to construct the data likelihood is then equivalent to

imposing implicitly an equilibrium selection mechanism in the corresponding static

model (Young (1993), Jackson and Watts (2002)). Unlike these studies, we admit

multiple equilibria and do not impose restrictive assumptions on equilibrium selec-

tion. Since a unique equilibrium may not exist in our setting, the parameters are

not necessarily point identified. We propose a partial identification approach and

examine what we can learn about the parameters from bounds on conditional choice

probabilities. The study closest to ours is by Miyauchi (2013), who considers partial

identification as well. Miyauchi derives his bounds from a partial ordering of equilib-

rium networks under a nonnegative externality assumption, while our bounds hold

for more general utility functions.

The estimation of network formation models is computationally challenging be-

cause the number of possible networks is enormous: for n individuals the number

of possible undirected networks is 2n(n−1)/2. In ERGMs, parameter estimation relies

crucially on sampling networks from exponential family distributions. Given the huge

space of possible networks, the sampling is typically carried out using Markov Chain

Monte Carlo (MCMC) methods. However, the mixing time of MCMC is O(en) un-

less links are approximately independent, in which case the model is not appreciably

different from the Erdős-Rényi model (Bhamidi, Bresler, and Sly (2011)). Chan-

drasekhar and Jackson (2013) provide Monte Carlo evidence that slow convergence

of MCMC leads to poor performance of ERGMs. In sequential models of network

formation, likelihoods constructed using stationary distributions may be computa-

tionally intractable because such likelihoods typically include a sum over all possible
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networks (e.g., Mele (2011)). While MCMC methods can be used to avoid computing

intractable likelihoods, they need to simulate networks from the stationary distribu-

tions where the mixing rate can be as slow as O(en). Hence, sequential models suffer

from the same computational problem as in ERGMs.

In our model, the computation of the bounds may be intractable as well because it

requires checking equilibrium conditions for all possible network configurations. We

propose a completely new approach to tackle this computational problem. The idea is

to make use of subnetworks. A subnetwork is the restriction of a network to a subset

of the individuals. Under the equilibrium concept we consider (i.e., pairwise stability

proposed by Jackson and Wolinsky (1996)), we can derive the best possible bounds

on the probability of observing a subnetwork. Under our utility specification these

subnetwork bounds are computationally tractable even in large networks as long as

we only consider small subnetworks. This approach only needs choice probabilities

within subnetworks, so it is still applicable if we do not observe an entire network,

but links in subnetworks.

The subnetwork bounds remain useful as networks grow in size. Under assump-

tions that ensure exchangeability in observed networks, inequalities from subnetworks

of any size converge as n tends to infinity. Therefore, bounds from small subnetworks

remain informative about the parameters in large networks. It is worth pointing out

that our approach differs substantially from a recent strand of literature on large

networks, which typically assumes that a single large network is observed (Leung

(2015), Ridder and Sheng (2016), De Paula, Richard-Shubik and Tamer (2015), Men-

zel (2016b)). By assuming many networks, our approach does not need the restrictions

that these studies may have to impose to control for the dependence between links

and can be seen as complementary to these studies.

The estimation and inference of the identified set defined by the subnetwork

inequalities is a straightforward application of the literature on partially identified

models (e.g., Chernozhukov, Hong and Tamer (2007), Andrews and Soares (2010),

Romano and Shaikh (2010), Andrews and Jia (2012)). Exchangeability implies that

subnetworks in a network of the same size follow the same distribution, so the subnet-

work choice probabilities in the moment inequalities can be estimated using randomly

selected subnetworks of a given size. The bounds do not have a closed form. We pro-

pose how to compute them by simulation.
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Other Related Literature Our paper is related to the econometric literature

on static games of complete information (e.g., Bresnahan and Reiss (1991), Tamer

(2003), Ciliberto and Tamer (2009), Bajari, Hong, and Ryan (2010), Bajari, Hahn,

Hong, and Ridder (2011)). Such games often face the identification problem due to

the prevalence of multiple equilibria. To avoid imposing restrictions on equilibrium

selection, econometricians have applied partial identification to such games (e.g., An-

drews, Berry and Jia (2004), Pakes, Porter, Ho and Ishii (2006), Berry and Tamer

(2006), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011)).

However, most studies look at simple entry games where the number of agents is

small. We contribute to this literature by developing a partial identification approach

to network formation games where the number of agents can be large, so standard

probability bounds are computationally intractable. By focusing on bounds from

small subnetworks, we can achieve computational feasibility. This idea may shed

light on the analysis of other games with a large number of agents (e.g., matching

games) and provide a new perspective on reducing the dimensionality of those models.

Related literature includes Menzel (2015, 2016a).

The remainder of the paper is organized as follows. Section 2 develops the model.

Section 3 addresses the multiple equilibrium problem and proposes the partial iden-

tification approach. Section 4 develops the subnetwork approach. We derive the sub-

network inequalities in Section 4.1 and analyze their asymptotic properties in Section

4.2. Section 5 discusses the estimation methods. Section 6 discusses how to compute

the bounds. Section 7 conducts a Monte Carlo study, and Section 8 concludes the

paper.

2 A Model of Network Formation

In this section, we develop the network formation model. Let [n] = {1, 2, ..., n} be
the set of individuals who can form links. The links are undirected in the sense

that forming a link requires the consent of both individuals involved in the link,

but severing a link can be unilateral. This is the natural setting in the context of

friendship networks, and for that reason we call linked individuals friends.

The links form a network, which we denote by G ∈ G. It is an n×n binary matrix,
where Gij = 1 if i and j are friends, and 0 otherwise for all i 6= j. Since we consider

undirected links, G is a symmetric matrix. We normalize Gii = 0 for all i.
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Utility Each individual i has a dx × 1 vector of observed attributes Xi (e.g.,

gender, age, race) and an (n− 1) × 1 vector of unobserved (to researchers) pref-

erences εi = (εi1, . . . , εi,i−1, εi,i+1, . . . , εin)′, where εij is i’s preference for link ij. Let

X = (X ′1, . . . , X
′
n)′ and ε = (ε′1, . . . , ε

′
n)′. The utility of individual i in a network in

general depends on the network configuration G, the observed attributes X, and i’s

unobserved preferences εi, i.e.,

Ui(G,X, εi).

For any i 6= j, we decompose G into (Gij, G−ij), where G−ij ∈ G−ij is the network
obtained from G by removing link ij. Then the marginal utility of i from forming a

link with j is

∆Uij(G−ij, X, εi) = Ui(1, G−ij, X, εi)− Ui(0, G−ij, X, εi). (1)

In this paper, we consider the utility specification

Ui (G,X, εi) =
n∑
j=1

Gij (u(Xi, Xj; β) + εij) +
1

n− 2

n∑
j=1

n∑
k=1
k 6=i

GijGjkγ1

+
1

n− 2

n∑
j=1

n∑
k=j+1

GijGikGjkγ2, (2)

where u(Xi, Xj; β) = β0 + β′1Xi + β′2 |Xi −Xj|. In this specification, the first term
is the utility (net cost) from direct friends, where the term |Xi −Xj| is to capture
the homophily effect, which says that people tend to make friends with those who

are similar to them (Currarini, Jackson and Pin (2009), Christakis et al. (2010)). In

addition to the direct-friend effects, (2) also allows for the effects of indirect friends.

The second term in (2) captures the utility from i’s friends of friends, and the third

term captures the additional utility if i and i’s friend have friends in common,1 where

γ1 and γ2 are constants in R. Hence, if we consider the marginal utility of i from
forming a link with j, which is given by

∆Uij(G−ij, Xi, Xj, εij) = u(Xi, Xj; β) +
1

n− 2

n∑
k=1
k 6=i,j

Gjkγ1 +
1

n− 2

n∑
k=1
k 6=i,j

GikGjkγ2 + εij,

(3)

1The latter is motivated by the clustering hypothesis, which says that if two individuals have
friends in common, they are more likely to be friends than if links are formed randomly (Jackson
and Rogers (2007), Jackson (2008), Christakis et al. (2010), Jackson et al. (2012)).
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then it consists of not only the direct utility from j, but also the indirect utility from

j’s other friends and i, j’s friends in common. This utility function follows closely

the specification in Christakis et al. (2010).2 It is also related to the specifications in

Mele (2011) and Goyal and Joshi (2006), but is more general than both.3 In addition,

note that the effects of friends of friends and friends in common are normalized by

n − 2. We show in Section 4.2 that under the normalization both sum terms in (3)

converge as n→∞ so these effects remain stable in large networks.4

Equilibrium Given the utilities, individuals choose friends simultaneously as in

the link-announcement game (Myerson (1991), Jackson (2008)). We assume that

individuals observeX and ε, so it is a complete-information game. Depending whether

transfers are allowed for, each individual announces a set of intended links or intended

transfers. Under nontransferable utility (NTU), a link is formed if both individuals

intend to form it, while under transferable utility (TU) a link is formed if the sum of

the two transfers for it is nonnegative.

The equilibrium concept we consider in the paper is pairwise stability (Jackson

and Wolinsky (1996) for NTU, Bloch and Jackson (2006, 2007) for TU). We say a

network is pairwise stable if no pair of individuals wants to create a new link, and no

individual wants to sever an existing link. Formally,

Definition 2.1 A network G is pairwise stable (PS) under NTU if

1. for any Gij = 1, ∆Uij (G−ij, Xi, Xj, εij) ≥ 0 and ∆Uji (G−ij, Xj, Xi, εji) ≥ 0;

2. for any Gij = 0, ∆Uij (G−ij, Xi, Xj, εij) > 0 =⇒ ∆Uji (G−ij, Xj, Xi, εji) < 0.

Definition 2.2 A network G is pairwise stable (PS) under TU if

1. for any Gij = 1, ∆Uij(G−ij, Xi, Xj, εij) + ∆Uji(G−ij, Xj, Xi, εji) ≥ 0;

2. for any Gij = 0, ∆Uij (G−ij, Xi, Xj, εij) + ∆Uji (G−ij, Xj, Xi, εji) ≤ 0.

2Christakis et al. (2010) allow for nonlinear effects from friends of friends and friends in common.
Our specification is a linear version of theirs. However, with linearity we can establish the existence
of equilibrium, which is an open question for the specification they use.

3Mele (2011) considers a linear utility function which does not allow for the effects of friends
in common. Goyal and Joshi (2006) assumes that the direct-friend effects are homogeneous across
individuals.

4A referee suggested normalizing these sum terms at the rate they converge. We are grateful to
this insightful suggestion.
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In the sequel we consider both NTU and TU and use the term "pairwise stability"

to mean pairwise stability under NTU or TU, depending on the context.

Since we allow for utility interdependence, the pairwise stability condition leads

to a simultaneous discrete choice model, i.e.,

Gij = 1 {∆Uij(G−ij, Xi, Xj, εij) ≥ 0,∆Uji (G−ij, Xj, Xi, εji) ≥ 0} , ∀i 6= j, (4)

under NTU and

Gij = 1 {∆Uij(G−ij, Xi, Xj, εij) + ∆Uji(G−ij, Xj, Xi, εji) ≥ 0} , ∀i 6= j, (5)

under TU,5 where the choice of a link Gij depends on the choices of others G−ij.

This indicates that we cannot treat each link as a single observation and use a dyadic

regression becauseG−ij is endogenous in the model, so can be correlated with (εij, εji).

What further complicates the statistical inference of (4) and (5) is that there may be

multiple equilibria, which will affect the identification of the parameters.

The existence of pairwise stable networks is also not guaranteed. According to

Jackson and Watts (2002, Lemma 1), for any utility function there is either a PS

network or a closed cycle.6,7 In the appendix we give an example where there is no

PS network, but a closed cycle. A closed cycle represents a situation in which for the

given utilities individuals never reach a stable state and constantly switch between

forming and severing links, which is unlikely to occur in real applications. To ensure

that our model yields an appropriate solution, we need a utility function such that

for any parameter value, X and ε, there exists a PS network.

Most results in the network literature on the existence of PS networks do not allow

for heterogeneity among individuals and thus are unsuitable for our analysis.8 Jackson

and Watts (2001) and Hellmann (2012) provide general conditions under which a PS

5Equations (4) and (5) differ slightly from Definitions 2.1 and 2.2 in the indifference case, but
the discrepency is negligible when ε follows a continuous distribution.

6A closed cycle is a collection of networks such that: (i) for any two networks in the collection
there is an improving path from one to the other; and (ii) no improving path starting from a
network in the collection leads to a network outside. Here an improving path is a sequence of
networks in which two consecutive networks differ by one link, and adding (or deleting) the link in
the succeeding network is beneficial for the individuals involved. See Jackson and Watts (2002) for
rigorous definitions.

7The original result in Jackson and Watts (2002) was proved under NTU. It is easy to show that
their result also holds under TU.

8See, for example, Belleflamme and Bloch (2004), Goyal and Joshi (2006).
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network exists. We apply their conditions and provide existence results for the utility

function in (2). The insight of these results is that (1) under TU the model permits

a representation as a potential game (Monderer and Shapley, 1994), and (2) under

NTU, with the additional assumption that links are strategic complements, the model

is a supermodular game (Milgrom and Roberts, 1990), so the existence of equilibrium

follows from the fixed-point theorem for isotone mappings (Topkis, 1979). Detailed

proofs are given in the appendix.

Proposition 2.1 Suppose that the utility function is as in (2). Under TU, for any
function u and any constants γ1 and γ2 in R, there is no closed cycle, so a PS network
must exist.

Proposition 2.2 Suppose that the utility function is as in (2). Under NTU, for any
function u and any constants γ1 ≥ 0 and γ2 ≥ 0, there is no closed cycle, so a PS

network must exist.

Remark 2.1 The existence results in Propositions 2.1-2.2 can be extended to gen-
eralizations of the utility specification in (2) where γ1 and γ2 depend on the at-

tributes. Suppose that the coeffi cients of GijGjk and GijGikGjk in (2) take the form

of γ1 (Xi, Xj, Xk) and γ2 (Xi, Xj, Xk), respectively. If γ1 (Xi, Xj, Xk) is symmetric in

Xi and Xk, and γ2 (Xi, Xj, Xk) is symmetric in Xi, Xj, and Xk, one can show that

the result in Proposition 2.1 remains satisfied. Furthermore, the result in Proposition

2.2 holds if γ1 (Xi, Xj, Xk) ≥ 0 and γ2 (Xi, Xj, Xk) ≥ 0 for all Xi, Xj, and Xk.

Remark 2.2 There are other equilibrium concepts in the network literature, and they
differ mainly in the coordination that individuals are assumed to have. The simplest

concept is Nash equilibrium, which allows for no coordination. In the mutual-consent

setting, Nash equilibrium is not appropriate because even if forming a link is beneficial

for both individuals involved, it can still be optimal in the Nash sense that they do

not form the link, merely due to coordination failure.9 This is why Jackson and

Wolinsky proposed pairwise stability, which allows two individuals to coordinate so

they do not fail to form a link if that is beneficial for both. Pairwise stability only

allows for the coordination of a pair on one link. There are other equilibrium concepts

9This is because if i rejects the link, it does not matter whether or not j rejects it. Then rejection
is a (weakly) optimal choice for j. Moreover, given j’s rejection, it is also (weakly) optimal for i to
reject the link.
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that allow for higher-level coordination. For example, bilateral equilibrium allows for

the coordination of a pair on more than one link (Goyal and Vega-Redondo (2007)),

and strong stability allows for the coordination of a coalition (Dutta and Mutuswami

(1997), Jackson and van den Nouweland (2005)). These concepts refine pairwise

stability with further restrictions. In this paper, we want to keep the assumptions as

weak as possible, so we only assume pairwise stability.

3 Partial Identification

In this section, we examine the general framework that we use to identify the model.

After introducing the data generating process, we discuss multiple equilibria, the

main problem in identification. Then we show how much we can learn about the

parameters without imposing any restrictions on the equilibrium selection.

We consider the following data generating process. Let n be an integer generated

from a distribution on {2, 3, . . .}. We draw n individuals at random from a super-

population. Each individual i is associated with a vector of attributes Xn,i and a

vector of preferences εn,i. We let these n individuals form links, and a PS network

Gn = (Gn,ij)i 6=j emerges. For notational convenience, we define Xn,ij = (Xn,i, Xn,j)

to be the attributes of a pair (i, j) and Xn = (Xn,ij)i 6=j the attribute profile of all the

pairs. We observe the network Gn, the attribute profile Xn, but not the preference

profile εn = (εn,ij)i 6=j. This network generating procedure is repeated independently

T times, and we obtain an i.i.d. sample of networks and attribute profiles (Gnt , Xnt),

t = 1, . . . , T .

Throughout the paper we make the following assumptions.

Assumption 1 (Data generating process) (i) We have an i.i.d. sample of (Gnt ,

Xnt), t = 1, . . . , T . Let T →∞. (ii) Xnt and εnt are independent for all t = 1, . . . , T .

(iii) εnt,ij for all i 6= j and t = 1, . . . , T are i.i.d. from a distribution with CDF

F (εij; θε) supported on R that is absolutely continuous with respect to the Lebesgue

measure. F (εij; θε) is continuously differentiable in the finite-dimensional parameter

θε ∈ Θε.

Assumption 2 (Utility) The marginal utility of i from forming a link with j has a

form ∆Uij (Gn,−ij, Xn,ij, εn,ij; θu) as specified in (3), where θu = (β, γ) ∈ Θu denotes

the utility parameter.
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The parameter of interest is θ = (θu, θε) ∈ Θu ×Θε = Θ.

For a given attribute profile Xn and preference profile εn, the model yields a

collection of PS networks, denoted by PS (∆Un (Xn, εn)), where ∆Un (Xn, εn) =

{{∆Uij(Gn,−ij, Xn,ij, εn,ij)}Gn,−ij∈Gn,−ij}i 6=j ∈ Rn(n−1)|Gn|/2 is the marginal-utility pro-

file, and Gn,−ij and Gn are the sets of all possible Gn,−ij and Gn respectively. To

complete the model, suppose there is an equilibrium selection mechanism that selects

a network from the collection of PS networks. Let λn (gn|PS (∆Un (Xn, εn))) be the

probability with which a network gn is selected from the PS collectionPS (∆Un (Xn, εn)).

Then conditional on Xn the probability that we observe the network gn is

Pr (Gn = gn|Xn) =

∫
λn (gn|PS (∆Un (Xn, εn))) dF (εn) (6)

Equation (6) is similar to what Ciliberto and Tamer (2009) establish in entry games

and Bajari, Hong, and Ryan (2010) in discrete games with complete information.

Since the equilibrium selection probability in (6) is unknown when there are mul-

tiple equilibria, whether the true parameter value θ0 can be point identified from

the restriction in (6) depends on whether there is an unique equilibrium. If for any

θ ∈ Θ there is a network that can only be a unique equilibrium, then under certain

conditions the unique equilibrium may provide moment restrictions to point identify

θ0. However, if for some θ ∈ Θ all the networks are part of multiple equilibria, then

θ0 cannot be point identified without additional restrictions on the equilibrium selec-

tion. In this case, we encounter the incomplete problem addressed in the literature

(Bresnahan and Reiss (1991), Tamer (2003)).

For the network formation game described in Section 2, the presence of multiple

equilibria is prevalent because of the interdependence of marginal utilities across

links.10 We illustrate multiple equilibria in Example 3.1.

Example 3.1 Consider networks of size n = 3. Figure 1 shows the eight possible

network configurations. Consider the utility function as in (2) with u (Xi, Xj; β) =

u (Xj, Xi; β), γ1 > 0, and γ2 > 0. Abbreviate u (Xi, Xj; β) as uij. For simplicity

we assume εij = εji, so ε = (ε12, ε23, ε13) ∈ R3. Given the utility specification, we

calculate all possible collections of PS networks under TU. The regions of ε that cor-

respond to each collection of PS networks are presented in Figure 2, where a network

10Note that if there is no utility interdependence, i.e., ∆Uij (Gn,−ij , Xn,ij , εn,ij) =
∆Uij (Xn,ij , εn,ij), then a pairwise stable network must be unique.
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Figure 1: Networks of Three Individuals

g is represented by the vector (g12, g23, g13) ∈ {0, 1}3. In this example, all the eight

networks belong to certain multiple equilibria; no network can be a unique equilibrium.

One can achieve point identification by making certain assumptions about the

equilibrium selection. See Remark 3.1 for a detailed discussion. In this paper, we do

not want to impose any restrictions on the equilibrium selection, so we get around the

non-identifiability issue using partial identification. This approach has been widely

applied to game-theoretic models with multiple equilibria (Andrews, Berry and Jia

(2004), Pakes, Porter, Ho and Ishii (2006), Berry and Tamer (2006), Ciliberto and

Tamer (2009)).

Following closely Ciliberto and Tamer (2009), we divide the integral in (6) into

two parts, depending on whether there is a unique equilibrium or multiple equilibria,

Pr (Gn = gn|Xn) =

∫
gn∈PS(∆Un(Xn,εn))&|PS(∆Un(Xn,εn))|=1

dF (εn)

+

∫
gn∈PS(∆Un(Xn,εn))&|PS(∆Un(Xn,εn))|≥2

λn (gn|PS (∆Un (Xn, εn))) dF (εn) ,

(7)

Note that the selection probability is trivially 1 when a network is a unique equilib-

rium. When there are multiple equilibria, the selection probability, though unknown,

lies between 0 and 1. Replacing the selection probability with these bounds, we derive

an upper and lower bound for Pr (Gn = gn|Xn), i.e.,

Pr (Gn = gn|Xn) ≤
∫
gn∈PS(∆Un(Xn,εn))

dF (εn) , (8)
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Figure 2: All Possible Equilibria and the Partition of the ε Space
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and

Pr (Gn = gn|Xn) ≥
∫
gn∈PS(∆Un(Xn,εn))&|PS(∆Un(Xn,εn))|=1

dF (εn) . (9)

The upper bound is the probability that network gn is PS, and the lower bound is the

probability that network gn is uniquely PS. These are the best possible bounds for

Pr (Gn = gn|Xn) because the selection probability in (7) can be any value between 0

and 1.

Unfortunately, these bounds suffer from the curse of dimensionality in large net-

works. In particular, the lower bound in (9) is computationally infeasible if n is large.

This is because to compute the lower bound, we need to check pairwise stability for

2n(n−1)/2 possible networks.11 This is computationally intractable even for a moderate

value n. For example, in the case of 20 people, the number of possible networks is

2190 ≈ 1057.

Remark 3.1 An alternative approach is to achieve point identification by making
additional assumptions about the equilibrium selection. In network formation, one

way to do this is to consider a sequential model as in Jackson and Watts (2002) (see

also Christakis et al. (2010) and Mele (2011)). This sequential model assumes that

individuals are myopic and form links in a random sequence: in each period only one

pair of individuals is randomly selected and only that pair can update their relation-

ship. The sequence of networks realized in each period form a Markov chain with

states corresponding to the networks. Under certain conditions12 the Markov chain

converges to a unique stationary distribution, which typically assigns probability one

to a single PS network.13 Hence the stationary distribution amounts to a particular

selection rule. Alternatively, one can assume a more general equilibrium selection

mechanism, for example, by specifying a parametric form (Bajari, Hong, and Ryan

(2010)) or considering a nonparametric equilibrium selection (Bajari, Hahn, Hong,

and Ridder (2011)). Note that in the game we consider a fully nonparametric equi-

librium selection is not identified. Certain restrictions must be imposed on it in order

11Unlike the upper bound, the lower bound has no closed form and needs to be computed by
simulation. For each simulated εn, we need to check whether a network is uniquely pairwise stable,
which amounts to checking pairwise stability for all possible networks.

12An example of such conditions would be (i) the individuals are assumed to make mistakes
(i.e., forming or deleting a link randomly rather than based on utility maximization) and (ii) the
probability of making a mistake is suffi ciently small.

13This network is essentially the most "stable" one among all the PS networks, or more precisely,
the network that has the minimum resistance (Young (1993), Jackson and Watts (2002)).
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to achieve identification.

4 Partial Identification from Subnetworks

4.1 Inequalities from Subnetworks

We propose a novel approach to reduce the dimensionality of the problem. The idea

is to derive bounds for certain parts of a network, called subnetworks. A subnetwork

is the restriction of a network to a subset of the individuals. To be precise, let Gn

be a network of n nodes. For any subset A ⊆ [n], we say Gn,A is the subnetwork of

Gn in A if it consists of the edges in Gn that connect two nodes in A, i.e., Gn,A =

(Gn,ij)i,j∈A,i 6=j. Moreover, we define Gn,−A to be the complement of Gn,A, i.e., the

remainder of Gn after the edges in Gn,A are deleted. It consists of the edges in Gn

that connect either two nodes in Ac = [n] \A or one node in A and another in Ac,

i.e., Gn,−A = (Gn,ij)i/∈A∪j /∈A,i 6=j. In matrix notation, the subnetwork Gn,A corresponds

to the submatrix of Gn with rows and columns in A, and its complement Gn,−A is

the remainder of Gn after the submatrix in A is deleted. The sets of all possible Gn,A

and Gn,−A are denoted by Gn,A and Gn,−A.
For any fixed subsetA ⊆ [n], it is clear from the decompositionGn = (Gn,A, Gn,−A)

that the distribution of the subnetwork Gn,A is simply a marginal distribution of the

network Gn. That is, conditional on Xn the probability of observing a subnetwork

gn,A is

Pr (Gn,A = gn,A|Xn) =
∑
gn,−A

Pr (Gn,A = gn,A, Gn,−A = gn,−A|Xn)

=

∫ ∑
gn,−A

λn (gn,A, gn,−A| PS (∆Un (Xn, εn))) dF (εn) .(10)

The summed equilibrium selection probability in (10) is unknown unless all the

networks in PS ((∆Un (Xn, εn))) have the same subnetwork in A. Following the

same idea as in the previous section, we can derive an upper and lower bound for

Pr (Gn,A = gn,A|Xn). Specifically, divide the integral in (10) into two parts, depend-
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ing on whether the PS networks have a unique subnetwork or multiple subnetworks,

Pr (Gn,A = gn,A|Xn) =

∫
gn,A∈PSA(∆Un(Xn,εn))
&|PSA(∆Un(Xn,εn))|=1

dF (εn)

+

∫
gn,A∈PSA(∆Un(Xn,εn))
&|PSA(∆Un(Xn,εn))|≥2

∑
gn,−A

λn (gn,A, gn,−A|PS (∆Un (Xn, εn))) dF (εn) ,

(11)

wherePSA (∆Un (Xn, εn)) = {gn,A ∈ Gn,A : ∃gn,−A ∈ Gn,−A, (gn,A, gn,−A) ∈ PS(∆Un(Xn, εn))}
is the set of subnetworks in A that are part of a network in PS (∆Un (Xn, εn)). Re-

placing the sum term in (11) by 0 and 1 yields

H2n (gn,A, Xn) ≤ Pr (Gn,A = gn,A|Xn) ≤ H1n (gn,A, Xn) (12)

where

H1n (gn,A, Xn) =

∫
gn,A∈PSA(∆Un(Xn,εn))

dF (εn)

H2n (gn,A, Xn) =

∫
gn,A∈PSA(∆Un(Xn,εn))&|PSA(∆Un(Xn,εn))|=1

dF (εn)

These bounds are analogous to those network bounds in (8) and (9): the upper

bound in (12) is the probability that gn,A is part of a PS network, and the lower bound

in (12) is the probability that only gn,A is part of a PS network. These are the best

possible bounds for Pr (Gn,A = gn,A|Xn) because the summed selection probability

in (11) can be any value between 0 and 1. In contrast to the lower bound in (9),

these bounds can be computed even in large networks as long as the subnetworks are

chosen to be small. Details about the computation are discussed in Section 6.

Example 4.1 (Example 3.1 continued) Assume the same setting as in Example
3.1. We calculate the upper and lower bounds in (12) for subnetwork G12 = 1 (sup-

press the subscript n). Note that the complement of the subnetwork G−12 takes four

possible values {(1, 1) , (1, 0) , (0, 1) , (0, 0)}. The regions in Figure 2 in which G12 = 1

associated with any of these complements is PS gives the upper bound, i.e.,

Pr (G12 = 1|X) ≤
∫
{(1,1,1)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,1,0)}=PS(∆U(X,ε))

dF (ε)
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+

∫
{(1,0,1)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,0,0)}=PS(∆U(X,ε))

dF (ε)

+

∫
{(1,1,1),(1,0,0)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,1,1),(0,1,0)}=PS(∆U(X,ε))

dF (ε)

+

∫
{(1,1,1),(0,0,1)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,1,1),(0,0,0)}=PS(∆U(X,ε))

dF (ε)

+

∫
{(1,1,0),(0,0,0)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,0,1),(0,0,0)}=PS(∆U(X,ε))

dF (ε) .

The lower bound can be derived from the subset of the regions in the upper bound

where G12 = 0 associated with any complement is not PS, i.e.,

Pr (G12 = 1|X) ≥
∫
{(1,1,1)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,1,0)}=PS(∆U(X,ε))

dF (ε)

+

∫
{(1,0,1)}=PS(∆U(X,ε))

dF (ε) +

∫
{(1,0,0)}=PS(∆U(X,ε))

dF (ε)

+

∫
{(1,1,1),(1,0,0)}=PS(∆U(X,ε))

dF (ε) .

4.2 Convergence of the Subnetwork Inequalities

A major concern about the bounds from subnetworks is their performance when

networks are large. In order for these bounds to be useful in large networks, they

must remain informative and provide nontrivial restrictions for the parameters as n

tends to infinity. We also want the inequality restrictions in (12) to be convergent

as n increases so the inference of the parameters is robust to the size of networks.

These features require that both the subnetwork choice probabilities and their bounds

converge to some nontrivial limits as n approaches infinity. Our objective in this

section is to show that under mild assumptions on the equilibrium selection these

asymptotic properties are actually satisfied.

The convergence of the subnetwork choice probabilities is achieved under assump-

tions on the equilibrium selection that are motivated by the convergence of exchange-

able random graphs (Lovász and Szegedy, 2006; Diaconis and Janson, 2008; Lovász,

2012). Exchangeability is relevant in our context because the utility specification in

(2) does not depend on how we label the individuals, so if the equilibrium selection

mechanism is also assumed not to depend on the labels, the distribution of networks

is invariant under permutations of the labels and is thus exchangeable. Note that
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because individuals have attributes, only the individuals with the same attributes are

exchangeable. We define such restricted exchangeability by considering a network Gn

together with its attribute profile Xn and calling (Gn, Xn) an attributed network or

simply network. Recall that (Gn, Xn) is a n × n matrix on {0, 1} × X 2. Denote the

set of all possible (Gn, Xn) by (Gn,Xn). For any network (Gn, Xn) ∈ (Gn,Xn), we

define (Gπ
n, X

π
n ) ∈ (Gn,Xn) to be the network induced by π, where π is a permuta-

tion over [n]. This is the network obtained by permuting the rows and columns of

(Gn, Xn) according to π, so the (i, j) element of (Gπ
n, X

π
n ) is equal to the (π (i) , π (j))

element of (Gn, Xn) for all i 6= j. For a network with infinite number of individuals

(G,X) = (Gij, Xij)i,j≥1,i 6=j ∈ (G∞,X∞), we also let (Gπ, Xπ) ∈ (G∞,X∞) be the infi-

nite network induced by π, where π is a permutation over N = {1, 2, . . .} that leaves
all but a finite number of terms fixed. Exchangeability means that all the networks

induced by permutations have the same distribution as the original network.

Definition 4.1 (i) A finite network (Gn, Xn) is exchangeable if for any permuta-

tion π over [n] the induced network (Gπ
n, X

π
n ) has the same distribution as (Gn, Xn),

i.e., (Gπ
n, X

π
n )

d
= (Gn, Xn). (ii) An infinite network (G,X) is exchangeable if for

any permutation π over N that permutes a finite number of elements in N, we have
(Gπ, Xπ)

d
= (G,X).

It is easy to show that if the equilibrium selection mechanism λn is invariant under

permutations of labels, i.e., for any permutation π over [n], any network (gn, xn), and

any preference profile εn, we have

λn (gπn| PS (∆Un (xπn, ε
π
n))) = λn (gn| PS (∆Un (xn, εn))) , (13)

where επn is the preference profile induced by the permutation π, then the network

(Gn, Xn) generated by the equilibrium selection λn is exchangeable. We impose this

restriction in Assumption 3(i).

The exchangeability of (Gn, Xn) has two immediate implications. First, for any

subsets A and A′ ⊆ [n] with the same size |A| = |A′|, the subnetworks (Gn,A, Xn,A)

and (Gn,A′ , Xn,A′) have the same distribution and thus the same choice probabilities,

i.e., Pr (Gn,A = ga|Xn,A = xa, Xn,−A) = Pr (Gn,A′ = ga|Xn,A′ = xa, Xn,−A′). Hence

it suffi ces to consider the subnetwork in A = [a], denoted by (Gn,a, Xn,a), and its

choice probabilities Pr (Gn,a = ga|Xn,a = xa, Xn,−a). Second, if a subnetwork in [a]
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has two individuals with the same X, then due to indeterminacy in the labeling

the links and attributes in [a] may be represented as different subnetworks that are

isomorphic. We say that two subnetworks (ga, xa) and (g′a, x
′
a) are isomorphic if

there is a permutation π over [a] such that g′a,ij = ga,π(i)π(j) and x′a,ij = xa,π(i)π(j)

for i, j ≤ a, i 6= j, i.e., (g′a, x
′
a) is induced from (ga, xa) by π. Exchangeability im-

plies that the choice probabilities evaluated at such isomorphic subnetworks are the

same, i.e., Pr (Gn,a = ga|Xn,a = xa, Xn,−a) = Pr (Gn,a = g′a|Xn,a = x′a, Xn,−a). Thus

we can resolve the indeterminacy by defining the "=" symbol in the choice probabil-

ity as an isomorphism and viewing Pr (Gn,a = ga|Xn,a = xa, Xn,−a) as a function of

unlabeled subnetworks (ga, xa), i.e., the equivalence classes of subnetworks defined by

the isomorphism relation. Note that the use of isomorphism and unlabeled subnet-

works is needed only for discrete X. If X is continuous, two individuals have distinct

X with probability 1, so no subnetworks are isomorphic and labeled and unlabeled

subnetworks are the same.

In the graph limit theory, the convergence of exchangeable random graphs is de-

fined in terms of the convergence of subgraph densities (Lovász and Szegedy, 2006;

Diaconis and Janson, 2008). Motivated by this insight, we further restrict the se-

quence of equilibrium selection mechanisms {λn, n ≥ 2} so that the finite exchange-
able networks generated by {λn, n ≥ 2} converge to an infinite exchangeable network
as n→∞, thereby yielding the desired convergence of the subnetwork probabilities.
To be precise, for any fixed subnetwork (ga, xa) ∈ (Ga,Xa) and any given (finite or in-
finite) network (G,X), we define the subnetwork density tind ((ga, xa) , (G,X)) as the

probability that a randomly selected subset A in the node set of G with size |A| = a

yields a subnetwork (GA, XA) that equals (ga, xa) (in the sense of isomorphism),

i.e., tind ((ga, xa) , (G,X)) = Pr (Gn,A = ga, Xn,A = xa|G,X). For a finite network

(Gn, Xn) with n ≥ a, the subnetwork density is given by tind ((ga, xa) , (Gn, Xn)) =
1

(na)

∑
A⊆[n]:|A|=a 1 {Gn,A = ga, Xn,A = xa}. We say a sequence of finite networks con-

verges to an infinite network if all the subnetwork densities of the finite networks

converge to those of the infinite network. Note that for finite exchangeable networks

the limit network must also be exchangeable.14

Definition 4.2 A sequence of finite exchangeable networks {(Gn, Xn) , n ≥ 2} con-
14This is because the subnetwork density of a finite exchangeable network tind ((ga, xa) , (Gn, Xn))

depends only on the isomorphism type of the subnetwork (ga, xa), so does the subnetwork density
of the limit network tind ((ga, xa) , (G∗, X∗)).
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verge to an infinite exchangeable network (G∗, X∗) =
(
G∗ij, X

∗
ij

)
i,j≥1,i 6=j if for any a ≤

n and any subnetwork (ga, xa) ∈ (Ga,Xa), the random variable tind ((ga, xa) , (Gn, Xn))

converges in distribution to the random variable tind ((ga, xa) , (G
∗, X∗)) as n→∞.

Under Assumption 1 a sequence of attribute profiles {Xn, n ≥ 2} can be embed-
ded into an infinite exchangeable array X∗ =

(
X∗ij
)
i,j≥1,i 6=j with X

∗
ij = Xn,ij for all

n ≥ 2 and all i, j ≤ n, i 6= j. The convergence in Definition 4.2 then amounts to a

restriction on the equilibrium selection so that {Gn, n ≥ 2} can be "asymptotically
embedded" into G∗. We impose this restriction in Assumption 3(ii). This assump-

tion rules out equilibrium selection mechanisms that may oscillate between pairwise

stable networks with different subnetwork densities as n→∞. For example, for the
utility specification in (2) with γ1, γ2 > 0, if for any (Xn, εn) the equilibrium selection

mechanism λn selects from PS (∆U (Xn, εn)) the largest network when n is odd and

the smallest network when n is even, then the sequence of networks generated by such

λn can never converge.15

Assumption 3 The sequence of equilibrium selection mechanisms λn : Gn × 2Gn →
[0, 1], n ≥ 2, satisfies that (i) for any n ≥ 2, λn is invariant under permuta-

tions of labels, i.e., the condition in (13) holds, and (ii) the sequence of networks

{(Gn, Xn) , n ≥ 2} generated by {λn, n ≥ 2} converges to an infinite exchangeable net-
work (G∗, X∗) =

(
G∗ij, X

∗
ij

)
i,j≥1,i 6=j as n→∞.

The network in the limit (G∗, X∗) is an exchangeable infinite two-dimensional

array. From the Aldous-Hoover theorem (e.g., Kallenberg (2005), Theorem 7.22), it

has a representation

(
G∗ij, X

∗
ij

)
= f

(
ξ0, ξi, ξj, ξij

)
a.s., ∀i, j ≥ 1, i 6= j (14)

for a measurable function f : [0, 1]4 → {0, 1} × X 2 that is symmetric in ξi and ξj
and some i.i.d. random variables (ξi)i≥0 and

(
ξij
)
i,j≥1,i 6=j with ξij = ξji that are

uniformly distributed on [0, 1]. We can further define a function W : [0, 1]3 → [0, 1]

as W
(
ξ0, ξi, ξj

)
= Pr

(
f1

(
ξ0, ξi, ξj, ξij

)
= 1
∣∣ ξ0, ξi, ξj

)
, where f1 is the component of

15When the model is a supermodular game, any collection of PS networks has the largest and
smallest elements, i.e., there exist PS networks g0 and g1 such that g0 ≤ g ≤ g1 for any PS network
g, where "≤" means element-wise smaller than or equal to.
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f that corresponds to G∗ij, so the links in G
∗ can be equivalently represented as

G∗ij = 1
{
W
(
ξ0, ξi, ξj

)
≥ ξij

}
a.s., ∀i, j ≥ 1, i 6= j (15)

for some i.i.d. U (0, 1) random variables independently of (ξi)i≥0, which we still denote

by
(
ξij
)
i,j≥1,i 6=j. The function W in (15) is called a graphon (Lovász and Szegedy,

2006). While the links are dependent as a result of the pairwise stability condition

and equilibrium selection mechanism, the representation in (15) indicates that the

dependence has a particular structure such that conditional on some network hetero-

geneity ξ0 and individual heterogeneity (ξi)i≥1, the links become independent. This

conditional independence feature is useful in analyzing the asymptotic properties of

link frequencies and subnetwork probabilities. Note that the functionW in (15) must

satisfy W 6≡ 0. Otherwise, we obtain an empty network with probability 1, which

cannot be a limit of the networks generated from the data generating process we

consider.

Under the assumptions on the equilibrium selection, we show in Theorem 4.1

that the subnetwork probabilities in an n-player network converge to the subnetwork

probabilities in the limit network as n→∞. Moreover, this implies that the average
numbers of friends and friends in common converge as n→∞, so the normalization
rate in the utility specification in (3) is appropriate.

Theorem 4.1 Let {(Gn, Xn) , n ≥ 2} be a sequence of networks that satisfies As-
sumptions 1 and 3. For any a ≤ n and any (ga, xa) ∈ (Ga,Xa),

Pr (Gn,a = ga|Xn,a = xa, Xn,−a)
a.s.→ Pr

(
G∗a = ga|X∗a = xa, X

∗
−a
)

as n→∞.

Proof. See the appendix.

Corollary 4.2 Let {(Gn, Xn) , n ≥ 2} be a sequence of networks that satisfies As-
sumptions 1 and 3. For any i, j ≤ n, i 6= j, and an arbitrary k 6= i, j, we have

1

n− 2

∑
k′ 6=i,j

Gn,ik′
d→ E [W (ξ0, ξi, ξk)| ξ0, ξi]
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and
1

n− 2

∑
k′ 6=i,j

Gn,ik′Gn,jk′
d→ E

[
W (ξ0, ξi, ξk)W

(
ξ0, ξj, ξk

)∣∣ ξ0, ξi, ξj
]

as n→∞.

Proof. See the appendix.

Remark 4.1 (Dense networks) The exchangeability conditions in Assumption 3
imply that the total number of links in a network is

∑n
i=1

∑n
j=i+1Gn,ij = Op (n2)

(see the appendix for a proof). Such networks are dense in the stochastic sense.16

We can also see from Corollary 4.2 that the degree of an individual is Op (n), so

the probability that an individual is isolated approaches zero. It may be possible to

extend our approach to sparse networks (which have o (n2) links), but this is beyond

the scope of the paper. See Menzel (2016b) for work on strategic network formation

with sparsity.

Remark 4.2 (Continuous X) Our definition of the subnetwork densities follows
closely the subgraph densities defined in the graph limit theory for graphs without

attributes (Lovász and Szegedy, 2006; Lovász, 2012). This definition assumes im-

plicitly that X is discrete, which simplifies the exposition but is unnecessary and can

be relaxed. In fact, if X is continuous, we can generalize the subnetwork density of

network (G,X) to be tind ((ga, Ca) , (G,X)) = Pr (GA = ga, XA ∈ Ca|G,X) where Ca
is a Borel subset of Xa. Suppose that Assumption 3 is satisfied with the convergence
condition defined by this generalized subnetwork density. We show in the appendix

that the results in Theorem 4.1 and Corollary 4.2 still hold.

Now we examine the bounds in (12). Under Assumption 1 these bounds are

invariant under permutations of labels, so subnetworks in any two subsets A,A′ ⊆ [n]

with |A| = |A′| and Xn,A = Xn,A′ have the same bounds for all gn,A = gn,A′ . It is

thus suffi cient to consider the subnetwork in [a] and its bounds, which we denote by

H1n (ga, xa, Xn,−a) and H2n (ga, xa, Xn,−a). In contrast to the network bounds in (8)

and (9) which vanish to 0 as n → ∞, Lemma 4.3 indicates that these bounds for
any fixed a are bounded away from 0 and 1. More importantly, they also converge to

some limits as n→∞, as proved in Theorem 4.4.

16A network with Θ
(
n2
)
links is called a dense network (Bollobas and Riordan, 2009), where

Yn = Θ
(
n2
)
if there are c1, c2 > 0 such that c1 ≤ Yn

n2 ≤ c2 for n suffi ciently large.
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Lemma 4.3 Let {(Gn, Xn) , n ≥ 2} be a sequence of networks that satisfies Assump-
tions 1-2. For any a ≤ n and any (ga, xa) ∈ (Ga,Xa), the bounds H1n (ga, xa, Xn,−a)

and H2n (ga, xa, Xn,−a) in (12) satisfy

H̄2 (ga, xa) ≤ H2n (ga, xa, Xn,−a) ≤ H1n (ga, xa, Xn,−a) ≤ H̄1 (ga, xa)

for some deterministic functions H̄1 (ga, xa) and H̄2 (ga, xa) such that 0 < H̄2 (ga, xa) <

H̄1 (ga, xa) < 1.

Proof. See the appendix.

Theorem 4.4 Let {(Gn, Xn) , n ≥ 2} be a sequence of networks that satisfies As-
sumptions 1-2. Let X∗ = (X∗ij)i,j≥1,i 6=j be the infinite array with X∗ij = Xn,ij for all

n ≥ 2 and all i, j ≤ n, i 6= j. Then for any a ≤ n and any (ga, xa) ∈ (Ga,Xa), the
bounds H1n (ga, xa, Xn,−a) and H2n (ga, xa, Xn,−a) in (12) satisfy

H1n (ga, xa, Xn,−a)
a.s.→ H∗1

(
ga, xa, X

∗
−a
)

H2n (ga, xa, Xn,−a)
a.s.→ H∗2

(
ga, xa, X

∗
−a
)

as n→∞, for some functions H∗1
(
ga, xa, X

∗
−a
)
and H∗2

(
ga, xa, X

∗
−a
)
.

Proof. See the appendix.
The upper bound H̄1 (ga, xa) in Lemma 4.3 is the probability that the subnetwork

(ga, xa) is PS for the "most favorable" complement, and the lower bound H̄2 (ga, xa)

is the probability that (ga, xa) is uniquely PS for the "least favorable" complement.

Because the effects of friends of friends and friends in common in (3) are normalized

by n − 2, the overall utility externality from any complement is bounded. Hence

even for the extreme complements the subnetwork probabilities are bounded away

from 0 and 1. Theorem 4.4 strengthens the results in the lemma by showing that the

subnetwork bounds actually converge: the upper bound converges to the probability

that the subnetwork (ga, xa) is PS for an infinite PS complement generated under the

"most favorable" equilibrium selection mechanism, and the lower bound converges to

the probability that (ga, xa) is uniquely PS for an infinite PS complement generated

under the "least favorable" equilibrium selection mechanism.17 The exact forms of the

17The limits of the bounds may be random due to the randomness in X∗−a. In a special case when
the attributes in a network are i.i.d., the limits do not depend on X∗−a and reduce to deterministic
functions. See the proof of the theorem for details.
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bounds and limits are given in the proofs. These results together with Theorem 4.1

ensure that the subnetwork inequalities scale well as n increases, so small subnetworks

can provide useful information about the parameter even in large networks.

In addition, the convergence of the bounds provides an attractive possibility to

reduce the computational complexity in large networks. We can approximate the

bounds in an n-player network by the bounds from an m-player network withm� n.

The approximation is arbitrarily well for suffi ciently large m.

Remark 4.3 The subnetwork inequalities in (12) and their properties established in
Theorem 4.1 and Lemma 4.3 do not require the utility specification in (2). They can

apply to more general specifications, for example, where γ1 and γ2 depend on the

attributes X, so long as the existence of a PS network is guaranteed as discussed in

Remark 4.1. We will see in Section 6 that the computation of the bounds does not

need γ1 and γ2 to be constant either; the computational cost remains the same when

γ1 and γ2 depend on X.
18

4.3 Identified Sets

The inequalities in (12) are satisfied by the true parameter θ0, i.e.,

H2n (ga, xa, Xn,−a; θ0) ≤ Pr (Gn,a = ga|Xn,a = xa, Xn,−a) ≤ H1n (ga, xa, Xn,−a; θ0)

(16)

for all (ga, xa), all Xn,−a and all a ≤ n. We define the identified set from subnetworks

of size a as the collection of θ that satisfy the inequalities in (16) for that a,

ΘI (a) = {θ ∈ Θ : (16) holds for the given a with θ in place of θ0} . (17)

and define the identified set to be ΘI =
⋂ā
a=2 ΘI (a) for some positive integer ā.

Remark 4.4 (Sharp Identified Sets) The identified sets defined in (17) are not
sharp. One can construct the sharp identified set for each a, denoted by Θs

I (a), as

the collection of θ such that (10) holds for some equilibrium selection mechanism,

similarly as in Beresteanu, Molchanov and Molinari (2011). The inequalities that

18The convergence of the bounds (Theorem 4.4) is proved for the specification in (2), but this
result is for theoretical purpose and is not needed in the estimation. It may be possible to generalize
the proof to allow for attribute-dependent γ1 and γ2. We leave it for future research.
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define Θs
I (a) are of the form Pr (Gn,a ∈ Ha|Xn) ≤

∫
1
{
Ha ⊆ PS[a] ((∆Un (Xn, εn)))

}
dF (εn), where Ha is any subset of Ga. These sharp identified sets satisfy Θs

I (a2) ⊆
Θs
I (a1) for a2 > a1,19 so bounds from larger subnetworks provide more information

about the parameter.20 One can show that the convergence results in this section also

hold for the inequalities defining the sharp identified sets.

In practice, to achieve computational feasibility we may need to choose a small ā

(e.g. ā = 2 or 3) if n is large. This can lead to information loss due to the depen-

dence of links in a subnetwork. Although the links in a subnetwork have diminishing

spillover effects on each other as n increases, their dependence is persistent because

of the interaction with the remainder of the network, through both the pairwise sta-

bility of the remainder and the equilibrium selection mechanism. The Aldous-Hoover

representation in (15) shows that under exchangeability the dependence of the links

can be captured by the random variables ξ0 and (ξi)i≥1 asymptotically. Hence, con-

sidering bounds from larger subnetworks is analogous to employing information from

restrictions on higher-order moments of functions of these random variables. The

magnitude of the information loss in choosing a small ā then depends on to what

extent the information in the joint distribution of these functions can be captured by

their lower-order moments.

5 Estimation

In this section, we discuss the estimation of the identified set ΘI . This set is defined

by the conditional moment inequalities

E [1 {Gn,a = ga} −H1n (ga, Xn,a, Xn,−a; θ)|Xn,a, Xn,−a] ≤ 0

E [H2n (ga, Xn,a, Xn,−a; θ)− 1 {Gn,a = ga}|Xn,a, Xn,−a] ≤ 0 (18)

19This is because if a parameter value θ satisfies (10) for subnetworks of size a2 under some
equilibrium selection mechanism, then θ also satisfies (10) for subnetworks of size a1 < a2 under that
equilibrium selection mechanism, by adding up all possible constellations of the links in [a2] \ [a1].

20Note that the identified sets in (17) do not necessarily decrease in a because the "nonsharp
relaxation" in the bounds tends to be larger as a increases. For example, if there is a region of εn
such that subnetworks g3 = (1, 1, 1) and g3 = (1, 0, 0) are multiple equilibria, then this region is
included in the upper bounds of both subnetworks. However, the upper bound for the subnetwork
g2 = 1 counts this region only once, so it is not necessarily larger than the sum of the two upper
bounds for g3.
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for all ga, all (Xn,a, Xn,−a), and all a ≤ ā. Note that the bounds are invariant

under permutations over [a]c, so Xn,−a can be replaced by its empirical distribution

φn (Xn,−a) = 1
n−a

∑
j 6∈[a] δXn,j without information loss. This substantially reduces

the dimension of the conditioning variables and prevents it from increasing in n.

We further transform the conditional moment inequalities into equivalent uncon-

ditional moment inequalities of the form

E [(1 {Gn,a = ga} −H1n (ga, Xn,a, φn (Xn,−a) ; θ)) q (Xn,a, φn (Xn,−a))] ≤ 0

E [(H2n (ga, Xn,a, φn (Xn,−a) ; θ)− 1 {Gn,a = ga}) q (Xn,a, φn (Xn,−a))] ≤ 0 (19)

for all nonnegative functions q (Xn,a, φn (Xn,−a)) ∈ Q, where q represents instru-
ments that depend on the conditioning variables and Q is a collection of instru-

ments. For discrete X, we can choose Q = {1 {Xn,a = xa} · 1
n−a

∑
j 6∈[a] 1 {Xn,j = x} :

∀xa ∈ Xa, ∀x ∈ X}. If X is continuous, we follow Andrews and Shi (2013) and

choose Q to be a countable set whose elements approximate nonnegative q well,

so there is no information loss in the unconditional moment inequalities. For ex-

ample, we can transform each Xn,i to lie in [0, 1]dx and choose Q to be a collec-

tion of indicator functions of cubes in [0, 1]dx with side lengths decreasing to 0,

e.g., Q = {1 {Xn,a ∈ Ca} · 1
n−a

∑
j 6∈[a] 1 {Xn,j ∈ C} : ∀Ca ∈ Ca,∀C ∈ C}, where C

= {
⊗dx

d=1(kd−1
2r
, kd

2r
] : 1 ≤ kd ≤ 2r, 1 ≤ d ≤ dx, r = r0, r0 + 1, . . .} for some positive

integer r0, and Ca =
⊗a

i=1 C (with abuse of notation denote Xn,a = (Xn,i)i∈[a]). In

practice, if Q is infinite, we approximate it by a finite set via truncation or simu-

lation. See Andrews and Shi (2013) for more details. Note that given the choice

of the instruments the unconditional moment inequalities contain terms of the form

1 {Gn,a = ga} 1 {Xn,a = xa} or 1 {Gn,a = ga} 1 {Xn,a ∈ Ca}. These indicator functions
are evaluated in the sense of isomorphism. That is, for a given (ga, xa) or (ga, Ca),

the "=" and/or "∈" relations hold if they hold for an isomorphism of (Gn,a, Xn,a).

The sample moments can be constructed using subnetworks in any randomly

selected subsets of [n] with size a. In particular, let A1, A2, . . . , ANa be Na i.i.d.

subsets of [n] with size a drawn from the collection of all such subsets, where Na is a

positive integer. We define the sample moments for a network (Gn, Xn) as

m1 (θ;Gn, Xn, ga, q) =
1

Na

Na∑
i=1

[(1 {Gn,Ai = ga} −H1n (ga, Xn,Ai , φn (Xn,−Ai) ; θ)) ·
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q (Xn,Ai , φn (Xn,−Ai))]

m2 (θ;Gn, Xn, ga, q) =
1

Na

Na∑
i=1

[(H2n (ga, Xn,Ai , φn (Xn,−Ai) ; θ)− 1 {Gn,Ai = ga}) ·

q (Xn,Ai , φn (Xn,−Ai))] (20)

for all ga ∈ Ga and all q ∈ Q. These are valid moments because by exchangeability
Em1 (θ;Gn, Xn, ga, q) ≤ 0 and Em2 (θ;Gn, Xn, ga, q) ≤ 0 for θ ∈ ΘI (a). Moreover,

conditional on (Gn, Xn) the variances of the moments decrease in Na. Hence by

drawing more subnetworks we can reduce the variance of an estimator and improve

effi ciency.

The estimation and inference of the identified set are a straightforward application

of the moment inequality literature. Details are discussed in the appendix.

6 Computation

In this section we discuss how to compute the bounds in (12). Recall that the upper

bound is the probability that a subnetwork is PS for some PS complements, and the

lower bound has a similar probability form. Computing the events in these proba-

bilities by brute force (e.g., checking all possible complements) is typically infeasible

because the number of possible complements is enormous even for a moderate n. We

propose a sophisticated method to compute the bounds that is feasible for large n.

In the sequel we focus on TU. The case of NTU can be handled similarly but with

higher computational costs.21

Our idea comes from the fact that the bounds can be equivalently represented

as functions of certain maximal and minimal marginal utilities over all PS comple-

ments. Because the pairwise stability of a complement can be represented by a set of

inequality constraints, the maximal and minimal marginal utilities can be computed

by solving constraint optimization problems.

To describe the method precisely, let us introduce some notation. For any i < j,

denote by ∆Vij (g−ij, xij) the sum of i and j’s marginal utilities from link ij that

21The computational cost in NTU for n individuals is approximately that in TU for
√

2n indi-
viduals because i and j’s proposals for link ij need to be computed separately.
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depend on the complement g−ij and attributes xij,

∆Vij (g−ij, xij) = u (xij)+u (xji)+
1

n− 2

∑
k 6=i,j (gik + gjk) γ1 +

2

n− 2

∑
k 6=i,j gikgjkγ2.

Let ε̄ij = εij + εji for i < j and ε̄ = (ε̄ij)i<j. For simplicity we suppress the

subscript n in g, x and ε. With abuse of notation we let PS (x, ε̄) denote the

collection of PS networks for a given attribute profile x and preference profile ε̄,

and let PS (g12, x, ε̄−12) denote the collection of PS complement g−12 for a given

link g12, attribute profile x, and preference complement profile ε̄−12 = (ε̄ij)(i,j)6=(1,2).

Moreover, let ga,−12 = (gij)i<j≤a, (i,j)6=(1,2) and ε̄a,−12 = (ε̄ij)i<j≤a,(i,j)6=(1,2). Note that

g = (g12, ga,−12, g−a) and ε̄ = (ε̄12, ε̄a,−12, ε̄−a).

We first consider the upper bound

H1n (ga, x) =

∫
1 {∃g−a, (ga, g−a) ∈ PS (x, ε̄)} dF (ε̄)

It can be represented as

H1n (ga, x) =

∫
1{ max

g−a, s.t.
(ga,−12,g−a)∈PS(1,x,ε̄−12)

∆V12 (ga,−12, g−a, x12) + ε̄12 ≥ 0}dF (ε̄12, ε̄−12)

(21)

for all ga with g12 = 1, and

H1n (ga, x) =

∫
1{ min

g−a, s.t.
(ga,−12,g−a)∈PS(0,x,ε̄−12)

∆V12 (ga,−12, g−a, x12) + ε̄12 < 0}dF (ε̄12, ε̄−12)

(22)

for all ga with g12 = 0, where the maximization and minimization are over g−a. These

expressions follow because given any ε̄−12, (1, g−12) is PS for some g−12 if and only

if the sum of ε̄12 and the maximal deterministic marginal utility that pair (1, 2) can

obtain for any PS g−12 is larger than 0, and similarly for g12 = 0.

Denote the maximum in (21) and minimum in (22) for a given ε̄−12 bymax ∆V12(ga,

x, ε̄−12) and min ∆V12 (ga, x, ε̄−12). Let Fε̄ be the CDF of ε̄ij. We can further write

the upper bound as

H1n (ga, x) =

∫
(1− Fε̄ (−max ∆V12 (ga, x, ε̄−12))) dF (ε̄−12)
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for ga with g12 = 1 and

H1n (ga, x) =

∫
Fε̄ (−min ∆V12 (ga, x, ε̄−12)) dF (ε̄−12)

for ga with g12 = 0. These expressions indicate that the upper bound can be computed

by (i) simulating i.i.d. ε̄−12, (ii) solving the maximization in (21) and minimization

in (22) for each simulated ε̄−12, and (iii) taking the averages of the functions 1 −
Fε̄ (−max ∆V12 (ga, x, ε̄−12)) and Fε̄ (−min ∆V12 (ga, x, ε̄−12)) over the simulations of

ε̄−12.

The complement g−a consists of the edges in g that connect either two nodes

outside of [a] or one node in [a] and another outside of [a]. The set of edges that

connect two nodes outside of [a] form the subnetwork in [a]c, which we denote by

gac = (gkl)a<k<l. We call the set of edges that connect one node in [a] and another

outside of [a] the neighborhood of [a], denoted by ba = (gik)i≤a,k>a. Clearly g−a =

(ba, gac). While both ba and gac are choice variables in the optimization problems

in (21) and (22), their roles are different under the utility specification in (2). In

particular, because the marginal utilities of i and j from link ij depend on g−ij only

through the neighborhood of the pair bij = (gik, gjk)k 6=i,j, for any i, j ∈ [a] the marginal

utility ∆Vij (g−ij, xij) depends on g−a only through the neighborhood ba of [a], i.e.,

∆Vij (g−ij, xij) = ∆Vij (g−ij (ga, ba) , xij). Similarly, for any k, l ∈ [a]c the marginal

utility ∆Vkl (g−kl, xkl) does not depend on the subnetwork ga, i.e., ∆Vkl (g−kl, xkl) =

∆Vkl (g−kl (ba, gac) , xkl). Therefore, the optimization problems in (21) and (22) can

be written more explicitly as

max
ba,gcc

/ min
ba,gcc

∆V12 (ga,−12, ba, x12) (23)

s.t. gij = 1 {∆Vij (g−ij (ga, ba) , xij) + ε̄ij ≥ 0} , i < j ≤ a, (i, j) 6= (1, 2) (24)

gik = 1 {∆Vik (g−ik (ga, ba, gac) , xik) + ε̄ik ≥ 0} , i ≤ a, k > a (25)

gkl = 1 {∆Vkl (g−kl (ba, gac) , xkl) + ε̄kl ≥ 0} , a < k < l (26)

where the inequalities in (24), (25), and (26) ensure that ga,−12, ba, and gac are PS,

respectively. Note that the subnetwork gac does not enter the objective function

nor the inequalities in (24). It enters the optimization only through the inequalities

in (25) and (26), by affecting the availability of a neighborhood ba. This feature is

important to reduce the complexity of the optimization problems.
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In a special case where links are strategic complements, i.e., γ1 ≥ 0, γ2 ≥ 0, the

network formation game is a supermodular game (Milgrom and Robert, 1990), and

any collection of PS networks has the largest and smallest elements, i.e., there exist

PS networks g0 and g1 such that g0 ≤ g ≤ g1 for any PS network g. The largest

and smallest PS networks can be computed from the best-response dynamics, where

the number of iterations for convergence is no more than (#links)2 ≈ n4/4 (Topkis,

1979).

For a = 2, we can see immediately that the maximum is achieved at the largest PS

complement g1
−12 and the minimum is achieved at the smallest PS complement g0

−12.

Hence the optimization in (23)-(26) amounts to solving for the largest or smallest PS

complements for a given g12.

For a > 2, there is no guarantee that the maximum and minimum is achieved

at the largest and smallest PS complements g1
−a and g

0
−a because of the inequality

constraints in (24), i.e. the links in ga,−12 need to be PS. However, it is easy to show

that the maximum can be achieved by replacing the subnetwork gac in (25)-(26) with

the largest PS subnetwork in [a]c, denoted by g1
ac (ga, ba) and maximizing the objective

function over ba. Similarly, the minimum can be achieved by replacing the subnetwork

gac in (25)-(26) with the smallest PS subnetwork in [a]c, denoted by g0
ac (ga, ba) and

minimizing the objective function over ba.

In practice, we can implement the maximization/minimization over ba and the

computation of the largest/smallest PS gac iteratively. That is, choose an initial ba,

compute the largest/smallest PS gac for the initial ba, solve for the optimal ba that

maximizes/minimizes the objective function under the largest/smallest PS gac, up-

date the initial ba with the optimal ba, and iterate. This iterative procedure separates

the maximization/minimization over ba from the computation of gac , so the maximiza-

tion/minimization part can be solved using a standard linear integer programming

solver, like CPLEX, with the choice variables reduced to ba whose dimension is only

a · n.22 In our simulations, solving such a linear integer programming problem by

CPLEX for n = 100 and a = 3 takes only 0.007 seconds (on a 3.4GHz CPU). More-

22The optimization problems in (23)-(26) are not fully linear because of (i) the interaction terms of
the form gikgjk in the marginal utilities and (ii) the indicator restrictions in (24)-(26). Nevertheless,
we can apply the linearization techniques in integer programming to fully linearize these problems.
In particular, for (i) we can introduce an additional binary variable y = gikgjk for each gikgjk with
the additional inequalities y ≤ gik, y ≤ gjk, and y ≥ gik+gjk−1. As for (ii), an indicator restriction
gij = 1 {∆Vij + εij ≥ 0} is equivalent to the linear inequalities L (1− gij) ≤ ∆Vij + εij < Mgij for
suffi ciently large M and suffi ciently small L.
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over, because the effect of the links in ba on the marginal utility of a link in gac is

at most of the order of a
n−2
, the iterative procedure is likely to converge fast. In our

simulations it typically converges after one iteration.

In the general case without strategic complementarity, we compute PS gac by

making use of the property of potential games. Recall that in this general case to

ensure the existence of a PS network we need to assume TU so that under our utility

specification the game can be represented as a potential game. From the property

of potential games a PS network is a local maximum of the potential function, so

computing PS gac amounts to finding local maxima of the potential function. While

finding an exact local maximum is a NP problem, it is possible to find an approximate

local maximum in polynomial time. For example, Orlin, Punnen and Schulz (2004)

show that an ε-local maximum can be found in time polynomial in the problem size

and 1
ε
. Hence, we can solve the optimization problems approximately by replacing

the inequalities in (26) with an availability constraint on ba, i.e., a neighborhood ba is

available if it is PS for some approximate PS gac .23 We expect that the approximation

in gac has a negligible effect on the optimal value because gac plays a role only through

the availability of ba, and the effect of a link on the marginal utility of another is at

most at the order of 1
n−2
.

When we solve the optimization problems for a > 2, it is possible that for a

given ε̄a,−12 a subnetwork ga,−12 cannot be PS for any g−a (i.e., the inequalities in

(24) can never be satisfied), so the optimization problems have no solution, leading

the integrands in (21) and (22) to be zero. This creates nonsmoothness similar as

in crude frequency simulators (McFadden (1989), Pakes and Pollard (1989)) which

may require a large number of simulations to reduce the simulation error. We follow

the GHK algorithm (Hajivassiliou and Ruud (1994), Geweke and Keane (2001)) and

propose a smoother simulator so the number of simulations can be smaller. The idea

is to simulate ε̄a,−12 and solve the optimization problems in (23)-(26) sequentially for

each link in [a]. Details about the algorithm can be found in the appendix.

Next we consider the lower bound. It is given by

H2n (ga, x)

=

∫
1 {∃g−a, (ga, g−a) ∈ PS (x, ε̄) &∀g′a 6= ga,∀g−a, (g′a, g−a) /∈ PS (x, ε̄)} dF (ε̄)

23Such problems can be solved using a constraint integer programming solver like SCIP.
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= 1−
∫

1 {∃g′a 6= ga,∃g−a, (g′a, g−a) ∈ PS (x, ε̄)} dF (ε̄) (27)

where the last equality follows because Pr (A ∩Bc) = Pr (A ∪B) − Pr (B) and the

equilibrium set PS (x, ε̄) is nonempty. For a = 2, the bounds satisfyH2n (g12 = 1, x) =

1 − H1n (g12 = 0, x) and H2n (g12 = 0, x) = 1 − H1n (g12 = 1, x), so we get the lower

bound immediately. For a > 2, note that the indicator function in (27) says that there

is a subnetwork g′a 6= ga, with g′12 = 1 or 0, such that (g′a, g−a) is PS for some g−a.

Therefore, by considering g′12 = 1 and 0 separately we can represent this indicator

function similarly as those in (21) and (22), i.e.,

1 {∃g′a 6= ga, ∃g−a, (g′a, g−a) ∈ PS (x, ε̄)}
= 1{ max

g′a,−12,g−a, s.t.

(g′a,−12,g−a)∈PS(1,x,ε̄−12), (1,g′a,−12)6=ga

∆V12

(
g′a,−12, g−a, x12

)
+ ε̄12 ≥ 0} ∨

1{ min
g′a,−12,g−a, s.t.

(g′a,−12,g−a)∈PS(0,x,ε̄−12), (0,g′a,−12)6=ga

∆V12

(
g′a,−12, g−a, x12

)
+ ε̄12 < 0} (28)

where the maximization/minimization are over g′a,−12 and g−a, and x∨y = max (x, y).

The event in (28) occurs if ε̄12 is in the union of [−max ∆V12(ga, x, ε̄−12),∞) and

(−∞,−min ∆V12(ga, x, ε̄−12)] (one of them may be empty). Hence, the probability

that ε̄12 does not lie in this union set for a simulated ε̄−12 gives one simulation of the

lower bound H2n.

The optimization problems in (28) can be represented similarly as those in (23)-

(26), i.e.,

max
g′a,−12,ba,gac

/ min
g′a,−12,ba,gac

∆V12

(
g′a,−12, ba, x12

)
s.t. g′ij = 1 {∆Vij (g−ij (g′a, ba) , xij) + ε̄ij ≥ 0} , i < j ≤ a, (i, j) 6= (1, 2)

gik = 1 {∆Vik (g−ik (g′a, ba, gac) , xik) + ε̄ik ≥ 0} , i ≤ a, k > a

gkl = 1 {∆Vkl (g−kl (ba, gac) , xkl) + ε̄kl ≥ 0} , a < k < l

g′a 6= ga with g′12 = 1 (for max) or 0 (for min)

They can be solved using the aforementioned methods.
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7 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the subnetwork ap-

proach developed in the previous sections. We are in particular interested in the

performance of the subnetwork bounds in large networks. Throughout the simula-

tions we consider the marginal utility specification

∆Uij (G−ij, Xi, Xj, εij) = β |Xi −Xj|+
1

n− 2

∑
k 6=i,j

GikGjkγ + εij

where Xi, i = 1, . . . , n, are i.i.d. binary variables that equal to 1 or 0 with equal

probability, and εij, i, j = 1, . . . , n, i 6= j, are i.i.d. N (0, 1). The parameter of

interest is θ = (β, γ). We set the true β0 = −1 to create homophily, and assume

γ ≥ 0, so the links are strategic complements.24 We consider pairwise stability in

TU. To generate a sample of networks, we compute the largest and smallest PS

networks in each observation using the best-response dynamics25 and let half of the

networks in the sample be the largest PS networks and another half the smallest PS

networks.

We first investigate the properties of the subnetwork bounds as the network size

n increases. To do this, we fix the size of subnetworks at a = 2 and consider a va-

riety of network sizes n = 10, 25, 50, 100, 250, 500. For each n and each γ ∈ [0, 3],

we compute the upper and lower bounds for the subnetwork choice probabilities

Pr (G12 = 1|X1 = 1, X2 = 1) and Pr (G12 = 1|X1 = 0, X2 = 1) with 100 simulations.

The bounds are plotted in Figure 3.

We can see in Figure 3 that all the upper and lower bounds tend to converge as

n → ∞. The changes in the bounds as n increases become negligible when n ≥ 100

for all γ. The limits that the bounds tend to converge to are also nontrivial. The

bounds are close to 1 only for large γ (e.g., γ ≥ 2.5) when the utility externality from

friends in common is huge. For such γ, we expect the networks to be complete, so it is

reasonable to get close-to-one bounds. The lowest bounds are achieved at γ = 0 when

there is no externality. In this case, the networks coincide with Erdős-Rényi random

24We are grateful to the referee who suggested to consider the case of strategic complementarity.
In fact, this is the only case that we are able to generate networks with a large number of individuals.

25Under strategic complementarity, the best-response dynamics converge to the largest PS net-
work if the initial network is chosen to be the largest possible network (e.g. the complete network)
and converge to the smallest PS network if the initial network is the smallest possible network (e.g.
the empty network).
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Figure 3: Bounds for Subnetwork Choice Probabilities

graphs with link probability 0.5 for pairs withXi = Xj and Φ
(
−
√

2
)

= 0.079 for pairs

with Xi 6= Xj. The bounds we compute are consistent with these link probabilities.

In addition, we also find that the bounds become tighter as n increases, especially

for large γ. For example, the difference between the upper and lower bounds for

Pr (G12 = 1|X1 = 0, X2 = 1) at γ = 2.5 shrinks substantially when n increases from

10 to 50. This finding suggests that the subnetwork bounds may be more informative

in larger networks,26 an interesting feature that is worth further research.

Next we examine whether the subnetwork bounds are informative about the pa-

rameter. We set the true γ0 = 1 and generate i.i.d. networks of sizes n = 25, 50, 100

with sample sizes T = 50, 200. For each sample, we consider the bounds from sub-

networks of sizes a = 2 and a = 3 and estimate the corresponding identified sets. We

compute the bounds using the methods described in Section 6 with 50 simulations,

and construct the sample moments in (20) using 1000 random selected subnetworks.

26Because the difference between an upper and lower bound reflects the presence of multiple
equilibria, its decline implies that multiple equilibria become less prevalent as n increases. This is
plausible because intuitively multiple equilibria that differ only in a few number of links may reduce
to the "same equilibrium" as n→∞ due to the averaging in the utility.
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For a = 3, we also use a graph isomorphism algorithm to determine whether sub-

networks are isomorphic.27 The identified sets are computed using the simulation

method suggested by Kline and Tamer (2015). In particular, for an identified set

defined as ΘI = {θ ∈ Θ : Q (θ) = 0} for some function Q ≥ 0, we simulate random

variables from a density proportional to fΘI ,ρ (θ) = exp
(
−Q(θ)

ρ

)
, where ρ > 0 is a

small tuning parameter,28 and use the support of the simulated values to approximate

the identified set. We implement the simulations by slice sampling (Neal, 2003). Each

identified set is approximated by 100 draws. All the aforementioned experiments are

repeated independently 200 times.

The estimated identified sets are two-dimensional. For each of them, we calculate

its one-dimensional projections, i.e., the maximal and minimal values of the simulated

β and γ. Then we pool these maxima and minima from the 200 repetitions of each

experiment, and calculate their averages, 5% percentiles of the minima, and 95%

percentiles of the maxima. These numbers are reported in Table 1 as the mean

estimates and confidence intervals for the one-dimensional projections of the identified

sets.Moreover, for each experiment we also calculate the values of θ that are covered

by the unions of 90%, 95%, or 99% of the 200 estimated identified sets, and plot them

in Figure 4 as the 90%, 95%, and 99% confidence regions of the identified set. Figure

4 is for T = 50. The graphs for T = 200 are almost identical and thus are omitted.

From Table 1 we can see that the bounds from small subnetworks provide informa-

tive estimates for the parameter in all the experiments. In particular, the estimates

remain stable when we increase the size of the networks. More interestingly, the con-

fidence intervals for γ tend to be tighter in larger networks. This feature is shown

more clearly in Figure 4. The confidence regions of the parameter for a = 2 narrow

down as n increases from 25 to 100. These results support our earlier findings in the

bound experiments and suggest that the subnetwork bounds are informative about

the parameter regardless of the size of the networks. The estimation precision for the

smallest subnetworks tend to be higher in larger networks.

Moreover, Table 1 shows that bounds from triples (a = 3) are more informative

than those from pairs (a = 2). For example, the upper bounds of β and the lower

27We use the graph isomorphism algorithm named Nauty developed by Brendan McKay
(http://cs.anu.edu.au/~bdm/nauty). It can calculate isomorphisms for vertex-colored graphs. We
transform a subnetwork (ga, xa) into a vertex-colored graph, where the colors of the vertices are
defined by xa, so Nauty is applicable.

28In the simulations we choose ρ = 10−4.
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Table 1: Projections of the Estimated Identified Sets

a = 2 a = 3

T n β γ β γ

50 25 [−1.107,−0.921] [0.813, 1.137] [−1.071,−0.934] [0.868, 1.136]

([−1.205,−0.868]) ([0.538, 1.338]) ([−1.115,−0.903]) ([0.728, 1.251])

50 [−1.107,−0.915] [0.787, 1.129] [−1.069,−0.937] [0.864, 1.123]

([−1.190,−0.860]) ([0.575, 1.264]) ([−1.105,−0.912]) ([0.770, 1.208])

100 [−1.101,−0.917] [0.806, 1.138] [−1.072,−0.937] [0.863, 1.123]

([−1.163,−0.876]) ([0.621, 1.259]) ([−1.106,−0.910]) ([0.772, 1.192])

200 25 [−1.104,−0.919] [0.807, 1.126] [−1.071,−0.934] [0.868, 1.132]

([−1.181,−0.866]) ([0.576, 1.308]) ([−1.111,−0.908]) ([0.765, 1.229])

50 [−1.106,−0.915] [0.794, 1.133] [−1.070,−0.937] [0.866, 1.126]

([−1.190,−0.867]) ([0.565, 1.262]) ([−1.101,−0.911]) ([0.771, 1.194])

100 [−1.100,−0.917] [0.808, 1.137] [−1.072,−0.936] [0.859, 1.126]

([−1.162,−0.873]) ([0.616, 1.261]) ([−1.107,−0.910]) ([0.766, 1.198])

DGP −1 1 −1 1

Notes: Intervals not in parentheses are the averages of the projections of the identified sets.
Intervals in parentheses are the 5% and 95% percentiles of the projections. T is the sample
size, n is the network size and a is the subnetwork size.
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Figure 4: Confidence Regions for the Identified Sets
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bounds of γ become tighter in all the mean estimates and confidence intervals when

we move from pairs to triples. The same pattern is observed in the confidence re-

gions in Figure 4. These findings suggest that larger subnetworks can provide more

information about the parameter, though the improvement seems to be small.

In addition, we find in Table 1 that the estimates in small samples (T = 50) are

almost identical to those in large samples (T = 200). Averaging over a large number

of randomly selected subnetworks seems to improve the finite sample performance.

8 Conclusion

In this paper, we develop a structural model of network formation. We characterize

network formation as a simultaneous-move game, where the decision of forming a

link may depend on the linking decisions of others due to utility externalities from

indirect friends. With the prevalence of multiple equilibria, the parameters are not

necessarily point identified. We propose a partial identification approach that is

computationally feasible in large networks. We derive bounds on the probability of

observing a subnetwork. These subnetwork bounds are computationally tractable in

large networks provided we consider small subnetworks. We provide both theoretical

and Monte Carlo evidence that the bounds from small subnetworks are informative

about the parameters in large networks.

This subnetwork approach provides a useful framework for exploring the formation

of large networks. By focusing on limited aspects of a network rather than solving

the full network at once, we can reduce the dimensionality of the problem and ease

the computational burden. For this approach to work, we need small subnetworks to

be able to carry the information in large networks, which is the case in our context if

networks are exchangeable and convergent. It may be possible to extend our approach

to more general networks with these features but are not covered in the present paper.

For example, the networks we consider in the paper are dense. It may be of interest

to see whether and how our approach can be extended to networks that are sparse.

Another interesting extension is to relate our approach to the literature on large

networks and investigate under what conditions the inference based on subnetworks

from a single large network is asymptotically valid. These extensions are left for

future research.
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Figure 5: An Example of a Closed Cycle

9 Appendix

9.1 Non-existence of Pairwise Stable Networks

Here we give an example where there is no PS networks, but a closed cycle.

Example 9.1 Consider networks of size n = 3. Suppose the utility function is as in

(2) with u (Xi, Xj; β) = 0, γ1 < 0, γ2 > 0, γ1 + γ2 < 0. Consider the case of NTU.

For ε21, ε32, ε13 ≥ −γ1 and 0 ≤ ε12, ε23, ε31 < −γ1 − γ2, there is no PS network, but

a closed cycle (see Figure 5).

9.2 Proofs

Proof of Proposition 2.1. By Theorem 1 in Jackson and Watts (2001), if there

is a function Π : G → R such that for any G, G′ that differ by one link, G′ defeats
G if and only if Π(G′) > Π(G), then there is no cycle and thus no closed cycle.29

In the case of TU, G′ defeating G means that for any i 6= j such that G′ij 6= Gij,

Ui(G
′) + Uj(G

′) > Ui(G) + Uj(G). Hence, the proof is complete if we can find such a

Π for the utility function in (2).

We show that

Π(G) =
n∑
i=1

n∑
j=1

Gijuij+
1

2 (n− 2)

n∑
i=1

n∑
j=1

n∑
k=1
k 6=i

GijGjkγ1+
1

3 (n− 2)

n∑
i=1

n∑
j=1

n∑
k=1

GijGikGjkγ2

29A cycle is a collection of networks that satisfy condition (i) in the definition of closed cycles.
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has the desired property, where uij = u (Xi, Xj; β) + εij. Consider G and G′ which

differ by link ij. Assume without loss of generality that G = (0, G−ij) and G′ =

(1, G−ij). It suffi ces to show that Π(G′) − Π(G) = ∆Uij (G−ij) + ∆Uji (G−ij). By

simple algebra

Π(G′)−Π(G) = uij +uji+
1

n− 2

n∑
k=1
k 6=i,j

Gjkγ1 +
1

n− 2

n∑
k=1
k 6=i,j

Gikγ1 +
2

n− 2

n∑
k=1
k 6=i,j

GikGjkγ2.

Moreover, from (3) we have

∆Uij (G−ij) = uij +
1

n− 2

n∑
k=1
k 6=i,j

Gjkγ1 +
1

n− 2

n∑
k=1
k 6=i,j

GikGjkγ2

∆Uji (G−ij) = uji +
1

n− 2

n∑
k=1
k 6=i,j

Gikγ1 +
1

n− 2

n∑
k=1
k 6=i,j

GjkGikγ2.

Hence Π(G′)− Π(G) = ∆Uij (G−ij) + ∆Uji (G−ij). The proof is complete.

Proof of Proposition 2.2. According to Theorem 1 in Hellmann (2012), if a

utility function satisfies convexity in one’s own links and strategic complementarity,

then there is no closed cycle. A utility function Ui satisfies convexity in one’s own

links if for any j 6= i and G−ij, G
′
−ij ∈ G−ij such that G−ij = G′−ij except that

(G−ij)ik = 0 and
(
G′−ij

)
ik

= 1 for some k 6= j, we have ∆Uij(G
′
−ij) ≥ ∆Uij(G−ij). In

other words, if G′−ij differ from G−ij by adding some links that involve i, the marginal

utility of i from link ij with these additional links is larger than without. Moreover,

Ui satisfies strategic complementarity if for any j 6= i and G−ij, G′−ij ∈ G−ij such
that G−ij = G′−ij except that (G−ij)kl = 0 and

(
G′−ij

)
kl

= 1, for some k, l 6= i, we

have ∆Uij(G
′
−ij) ≥ ∆Uij(G−ij). In other words, if G′−ij differ from G−ij by adding

some links that do not involve i, the marginal utility of i from link ij given these

additional links is larger than without. It suffi ces to verify that the stated utility

function satisfies both properties.

The marginal utility (3) is

∆Uij (G−ij) = uij +
1

n− 2

∑
k 6=i,j

Gjkγ1 +
1

n− 2

∑
k 6=i,j

GikGjkγ2.
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where uij = u (Xi, Xj; β) + εij. Since γ1 ≥ 0 and γ2 ≥ 0, changing Gik or Gjk from

0 to 1 for some k 6= i, j weakly increases ∆Uij (G−ij). Hence both properties are

satisfied. The proof is complete.

Proof of Theorem 4.1. We first consider a random subset A′ ⊆ [n] with size

|A′| = a. By the definition of subnetwork densities,

Pr (Gn,A′ = ga, Xn,A′ = xa|Xn) = E [Pr (Gn,A′ = ga, Xn,A′ = xa|Gn, Xn)|Xn]

= E [tind ((ga, xa) , (Gn, Xn))|Xn]

and

Pr (G∗A′ = ga, X
∗
A′ = xa|X∗) = E [Pr (G∗A′ = ga, X

∗
A′ = xa|G∗, X∗)|X∗]

= E [tind ((ga, xa) , (G
∗, X∗))|X∗] .

For any fixed m ≥ a, because tind ((ga, xa) , (Gn, Xn)) is bounded (by 1), Assumption

3(ii) implies that

E [tind ((ga, xa) , (Gn, Xn))|Xm]→ E [tind ((ga, xa) , (G
∗, X∗))|Xm] , as n→∞.

Moreover, define a sequence of random variables Zm, m ≥ a, as

Zm = E [ (tind ((ga, xa) , (G
∗, X∗)))|Xm] .

Because E [Zm+1|Xm] = E [E [ (tind ((ga, xa) , (G
∗, X∗)))|Xm+1]|Xm] = Zm, the se-

quence {Zm, σ (Xm)}m≥a is a martingale, so by the martingale convergence theorem
we have

Zm = E [tind ((ga, xa) , (G
∗, X∗))|Xm]

a.s.→ E [tind ((ga, xa) , (G
∗, X∗))|X∗] , as m→∞.

Hence

|Pr (Gn,A′ = ga, Xn,A′ = xa|Xn)− Pr (G∗A′ = ga, X
∗
A′ = xa|X∗)|

≤ |E [tind ((ga, xa) , (Gn, Xn))|Xn]− E [tind ((ga, xa) , (G
∗, X∗))|Xn]|

+ |E [tind ((ga, xa) , (G
∗, X∗))|Xn]− E [tind ((ga, xa) , (G

∗, X∗))|X∗]|
a.s.→ 0 (29)
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as n→∞.
Now we consider the subset A = [a]. Note that Pr (Gn,a = ga, Xn,a = xa|Xn) =

Pr (Gn,A′ = ga, Xn,A′ = xa|Xn) by the exchangeability of (Gn, Xn). Moreover, if Pr(Xn,a

= xa |Xn ) 6= 0 (it is either 0 or 1), we have Pr(Gn,a = ga, Xn,a = xa |Xn ) =

Pr(Gn,a = ga|Xn,a = xa, Xn,−a). Similar results hold for the limiting network. There-

fore, the convergence result in (29) yields

Pr (Gn,a = ga|Xn,a = xa, Xn,−a)
a.s.→ Pr

(
G∗a = ga|X∗a = xa, X

∗
−a
)
, as n→∞.

The proof is complete.

Proof of Corollary 4.2. Define random variables Yn and Y

Yn =
1

n− 2

∑
k′ 6=i,j

Gn,ik′

Y = E [W (ξ0, ξi, ξk)| ξ0, ξi]

Since Yn and Y are bounded, Yn
d→ Y if for every r = 1, 2, . . . , EY r

n → EY r as

n→∞.
We start with r = 1. The exchangeability of Gn from Assumption 3(i) implies that

EYn = EGn,ik for an arbitrary k 6= i, j. Moreover, Theorem 4.1 and exchangeability

imply that for any (ga, xa) ∈ (Ga,Xa) and any subset A ⊆ [n] with |A| = a,

Pr (Gn,A = ga|Xn,A = xa)→ Pr (G∗A = ga|X∗A = xa) , as n→∞ (30)

by the dominated convergence theorem. Applying (30) with A = {i, k} and ga = 1

we have E [Gn,ik|Xn,ik] → E [G∗ik|X∗ik] as n → ∞. By the dominated convergence
theorem again we obtain E [Gn,ik]→ E [G∗ik] as n→∞. The Aldous-Hoover represen-
tation in (15) implies that E [G∗ik] = E [W (ξ0, ξi, ξk)] = E [Y ]. Therefore, EYn → EY
as n→∞.
For r = 2, the second moment satisfies EY 2

n = E
(

1
n−2

∑
k′ 6=i,j Gn,ik′

)2

= 1
n−2
EGn,ik+

n−3
n−2
EGn,ikGn,il for arbitrary k, l 6= i, j with k 6= l, where the last equality follows from

the exchangeability of Gn. It suffi ces to show that EGn,ikGn,il → EY 2 as n → ∞.
Applying the implication (30) of Theorem 4.1 twice for A = {i, k, l} with ga = (1, 1, 1)
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and ga = (1, 1, 0) yields

Pr (Gn,ik = 1, Gn,il = 1, Gn,kl = 1|Xn,ikl) → Pr (G∗ik = 1, G∗il = 1, G∗kl = 1|X∗ikl)
Pr (Gn,ik = 1, Gn,il = 1, Gn,kl = 0|Xn,ikl) → Pr (G∗ik = 1, G∗il = 1, G∗kl = 0|X∗ikl)

as n → ∞, where for simplicity we denote Xn,ikl = Xn,{i,k,l} and X∗ikl = X∗{i,k,l} and

the same for similar terms hereafter. Adding up the two convergent probabilities and

integrating out Xn,ikl and X∗ikl (which are equal) we get EGn,ikGn,il → EG∗ikG∗il as
n→∞. Applying the Aldous-Hoover representation in (15) again gives us

EG∗ikG∗il = E [1 {W (ξ0, ξi, ξk) ≥ ξik} 1 {W (ξ0, ξi, ξl) ≥ ξil}]
= E [E [W (ξ0, ξi, ξk)| ξ0, ξi]E [W (ξ0, ξi, ξl)| ξ0, ξi]]

= EY 2

Hence, EY 2
n → EY 2 as n→∞.

Now we consider a general r ∈ N. The rth moment EY r
n =

(
1

n−2

∑
k′ 6=i,j Gn,ik′

)r
is a sum of all terms of the form

1

(n− 2)r
∑

1≤k1≤...≤ks≤n−2
k1,...,ks 6=i,j

S (r, s)E [Gn,ik1Gn,ik2 · · ·Gn,iks ] (31)

where 1 ≤ s ≤ min {r, n− 2}, S (r, s) is the number of ways to partition r ob-

jects into s non-empty subsets, i.e., S (r, s) =
∑

a1,...,as>0,a1+···+as=r
r!

a1!···as! , which

is a Stirling number of the second kind. By the exchangeability of Gn all the

summands in (31) are equal, and the total number of summands is
(
n−2
s

)
, so (31)

is equal to 1
(n−2)r

(
n−2
s

)
S (r, s)EGn,ik1Gn,ik2 · · ·Gn,iks , where k1, k2, . . . , ks denote ar-

bitrary s distinct numbers from [n] \ {i, j}. The Stirling numbers of the second

kind satisfy the property
∑min{r,n−2}

s=1 S (r, s) (n− 2)s = (n− 2)r,30 where (n− 2)s =

(n− 2) · · · (n− 2− s+ 1), so the coeffi cient of (31) 1
(n−2)r

(
n−2
s

)
S (r, s) =

S(r,s)(n−2)s
(n−2)rs!

is

bounded by 1 and all the coeffi cients for s = 1, . . . , r have a sum bounded by 1. If we

can show that for any 1 ≤ s ≤ min {r, n− 2}, E [Gn,ik1 · · ·Gn,iks ] → E
[
G∗ik1 · · ·G

∗
iks

]
30This is because both sides of the equation calculate the number of ways to assign r objects to

n− 2 bins.
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as n→∞, then from

E
[
G∗ik1 · · ·G

∗
iks

]
= E

[
s∏

s′=1

1
{
W
(
ξ0, ξi, ξks′

)
≥ ξiks′

}]

= E

[
s∏

s′=1

E
[
W
(
ξ0, ξi, ξks′

)∣∣∣ ξ0, ξi

]]
= EY s

and EY r = E
(

1
n−2

∑n−2
k=1 Y

)r
= 1

(n−2)r
∑min{r,n−2}

s=1

(
n−2
s

)
S (r, s)EY s we obtain EY r

n →
EY r as n → ∞. To show E [Gn,ik1 · · ·Gn,iks ] → E

[
G∗ik1 · · ·G

∗
iks

]
, we apply the im-

plication (30) of Theorem 4.1 for A = {i, k1, . . . , ks} with all possible ga such that
gik1 = · · · = giks = 1. Summing over all such ga gives

Pr (Gn,ik1 = 1, . . . , Gn,iks = 1|Xn,ik1...ks)→ Pr
(
G∗ik1 = 1, . . . , G∗iks = 1

∣∣X∗ik1...ks)
as n→∞. Taking the expectation for both terms the desired result follows.
The second statement of the corollary can be proved similarly. Define random

variables Zn and Z

Zn =
1

n− 2

∑
k′ 6=i,j

Gn,ik′Gn,jk′

Z = E
[
W (ξ0, ξi, ξk)W

(
ξ0, ξj, ξk

)∣∣ ξ0, ξi, ξj
]

Because Zn and Z are bounded as well, it suffi ces to show that for every r = 1, 2, . . . ,

EZr
n → EZr as n→∞.
For r = 1, the exchangeability of Gn implies EZn = EGn,ikGn,jk for an arbitrary

k 6= i, j. Using an argument similar to the above proof for the second moment

of Yn, we can show that EGn,ikGn,jk → EG∗ikG∗jk as n → ∞. The Aldous-Hoover
representation implies

EG∗ikG∗jk = E
[
1 {W (ξ0, ξi, ξk) ≥ ξik} 1

{
W
(
ξ0, ξj, ξk

)
≥ ξjk

}]
= E

[
W (ξ0, ξi, ξk)W

(
ξ0, ξj, ξk

)]
= E

[
E
[
W (ξ0, ξi, ξk)W

(
ξ0, ξj, ξk

)∣∣ ξ0, ξi, ξj
]]

= EZ
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Hence, EZn → EZ as n→∞.
For a general r ∈ N, like EY r

n , the rth moment EZr
n =

(
1

n−2

∑
k′ 6=i,j Gn,ik′Gn,jk′

)r
is a sum of all terms of the form

1

(n− 2)r
∑

1≤k1≤...≤ks≤n−2
k1,...,ks 6=i,j

S (r, s)E [Gn,ik1Gn,jk1 · · ·Gn,iksGn,jks ] (32)

for 1 ≤ s ≤ min {r, n− 2}. Following the same argument as above, it suffi ces

to show that for any 1 ≤ s ≤ min {r, n− 2}, E [Gn,ik1Gn,jk1 · · ·Gn,iksGn,jks ] →
E
[
G∗ik1G

∗
jk1
· · ·G∗iksG

∗
jks

]
as n → ∞. This follows from (30) with the choice of

A = {i, j, k1, . . . , ks} and all possible ga such that gik1 = gjk1 = · · · = giks = gjks = 1.

Summing over all such ga yields

Pr (Gn,ik1 = 1, Gn,jk1 = 1 . . . , Gn,iks = 1, Gn,jks = 1|Xn,ijk1...ks)

→ Pr
(
G∗ik1 = 1, G∗jk1 = 1 . . . , G∗iks = 1, G∗jks = 1

∣∣X∗ijk1...ks)
as n→∞. By the Aldous-Hoover representation

E
[
G∗ik1G

∗
jk1
· · ·G∗iksG

∗
jks

]
= E

s∏
s′=1

1{W (ξ0, ξi, ξks′ ) ≥ ξiks′}1{W (ξ0, ξj, ξks′ ) ≥ ξjks′}

= E
s∏

s′=1

W (ξ0, ξi, ξks′ )W (ξ0, ξj, ξks′ )

= E
s∏

s′=1

E[W (ξ0, ξi, ξks′ )W (ξ0, ξj, ξks′ )
∣∣ξ0, ξi, ξj ]

= EZs

Following the same argument as above we have EZr
n → EZr as n→∞. The proof is

complete.

Proof of Remark 4.1. We prove the remark for discrete X. Assumption 3(ii)

implies that for any x12 ∈ X 2,

1(
n
2

) n∑
i=1

n∑
j=i+1

Gn,ij1 {Xn,ij = x12}
d→ lim

n→∞

1(
n
2

) n∑
i=1

n∑
j=i+1

G∗ij1{X∗ij = x12} (33)

as n → ∞. From the Aldous-Hoover representation in (15) a limit link G∗ij can be
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represented as G∗ij = 1{W
(
ξ0, ξi, ξj

)
≥ ξij}, where ξ0, (ξi)i≥1, and

(
ξij
)
j>i≥1

are

i.i.d. U [0, 1] random variables. Furthermore, define the function Wx

(
x12, ξ0, ξi, ξj

)
=

Pr
(
f2

(
ξ0, ξi, ξj, ξij

)
= x12

∣∣ξ0, ξi, ξj
)
, where f2 is the component of f in (14) that cor-

responds toX∗ij. We can represent the random variable 1{X∗ij = x12} as 1{Wx

(
x12, ξ0, ξi, ξj

)
≥

ηij} for some i.i.d. U (0, 1) random variables
(
ηij
)
j>i≥1

that are independent of (ξi)i≥1

and
(
ξij
)
j>i≥1

.

Given ξ0, the strong law of large numbers for U-statistics implies

1(
n
2

) n∑
i=1

n∑
j=i+1

W
(
ξ0, ξi, ξj

)
Wx

(
x12, ξ0, ξi, ξj

) a.s→ E
[
W
(
ξ0, ξi, ξj

)
Wx

(
x12, ξ0, ξi, ξj

)∣∣ ξ0

]
(34)

as n→∞. Moreover, note that V(G∗ij1{X∗ij = x12}
∣∣W (ξ0, ξi, ξj)Wx(x12, ξ0, ξi, ξj)) ≤

E[ G∗ij1{X∗ij = x12}
∣∣W (ξ0, ξi, ξj)Wx(x12, ξ0, ξi, ξj)] and

∑n
i=1

∑n
j=i+1W (X∗ij, ξ0, ξi, ξj)

W2

(
x12, ξ0, ξi, ξj

)
→∞ a.s. as n→∞ because the limit in (34) is positive as W 6≡ 0

and Wx 6≡ 0. Applying Theorem 16 in Caron and Fox (2015) thus yields∑n
i=1

∑n
j=i+1 G

∗
ij1{X∗ij = x12}∑n

i=1

∑n
j=i+1 W

(
ξ0, ξi, ξj

)
Wx

(
x12, ξ0, ξi, ξj

) a.s→ 1 (35)

as n→∞. Combining (33)-(35) we then obtain

1(
n
2

) n∑
i=1

n∑
j=i+1

Gn,ij1 {Xn,ij = x12}
d→ E

[
W
(
ξ0, ξi, ξj

)
Wx

(
x12, ξ0, ξi, ξj

)∣∣ ξ0

]
as n → ∞. Conditional on ξ0 the limit is constant, so the statement also holds for

convergence in probability. By Slusky’s theorem,

1(
n
2

) n∑
i=1

n∑
j=i+1

Gn,ij
p→ E

[
W
(
ξ0, ξi, ξj

)∣∣ ξ0

]
because

∑
x12

1 {Xn,ij = x12} =
∑

x12
Wx

(
x12, ξ0, ξi, ξj

)
= 1. Since ξ0 is supported on

[0, 1], we have
∑n

i=1

∑n
j=i+1Gn,ij = Op (n2).

Proof of Remark 4.2. For continuous X, we replace Definition 4.2 with the

definition below.

Definition 9.1 A sequence of finite exchangeable networks {(Gn, Xn) , n ≥ 2} con-
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verge to an infinite exchangeable network (G∗, X∗) =
(
G∗ij, X

∗
ij

)
i,j≥1,i 6=j if for any a ≤

n, any subnetwork ga, and any Borel subset Ca ⊆ Xa such that Pr (X∗a ∈ ∂Ca) = 0,

the random variable tind ((ga, Ca) , (Gn, Xn)) converges in distribution to the random

variable tind ((ga, Ca) , (G
∗, X∗)) as n→∞.

Suppose that Assumption 3 is satisfied for the convergence condition defined by

Definition 9.1. We verify that Theorem 4.1 and Corollary 4.2 remain true.

We first consider Theorem 4.1. Let (ga, xa) be the subnetwork in the statement.

Choose Ca = {x′a ∈ Xa : ‖xa − x′a‖ < ε} for some ε > 0 with Pr (X∗a ∈ ∂Ca) = 0.

Here the boundary set ∂Ca = {x′a : ‖xa − x′a‖ = ε}. Following the same argument as
in the proof of the theorem for discrete X, we can show that for any random subset

A′ ⊆ [n] with size |A′| = a,

|Pr (Gn,A′ = ga, Xn,A′ ∈ Ca|Xn)− Pr (G∗A′ = ga, X
∗
A′ ∈ Ca|X∗)|

= |E [tind ((ga, Ca) , (Gn, Xn))|Xn]− E [tind ((ga, Ca) , (G
∗, X∗))|X∗]|

a.s.→ 0 (36)

as n → ∞. Let A = [a]. Exchangeability implies that Pr(Gn,A′ = ga, Xn,A′ ∈
Ca |Xn ) = Pr(Gn,a = ga, Xn,a ∈ Ca |Xn ) and similar for the limiting network. By the

property of conditional expectation and dominated convergence theorem

Pr (Gn,a = ga, Xn,a ∈ Ca |Xn ) = E [1 {Xn,a ∈ Ca}Pr(Gn,a = ga|Xn,a, Xn,−a) |Xn ]

→ E [1 {Xn,a = xa}Pr(Gn,a = ga|Xn,a, Xn,−a) |Xn ]

= Pr(Gn,a = ga|Xn,a = xa, Xn,−a) (37)

as ε→ 0. Similarly

Pr (G∗a = ga, X
∗
a ∈ Ca |X∗ )→ Pr(G∗a = ga|X∗a = xa, X

∗
−a) (38)

as ε → 0. Since the distribution of X∗a has at most countable discontinuous points,

we can choose the sequence of ε → 0 to be such that Ca for each ε in the sequence

satisfies Pr (X∗a ∈ ∂Ca) = 0. Then combining (36) together with (37) and (38), we

conclude that

Pr(Gn,a = ga|Xn,a = xa, Xn,−a)
a.s.→ Pr(G∗a = ga|X∗a = xa, X

∗
−a)
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as n→∞. Theorem 4.1 is proved for continuous X.

Since condition (30) is satisfied by Theorem 4.1, Corollary 4.2 holds for continuous

X without modifying the proof.

Proof of Lemma 4.3. Without loss of generality we assume TU, and the case of

NTU can be proved similarly. For any i < j ≤ n, define vij (gn,−ij) to be the marginal

utility of i forming a link with j that is due to the utility externality from other links,

i.e.,

vij (gn,−ij) =
1

n− 2

∑
k 6=i,j

gn,jkγ1 +
1

n− 2

∑
k 6=i,j

gn,ikgn,jkγ2.

Since both 1
n−2

∑
k 6=i,j

gn,jk and 1
n−2

∑
k 6=i,j

gn,ikgn,jk are bounded between 0 and 1, there

exist finite constants vl and vl such that vl ≤ vij (gn,−ij) ≤ vu for all gn,−ij. Let

ū (xij) = u (xi, xj) + u (xj, xi) and ε̄ij = εij + εji.

The upper boundH1n (ga, xa, Xn,−a) is the probability that there is gn,−a such that

(ga, gn,−a) is pairwise stable. By the definition of pairwise stability for such gn,−a the

sum of the marginal utilities of i and j from link ij for any i < j ≤ a satisfies

∆Uij + ∆Uji = ū (xij) + vij (gn,−ij) + vji (gn,−ij) + ε̄ij

{
≥ 0, if gij = 1

< 0, if gij = 0
(39)

Since 2vl ≤ vij (gn,−ij) + vji (gn,−ij) ≤ 2vu, the event in (39) implies that ū (xij) +

2vu + ε̄ij ≥ 0 if gij = 1 and ū(xij) + 2vl + ε̄ij < 0 if gij = 0. Hence,

H1n (ga, xa, Xn,−a) ≤
∏
i<j≤a
gij=1

Pr (ū (xij) + 2vu + ε̄ij ≥ 0)

·
∏
i<j≤a
gij=0

Pr
(
ū (xij) + 2vl + ε̄ij < 0

)

Define the right hand side to be H̄1 (ga, xa). It is strictly smaller than 1 because vu

and vl are bounded.

Similarly, the lower bound H2n (ga, xa, Xn,−a) is the probability that there is gn,−a
such that (ga, gn,−a) is pairwise stable and only ga has this property. For such gn,−a
the sum of the marginal utilities of i and j from link ij for i < j ≤ a also satisfies the

event in (39), which holds if ū (xij)+2vl + ε̄ij ≥ 0 if gij = 1 and ū (xij)+2vu+ ε̄ij < 0

if gij = 0. Moreover, when this event occurs there is no g′a 6= ga that can satisfy the
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pairwise stability condition. Therefore,

H2n (ga, xa, Xn,−a) ≥
∏
i<j≤a
gij=1

Pr
(
ū (xij) + 2vl + ε̄ij ≥ 0

)
·
∏
i<j≤a
gij=0

Pr (ū (xij) + 2vu + ε̄ij < 0) ,

Define the right hand side to be H̄2 (ga, xa). It is strictly greater than 0 because of

the boundedness of vu and vl.

Proof of Theorem 4.4. We start the proof by observing that the bounds can

be represented as subnetwork choice probabilities generated under certain extreme

equilibrium selection mechanisms. In particular, for any fixed (ga, xa), let λ1n and

λ2n denote two types of equilibrium selection mechanisms, where λ1n always selects a

network with the subnetwork ga and λ2n never selects a network with the subnetwork

ga, whenever possible. That is, for any complement gn,−a, the equilibrium selection

mechanisms λ1n and λ2n satisfy

λ1n (g′a, gn,−a| PS (∆Un (Xn, εn))) = 0 for all g′a 6= ga, if ga ∈ PS [a] (∆Un (Xn, εn)) ,

(40)

and

λ2n (ga, gn,−a| PS (∆Un (Xn, εn))) = 0, if there is g′a 6= ga, g′a ∈ PS [a] (∆Un (Xn, εn)) .

(41)

Denote the networks generated under λ1n and λ2n by G1n and G2n, and their sub-

networks in [a] and complements by G1n,a, G1n,−a and G2n,a, G2n,−a, respectively. By

definition of the bounds, the upper bound is equal to the probability that subnetwork

ga is observed in G1n and the lower bound is the probability that subnetwork ga is

observed in G2n, i.e.,

H1n (ga, xa, Xn,−a) = Pr (G1n,a = ga|Xn,a = xa, Xn,−a)

H2n (ga, xa, Xn,−a) = Pr (G2n,a = ga|Xn,a = xa, Xn,−a) .

Let εa = (εij)i,j≤a,i6=j. For a given complement gn,−a, let PS (∆Ua (gn,−a, xa, εa)) be a

collection of PS subnetwork in [a], where∆Ua (gn,−a, xa, εa) = {{∆Uij(ga,−ij, gn,−a, xij,
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εij)}ga,−ij}i,j≤a,i6=j is the marginal-utility profile of the individuals in [a]. We can

further derive the upper bound as

H1n (ga, xa, Xn,−a)

=

∫ ∑
gn,−a

λ1n (ga, gn,−a| PS (∆Un (xa, Xn,−a, εn))) dF (εn)

=

∫ ∑
gn,−a

1 {ga ∈ PS (∆Ua (gn,−a, xa, εa))}Pr (G1n,−a = gn,−a|Xn,a = xa, Xn,−a, εn) dF (εn)

= Pr (ga ∈ PS (∆Ua (G1n,−a, xa, εa))|Xn,a = xa, Xn,−a) (42)

and similarly for the lower bound

H2n (ga, xa, Xn,−a)

=

∫ ∑
gn,−a

λ2n (ga, gn,−a| PS (∆Un (xa, Xn,−a, εn))) dF (εn)

=

∫ ∑
gn,−a

1 {{ga} = PS (∆Ua (gn,−a, xa, εa))}Pr (G2n,−a = gn,−a|Xn,a = xa, Xn,−a, εn) dF (εn)

= Pr ({ga} = PS (∆Ua (G2n,−a, xa, εa))|Xn,a = xa, Xn,−a) . (43)

The last expressions in (42) and (43) show that the upper bound is the probability

that ga is a PS subnetwork for a random PS complement G1n,−a generated under the

equilibrium selection mechanism λ1n, and the lower bound is the probability that ga
is the unique PS subnetwork for a random PS complement G2n,−a generated under

the equilibrium selection mechanism λ2n.31

We can see from these expressions that the bounds depend on n only through the

complements (G1n,−a, Xn,−a) and (G2n,−a, Xn,−a). Moreover, the complements play a

role only through the marginal utilities

∆Uij (Gn,−ij, xij, εij) = u (xij) +
1

n− 2

∑
k 6=i,j

Gn,ikγ1 +
1

n− 2

∑
k 6=i,j

Gn,ikGn,jkγ2 + εij

for i, j ≤ a, i 6= j. Therefore, if the average terms 1
n−2

∑
k 6=i,j Gn,ik and 1

n−2

∑
k 6=i,j Gn,ikGn,jk

31Note that for a given xa and εa, whether ga is a PS subnetwork is completely determined by
the complements G1n,−a and G2n,−a, which are random because of the randomness in εn,−a and
equilibrium selection mechanisms.
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constructed from the complements G1n,−a and G2n,−a converge as n→∞, we expect
that the bounds also converge.

The expressions in (42) and (43) hold for any equilibrium selection mechanisms

λ1n and λ2n that satisfy the restrictions in (40) and (41). Hence we have the freedom

to choose λ1n and λ2n so that the generated complements G1n,−a and G2n,−a have

the desired properties, thereby yielding the convergence of the bounds. We restrict

the λ1n and λ2n similarly to what Assumption 3 imposes on the equilibrium selection

mechanism λn in data.

First, we choose λ1n and λ2n that do not depend on the labels in [a]c = [n] \ [a], as

specified in the condition (13), so the complements (G1n,−a, Xn,−a) and (G2n,−a, Xn,−a)

are exchangeable in [a]c, i.e., their distributions are invariant under the permutations

over [a]c.32

Second, we choose two sequences of equilibrium selection mechanisms {λ1n, n ≥ 2}
and {λ2n, n ≥ 2} such that (G1n,−a, Xn,−a) and (G2n,−a, Xn,−a) converge to some infi-

nite arrays
(
G∗1,−a, X

∗
1,−a
)

=
(
G∗1,ij, X

∗
1,ij

)
i>a∪j>a,i6=j and

(
G∗2,−a, X

∗
2,−a
)

=
(
G∗2,ij, X

∗
2,ij

)
i>a∪j>a,i6=j

that are exchangeable in N\ [a], in the sense of empirical distribution convergence.

To be precise, let A = [a] and define a neighboring vector of A by (gAk, xAk) =

(gik, xik)i≤a ∈ {0, 1}
a × X a for some k 6∈ A, i.e., the vector of links and attributes

between individual k and the individuals in A. For any value of a neighboring vector

(gA(a+1), xA(a+1)), define the empirical distribution of neighboring vectors in a finite

complement (Gn,−a, Xn,−a) by

µ
((
gA(a+1), xA(a+1)

)
, (Gn,−a, Xn,−a)

)
=

1

n− a

n∑
k=a+1

1
{
Gn,Ak ≤ gA(a+1), Xn,Ak ≤ xA(a+1)

}
and define the limiting empirical distribution of neighboring vectors in an infinite

complement (G−a, X−a) = (Gij, Xij)i>a∪j>a,i6=j by

µ
((
gA(a+1), xA(a+1)

)
, (G−a, X−a)

)
= lim

n→∞

1

n− a

n∑
k=a+1

1
{
GAk ≤ gA(a+1), XAk ≤ xA(a+1)

}
We say that a finite complement (Gn,−a, Xn,−a) converges to an infinite complement

(G−a, X−a) if the empirical distribution of neighboring vectors in (Gn,−a, Xn,−a) con-

32Note that the networks G1n and G2n generated under λ1n and λ2n cannot be exchangeable over
[n], because of the labeling-dependent restrictions in (40) and (41).
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verges in distribution to the limiting distribution of neighboring vectors in (G−a, X−a),

i.e.,

µ
((
gA(a+1), xA(a+1)

)
, (Gn,−a, Xn,−a)

) d→ µ
((
gA(a+1), xA(a+1)

)
, (G−a, X−a)

)
(44)

as n→∞. This definition is motivated by the convergence of exchangeable sequences
(Chapter 3 in Kallenberg (2005), Theorem 3.2) and is weaker than the convergence of

exchangeable arrays in Definition 4.2. We choose λ1n and λ2n such that (G1n,−a, Xn,−a)

and (G2n,−a, Xn,−a) converge to
(
G∗1,−a, X

∗
1,−a
)
and

(
G∗2,−a, X

∗
2,−a
)
, respectively, in the

sense of neighboring vector distribution convergence. Note that the infinite exchange-

able X∗ in the statement of the theorem satisfies the convergence condition, so its

restriction on N\ [a] gives the limiting X∗1,−a and X
∗
2,−a. We denote both X

∗
1,−a and

X∗2,−a by X
∗
−a.

Since the infinite complements
(
G∗1,−a, X

∗
−a
)
and

(
G∗2,−a, X

∗
−a
)
are exchangeable

in N\ [a], their neighboring vectors have the functional representation of de Finetti

Theorem (Lemma 7.1 in Kallenberg (2005)), i.e.,

(
G∗1,Ak, X

∗
Ak

)
= f1 (ξ10, ξ1k) a.s., k = a+ 1, a+ 2, . . .(

G∗2,Ak, X
∗
Ak

)
= f2 (ξ20, ξ2k) a.s., k = a+ 1, a+ 2, . . . (45)

for measurable functions f1, f2 : [0, 1]2 → {0, 1}a × X a, some i.i.d. U (0, 1) ran-

dom variables ξ10 and (ξ1k)k≥a+1, and some i.i.d. U (0, 1) random variables ξ20 and

(ξ2k)k≥a+1. For each i ≤ a, we define the functions

W1i (ξ10) : = Pr(G∗1,i(a+1) = 1 |ξ10 ) = Pr
(
f1i

(
ξ10, ξ1(a+1)

)
= 1 |ξ10

)
W2i (ξ20) : = Pr(G∗2,i(a+1) = 1 |ξ20 ) = Pr

(
f2i

(
ξ20, ξ2(a+1)

)
= 1 |ξ20

)
where f1i is the ith component of f1, and f2i is the ith component of f2.

Now we combine the convergence condition in (44) together with the represen-

tations of the limiting complements in (45) to show the convergence of the average

terms in the marginal utilities. We consider G1n,−a first. Let x̄ = sup {(x, x) : x ∈ X}
(it can be ∞2). Fix ξ10. For any i ≤ a, we have

1

n− a

n∑
k=a+1

G1n,ik = 1− 1

n− a

n∑
k=a+1

1
{
G1n,ik ≤ 0, {G1n,i′k ≤ 1}i′≤a,i′ 6=i , {Xn,i′k ≤ x̄}i′≤a

}
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d→ 1− lim
n→∞

1

n− a

n∑
k=a+1

1
{
G∗1,ik ≤ 0, {G∗1,i′k ≤ 1}i′≤a,i′ 6=i, {X∗i′k ≤ x̄}i′≤a

}
= lim

n→∞

1

n− a

n∑
k=a+1

G∗1,ik

= W1i (ξ10) + op (1)

as n → ∞ by the convergence condition in (44) and the weak law of large numbers

(note that conditional on ξ10 the representation in (45) implies that G
∗
1,ik for k > a

are i.i.d.). Hence
1

n− a

n∑
k=a+1

G1n,ik
d→ W1i (ξ10)

as n→∞. As for the averages of friends in common, for any i, j ≤ a, i 6= j, we can

write

1

n− a

n∑
k=a+1

G1n,ikG1n,jk

= 1− 1

n− a

n∑
k=a+1

1
{
G1n,ik ≤ 0, {G1n,i′k ≤ 1}i′≤a,i′ 6=i , {Xn,i′k ≤ x̄}i′≤a

}
− 1

n− a

n∑
k=a+1

1
{
G1n,jk ≤ 0, {G1n,i′k ≤ 1}i′≤a,i′ 6=j , {Xn,i′k ≤ x̄}i′≤a

}
+

1

n− a

n∑
k=a+1

1
{
G1n,ik ≤ 0, G1n,jk ≤ 0, {G1n,i′k ≤ 1}i′≤a,i′ 6=i,j , {Xn,i′k ≤ x̄}i′≤a

}
.

The first and second averages in the last expression converge in distribution to 1 −
W1i (ξ10) and 1 −W1j (ξ10), respectively, as n → ∞. As for the third, we can show
that

1

n− a

n∑
k=a+1

1
{
G1n,ik ≤ 0, G1n,jk ≤ 0, {G1n,i′k ≤ 1}i′≤a,i′ 6=i,j , {Xn,i′k ≤ x̄}i′≤a

}
d→ lim

n→∞

1

n− a

n∑
k=a+1

1
{
G∗1,ik ≤ 0, G∗1,jk ≤ 0,

{
G∗1,i′k ≤ 1

}
i′≤a,i′ 6=i,j , {X

∗
i′k ≤ x̄}i′≤a

}
= lim

n→∞

1

n− a

n∑
k=a+1

1
{
G∗1,ik = 0, G∗1,jk = 0

}
= (1−W1i (ξ10)) (1−W1j (ξ10)) + op (1)
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as n→∞, again by the condition (44) and the weak law of large numbers. Then by
the Slutsky’s theorem, we have that conditional on ξ0

1

n− a

n∑
k=a+1

G1n,ikG1n,jk
d→ W1i (ξ10)W1j (ξ10)

as n→∞.
Similar convergence results hold for G2n,−a. Conditional on ξ20, we can show that

for any i, j ≤ a, i 6= j,

1

n− a

n∑
k=a+1

G2n,ik
d→ W2i (ξ20)

1

n− a

n∑
k=a+1

G2n,ikG2n,jk
d→ W2i (ξ20)W2j (ξ20)

as n→∞.
Once the average terms converge, the marginal utilities converge as well. To see

this, for any i, j ≤ a, i 6= j, consider the marginal utility of i from link ij given a

complement Gn,−ij

∆Uij (Gn,−ij, xij, εij) = u (xij) +
1

n− 2

∑
k 6=i,j

Gn,ikγ1 +
1

n− 2

∑
k 6=i,j

Gn,ikGn,jkγ2 + εij

= u (xij) +
n− a
n− 2

(
1

n− a

n∑
k=a+1

Gn,ikγ1 +
1

n− a

n∑
k=a+1

Gn,ikGn,jkγ2

)

+
1

n− 2

a∑
k=1
k 6=i,j

Gn,ikγ1 +
1

n− 2

a∑
k=1
k 6=i,j

Gn,ikGn,jkγ2 + εij

Note that the last two sum terms are op (1) as n → ∞. We apply the above results
to the complements G1n,−a and G2n,−a and obtain that conditional on ξ10

∆Uij (ga,−ij, G1n,−a, xij, εij)
d→ u (xij) +W1i (ξ10) γ1 +W1i (ξ10)W1j (ξ10) γ2 + εij

=: ∆U∗1ij (ξ10, xij, εij)

and, conditional on ξ20

∆Uij (ga,−ij, G2n,−a, xij, εij)
d→ u (xij) +W2i (ξ20) γ1 +W2i (ξ20)W2j (ξ20) γ2 + εij
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=: ∆U∗2ij (ξ20, xij, εij)

as n→∞.
We are ready to show the convergence of the bounds. Without loss of generality

we assume TU, and the case of NTU can be proved similarly. We start with the upper

bound. By the definition of pairwise stability, the event in the upper bound in (42)

is given by

1 {ga ∈ PS (∆Ua (G1n,−a, xa, εa))}
=

∏
i,j≤a,i6=j
gij=1

1 {∆Uij (ga,−ij, G1n,−a, xij, εij) + ∆Uji (ga,−ij, G1n,−a, xji, εji) ≥ 0}

·
∏

i,j≤a,i 6=j
gij=0

1 {∆Uij (ga,−ij, G1n,−a, xij, εij) + ∆Uji (ga,−ij, G1n,−a, xji, εji) < 0}

This event defines a bounded and almost surely continuous function of the marginal

utilities, because of the continuity assumption on the distribution of ε in Assumption

1. Therefore, by the Portmanteau theorem we can show that for any fixed m ≥ a,

Pr (ga ∈ PS (∆Ua (G1n,−a, xa, εa))|Xm,a = xa, Xm,−a)

→ E

 ∏
i,j≤a,i6=j
gij=1

1
{

∆U∗1ij (ξ10, xij, εij) + ∆U∗1ji (ξ10, xji, εji) ≥ 0
}

·
∏

i,j≤a,i 6=j
gij=0

1
{

∆U∗1ij (ξ10, xij, εij) + ∆U∗1ji (ξ10, xji, εji) < 0
}∣∣∣∣∣∣∣∣Xm,a = xa, Xm,−a


=: Pr (ga ∈ PS (∆U∗1a (ξ10, xa, εa))|Xm,a = xa, Xm,−a)

as n→∞, where

∆U∗1a (ξ10, xa, εa) :=
{

∆U∗1ij (ξ10, xij, εij)
}
i,j≤a,i6=j

is the marginal utility profile in [a] for the limiting complement
(
G∗1,−a, X

∗
−a
)
. Then

we apply a martingale argument as in Theorem 4.1 to show the convergence of the
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last display as m→∞. Define the random variables

Ym = Pr (ga ∈ PS (∆U∗1a (ξ10, xa, εa))|Xm,a = xa, Xm,−a) , m ≥ a

It is easy to see that {Ym, σ (Xm)}m≥a is a martingale, so from the martingale con-

vergence theorem

Pr (ga ∈ PS (∆U∗1a (ξ10, xa, εa))|Xm,a = xa, Xm,−a)
a.s.→ Pr

(
ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa, X

∗
−a
)

as m→∞. Combining the previous two convergence results we derive

Pr (ga ∈ PS (∆Ua (G1n,−a, xa, εa))|Xn,a = xa, Xn,−a)
a.s.→ Pr

(
ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa, X

∗
−a
)

as n→∞.
Note that the limiting upper bound in the last display may be random if the

attributes in a network are correlated. In a special case when the attributes in a

network are i.i.d., then from the de Finetti representation in (45) X∗−a and ξ10 are

independent conditional on X∗a (this is because for k, l 6∈ A with k 6= l, X∗Ak and X
∗
Al

are independent conditional on X∗a , so X
∗
Ak and ξ10 are independent conditional on

X∗a). In this case, the limiting upper bound satisfies

Pr
(
ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa, X

∗
−a
)

= Pr (ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa)

and reduces to a deterministic function.

Because any equilibrium selection mechanism λ1n that satisfies the restriction (40)

will give the same upper bound, they must all converge to the same limit. Hence, the

limiting upper bound Pr
(
ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa, X

∗
−a
)
is unique for all

the choices of λ1n and is thus well defined. We can define this limiting upper bound

to be the function H∗1
(
ga, xa, X

∗
−a
)
,

H∗1
(
ga, xa, X

∗
−a
)

:= Pr
(
ga ∈ PS (∆U∗1a (ξ10, xa, εa))|X∗a = xa, X

∗
−a
)
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Then we have proved the convergence of the upper bound

H1n (ga, xa, Xn,−a)
a.s.→ H∗1

(
ga, xa, X

∗
−a
)
, as n→∞.

The proof for the convergence of the lower bound is almost the same as that for

the upper bound. The only difference is that the event in the lower bound in (43)

1 {{ga} ∈ PS (∆Ua (G2n,−a, xa, εa))}

does not have a closed form as the event in the upper bound has. Nevertheless,

it still defines a bounded and almost surely function of the marginal utilities, so the

argument for the upper bound still applies. In particular, define the limiting marginal

utility for i, j ≤ a, i 6= j

∆U∗2ij (ξ20, xij, εij) := u (xij) +W2i (ξ20) γ1 +W2i (ξ20)W2j (ξ20) γ2 + εij

and the limiting marginal utility profile in [a]

∆U∗2a (ξ20, xa, εa) :=
{

∆U∗2ij (ξ20, xij, εij)
}
i,j≤a,i6=j

Following a similar argument we can show that the lower bound converges, i.e.,

Pr ({ga} = PS (∆Ua (G2n,−a, xa, εa))|Xn,a = xa, Xn,−a)
a.s.→ Pr

(
{ga} = PS (∆U∗2a (ξ20, xa, εa))|X∗a = xa, X

∗
−a
)

as n→∞. The limiting lower bound Pr
(
{ga} = PS (∆U∗2a (ξ20, xa, εa))|X∗a = xa, X

∗
−a
)

is unique for all the choices of λ2n satisfying (41). Define it to be the function

H∗2
(
ga, xa, X

∗
−a
)
,

H∗2
(
ga, xa, X

∗
−a
)

:= Pr
(
{ga} = PS (∆U∗2a (ξ20, xa, εa))|X∗a = xa, X

∗
−a
)
.

We have proved that

H2n (ga, xa, Xn,−a)
a.s.→ H∗2

(
ga, xa, X

∗
−a
)
, as n→∞.

The proof is complete.
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9.3 Estimation and Inference of the Identified Set

In this section we discuss the estimation and inference of the identified set. For each

observed network (Gnt , Xnt), t = 1, . . . , T , we have momentsm1 (θ;Gnt , Xnt , ga, q) and

m2 (θ;Gnt , Xnt , ga, q) defined as in (20) for all ga ∈ Ga, all q ∈ Q, and all a = 2, . . . , ā.

Stack these moments into one vector

mt (θ) =
(
m2
t (θ)′ , . . . ,mā

t (θ)′
)′

where

ma
t (θ) =

(
ma

1t (θ)′ ,ma
2t (θ)′

)′
, a = 2, . . . , ā,

ma
jt (θ) = (mj (θ;Gnt , Xnt , ga, q) ,∀ga ∈ Ga,∀q ∈ Q)′ , j = 1, 2.

Then the moment inequalities in (19) can be written as

Emt (θ) ≤ 0. (46)

Following the set inference literature (Chernozhukov, Hong and Tamer (hereafter

CHT, 2007), Romano and Shaikh (2010), Andrews and Soares (2010) among oth-

ers), we estimate the identified set by minimizing the sample analogue of a cri-

terion function based on (46). We use the criterion function as in CHT (2007),

Q (θ) =
∥∥(Emt (θ))+

∥∥2
, where (x)+ = max (x, 0) and ‖·‖ is the Euclidean norm. The

identified set is given by

ΘI = {θ ∈ Θ : Q (θ) = 0} . (47)

Let QT (θ) =
∥∥(ETmt (θ))+

∥∥2
be the sample analogue of Q (θ), where ETmt (θ) =

1
T

∑T
t=1 mt (θ). In practice we use the normalized sample criterion Q′T (θ) = QT (θ)−

infθ′∈ΘQT (θ′) to account for misspecification (CHT (2007), Ciliberto and Tamer

(2009)) and propose the estimator

Θ̂I = {θ ∈ Θ : TQ′T (θ) ≤ cT} , (48)

where cT is chosen to be cT → ∞ and cT/T → 0, e.g. cT ∝ lnT . Let d (A,B) =

max {supa∈A d (a,B) , supb∈B d (b, A)} be the Hausdorff distance between sets A and

B, where d (a,B) = infb∈B ‖a− b‖. It can be shown that Θ̂I is consistent under
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Hausdorff distance, i.e., d
(

Θ̂I ,ΘI

)
p→ 0 as T →∞.

Theorem 9.1 Suppose that Θ is compact and Assumptions 1-3 are satisfied. Then

Θ̂I in (48) is a consistent estimator of ΘI , i.e.,

d
(

Θ̂I ,ΘI

)
p→ 0, as T →∞.

Proof. This is an application of Theorems 3.1 and 4.2 in CHT (2007). We first

show that the result follows if Q (θ) and QT (θ) satisfy (i) Q (θ) is continuous in θ,

(ii) supθ∈Θ |Q (θ)−QT (θ)| = Op

(
1/
√
T
)
, and (iii) supθ∈ΘI

QT (θ) = Op (1/T ).

To see this, note that condition (iii) implies that infθ∈Θ TQT (θ) ≤ infθ∈ΘI
TQT (θ)

≤ supθ∈ΘI
TQT (θ) = Op (1). Hence, from conditions (ii) and (iii) we obtain

sup
θ∈Θ

√
T |Q (θ)−Q′T (θ)| ≤ sup

θ∈Θ

√
T |Q (θ)−QT (θ)|+ inf

θ′∈Θ

√
TQT (θ′) = Op (1) ,

and

sup
θ∈ΘI

TQ′T (θ) = sup
θ∈ΘI

TQT (θ)− inf
θ′∈Θ

TQT (θ′) = Op (1) .

Following the proof of Theorem 3.1 in CHT, we can show that

sup
θ∈ΘI

d
(
θ, Θ̂I

)
p→ 0, and sup

θ∈Θ̂I

d (θ,ΘI)
p→ 0, (49)

which imply d
(

Θ̂I ,ΘI

)
p→ 0. The first part of (49) holds because by choosing cT →

∞, supθ∈ΘI
TQ′T (θ) = Op (1) < cT and thus ΘI ⊆ Θ̂I with probability approaching

one. The second part of (49) follows from

sup
θ∈Θ̂I

Q (θ) ≤ sup
θ∈Θ̂I

|Q (θ)−Q′T (θ)|+ sup
θ∈Θ̂I

Q′T (θ) ≤ Op

(
1√
T

)
+
cT
T

= op (1) , (50)

and

inf
θ∈Θ\Θε

I

Q (θ) ≥ δ (ε) , for some δ (ε) > 0, (51)

where Θε
I = {θ ∈ Θ : d (θ,ΘI) < ε} for ε > 0. (51) is satisfied because Q (θ) is

continuous in θ by condition (i) and thus infθ∈Θ\Θε
I
Q (θ) = Q (θ∗) > 0 for some

θ∗ ∈ Θ\Θε
I by compactness of Θ. Combining (50) with (51) yields Θ̂I ∩ Θ\Θε

I = ∅
with probability approaching 1, so we obtain the second part of (49).
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Next we show that conditions (i)-(iii) hold under Assumptions 1-3. Without

loss of generality we assume TU; the NTU case can be proved similarly. To show

condition (i), note that Q (θ) is continuous in θ if the bounds in (19) are contin-

uous in θ. From (12) the upper bound is H1n (ga, Xn; θ) = Pr(∃gn,−a, (ga, gn,−a) ∈
PS (∆Un (Xn, εn; θu)) |Xn; θε ). Let g(1)

n,−a, . . . , g
(K)
n,−a denote the distinct values in Gn,−a.

The upper bound can be equivalently represented as

H1n (ga, Xn; θ)

=

K∑
k=1

Pr
((
ga, g

(k)
n,−a

)
∈ PS (∆Un (Xn, εn; θu)) |Xn; θε

)
−

∑
1≤k1<k2≤K

Pr
((
ga, g

(k1)
n,−a

)
&
(
ga, g

(k2)
n,−a

)
∈ PS (∆Un (Xn, εn; θu)) |Xn; θε

)
+ · · ·+ (−1)K−1 Pr

((
ga, g

(1)
n,−a

)
& . . .&

(
ga, g

(K)
n,−a

)
∈ PS (∆Un (Xn, εn; θu)) |Xn, θe

)
.

For any i < j ≤ n, define ūij (Xn,ij; β) = u (Xn,i, Xn,j,; β) + u (Xn,j, Xn,i; β), ε̄n,ij =

εn,ij + εn,ji, and v̄
(k)
ij (γ) = 1

n−2

∑
l 6=i,j(g

(k)
il + g

(k)
jl )γ1 + 2

n−2

∑
l 6=i,j g

(k)
il g

(k)
,jl γ2, where the

superscript k indicates that the links are from the network (ga, g
(k)
n,−a), k = 1, . . . , K.

The probability terms in the summations in the last display are of the form

Pr((ga, g
(k1)
n,−a)& . . .&(ga, g

(ks)
n,−a) ∈ PS(∆Un(Xn, εn; θu)) |Xn; θε )

for some 1 ≤ k1 < · · · < ks ≤ K and some 1 ≤ s ≤ K. By the definition of pairwise

stability and Assumptions 1-2, such a term can be written as∏
i<j≤n

Pr ( ε̄n,ij ∈ Dij (Xn,ij; θu)|Xn,ij; θε) (52)

where Dij (Xn,ij; θu) ⊆ R for i < j ≤ n is an interval of the form

[−ūij (Xn,ij; β)− min
1≤r≤s:
g
(kr)
n,ij =1

v̄
(kr)
ij (γ) , ∞),

(−∞, − ūij(Xn,ij; β)− max
1≤r≤s:
g
(kr)
n,ij =0

v̄
(kr)
ij (γ)), or

[−ūij(Xn,ij; β)− min
1≤r≤s:
g
(kr)
n,ij =1

v̄
(kr)
ij (γ) , − ūij(Xn,ij; β)− max

1≤r≤s:
g
(kr)
n,ij =0

v̄
(kr)
ij (γ)) (may be empty),
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where g(k)
n,ij is the (i, j) element of g(k)

n = (ga, g
(k)
n,−a), k = 1, . . . , K. Because ūij (Xn,ij; β)

and v̄(k)
ij (γ), k = 1, . . . , K, are continuous in β and γ, max and min are continuous

operators, and εn,ij has a continuous distribution, we can show that (52) is continuous

in θu = (β, γ). Moreover, the CDF of ε̄n,ij is continuous in θε under Assumption 1,

so (52) is also continuous in θε. Therefore, the upper bound is continuous in θ.

Now we consider the lower bound. Recall from (27) that the lower bound is given

byH2n (ga, Xn; θ) = 1−Pr(∃g′a 6= ga,∃gn,−a, (ga, gn,−a) ∈ PS (∆Un (Xn, εn; θu)) |Xn; θε ).

Let g(1)
n , . . . , g

(L)
n denote the distinct values in Gn whose subnetwork in [a] is not ga.

Like the upper bound, the probability term in the lower bound can be written as

Pr (∃g′a 6= ga, ∃gn,−a, (ga, gn,−a) ∈ PS (∆Un (Xn, εn; θu)) |Xn; θε )

=
L∑
l=1

Pr
(
g(l)
n ∈ PS (∆Un (Xn, εn; θu)) |Xn; θε

)
−

∑
1≤l1<l2≤L

Pr
(
g(l1)
n &g(l2)

n ∈ PS (∆Un (Xn, εn; θu)) |Xn; θε
)

+ · · ·+ (−1)L−1 Pr
(
g(1)
n & . . .&g(L)

n ∈ PS (∆Un (Xn, εn; θu)) |Xn; θε
)

The probability terms in the summations have a representation similar to (52), so

using the same argument we can show that they are continuous in θ. This proves

that the lower bound is continuous in θ.

As for condition (ii), it suffi ces to show that {mt (θ) , θ ∈ Θ} is Donsker because
then supθ∈Θ

√
T |Q (θ)−QT (θ)| = supθ∈Θ

√
T
∣∣∣∥∥(Emt (θ))+

∥∥2 −
∥∥(ETmt (θ))+

∥∥2
∣∣∣ ≤

supθ∈Θ

∥∥∥√T (ETmt (θ)− Emt (θ))
∥∥∥ (∥∥(ETmt (θ))+

∥∥+
∥∥(Emt (θ))+

∥∥) = Op (1). The

collection of moments {mt (θ) , θ ∈ Θ} is Donsker if (1) mt (θ) satisfies the finite-

dimensional convergence property and (2) mt (θ) is stochastically equicontinuous.

The finite-dimensional convergence follows from CLT by Assumption 1. As for (2),

note that the terms 1 {Gn,a = ga} and q (Xn,a, φn (Xn,−a)) in the moments do not

depend on θ, so it suffi ces to show that the bounds are stochastically equicontinuous,

which follows if the functions in (52) are stochastically equicontinuous.

To show stochastic equicontinuity for the functions in (52), observe that the

functions ūij(Xn,ij; β) and v̄
(k)
ij (γ), k = 1, . . . , K, span a finite-dimensional vector

space, so they form a VC-subgraph class (Van der Vaart and Wellner (1996), Lemma

2.6.15). Therefore, because the VC-subgraph property is closed under max, min and

monotonic transformations (note that the CDF of ε̄n,ij is monotonic), the terms in
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(52) as functions of θu also form a VC-subgraph class, and thus are stochastically

equicontinuous as they are uniformly bounded (by 1). Moreover, the terms in (52) as

functions of θε are Lipschitz countinuous in θε because the CDF of ε̄n,ij is continuously

differentiable in θε by Assumption 1 and Θ is compact. Hence, they as functions of

θε are also stochastically equicontinuous. Combining the results we can prove that

the terms in (52) as functions of θ are stochastically equicontinuous.

Condition (iii) is a result of {mt (θ) , θ ∈ Θ} being Donsker and Emt (θ) ≤ 0 for

θ ∈ ΘI . To see this, note TQT (θ) =
∥∥∥(
√
T (ETmt (θ) − Emt (θ)) +

√
TEmt (θ))+

∥∥∥2

.

For θ ∈ ΘI , we have TQT (θ)
p→ 0 as T →∞ if Emt (θ) < 0, and TQT (θ) = Op (1) if

Emt (θ) = 0. Hence condition (iii) is satisfied. The proof is complete.

The confidence region for the true θ0 can be constructed by inverting the accep-

tance region of a test (e.g. CHT (2007), Andrews and Soares (2010), Andrews and

Jia (2012)). We use the confidence region proposed by CHT (2007)

CT = {θ ∈ Θ : TQ′T (θ) ≤ c̄1−α (θ)} , (53)

where c̄1−α (θ) = min (ĉ1−α (θ) , ĉ1−α), ĉ1−α (θ) is a consistent estimator of c1−α (θ), the

1 − α quantile of the limiting distribution of TQ′T (θ), and ĉ1−α is a data-dependent

variable that is Op (1) and larger than sup θ∈ΘI
c1−α (θ). It can be shown that for any

θ ∈ ΘI , CT is asymptotically correct, i.e., lim inf
T→∞

Pr (θ ⊆ CT ) ≥ 1−α. We can use the
subsampling method in CHT (2007) to obtain c̄1−α (θ).

9.4 GHK Algorithm for the Computation of the Bounds

In this section, we discuss how to compute the bounds using a GHK algorithm. The

algorithms for the upper and lower bounds are similar, so we focus on the upper

bound. Instead of simulating ε̄a,−12 and solving the optimization problem in (23)-

(26) once, we simulate the components of ε̄a,−12 sequentially and solve a sequence of

optimization problems as in (23)-(26) for each link in [a].

For expositional simplicity, we describe the algorithm in an example of a = 3.

Algorithm 1 For a simulated ε̄−a,
1. For g23 = 1 or 0, (i) solve the problem

max
ba,gca

/min
ba,gca

∆V23 (ga,−23, ba, x23)
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s.t. inequalities (25)-(26)

respectively, and (ii) generate ε̄23 from the conditional distribution

ε̄23 ∼
{
Fε̄ ( ε̄ij| ε̄ij ≥ −max ∆V23 (ga,−23, ba, x23)) , if g23 = 1

Fε̄ ( ε̄ij| ε̄ij < −min ∆V23 (ga,−23, ba, x23)) , if g23 = 0

2. For g13 = 1 or 0, (i) solve the problem

max
ba,gca

/min
ba,gca

∆V13 (ga,−13, ba, x13)

s.t. inequalities (25)-(26)

g23 = 1 {∆V23 (ga,−23, ba, x23) + ε̄23 ≥ 0}

respectively, and (ii) generate ε̄13 from the conditional distribution

ε̄13 ∼
{
Fε̄ ( ε̄ij| ε̄ij ≥ −max ∆V13 (ga,−13, ba, x13)) , if g13 = 1

Fε̄ ( ε̄ij| ε̄ij < −min ∆V13 (ga,−13, ba, x13)) , if g13 = 0

3. For g12 = 1 or 0, solve the problem

max
ba,gca

/min
ba,gca

∆V12 (ga,−12, ba, x12)

s.t. inequalities (25)-(26)

g23 = 1 {∆V23 (ga,−23, ba, x23) + ε̄23 ≥ 0}
g13 = 1 {∆V13 (ga,−13, ba, x13) + ε̄13 ≥ 0}

respectively.

Let

Pij =

{
1− Fε̄ (−max ∆Vij (ga,−ij, ba, xij)) , if gij = 1

Fε̄ (−min ∆Vij (ga,−ij, ba, xij)) , if gij = 0

for i < j ≤ 3. The value
∏

i<j≤3 Pij, as a function of (ε̄13, ε̄23, ε̄−a), gives one simulation

of the upper bound. Repeat the algorithm independently R times. The average of

the R values of
∏

i<j≤3 Pij gives a simulator of the upper bound.

In this algorithm, because ε̄23 is generated from a conditional distribution given

that g23 is PS for some PS g−a, and ε̄13 is generated from a conditional distribution
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such that (g13, g23) is PS for some PS g−a, the optimization problems in steps 2-3

for such (ε̄13, ε̄23) are guaranteed to have a solution, and thus the integrands in (21)-

(22) are given by P12 (rather than 0). Weighting P12 appropriately (i.e. multiplying

it by P13P23) to account for the difference between the conditional distribution and

unconditional distribution of (ε̄13, ε̄23), we obtain a simulator for the upper bound

that is "more continuous" in the parameter than the simulator directly solved from

(23)-(26).
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