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Abstract

In the airline industry, passengers pay higher fares at airports where a single carrier controls
a high fraction of tra¢ c. The economics of the industry suggests there is an inherent tradeo¤
between product quality and carrier size and concentration, making the welfare implications of
these premia ambiguous. In this paper, we investigate the success of Congressional mandates
aimed at increasing competition at highly concentrated major US airports. The mandates
required airports above certain concentration thresholds to take concrete steps to ease and
encourage new entry and expansion by smaller airlines, primarily by increasing access to airport
facilities. We exploit a sharp discontinuity in the law�s implementation to identify the e¤ects of
the law. In so doing we are able to shed light on the nature high fares at these concentrated
airports. We �nd a statistically and economically signi�cant decrease in fares resulting from an
airport�s coverage by the legislation. More speci�cally, we �nd that in markets where one (two)
of the market�s endpoints was (were) covered, fares dropped by 10% (20%). Moreover, most of
this decrease has come from decreases in dominant carriers�fares at hub airports. We also �nd
that approximately half of this decline in fares is driven by the entry of low-cost carriers into
new markets. We �nd little evidence that the fare declines have been accompanied by decreases
in quality measures, with the exception of congestion related delays, suggesting the legislation
has been welfare improving for consumers.
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1 Introduction

One of the most enduring features of the post-deregulation U.S. airline industry has been the hub

premium-The premium over average fares that large carriers command in markets from airports

where they provide a large share of service. Though this phenomenon has been widely documented

(see e.g. Borenstein 1989 and Borenstein 1994), its causes and consequences are still in question.

To the extent that higher fares are a result of the exercise of market power, they are detrimental to

consumer welfare and e¢ ciency. On the other hand, there is substantial evidence that consumers

value the large route network and high frequencies airport dominating carriers often provide (e.g.

Berry 1990). To the extent that high prices derive from these quality factors, they bene�t con-

sumers. Because airport facilities, obviously a necessary input for the provision of air service, are

scarce, increased concentration and market power go hand in hand with the airline scope and scale

that consumers value and drive down costs. The relative contribution, and the optimality of the

balance, of these factors is an empirical question.

In 2000, the U.S. congress enacted the Wendel H. Ford Aviation Investment and Reform Act

for the 21st Century (AIR-21). A primary directive of the bill was to require airports, above a

given level of concentration, to take concrete steps to ensure that new entrants had ample access to

airport facilities.1Airport compliance requires �ling a Competition Plan with the Federal Aviation

Administration (FAA), detailing the steps taken. The FAA then reviews the plan and releases

federal funding contingent on a satisfactory plan.

In this paper we empirically evaluate the impact of AIR-21 on prices, quality, and market struc-

ture in order to investigate the importance of access to airport facilities as barriers to entry in the

airline industry. The nature of the implementation of AIR-21 is useful for solving identi�cation

problems that are common in industrial organization studies of competition and market structure

and are present in our context. The problem is that elements of market structure, e.g. concen-

tration, low cost presence, etc., are determined simultaneously with the level of competition and

usually depend on common, market speci�c, unobserved factors, e.g. demand elasticities or net-

work economies associated with airport geography. We use the design of AIR-21 to formulate a

di¤erences in di¤erences and regression discontinuity solution to these problems.

We �rst argue the AIR-21 mandates were enforced and e¤ectively reduced barriers to entry

at covered airports. This generates rarely available variation, with a plausibly known direction,

1The law applied to airports in which the top 2 airlines accounted for over 50% of total enplanements at the
airport.
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over time in barriers to entry within markets. This allows us to control for time invariant, market

speci�c factors using standard panel techniques. Second, having contemporaneous treatment and

control groups allows us to use di¤erences in di¤erences to address aggregate and market speci�c

variation in these factors over time.

There are still likely to be selection problems associated with using the full sample for identi-

�cation. Berry and Jia (2009), observing lower fares and diminished pro�t margins between the

end of the 1990�s and the middle 2000�s, estimate discrete choice demand systems separately for

1997 and 2005 and conclude that increased passenger price sensitivity combined with increased

penetration of low cost carriers were responsible for the change. Since airport concentration itself

is likely highly correlated with product quality, the time varying relative valuations of quality found

by Berry and Jia (2009) likely interact with our determinant of treatment. This causes di¤ering

average trends for treated and untreated markets, invalidating the simple di¤-in-di¤ approach. We

solve this and any similar such problem by arguing that, while there is likely a selection problem

associated with highly concentrated airports, there is no such problem locally around the 50% two

carrier concentration level speci�ed by AIR-21. This allows us to develop a regression discontinuity

estimator for the local average treatment e¤ects associated with AIR-21. Essentially, we assume

the distribution of unobservables for randomly selected market just below the cuto¤ is identical to

a randomly selected market just above the cuto¤.

The design of AIR-21 also helps us dismiss concerns about manipulation of the forcing variables.

Airport coverage is determined by tra¢ c data from two years prior to coverage, making coverage

dependent on the past actions of the carriers which are not subject to manipulation. Given the

complexity of airline pricing decisions it also seems unlikely that carriers would adjust fare setting

behavior to manipulate enplanements at the airport level. Nevertheless, we design an informal

test of manipulation. The test is based on the observation that, for a given two �rm airport

concentration level, airports with higher one �rm concentration levels would be more likely to see

manipulation since a single carrier has more control over the coverage variable. This test shows no

evidence of manipulation.

Our relatively clean identi�cation strategy represents an contribution to the extant literature on

airline market structure and the importance of barriers to entry more generally. A typical structural

study of entry and market structure in concentrated industries (e.g. Bresnahan and Reiss (1991),

Berry (1992) Mazzeo (2002), Seim (2004), Ciliberto and Tamer(2009)) looks at �rm choices and

uses a revealed preference approach to infer entry barriers. This approach necessarily requires
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the economist to rely on many restrictions of the empirical model derived from economic theory.

Our approach, on the other hand, uses a known source of exogenous variation in entry barriers to

investigate their e¤ects on market outcomes and requires little in the way of theoretical structure.

The minimal structural requirements is useful for an industry as complex as the airline industry

and our focus on outcomes makes our results directly relevant for policy.

To preview results, we �nd AIR-21 had substantial, and evidently positive, impact on competi-

tion and fares in the airline industry. We �nd that markets for which one of the endpoint airports

were subject to AIR-21 have seen price declines of 10% on average. Markets for which both end-

points were subject to the mandates have seen price declines of around 20% on average. These price

declines were associated with no economically and statistically signi�cant changes in measures of

quality, with one exception. We �nd that the on-time performance of carriers at covered airports

decreased. This is not particularly surprising, as we identify increased "low cost" penetration as a

driving force behind the declines in fares, suggesting that increased competition at covered airports

has resulted in additional congestion related delays. In addition, we �nd that the magnitude of the

decline in fares is larger for carriers with a large presence at an airport than for other carriers. This

suggests that AIR-21 was successful at reducing the hub premia identi�ed by Borenstein (1989).

The remainder of the paper is organized as follows. In Section 2, we provide some background

on the airline industry and discuss AIR 21 in detail. The data are described in Section 3 and we

document some basic patterns in the data over the policy period. In Section 4, we discuss our

identi�cation strategy and the results of our analysis. Section 5 concludes and discusses possible

extensions of our research.

2 The Aviation Investment and Reform Act for the 21st Century

The Government Accounting O¢ ce (GAO) and Transportation Research Board (TRB) released a

series of reports, see GAO (1989, 1990, 2001) and TRB (1999), bringing attention to the limited

amount of competition at many major US airports. These reports identi�ed two types of barriers to

entry in the airline industry, operating and marketing, that have the potential to limit competition

and result in higher fares.

Marketing barriers include loyalty programs intended to tie consumers to an airline; frequent

�yer programs, corporate incentive agreements, and travel agent commission overrides. A lack

of data has limited the study of these type of barriers, Lederman (2007, 2008) and Goolsbee and

Syverson (2008) as notable exceptions. Lederman (2007, 2008) �nds evidence that improvements
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in loyalty programs enhance demand and can explain a modest portion of the "hub premium".

Goolsbee and Syverson (2008) show that national carriers respond to the "threat of entry" by

Southwest Airlines, a low-cost carrier, by lowering fares with the intention of strengthing consumer

loyalties prior to entry of Southwest.

Operating barriers include limited access to boarding gates, ticket counters, baggage handling

and storage facilities, and take-o¤ and landing slots. Ciliberto and Williams (2010) were the �rst

to directly link these operating barriers to the "hub premium". Using unique data on carrier-

speci�c access to boarding gates, Ciliberto and Williams (2010) show that long-term exclusive-use

leasing agreements for boarding gates are a major driver of the "hub-premium". In this paper,

we employ a unique identi�cation strategy to examine the success of AIR-21 in reducing these

operating barriers and encouraging competition at major US airports. In the sections to follow,

we discuss the details of AIR-21�s design and implementation

2.1 Legislation and Airport Coverage

In response to governmental, public and academic concern, see GAO (1989, 1990, 2001), TRB

(1999), and Borenstein (1989), with the existence of institutional barriers to entry in the airline

industry, President Clinton signed into law AIR-21 on April 5, 2000. Section 155 of AIR-21 begins:

"The Congress makes the following �ndings:

(1) Major airports must be available on a reasonable basis to all air carriers wishing

to serve those airports.

(2) 15 large hub airports today are each dominated by one air carrier, with each such

carrier controlling more than 50 percent of the tra¢ c at the hub.

(3) The General Accounting O¢ ce has found that such levels of concentration lead

to higher air fares.

(4) The United States Government must take every step necessary to reduce those

levels of concentration.

(5) Consistent with air safety, spending at these airports must be directed at providing

opportunities for carriers wishing to serve such facilities on a commercially viable basis."

Together (1), (4), and (5) demonstrate Congress� clear intentions to reduce concentration by

encouraging additional entry at concentrated airports. In order to encourage airports�cooperation

in opening up airports to "all air carriers wishing to serve those airports", Congress made federal

sources of funding contingent on compliance:
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"Beginning in �scal year 2001, no passenger facility fee may be approved for a covered

airport under section 40117 and no grant may be made under this subchapter for a

covered airport unless the airport has submitted to the secretary a written competition

plan in accordance with this subsection."

Passenger Facility Fees (commonly called PFCs) and Airport Improvement Program (AIP)

grants are the primary sources of federal funding for the industry and make up a signi�cant portion

of capital (including maintenance) budgets for major airports.2 PFCs were �rst authorized by

Congress in 1990 and are tied to projects to preserve and enhance safety, reduce noise pollution,

and provide opportunities for enhanced competition between carriers. The PFC ceiling, the max-

imum fee allowed by law, was increased from $1 to $4.50 between 1990 to 2001.3 AIP grants

are part of a federal program to help cover costs for approved capital projects aimed at increasing

safety and capacity as well as reducing environmental concerns.

A 2009 Airport Council International - North America (ACI-NA) study found that over 40% of

airports�capital funding is drawn from PFCs (21.7%) and AIP grants (22.2%).4 PFCs alone have

funded $50 billion dollars worth of airport capital investments since 1990, including the addition

and maintenance of passenger boarding gates and runways necessary to accommodate additional

entry. An additional 30% of airports� revenues come from bonds which are often backed with

future PFCs revenues. This substantial and stable revenue base allows airports to signi�cantly

lower the cost of borrowing and enjoy investment grade ratings. While the quasi-public status of

many airports make it di¢ cult to know their exact objectives, the strong dependence of airports�

revenues on the federal government�s control over the right to charge PFCs and AIP grant funding

would seem to imply strong incentives for compliance. All airports covered by AIR-21 are forced

to �le a Competition Plan with the FAA and the FAA, in turn, must certify the Plan as acceptable

in order for funding to be released. 5

Congress also made it clear that competition "plans" were to be implemented:

"The Secretary shall review any plan submitted...to ensure that it meets the require-
2PFCs are charged by airlines at the time a ticket is purchased and are then transferred directly to the appropriate

airports.
3This ceiling has not been increased since AIR-21 and is not indexed for in�ation.
4A copy of the presentation describing this report is available from the authors upon request.
5The 47 airports required by AIR-21 to �le a competition plan include: airport: ABQ, ANC, ATL, AUS, BNA,

BUR, BWI, CLE, CLT, CVG, DAL, DCA, DEN, DFW, DTW, EWR, HOU, IAD, IAH, JAX, LAS, MDW, MEM,
MIA, MKE, MSP, OAK, OGG, ONT, ORD, PBI, PHL, PHX, PIT, PVD, RNO, SAT, SDF, SFO, SJC, SJU, SLC,
SMF, and STL. The majority (43) of the airports were immediately "covered" by the retroactive nature of the
legislation. The only airport to be covered later was LAS in 2005.
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ments of this section, and shall review its implementation from time-to-time to ensure

that each covered airport successfully implements its plan.....The Secretary shall ensure

that gates and other facilities are made available at costs that are fair and reasonable

to air carriers at covered airports...where a "majority-in-interest clause" of a contract

or other agreement or arrangement inhibits the ability of the local airport authority to

provide or build new gates or other facilities."

In conversations with those at the FAA assigned to approve and ensure implementation of the

competition plans, we learned that approval was not a certainty for any plan. In many cases, the

plans were signi�cantly revised after discussions between the FAA, DOT, and airport authorities

to ensure the plans meet the goals of the legislation. After �ling of the initial competition plan,

airports were required to complete two updates (approximately 18 months apart) that demonstrate

signi�cant progress towards implementation of the competition plan. There are no mandatory

steps after the second update for covered airports, unless the airport denies a carrier access to

airport facilities or signi�cantly amends an existing leasing agreement or enacts a new master-

leasing agreement.

Section 155 continues:

"A competition plan under this subsection shall include information on the availabil-

ity of airport gates and related facilities, leasing and sub-leasing arrangements, gate-use

requirements, patterns of air service, gate-assignment policy, �nancial constraints, air-

port controls over air- and ground-side capacity, whether the airport intends to build or

acquire gates that would be used as common facilities, and airfare levels (as compiled by

the Department of Transportation) compared to other large airports."

The typical competition plan ranges in length from 75 to 100 pages and contain a vast amount

of information about the airports operations. Ciliberto and Williams (2009) use this information

to demonstrate that Congress� focus on equal access to sunk airport facilities is not completely

misguided. Using cross-sectional variation in gate allocations and leasing terms, Ciliberto and

Williams (2009) are able to explain an economically signi�cant fraction of the hub premium, with

this fraction being larger at congested airports. In this paper, we focus on measuring any reduction

in the hub premium resulting from coverage of an airport by AIR-21.

To identify the impact of AIR-21 on the hub premium, and fares more generally, we exploit the

sharp discontinuity in the relationship between coverage and concentration:
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".....�covered airport�means a commercial service airport....that has more than .25

percent of the total number of passenger boardings each year at all such airports.....at

which one or two air carriers control more than 50 percent of the passenger boardings."

These concentration thresholds create treatment and control groups, airports "very near" either

side of the discontinuity, which can be used to measure the impact of the legislation on competition.6

An airport is covered by the legislation if it quali�es in both the size and concentration dimensions.

In Section 4, we discuss how we exploit this feature of the legislation using a regression discontinuity

approach to measure a (local) treatment e¤ect, or impact from coverage at the concentration cuto¤.

Tables 1 and 2 show the show the two-�rm enplanement concentration and the fraction of total

domestic enplanement at covered and non-covered airports, respectively. While concentration and

size are positively correlated, it is far from a perfect relationship. For example, Newark (EWR) is

covered while New York (JFK) is not. Similarly, San Fransisco (SFO) is covered while Los Angeles

(LAX) is not.

2.2 Implementation of Competition Plans

The majority of the competition plans and subsequent updates are available on the respective

airport�s website. The details of each competition plan are too vast to review here. However,

a 2006 FAA report highlights speci�c actions taken by airports in a variety of areas to increase

competition.7

In terms of improving availability of gates and related facilities, airport responses included:

asserting control over under-utilized gates, designating Competition Access committees, adopt-

ing more entry-friendly leasing terms, removing speci�c access protections for signatory carriers,

streamlining a forced accommodation process. Speci�c actions included, Harts�eld-Jackson Atlanta

International Airport (ATL) invoking recapture authority to convert a leased gate to common-use,

Cincinnati-Northern Kentucky International Airport (CVG) negotiating conversion of exclusively

leased gates to common and preferentially leased gates, and San Francisco International Airport

(SFO) invoking a forced accommodation clause to ensure that temporary needs of new entrant

airlines were met. In terms of subleasing agreements, covered airports also began to assert more
6As with any analysis examining treatment e¤ects, the treatment must be exogenously applied. In the context of

our study, endogeneity of treatment might arise if airports are able to lower concentration of enplanements and/or
total enplanements to avoid being covered by the legislation. In Section 4.2.2, we show that there is little or no
support for the claim that enplanements were strategically manipulated by carriers with the intention of avoiding
coverage.

7This report is available through the FAA website at:
http://www.faa.gov/airports/aip/guidance_letters/media/pgl_04_08b_competition_highlights_2006.pdf
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control and oversight over sublease fees, terms, and conditions, impose sublease caps on administra-

tive fees, review and/or pre-approve subleases, and notify carriers of gates available for subleases.

Improving access to passenger boarding gates were clearly the focus of a large proportion of

each competition plan. However, covered airports put forth e¤ort in a variety of other ways to

increase competition. For example, both Charlotte Douglas International Airport (CLT) and San

Antonio International Airport (SAT) implemented a marketing plan to attract additional low fare

carrier service. In order to make more e¢ cient use of existing common-use facilities, ATL now

enforces maximum turnaround times. Oakland International Airport (OAK) installed common use

ticketing equipment (CUTE) at ticket counters and gates so that all airlines operating there will use

identical gate check-in and gate CUTE equipment, providing maximum �exibility in assignment of

gates. CLT reduced landing fees for non-signatory and new entrant carriers to the same level as

signatory airlines. Nearly all covered airports implemented measures to record gate utilization,

impose minimum-use standards, and notify airlines of gate availability in order to make more

e¢ cient use of existing gates. Many airports also amended majority-in-interest (MII) agreements

to exempt capital projects necessary for competition from MII votes.

3 Data

3.1 Sources

The majority of our data for this study is taken from the Data Bank 1B (DB1B) of the U.S.

Department of Transportation�s Origin and Destination Survey for the years 1993 through 2008.

The DB1B data is a 10 percent random sample of all domestic itineraries. The unit of observation

is the passenger level. The data contains information on the ticketing and operating carrier, details

of any connections made by the passenger, and the fare paid for the itinerary used by the passenger.

Following Evans and Kessides (1994), we consider round-trip tickets to be two equally priced one-

way tickets and drop any inter-line tickets. Due to key punch errors or redemption of frequent �ier

miles, there are some unusually large and small ticket prices in the DB1B data. For this reason,

we drop any fares greater than $2500 and less than $25 and any itineraries.8 In addition, we drop

itineraries with more than 6 coupons (5 connections) for roundtrip itineraries and 3 coupons (two

connections) for one-way itineraries. Following Borenstein (1989), we de�ne a market as travel

between a unique airport-pair.

8We also drop all itineraries the for which the DOT questions the credibility of the reported fare, as indicated by
the tktdollarcred variable.

9



We also collected the enplanement data used by the FAA to determine coverage by AIR-21.

There are signi�cant di¤erences between this data and the enplanement data that is publicly avail-

able through the DOT�s T100 database. These di¤erences arise because the T100 data does not

include on-demand (e.g. charter �ights) and in-transit (e.g. plane stops to refuel does not de-

plane) passengers which are a signi�cant source of enplanements at many airports. The di¤erences

are signi�cant enough that the determination of coverage for a handful of airports would change

depending on the source of enplanement data.

Our �nal source of data is a survey conducted jointly with the ACI-NA. The survey, completed

by 47% of all medium and large hubs, focused on gathering information on carrier-airport speci�c

leasing agreements for boarding gates. For each airport, we observe the total number of gates,

number of gates leased by each carrier on an exclusive and preferential basis, and the number of

gates reserved for common-use by the airport authority.

3.2 Descriptive Statistics

We summarize the FAA and survey data for medium and large hubs, airports enplaning more

than 0.25% of all enplanements at primary airports in the U.S., in Tables 1 and 2. Column 1

in Tables 1 and 2 list the covered and non-covered airports, respectively. The second column of

Table 1 lists the year in which each airport was �rst covered by the legislation. Due to the lag in

data collection, coverage in any particular year is determined by enplanement data from two years

earlier. For example, the set of airports �rst covered by the legislation in 2000 was determined

using enplanement data from 1998. This is important for our purposes, since it would be very

unlikely that an airline could perfectly foresee the details of the legislation two years in advance and

manipulate enplanements to avoid coverage of a particular airport. Of covered airports, LAS was

the only airport not covered retroactively by the legislation. In Section 4.2.2, we test whether the

lack of a signi�cant number of airports �rst covered in later years is due to potential manipulation

of enplanements by carriers.

The next 3 columns of both Table 1 and 2 reports; the fraction of all US enplanements performed

at the airport, the mean share of the top-2 carriers from 1998 to 2006, and the maximum share of

the top-2 carriers from 1998 to 2006 (determines whether airport is covered from 2000 to 2008).

The maximum of the top-2 carriers�shares during this period serves as the predictor of coverage by

the legislation. Thus, for each airport in Table 1 (2) this variable is greater (less) than .5. It is also

important to note that coverage is not a proxy for the size of the airport. Examining the means
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at the bottom of Tables 1 and 2 for the fraction of all US enplanements, there is little di¤erence in

size between covered and non-covered airports. This is important as it alleviates some concerns

over the homogeneity of the treatment and control groups in our analysis.

The �nal columns of Tables 1 and 2 report the fraction of gates reserved by the airport authority

for common-use, fraction leased on a preferential or exclusive basis by legacy carriers, and fraction

leased on a preferential or exclusive basis by low-cost carriers9. Examining the respective means in

2001 and 2008 of these variables at the bottom of Tables 1 and 2, there is little evidence that gates

moved di¤erentially at covered and non-covered airports. However, the large amount of missing

data makes drawing any strong conclusions di¢ cult. The lack of a signi�cant movement in the

allocation of gates for most airports from 2001 to 2008 suggests that the FAA and DOT largely

followed the recommendations put forth by GAO (2001). GAO (2001) cautioned that AIR-21

should not be used as a means to force the divestiture of assets (e.g. boarding gates) from dominant

carriers at an airport for two reasons. First, the reallocation of assets among competing carriers

may have little to no bene�t if the gates were not allocated to a low-cost competitor, see Brueckner

(2010) and Ciliberto and Tamer (2009) for strong support for this statement. Second, service

in smaller markets would likely be the �rst a¤ected by divestiture of a dominant carriers assets.

This is intuitive, we expect a �rm to eliminate or cut service in the least pro�table markets and

signi�cant economies of density in the industry, see Brueckner (1994), ensures a strong correlation

between pro�tability and size. The lack of a signi�cant di¤erence in the reallocation of gates among

carriers at covered and non-covered airports foreshadows our �nding that coverage by AIR-21 has

little e¤ect on the network of destinations o¤ered out of an airport. It also suggests that if we are

to �nd a signi�cant e¤ect from coverage by AIR-21 on other dimensions of service, it is due to more

e¢ cient use of existing assets (the focus of most competition plans) rather than a redistribution of

assets among carriers.

Table 3 summarizes the variables we construct from the DB1B data and other sources, before

and after AIR-21, separately for the set of covered and non-covered airports. To motivate our

approach in Section 4 and emphasize the importance of controlling for trends in the data prior to

coverage by AIR-21, we summarize the �rst di¤erence for each variable. More precisely, for each

variable, the di¤erence before AIR-21 is calculated as the level in the �rst quarter of 2000 minus

the level in the �rst quarter of 1993 while the di¤erence after AIR-21 is calculated as the level in

9Low-cost carriers include B6, FL, F9, G4, J7, KP, KN, N7, NJ, NK, P9, QQ, SY, SX, TZ, U5, VX, W7, W9,
WN, WV, XP, and ZA.
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the �rst quarter of 2008 minus the level in the �rst quarter of 2001.

The majority of our variables are calculated at the market-carrier level, where we classify a

carrier�s service into two types, nonstop or connecting. For each type of service in a market,

Avg:Fare is calculated as the average fare across passengers choosing a type of service. 20th Pct.

Fare, 50th Pct. Fare, 80th Pct. Fare are constructed similarly for di¤erent quantiles of the fare

distribution for each carrier, market and type of service. Table 3 shows there has been a signi�cant

downward trend in fares in both covered and non-covered markets. However, prior to AIR-21 fares

were falling less rapidly at covered airports, while after AIR-21, fares fell more rapidly at covered

airports. These di¤erential trends are strongest in the upper quantiles of the fare distribution.

In Section 4, we attempt to identify a causal relationship between coverage by AIR-21 and these

di¤erential trends in fares, while controlling for a variety of time-varying covariates. Nonstop is

an indicator for whether or not a carrier�s service is nonstop. DistanceTraveled is the average

number of miles traveled by passengers purchasing a type of service from a carrier in a particular

market. For nonstop service, DistanceTraveled is equal to the direct distance between the market

endpoints. For connecting service, DistanceTraveled is strictly greater than the direct distance.

FractionRoutes is the proportion of all the destinations o¤ered out of an originating airport that a

carrier o¤ers some type of service on. This variable is intended to measure the extent of a carrier�s

network out of the originating airport.

From the DB1B data, we also construct a number of market-speci�c variables. Our measure

of the hub premium in a given market is calculated as the di¤erence between the fares charged

for a particular type of service by the carriers with the largest share of enplanements at the origin

and destination airports and the average of fares charged by all other carriers. For example, in

the ATL (Atlanta Harts�eld) to CLE (Cleveland Hopkins), Delta and Continental are regarded as

the dominant carriers (those with the largest share of enplanements), and Avg: Hub Premium is

calculated as the di¤erence between the average fare charged by Delta and Continental and the

average fare charged by all other carriers. The hub premium measures for the di¤erent quantiles

of the fare distribution are constructed similarly, replacing the average fare with the appropriate

quantile. These variables are summarized in Table 3 and suggest that coverage is associated with

a large decline in the hub premium. In addition, we construct two measures of competition in

a market, Lcc Penetration and Number F irms. Lcc Penetration, summarized in Table 3, is

an indicator for whether or not a low-cost carrier is present in the market. As has been well

documented, low-cost carrier penetration has been steadily increasing over the previous decade and
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typically results in intense price competition. In Section 4, and as the descriptives suggest, we

show that in markets where one or both endpoint airports are covered by AIR-21, the low-cost

penetration rate is signi�cantly higher as a result of coverage. Number F irms is the total number

of �rms serving the market and is a commonly used measure of competition in the Industrial

Organization literature, see Berry (1992) and Ciliberto and Tamer (2009).

We supplement the DB1B data with information on the frequency of departures from the DOT�s

T100 database and the frequency and severity of delays from the DOT�s Airline On-Time Perfor-

mance database. From these data, we construct two variables. Departures is calculated as the

number of departures per quarter by a carrier on a particular �ight segment and %OnTime is

calculated as the proportion of �ights that arrive 15 or more minutes late. In addition to those

variables we construct from the DOT sources, we also collected data on both population and per-

capita income for each MSA from the Bureau of Economic Analysis to serve as controls throughout

our analysis.

4 Empirical Analysis

Our �nal sample includes data from all airports classi�ed as a medium or large hub by the FAA

(enplaning at least 0.25% of total domestic enplanements), including highly concentrated hubs, such

as Minneapolis and Dallas. A legitimate concern here is that these highly concentrated airports

are signi�cantly di¤erent from the control group (non-covered airports) in both observable and

unobservable ways. For example, since airport presence is known to be an important factor in

airline quality, cost, and price competition it is troubling that we have no airports in the control

group that are comparable in terms of presence measures. Using these observations with limited

covariate overlap means that estimates are forced to rely heavily on our linear speci�cation for

identi�cation. Similarly, unobserved airport features, such a geographic location, may a¤ect the

network economies of an airport leading it to be both highly concentrated and also have di¤erent

competitive mechanics than less concentrated airports. The results from Berry and Jia also give

an important example of the interaction of unobservable changes in consumer preferences with

observable airport presence di¤erences.

To get around these problems we exploit AIR-21�s sharp discontinuity at the 50% two carrier

enplanement level. Broadly, we assume that the distribution of market level, our level of observation,

unobservables changes smoothly across the policy discontinuity. That is, the unobservable features

of a randomly chosen market just below the cuto¤ has the same distribution as the unobservable
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features of a randomly chosen market just above the cuto¤.

With this identi�cation strategy in mind we estimate the local average e¤ects of the law using

two approaches. First, we proceed in the spirit of Black (1999) and estimate a series of di¤erence

in di¤erence regressions using only those observations in progressively smaller windows around the

concentration cuto¤s determining coverage. Figure 1 demonstrates this approach. We begin by

utilizing the complete sample and then examine the subset of markets within 0.1 of the coverage

cuto¤s. Using this �exible approach, we identify market outcomes that are impacted by coverage in

a statistically and economically signi�cant manner. This approach also allows us to use covariates

to control for observable di¤erences in airports and markets. This is potentially useful because,

while we have a large number of markets, these markets are drawn from a relatively small number

of airports, which may create a small sample problem even if our identifying assumption is correct.

For example, New York (JFK) is always included as a control airport and serves markets that are

larger, richer and more distant on average than those in the treatment group and due to the large

number of markets originating or terminating at the airport it represents a nontrivial fraction of

the sample.

In the second step, we employ a true regression-discontinuity approach and allow the window

width to collapse to zero. We �nd that our main conclusions from the �rst step are robust.

In addition, the regression-discontinuity approach allows us to examine variation in the e¤ect of

coverage along the cuto¤s. This is important as we are able to identify particularly in�uential steps

taken by airports, including those in the control group (ie. JFK), with regards to gate availability

for low-cost carriers.

4.1 Window Regressions

Table 3 is suggestive of a signi�cant decrease in equilibrium fares, at all levels of the distribution,

as a result of coverage by AIR-21. In this section, we examine the robustness of this descriptive

evidence.

4.1.1 Fares

Following Black (1999), we begin under the assumption that coverage is exogenous and homogenous

in its e¤ect on fares by estimating the following regression:

�t log(avgijmt) = �txijmt� +�tzmt
 +  Nonstopijmt + �11[1 coverm]+�21[2 coverm]+ (1)

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+�t�ijmt,
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using the complete sample. The dependent variable is the second di¤erence of the logarithm of

average fares paid by passengers who purchased product j (nonstop or connecting service) from

carrier i in market m, where the second di¤erence is constructed identically to the descriptives

in Table 3. The vectors �xijmt and �zmt include the second di¤erences of FractionRoutes,

DistanceTraveled, and the population and per-capita income at the market endpoint airports.10

In addition, we include an indicator for nonstop service to capture the possibility that fares for

nonstop service changed di¤erentially relative to connecting service.

To capture the impact of coverage by AIR-21 on the time-path of fares, we include indicators for

whether one or both of a market�s endpoints were covered, 1[1 coverm] and 1[2 coverm], respectively.

Under the assumption that coverage is exogenous and homogenous in its e¤ect on fares, �1 and �2

measure the causal e¤ect on the dependent variable in a market with one and two endpoints covered,

respectively. In order to relax these assumptions and ensure a causal interpretation of �1 and �2,

we estimate the same regression on the subsamples of markets in progressively smaller windows

around the coverage cuto¤s. For such an approach to give consistent estimates, a signi�cant portion

of the data must be located within these windows. Figure 2 gives the number of observations for

each combination of the predictors of treatment. The histogram shows that the majority of the

data is in fact immediately around the coverage cuto¤s. This is of particular importance as we

shrink the window further in the regression-discontinuity analysis.

The estimates of Equation 1 are presented in Columns 1, 3, and 5 of Table 4. Robust standard

errors are calculated by clustering at the market level to account for the interdependence of observa-

tions within a market. Our estimates of �1 and �2 are negative and statistically and economically

signi�cant. From Column 5, where we can reasonably interpret our coe¢ cients in a causal fashion,

the results indicate that coverage of a single endpoint by AIR-21 results in a approximately a 10%

reduction in average fares, while coverage of both endpoints results in approximately a 20% change

in average fares. This result is robust across di¤erent window widths, suggesting that unobservable

di¤erences across airports that may drive selection into the treatment and control groups are not

signi�cant. The remaining results in Columns 5 are straightforward to interpret, we �nd that

fares for nonstop service declined more rapidly than those for connecting service, carriers with a

larger market presence are able to charge higher fares, and less direct connections are more costly

to provide. These results are robust across subsamples.

10See Berry (1990), BCS (2006), and Berry and Jia (2010) for a discussion of the impact of the size of a carrier�s
network on demand for that carrier�s services.
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To determine what role increased competition played in the decline in fares in those markets

with one or both endpoints covered by AIR-21, we augment and re-estimate Equation 1. More

speci�cally, we add a very similar set of time-varying regressors to those employed by Borenstein

and Rose (1994) to control for any changes in the competitive environment in a market. The

set of controls includes: airport-level enplanement her�ndahl indices for both endpoints, a market-

level enplanement her�ndahl indices, market shares for each carrier, an indicator for whether the

carrier o¤ers both nonstop and connecting service, the number of competitors in the market, and

an indicator for whether or not a low-cost carriers serves the market. One can then interpret

changes in the estimates of �1 and �2, when the controls are included, as evidence that variation

in the competitive explains some portion of estimated e¤ect from coverage. The results from

these regressions, are presented in Columns 2, 4, and 6 of Table 4. The results suggest that these

controls are able to explain between 40% and 50%, depending on the window width, of the e¤ect

from coverage we estimated in Columns 1, 3 and 5. For conciseness, we present only the estimates

for the coe¢ cients on LccPenetration and NumberF irms.11 We �nd no signi�cant change in

fares as a result of the change in the number of �rms. However, we �nd that the presence of a

low-cost carrier does dramatically reduces fares.

Table 5 presents our results when we re-estimate Equation 1, replacing the dependent variable

with various quantiles of the fare distribution. For conciseness and due to the similarity of the

estimates, we present the estimates for the subset of coe¢ cients of particular interest. Again,

Columns 2, 4, and 6 (1, 3, and 5) present the our estimates with(out) the Borenstein and Rose

(1994) controls. Consistent with the descriptive evidence in Table 3, we �nd that the estimated

decline in fares resulting from coverage by AIR-21 is increasing in the fare quantile. Column 5 shows

that the 20% fare declined approximately 2% (4%) in markets when one (both) endpoint(s) was

(were) covered, compared to 7% (13%) and 13% (24%) for the median and 80% fares, respectively.

We also �nd additional supporting evidence for our conclusions reached from the results in Table 4,

in particular, that low-cost penetration drove a signi�cant portion of the decline in average fares in

covered markets. Low-cost carriers typically target price-sensetive consumers when setting fares.

As a result, we would expect to observe that the Borenstein and Rose (1994) controls, speci�cally

the low-cost penetration indicator, would explain a larger proportion of the estimated e¤ect from

coverage for lower fare quantiles. Column 6 of Table 5 shows that inclusion of these controls

completely explains away the coverage e¤ect for the 20% fares, while explaining less than half of

11The remainder of the estimates are available from the authors upon request.
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the coerage e¤ect for the 80% fare.

The last measure of the mandates�impact on fares we look at is the e¤ect on the hub premium.

We measure the hub premium as the di¤erence in the logarithm of the fare charged in a market by

the carrier with the largest presence at that airport with that of its competitors. These premia

range from roughly 15-40% in 2000 and, on average, are sharply increasing in the concentration

of an airport. Table 6 reports the results of the regressions. The results are consistent across

di¤erent window widths. If we focus on Column 3 of Table 6, the narrowest window, we �nd that

these premia have fallen signi�cantly faster in markets with one or both endpoints covered. This

decline is larger for the upper tail of the fare distribution. More precisely, the premium on the 20%

fare declined (9%) 15% in markets with one (both) endpoint(s) covered, while the hub premium on

the 80% fare declined (12%) 28% in markets with one (both) endpoint(s) covered. The declines in

the hub premium across the entire fare distribution suggests that AIR-21 was successful in reducing

operating practices that gave an advantage to dominant carriers.

4.1.2 Quality

In addition to fares, many other characteristics of service may change as the result of coverage by

AIR-21. GAO (2001) suggests that granting authority to regulators to force dominant carriers at

certain airports to divest critical assets (e.g. boarding gates) introduces uncertainty and can lead

to disinvestment in an airport. In particular, GAO (2001) suggests that smaller markets would be

the �rst to be a¤ected, possibly losing service altogether. If fare reductions are accompanied by

diminished service quality, then the welfare consequences of coverage is ambiguous. We focus our

attention on four critical dimensions of service quality, the availability of nonstop service (percentage

of passengers �ying nonstop with a carrier in a market), frequency of service (number of departures

in a quarter by a carrier on nonstop �ight segments), the on-time performance of carriers (percentage

of �ights arriving 15 or more minutes late by a carrier on nonstop �ight segments), and the number

of markets served by a carrier out of an airport (number of destinations served on a connecting or

nonstop basis by a carrier out of an airport).12

To estimate the impact of coverage on the availability of nonstop service, we estimate the

12For a detailed discussion of those dimensions of service quality that have been shown to be the most important
to consumers, see Berry (1990), Berry, Carnall and Spiller (2006), and Berry and Jia (2010).
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following regression::

�tPct_Nonstopimt = �tzmt
 + �11[1 coverm]+�21[2 coverm]+

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+�t�imt

where �Pct_Nonstopimt denotes the second di¤erence, constructed identically to the dependent

variable in Equation 1, in the fraction of passengers �ying nonstop in market m. To examine the

impact of the coverage on the frequency of service and severity of delays on any nonstop �ight

segment s, we estimating the following regressions:

�t log(Departuresist) = �tzst
 + �11[1 coverm]+�21[2 coverm]+

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+�t�ist

and

�t log(%OnTimeist) = �tzst
 + �11[1 coverm]+�21[2 coverm]+

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+�t�ist

, respectively, where Departures is the number of departures made by carrier i and %OnTime is

the fraction of �ights by carrier i that arrive 15 or more minutes late. Finally, in order to capture

any potential divestiture by carriers in an airport resulting from coverage by AIR-21, we estimate

the following regression:

�t log(Num_Routes)iat = �tzat
 + �11[covera]+�1[1 covera]*1[AIR-21t]+�t�iat

where the unit of observation is at the carrier-airport (a) level.

The results of these regressions are presented in Table 8. Robust standard errors are calculated

by clustering at either the market, nonstop segment, or airport level to account for the interde-

pendence of observations within the respective group. With the exception of delays, we �nd no

signi�cant declines in the quality of service. With regards to delays, we �nd a statistically signi�-

cant increase in the proportion of �ights arriving 15 or more minutes late. This is not particularly

surprising given the results of Mayer and Sinai (2003) which show that carriers controlling the

majority of the operations at an airport have an incentive to internalize congestion related delays.

This result does make make conclusions regarding improvements in consumer welfare as a result

of the legislation less clear. However, it seems very unlikely that an increase in congestion related
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delays, which tend to be mild in length relative to weather related delays, would completely o¤set

a 20% reduction in the average fare. It also suggests that the lobbying e¤orts of the ACI-NA and

other trade organizations to raise PFC ceilings (or at least adjust the current ceiling for in�ation)

in order to expand airport facilities at the most congested airports is not misguided.

4.1.3 Competition

The results in Tables 4 and 5 suggest that increased competition, particular by low-cost carriers,

explains a signi�cant portion of the decline in fares in covered markets. However, it is not clear

whether this increase in competition is driven by coverage. To test whether the steps taken by

covered airports had a signi�cant impact on the number and identify of �rms, we estimate two

regressions:

�t log(Num_Firmsmt) = �tzmt
 + �11[1 coverm]+�21[2 coverm]+

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+��mt

and

�t log(LccPenetrationmt) = �tzmt
 + �11[1 coverm]+�21[2 coverm]+

�11[1 coverm]*1[AIR-21t]+�21[2 coverm]*1[AIR-21t]+��mt

where the dependent variables in these regressions are the number of �rms serving the market and

an indicator for whether a low-cost carrier is present, respectively. Ciliberto and Tamer (2009) and

Brueckner (2010) provide useful discussions of the intense level of competition that results from

the presence of a low-cost carrier.

The estimates of the coe¢ cients on the coverage indicators are presented in Table 8. Robust

standard errors are calculated by clustering at the market level to account for the interdependence

of observations within a market. We �nd that for markets with one (both) endpoint covered

there is a 0.10 (0.43) increase in the probability of a low-cost carrier serving the market. This

corroborates our �nding that variation in the low-cost indicator played a major role in explaining

between 40% and 50% of the reduction in fares as a result of coverage. With regards to the number

of �rms, we �nd no statistically signi�cant e¤ect from coverage.

4.2 Regression Discontinuity Design

As discussed above there are many strengths associated with the approach of Black (1999). The

results, however, rely on a number assumptions, including homogeneity and exogeneity of coverage,
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to estimate the e¤ects of coverage by AIR-21. These assumptions can be troublesome because

more concentrated airports (those with two carriers enplaning more than 50% of the passengers)

are treated while less concentrated airports are not. Therefore, any covariation between fares

and concentration after the �rst quarter of 2001 (the time of the treatment) would be empirically

indistinguishable from a treatment e¤ect due to AIR-21. While these assumptions are di¢ cult

to formally test, it is possible to measure a local-average treatment e¤ect (LATE) around the

treatment cuto¤ in the absence of these assumptions using a regression-discontinuity approach.

Examining treatment and control groups "very near" either side of the treatment cuto¤ allows us

to disentangle those movements in fares that are a result of coverage from those that are simply

due to correlation between fares and concentration. We discuss our approach below.13

Estimation of the LATEs here is complicated by the two dimensional predictor vector. Instead

of a point, our LATE estimates are now functions of the market endpoints�concentrations. Figure

1 makes this clear. Our task is essentially to estimate a nonparametric surface in each quadrant

of Figure 1, then look for evidence of statistically signi�cant breaks along the cuto¤s determining

coverage.

Let Yijmt(o; d); o; d 2 f0; 1g denote the outcome variable when the origin treatment status is o

and the destination treatment status is d. For each observation, we get to observe one of the four

possible values of the variable. When only one endpoint is treated we de�ne the LATEs as:

�1t;orig(P
dest
m ) = E[Yimt(1; 0)� Yimt(0; 0)jP origm = :5P destm < :5]

�1t;dest(P
orig
m ) = E[Yimt(0; 1)� Yimt(0; 0)jP origm < :5P destm = :5]

and when both endpoints are treated:

�2t;orig(P
dest
m ) = E[Yimt(1; 1)� Yimt(0; 1)jP origm = :5P destm > :5]

�2t;dest(P
orig
m ) = E[Yimt(1; 1)� Yimt(1; 0)jP origm > :5P destm = :5]

Our de�nition of treatment e¤ects is motivated by several considerations. First, are identi�-

cation considerations. Our data is lumpy in the sense that the predictors of coverage do no vary

within an airport, so for a su¢ ciently small window around a given concentration level all the

markets in that window will be drawn from a single airport. For example, consider Dallas-Fort

13See Imbens and Lemieux (2007) for an introduction to RDD and Hahn, Todd, and Van Der Klaauw (2001) for a
detailed discussion of identi�cation of treatment e¤ects within an RDD framework.
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Worth (DFW) which has a predictor value of around 0.8, well away from the coverage cuto¤. The

estimate of �2t;dest(0:8) compares the path of fares over the period since the passage of AIR-21 in

markets originating at DFW and terminating at airports just below the coverage cuto¤ to those

markets originating at DFW and terminating at airports just above the coverage cuto¤. This

approach allows us to control, to some extent, for �xed unobserved factors associated with given

airports that are potentially distant from the coverage cuto¤s. Second, in contrast to the window

regressions, allowing the treatment e¤ect to vary along the treatment cuto¤ in addition to the local

linear regression implementation, discussed below, we are able to estimate the e¤ect of coverage

more �exibly. Figure 2 shows the large number of observations near the treatment cuto¤, making

such a �exible approach feasible. Moreover, Berry and Jia (2009) suggest there is direct evidence

that the treatment e¤ects may di¤er in airport concentration. Of course, the interpretation of our

estimates as a �exible interactive e¤ect is invalid if there is selection inherent in conditioning on the

away-from-the-boundary-airport concentration level, which is likely given that a single airport will

dominate any small bin. However, even in the presence of such selection, we can still interpret the

estimates as an estimate of LATE heterogeneity where the heterogeneity corresponds to interaction

with whatever is driving selection.

Our major task in estimation is to adapt the basic regression discontinuity framework to account

for a two dimensional predictor vector. This requires �exibly estimating a two dimensional surface

that relates Yijmt to fP origm ; P destm g. Local linear estimators are particularly attractive for these

type of problems, see Imbens and Lemieux (2007). At boundary points of the support for the

predictor vector, local linear estimators do not su¤er from the inherent bias of kernel estimators

and achieve faster rates of convergence. In addition, local linear estimators are easily extended to

multiple dimensions. Fan and Gijbels (1996) provides a detailed discussion of the advantages of

local-polynomial modeling.14

To demonstrate our approach, suppose we are estimating �1t;orig(P
dest
m ). This requires us to

estimate the conditional expectation, E[Yimt(1; 0)�Yimt(0; 0)jP origm = :5P destm < :5], for each P destm <

:5. For a particular value of P destm , P
dest
, the estimator is de�ned as

�1t;orig(P
dest
m ) = b�c+ � b�c�

14The results are nearly identical when we employ a second-order polynomial.
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where

min
f�c� ;�c�orig ;�c�destg

X
m:

fP origm <:5;P destm <:5g

[Yimt(0; 0)��c�0 ��c�orig(P
orig
m � :5)��c�dest(P

dest
m �P dest)]2w�m (2)

and

min
fb�c+;�c+orig ;�c+destg

X
fP origm �:5;P destm <:5g

[Yimt(1; 0)��c+0 ��c+orig(P
orig
m � :5)��c+dest(P

dest
m �P dest)]2w+m (3)

The weights, w+m, are calculated as

w+m =

�

�
P origm �corig

horig
; P

dest
m �P dest

hdest

�
P
j: P origj �corig ;P destj <cdest

�

�
P origj �corig

horig
;
P destj �P dest

hdest

�
where �(�) is the bivariate standard normal pdf and horig and hdest are bandwidths. The weights,

w�m, are de�ned similarly. This process is then repeated for a range of values for P
dest
m to get an

estimate of the treatment e¤ect, �1t;orig(P
dest
m ), along the entire treatment cuto¤. The estimators

of �1t;dest(P
orig
m ), �2t;dest(P

orig
m ), and �2t;dest(P

dest
m ) are de�ned similarly.

To simplify the choice of bandwidth in multiple dimensions, we transform the data prior to

estimation to have mean zero and identify covariance matrix, see Pagan and Ullah (1999). This

allows us to check the sensitivity of our results by varying a single factor of proportionality, k, such

that both horig and hdest are equal to

h = kN� 1
4+d

where N is the number of observations in the quadrant of interest.15 We �nd our results to be

fairly insensetive to the choice of bandwidth.16 The results presented in Figures 3, 4, and 5 and

Tables 9 and 10 set k = 3, which allows for a great deal of �exibility, as we will discuss below, yet

adequately smooths the surface.

Calculating asymptotically valid standard errors for our estimates is a nontrivial computational

exercise for a number of reasons. First, we are estimating a nonparametric surface in multiple
15 In Equations 2 and 3,

N+ =
X
m

1[P origm < :5; P destm < :5]

and
N� =

X
m

1[P origm � :5; P destm < :5]

, respectively.
16We also explored cross-validation methods for choosing k, but we �nd it performs very poorly in our application

by suggesting a bandwidth near zero that over�ts the data. A few aspects of our application and the method;
interdependence of observations, multiple dimensional predictor vector, and the slow convergence rate of the cross-
validation method, make this a unsurprising result.
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dimensions. Second, we are most interested in the estimates of this nonparametric surface at the

coverage cuto¤s. Finally, we must account for the dependence in our data resulting from markets

having endpoints in common. For these reasons, we appeal to the resampling with dependent data

literature to calculate asymptotically valid point-wise standard errors. For a detailed treatment of

resampling techniques for dependent data, see Lahiri (2003). The clear dependence structure in our

data makes application of these techniques straight-forward. We treat the sample as representative

of the population and compute jack-knife standard errors where we leave out blocks of markets with

a common endpoint. In particular, for each airport we �nd all markets with a common endpoint

and drop them from the sample. Using the resulting sub-sample, we then reestimate the model.

We repeat this process for each market and use the distribution of the estimates across subsamples

to infer moments of the asymptotic distribution of our treatment e¤ects.

4.2.1 Results

The results and conclusions of our RDD analysis are consistent and nearly identical to our �ndings

using the window-regression approach. For this reason, we focus our the discussion of our RDD

results on the impact of coverage on fares and low-cost competition.

Figure 3 and Table 9 presents the results of our RDD analysis of fares. In examining fares, we

follow a very similar approach to the window regressions. The only di¤erence is that we examine

the �rst di¤erence in fares within a carrier, market and type of service (nonstop and connecting)

since the passage of AIR-21. Precisely, we take the di¤erence in the logarithm of fares in the

�rst quarter of 2008 and 2001 to construct our dependent variables. This serves as a robustness

check on our conclusions from the window regressions, ensuring that any di¤erential trends in fares

prior to the passage of AIR-21 are not driving our �ndings above. We �nd this not to be the

case, which is important as it provides some validation for our approach to identifying the e¤ect of

coverage. To summarize the results, we again �nd that the decline in fares resulting from coverage

is statistically and economically signi�cant. We also again �nd that the decline is increasing in

the quantiles of the fare distribution. These are clearly evident in the surfaces plotted in Figure 3

and the statistical signi�cance of the point estimates in Table 9.

As discussed above, one advantage of employing a true RDD approach in our application is

the opportunity to look for heterogeneity in the e¤ect of coverage. This heterogeneity is obvious

as one looks at the point estimates of the e¤ect from coverage on average fares in the top-left

corner of Table 9. Looking down the second column of Table 9, we �nd a 10% reduction in
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fares in markets where the destination is covered and the origin has a two-�rm concentration of

0.4 and only a 3.7% reduction in fares in markets where the destination is covered and the origin

has a two-�rm concentration of .5. This result would not be interesting if it were not for the

statistical signi�cance of both estimates, since the latter estimate may su¤er from the "curse of

dimensionality". More precisely, when estimating a surface non-parametrically, the number of

observations falling in any locally de�ned ball falls exponentially in the number of explanatory

variables. This problem is exacerbated when attempting to estimate the surface at the boundary

of the support for the explanatory variables. Thus, at �rst glance, this appears to be a discouraging

result that is consistent across all quantiles of the fare distribution.

However, in this case, our estimates of the e¤ect of coverage on low-cost carrier penetration

provide a clear explanation for the heterogeneity in the e¤ect of coverage on faresewe observe along

the coverage cuto¤s. Figure 4 and Table 10 report these results. In the top half of Figure 4, we plot

the surface which we use to compute the estimates of the coverage e¤ect on low-cost penetration.

These surfaces are relatively smooth, with one exception, in which we observe a signi�cant jump in

the entry behavior of low-cost carriers. The di¤erence in low-cost entry behavior over this portion

of the predictors�support is large enough to generate a negative and statistically signi�cant e¤ect

on low-cost entry behavior, the top-left portion of Table 10. This suggests that at least one airport

not covered by AIR-21, near the coverage cuto¤ observed substantial low-cost entry from 2001 to

2008. By examining Table 3, we identi�ed those airports near the cuto¤ and then re-estimated the

surface excluding each airport, one at a time. Through this process, we identi�ed JFK as the driver

of this �nding. The estimates of the e¤ect of coverage on low-cost penetration, excluding JFK,

are presented in the bottom half of Figure 4 and Table 10. After JFK�s exclusion, the e¤ect of

coverage on low-cost carrier penetration is now strictly positive along each portion of the treatment

cuto¤. This is not surprising, as JFK provided a low-cost carrier, JetBlue, unprecedented access

to airport facilities throughout the period since the passage of AIR-21.

Collectively, the results of our RDD analysis provide additional insights to the �ndings gleaned

from the window regressions. First, the RDD results show that ignoring heterogeneity in the

treatment cuto¤ is important. The JFK example demonstrates this idea perfectly. By assuming a

homogenous e¤ect from coverage on low-cost penetration, one actually infers the incorrect sign on

the e¤ect of low-cost entry over some range of the support for the predictors and and severely biased

estimates along the remainder of the coverage cuto¤s. Second, the ability of the RDD analysis to

be able to essentially identify individual airport speci�c treatment e¤ects, provides further support
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for our conclusion that entry by low-cost carriers was the driving force behind the large declines in

fares in markets with one or both endpoints covered.

4.2.2 Regression-Discontinuity Validity

Above, we have discussed why we are comfortable assuming there are no (local) selection e¤ects

associated with AIR-21. The validity of our identifying assumption also requires there be no

problem with incentive e¤ects. That is, that carriers do not manipulate enplanement levels to

avoid treatment. There are a number of reasons why we believe this is a valid assumption. First,

coverage is determined at the airport-level, not the airline-level. Therefore, no individual airline

can manipulate enplanements and entirely determine coverage, rather it would take a cooperative

e¤ort on the part of airlines serving the airport. Second, coverage in each year was determined using

FAA enplanement data from two years earlier. An airline(s) attempting to avoid coverage by the

legislation would have been required to forsee the exact details of the legislation (including the exact

enplanement cuto¤) two years in advance of its passage. Finally, manipulating enplanements at

any one airport, particularly a large airport, has signi�cant costs to an airline in terms of adjusting

tra¢ c in its entire network.

Extending formal tests to check for the strategic manipulation of enplanements, see McCrary

(2007), with a two-dimensional predictor vector is not immediately clear. However, we develop an

informal test for manipulation of the predictors of treatment and provide evidence that little or no

strategic manipulation of enplanements occurred. The test is based on the simple observation that

those airports just below the coverage cuto¤ in which one carrier controls a larger proportion of the

tra¢ c will be most vunerable to strategic manipulation of enplanements. For example, consider

two airports where the two largest carriers enplane 49% of the passengers. Suppose at the �rst

airport, the top carrier enplanes 35% of all passengers while the top carrier at the second airport

enplanes 25% of all passengers. If an airline was attempting to avoid coverage of an airport by

AIR-21 by manipulating enplanements, one would expect this to occur at the �rst airport. At the

�rst airport, the largest carrier would have greater control in ensuring that the airport were not

covered.

One way a carrier can lower enplanements is by raising fares. If a carrier was seeking to raise

fares and lower their share of enplanements to avoid coverage, one would expect to see less of a drop

in fares in markets near the coverage cuto¤ where one carrier has a larger share of enplanements.

Figure 5 shows that there is no evidence to support a claim that enplanements were manipulated.
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In the top-half of Figure 5, we plot the joint density of the share of the two largest carriers and

the share of the largest carrier. Given the high correlation between these two variables, we are

only able to plot the relationship between these variables and changes in fares (di¤erence between

average fare in the �rst quarter of 2008 and 2001), for a small range of values in the bottom-half

of Figure 5. If carriers chose to strategically manipulate enplanements, we would expect to see a

surface sloping up in the top carrier�s share at airports closest to the cuto¤. We �nd no evidence to

support this claim, in fact, we �nd fares were actually lower at airports where one carrier controlled

a larger fraction of the enplanements.

5 Conclusions

High fares at concentrated airports have been a fact of life in U.S. air travel since the deregulation of

the industry in 1979. The welfare implications of these high fares are ambiguous because consumers

value both the size and scope, in the form of frequency and network size, of an airline when �ying

out of their home airport, however size and scope lead to market power due to scarce airport

facilities. In 2000, the U.S. congress took a stand, deciding too much market power at highly

concentrated airports was generating too much of the fare di¤erence and enacted AIR-21. Among

other things, these mandates required concentrated airports to take steps to increase competition

and make airport facilities available to all carriers wanting to serve the airport.

In this paper we have provided evidence that the mandates were successful in encouraging

new and intensi�ed competition at its targeted airports. Moreover, we have found evidence that

Congress was right in concluding that market power contributed too much to high fares from the

perspective of consumers. That is, we �nd little evidence that competition signi�cantly eroded

quality provision, either directly by reducing large incumbent size or indirectly by disincentivizing

high frequencies. The only unintended consequence of the legislation appears to be additional

congestion related delays, which are unlikely to fully o¤set the substantial declines in fares.

Our quasi-experimental approach to analyzing the impact of barriers to entry is also somewhat

novel in the industrial organization literature, see Angrist and Pischke (2010), and we think our

clean identi�cation strategy represents a signi�cant contribution to it. However, our study also

highlights some of the di¢ culties in implementing such a research design, see Einav and Levin

(2010) and Nevo and Whinston (2010). While, we are able to explain between 40% to 50% of

the decline in fares in covered markets, a result of intensi�ed competition from low-cost carriers, it

remains an open question to identify other determinants.
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The competition plans and subsequent FAA reports provide at least a subset of the actions

taken by airports and seems to provide a good source for identifying other possible explanations.

A couple candidates that seem likely to have some explanatory power are the reduction of landing

fees for non-signatory carriers to signatory levels as well as limits on subleasing fees that can be

charged by one carrier to another for the use of under-utilized boarding gates. Both these steps,

discussed in the majority of the airports�competition plans, have the potential to be a signi�cant

source of cost pass-throughs from carriers to consumers. In addition, carriers may simply reduce

fares to generate outcomes that are consistent with the goals of AIR-21 in order to avoid additional

oversight in the future. The list of possible explanations is long and many are di¢ cult to evaluate

without making behavioral assumptions and placing additional structure on the econometric model.

We leave these questions regarding the source and ultimate welfare implications of the e¤ects we

�nd for future research.
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US %

Airport Yr. Covered Mean Mean Max 2001 2008 2001 2008 2001 2008

ABQ 2000 0.45% 61.24% 63.97% 26.09% 31.82% 39.13% 63.64% 34.78% 4.55%

ANC 2000 0.36% 55.23% 61.74% • • • • • •

ATL 2000 5.85% 79.17% 82.18% 14.59% 15.08% 72.43% 73.37% 12.97% 11.56%

AUS 2000 0.51% 60.32% 61.80% 28.00% 16.00% 44.00% 52.00% 28.00% 32.00%

BNA 2000 0.64% 59.02% 63.03% 11.48% 9.84% 44.26% 44.26% 44.26% 45.90%

BUR 2000 0.36% 77.98% 83.54% 21.43% 7.14% 28.57% 35.71% 50.00% 57.14%

BWI 2000 1.42% 56.59% 65.95% • • • • • •

CLE 2000 0.84% 58.97% 61.29% • • • • • •

CLT 2000 1.82% 81.43% 86.84% 44.71% 48.35% 55.29% 51.65% 0.00% 0.00%

CVG 2000 1.52% 87.47% 92.87% • • • • • •

DAL 2000 0.48% 97.79% 99.82% 18.75% 0.00% 15.63% 25.00% 65.63% 75.00%

DCA 2001 1.09% 44.06% 50.10% • • • • • •

DEN 2000 2.82% 66.04% 72.44% • • • • • •

DFW 2000 4.06% 77.14% 85.12% 5.47% 17.42% 89.06% 80.00% 5.47% 2.58%

DTW 2000 2.47% 72.71% 76.32% 5.47% 5.08% 84.38% 88.14% 10.16% 6.78%

EWR 2000 2.41% 59.77% 69.90% • • • • • •

HOU 2000 0.61% 89.23% 92.19% • • • • • •

IAD 2001 1.42% 53.70% 59.91% • • • • • •

IAH 2000 2.50% 80.91% 86.12% • • • • • •

JAX 2000 0.37% 46.52% 50.19% • • • • • •

LAS 2005 2.68% 47.81% 52.40% • • • • • •

MDW 2000 1.11% 77.90% 90.37% • • • • • •

MEM 2000 0.80% 72.17% 77.10% • • • • • •

MIA 2001 2.29% 57.22% 68.95% 21.65% 32.04% 74.23% 64.08% 4.12% 3.88%

MKE 2001 0.47% 49.87% 56.49% 17.95% 0.00% 48.72% 21.28% 33.33% 78.72%

MSP 2000 2.44% 75.89% 78.75% 9.52% 8.66% 86.90% 90.55% 3.57% 0.79%

OAK 2000 0.88% 72.26% 78.52% 12.50% 37.93% 16.67% 3.45% 70.83% 58.62%

OGG 2000 0.42% 60.00% 68.59% • • • • • •

ONT 2000 0.48% 59.52% 61.44% • • • • • •

ORD 2000 5.01% 67.79% 74.12% • • • • • •

PBI 2000 0.46% 52.29% 58.64% 50.00% 53.13% 39.29% 34.38% 10.71% 12.50%

PHL 2000 1.92% 60.61% 65.66% • • • • • •

PHX 2000 2.72% 66.85% 68.95% • • • • • •

PIT 2000 1.22% 66.85% 81.65% • • • • • •

PVD 2000 0.39% 56.71% 63.55% • • • • • •

RNO 2000 0.38% 58.91% 62.61% • • • • • •

SAT 2001 0.48% 57.94% 100.00% 16.67% 17.39% 54.17% 52.17% 29.17% 30.43%

SDF 2000 0.27% 45.50% 51.64% • • • • • •

SFO 2000 2.44% 53.42% 56.29% 36.14% 37.04% 60.24% 59.26% 3.61% 3.70%

SJC 2000 0.82% 57.53% 64.18% • • • • • •

SJU 2000 0.74% 62.30% 69.04% • • • • • •

SLC 2000 1.42% 73.60% 80.12% 9.64% 8.43% 80.72% 81.93% 9.64% 9.64%

SMF 2000 0.65% 62.66% 65.90% 21.43% 38.46% 32.14% 19.23% 46.43% 42.31%

STL 2000 1.53% 69.14% 84.04% 4.55% 52.87% 79.55% 34.48% 15.91% 12.64%

Mean 2000.22727 1.45% 64.77% 71.46% 19.79% 22.98% 55.02% 51.29% 25.19% 25.72%

Table 1: Enplanements and Gates for Covered Airports

Top‐2 %

Gates

Common % Legacy % Lcc %

Enplanements



US %

Airport Mean Mean Max 2001 2008 2001 2008 2001 2008

BDL 0.49% 44.91% 49.15% • • • • • •

BOS 1.87% 34.99% 38.93% 11.90% 10.31% 82.14% 68.04% 5.95% 21.65%

BUF 0.32% 37.59% 49.72% 6.25% 21.74% 78.13% 56.52% 15.63% 21.74%

CMH 0.49% 32.06% 37.66% 19.44% 22.22% 50.00% 58.33% 30.56% 19.44%

FLL 1.27% 35.05% 40.89% • • • • • •

HNL 1.51% 45.34% 48.07% • • • • • •

IND 0.57% 28.50% 32.86% 26.47% 30.00% 52.94% 57.50% 20.59% 12.50%

JFK 2.50% 41.42% 46.15% • • • • • •

LAX 4.22% 34.44% 40.44% • • • • • •

LGA 1.79% 41.34% 44.43% • • • • • •

MCI 0.81% 42.96% 47.56% • • • • • •

MCO 2.16% 36.66% 42.92% • • • • • •

MSY 0.67% 44.68% 47.59% • • • • • •

OKC 0.24% 41.82% 47.67% 0.00% 23.53% 68.75% 52.94% 31.25% 23.53%

OMA 0.28% 39.14% 41.72% 25.00% 35.00% 45.00% 45.00% 30.00% 20.00%

PDX 0.97% 37.15% 38.80% 19.57% 39.13% 32.61% 28.26% 47.83% 32.61%

RDU 0.63% 35.02% 41.34% 2.08% 19.05% 85.42% 66.67% 12.50% 14.29%

RSW 0.43% 39.12% 47.35% 23.53% 39.29% 58.82% 32.14% 17.65% 28.57%

SAN 1.15% 46.34% 47.80% 32.50% 22.50% 42.50% 43.75% 25.00% 33.75%

SEA 2.04% 45.12% 48.33% 21.62% 35.00% 40.54% 25.00% 37.84% 40.00%

SNA 0.62% 36.73% 39.64% • • • • • •

TPA 1.20% 40.40% 42.66% 18.37% 28.81% 63.27% 44.07% 18.37% 27.12%

Mean 1.19% 39.13% 43.71% 17.23% 27.21% 58.34% 48.19% 24.43% 24.60%

Table 2: Enplanements and Gates for Non‐Covered Airports

Enplanements

Top‐2 %

Gates

Common % Legacy % Lcc %



Market‐Carrier‐Product Covered # Obs. Mean  # Obs. Mean Diff. Diff. in Diff.

∆ Avg. Fares yes 11483 ‐55.650 11950 ‐55.362 0.288

no 2011 ‐67.060 2123 ‐31.691 35.369

∆ 20th Pct. Fare yes 11483 ‐57.158 11950 ‐11.469 45.689

no 2011 ‐61.855 2123 ‐6.369 55.485

∆ 50th Pct. Fare yes 11483 ‐70.439 11950 ‐26.472 43.967

no 2011 ‐76.803 2123 ‐9.790 67.013

∆ 80th Pct. Fare yes 11483 ‐72.178 11950 ‐92.266 ‐20.088

no 2011 ‐97.468 2123 ‐51.918 45.550

∆Flight Distance yes 11483 0.016 11950 0.007 ‐0.009

 (Unit = 1000s of Miles) no 2011 0.021 2123 0.003 ‐0.017

∆ Fraction Routes yes 11483 ‐0.010 11950 0.049 0.059

no 2011 ‐0.007 2123 0.052 0.059

Market‐Carrier Covered # Obs. Mean  # Obs. Mean Diff. Diff. in Diff.

∆ % OnTime yes 1873 ‐0.013 1731 0.044 0.057

no 133 ‐0.003 150 ‐0.009 ‐0.006

∆ Departures yes 3171 66.560 3171 ‐57.739 ‐124.299

no 400 22.115 401 ‐17.007 ‐39.122

Market Covered # Obs. Mean  # Obs. Mean Diff. Diff. in Diff.

∆ Avg. Hub Premium yes 1999 13.295 1990 ‐24.720 ‐38.014

no 253 4.374 262 ‐9.701 ‐14.075

∆ 20th Pct. Hub Premium yes 1999 1.747 1990 ‐12.139 ‐13.886

no 253 ‐3.125 262 ‐3.481 ‐0.356

∆ 50th Pct. Hub Premium yes 1999 9.151 1990 ‐15.428 ‐24.578

no 253 ‐4.300 262 1.897 6.197

∆ 80th Pct. Hub Premium yes 1999 28.667 1990 ‐42.235 ‐70.903

no 253 10.424 262 ‐5.788 ‐16.212

∆ Lcc Penetration yes 3171 0.319 3171 0.225 ‐0.095

no 400 0.533 401 0.207 ‐0.326

∆ Number Firms yes 3171 0.942 3171 ‐0.321 ‐1.264

no 400 1.250 401 ‐0.514 ‐1.764

∆ % Nonstop yes 3171 0.022 3171 0.034 0.013

no 400 ‐0.013 401 0.050 0.063

‐13.530

‐30.775

‐54.690

0.231

0.500

‐0.050

Pre‐AIR21 Post‐AIR21

Pre‐AIR21 Post‐AIR21

0.063

‐23.939

‐85.177

‐0.001

Table 3: Means for Covered and Non‐Covered Markets

‐35.081

‐9.796

‐23.047

‐65.638

0.008

Pre‐AIR21 Post‐AIR21



Log(Avg. Fare) (1) (2) (3) (4) (5) (6)

1[1 cover] ‐0.108*** ‐0.069*** ‐0.108*** ‐0.070*** ‐0.102*** ‐0.078***

(0.023) (0.022) (0.023) (0.022) (0.023) (0.023)

1[2 cover] ‐0.195*** ‐0.102*** ‐0.191*** ‐0.100*** ‐0.202*** ‐0.124***

(0.025) (0.024) (0.025) (0.025) (0.030) (0.030)

Nonstop ‐0.124*** ‐0.112*** ‐0.122*** ‐0.110*** ‐0.102*** ‐0.090***

(0.013) (0.013) (0.014) (0.014) (0.017) (0.017)

Fraction Routes 0.448*** 0.530*** 0.477*** 0.545*** 0.488*** 0.542***

(0.036) (0.035) (0.038) (0.036) (0.045) (0.043)

Flight Distance 0.239*** 0.240*** 0.238*** 0.235*** 0.204*** 0.190***

(0.045) (0.046) (0.046) (0.047) (0.051) (0.052)

LccPresence ‐0.174*** ‐0.173*** ‐0.143***

(0.011) (0.011) (0.013)

NumberFirms ‐0.001 0.001 0.001

(0.004) (0.005) (0.005)

R2 0.096 0.175 0.097 0.173 0.099 0.156

Notes

1) Additional controls include Population Origin, Population Dest, Per‐Cap Income Origin, Per‐Cap Income Dest.

Table 4: Avg. Fare Regressions

•

•

•

•

•

•

no yes

0.1 of Cutoff

N=5,866

no yesno yes

0.2 of Cutoff

N=8,479

All Markets

N=9,022

Borenstein‐Rose (1994)  

Controls



Log(20% Fare) (1) (2) (3) (4) (5) (6)

1[1 cover] ‐0.022 ‐0.004 ‐0.021 ‐0.004 ‐0.017 ‐0.006

(0.018) (0.018) (0.018) (0.018) (0.019) (0.019)

1[2 cover] ‐0.073*** ‐0.029 ‐0.082*** ‐0.038* ‐0.041 ‐0.001

(0.020) (0.020) (0.020) (0.020) (0.026) (0.025)

LccPresence ‐0.087*** ‐0.086*** ‐0.074***

(0.009) (0.010) (0.012)

NumberFirms ‐0.018*** ‐0.017*** ‐0.013***

(0.004) (0.004) (0.005)

R
2

0.053 0.100 0.056 0.102 0.046 0.087

Log(50% Fare)

1[1 cover] ‐0.080*** ‐0.049** ‐0.080*** ‐0.051** ‐0.074*** ‐0.060**

(0.025) (0.024) (0.025) (0.024) (0.025) (0.024)

1[2 cover] ‐0.161*** ‐0.085*** ‐0.158*** ‐0.085*** ‐0.132*** ‐0.069**

(0.027) (0.027) (0.028) (0.027) (0.034) (0.033)

LccPresence ‐0.158*** ‐0.154*** ‐0.121***

(0.012) (0.013) (0.016)

NumberFirms ‐0.019*** ‐0.019*** ‐0.017***

(0.005) (0.005) (0.006)

R
2

0.065 0.123 0.065 0.123 0.058 0.105

 Log(80% Fare)

1[1 cover] ‐0.136*** ‐0.085*** ‐0.135*** ‐0.086*** ‐0.128*** ‐0.100***

(0.032) (0.031) (0.032) (0.031) (0.032) (0.031)

1[2 cover] ‐0.245*** ‐0.123*** ‐0.231*** ‐0.111*** ‐0.244*** ‐0.141***

(0.034) (0.034) (0.035) (0.034) (0.041) (0.040)

LccPresence ‐0.230*** ‐0.230*** ‐0.187***

(0.015) (0.016) (0.019)

NumberFirms ‐0.002 0.000 ‐0.005

(0.006) (0.006) (0.007)

R
2

0.077 0.142 0.077 0.140 0.079 0.132

Notes

•

•

no yes

1) Additional controls include Population Origin, Population Dest, Per‐Cap Income Origin, Per‐Cap Income Dest.

Table 5: Fare Distribution Regressions

0.1 of Cutoff

N=5,866

•

•

•

•

All Markets 0.2 of Cutoff

N=9,022 N=8,479

Borenstein‐Rose (1994)  

Controls
no yes

•

• •

•

•

••

•

•

•

•

•

no yes



All Markets 0.2 of Cutoff 0.1 of Cutoff

N=1,491 N=1,350 N=906

Hub Premium Avg. Fare (1) (2) (3)

1[1 cover] ‐0.137*** ‐0.139*** ‐0.126***

(0.037) (0.037) (0.039)

1[2 cover] ‐0.246*** ‐0.246*** ‐0.232***

(0.038) (0.039) (0.047)

R2 0.125 0.123 0.148

Hub Premium 20% Fare

1[1 cover] ‐0.106*** ‐0.105*** ‐0.095***

(0.033) (0.033) (0.033)

1[2 cover] ‐0.195*** ‐0.198*** ‐0.153***

(0.034) (0.035) (0.042)

R
2

0.041 0.039 0.036

Hub Premium 50% Fare

1[1 cover] ‐0.190*** ‐0.187*** ‐0.178***

(0.044) (0.044) (0.046)

1[2 cover] ‐0.328*** ‐0.318*** ‐0.276***

(0.047) (0.047) (0.058)

R
2

0.078 0.070 0.074

Hub Premium 80% Fare

1[1 cover] ‐0.145*** ‐0.147*** ‐0.118**

(0.055) (0.055) (0.057)

1[2 cover] ‐0.285*** ‐0.277*** ‐0.278***

(0.056) (0.057) (0.070)

R
2

0.069 0.062 0.080

Notes

1) Additional controls include Nonstop, FractionRoutes, Flight Distance, Population 

Origin, Population Dest, Per‐Cap Income Origin, Per‐Cap Income Dest.

Table 6: Hub Premium Regressions



All Markets 0.2 of Cutoff 0.1 of Cutoff

% Nonstop (1) (2) (3)

1[1 cover] ‐0.014 ‐0.014 ‐0.012

(0.010) (0.010) (0.010)

1[2 cover] ‐0.015 ‐0.016 ‐0.016

(0.010) (0.010) (0.012)

R
2

0.000 0.001 0.001

N 12,216 11,435 7,718

Log(Departures)

1[1 cover] 0.328 0.321 0.420*

(0.227) (0.227) (0.244)

1[2 cover] 0.341 0.340 0.344

(0.229) (0.232) (0.262)

R
2

0.003 0.003 0.006

N 1,465 1,246 771

% OnTime

1[1 cover] 0.167*** 0.169*** 0.166***

(0.029) (0.029) (0.029)

1[2 cover] 0.197*** 0.188*** 0.188***

(0.029) (0.030) (0.033)

R
2

0.052 0.051 0.057

N 1,267 1,066 675

Log(Number Routes)

1[1 cover] ‐0.034 ‐0.058 ‐0.092

(0.075) (0.080) (0.104)

R
2

0.011 0.010 0.012

N 366 272 146

Notes

1) Additional controls include Population Origin, Population Dest, Per‐Cap Income 

Origin, Per‐Cap Income Dest.

Table 7: Quality Regressions



All Markets 0.2 of Cutoff 0.1 of Cutoff

N=2,979 N= N=1,826

Lcc Presence (1) (2) (3)

1[1 cover] 0.142*** 0.145*** 0.096**

(0.045) (0.045) (0.046)

1[2 cover] 0.395*** 0.404*** 0.428***

(0.046) (0.047) (0.058)

R
2

0.033 0.036 0.038

Log(Number Firms)

1[1 cover] 0.107 0.113 0.109

(0.138) (0.138) (0.148)

1[2 cover] 0.043 0.102 0.190

(0.143) (0.144) (0.179)

R
2

0.003 0.002 0.003

Notes

1) Additional controls include Population Origin, Population Dest, Per‐Cap Income 

Origin, Per‐Cap Income Dest.

Table 8: Competition Regressions



estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 ‐0.1*** (0.011) ‐0.088*** (0.01) ‐0.081*** (0.012) ‐0.077*** (0.012)

0.42 ‐0.09*** (0.01) ‐0.079*** (0.009) ‐0.077*** (0.012) ‐0.075*** (0.012)

0.44 ‐0.077*** (0.01) ‐0.067*** (0.009) ‐0.074*** (0.011) ‐0.073*** (0.011)

0.46 ‐0.064*** (0.01) ‐0.056*** (0.01) ‐0.071*** (0.011) ‐0.071*** (0.011)

0.48 ‐0.051*** (0.012) ‐0.045*** (0.011) ‐0.07*** (0.011) ‐0.071*** (0.011)

0.5 ‐0.037*** (0.015) ‐0.032*** (0.015) ‐0.069*** (0.011) ‐0.071*** (0.011)

estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 ‐0.051*** (0.007) ‐0.046*** (0.007) ‐0.048*** (0.009) ‐0.053*** (0.008)

0.42 ‐0.046*** (0.007) ‐0.042*** (0.006) ‐0.044*** (0.008) ‐0.052*** (0.008)

0.44 ‐0.041*** (0.007) ‐0.038*** (0.007) ‐0.042*** (0.007) ‐0.051*** (0.007)

0.46 ‐0.034*** (0.008) ‐0.033*** (0.007) ‐0.042*** (0.007) ‐0.052*** (0.007)

0.48 ‐0.025*** (0.009) ‐0.027*** (0.008) ‐0.042*** (0.007) ‐0.053*** (0.007)

0.5 ‐0.01 (0.011) ‐0.016 (0.011) ‐0.044*** (0.007) ‐0.056*** (0.007)

estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 ‐0.084*** (0.009) ‐0.073*** (0.008) ‐0.083*** (0.011) ‐0.077*** (0.011)

0.42 ‐0.076*** (0.008) ‐0.063*** (0.008) ‐0.078*** (0.01) ‐0.073*** (0.01)

0.44 ‐0.067*** (0.008) ‐0.054*** (0.008) ‐0.074*** (0.01) ‐0.071*** (0.01)

0.46 ‐0.059*** (0.009) ‐0.047*** (0.009) ‐0.072*** (0.01) ‐0.069*** (0.01)

0.48 ‐0.052*** (0.01) ‐0.043*** (0.01) ‐0.071*** (0.01) ‐0.069*** (0.01)

0.5 ‐0.047*** (0.012) ‐0.04*** (0.013) ‐0.072*** (0.009) ‐0.07*** (0.009)

estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 ‐0.112*** (0.012) ‐0.109*** (0.012) ‐0.054*** (0.016) ‐0.055*** (0.016)

0.42 ‐0.103*** (0.011) ‐0.098*** (0.011) ‐0.056*** (0.015) ‐0.059*** (0.015)

0.44 ‐0.092*** (0.011) ‐0.088*** (0.011) ‐0.057*** (0.014) ‐0.062*** (0.014)

0.46 ‐0.082*** (0.012) ‐0.08*** (0.012) ‐0.057*** (0.014) ‐0.064*** (0.013)

0.48 ‐0.074*** (0.014) ‐0.073*** (0.014) ‐0.058*** (0.013) ‐0.066*** (0.013)

0.5 ‐0.065*** (0.019) ‐0.066*** (0.019) ‐0.06*** (0.013) ‐0.069*** (0.013)

Table 9: RDD Coverage Estimates, Fares

One Endpoint Covered Both Endpoints Covered
PredictorPredictor

τ(Porig<0.5,Pdest=0.5) τ(Porig=0.5,Pdest<0.5) τ(Porig>0.5,Pdest=0.5) τ(Porig=0.5,Pdest>0.5)

Log(80% Fare) Log(80% Fare)

Log(Avg. Fare) Log(Avg. Fare)

Log(20% Fare) Log(20% Fare)

Log(50% Fare) Log(50% Fare)



estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 0.158*** (0.021) 0.147*** (0.02) 0.144*** (0.022) 0.153*** (0.02)

0.42 0.115*** (0.019) 0.105*** (0.018) 0.159*** (0.021) 0.168*** (0.018)

0.44 0.074*** (0.02) 0.067*** (0.02) 0.173*** (0.02) 0.182*** (0.017)

0.46 0.023 (0.022) 0.02 (0.023) 0.185*** (0.019) 0.195*** (0.017)

0.48 ‐0.049 (0.028) ‐0.047 (0.03) 0.197*** (0.019) 0.207*** (0.017)

0.5 ‐0.153*** (0.039) ‐0.143*** (0.042) 0.207*** (0.019) 0.219*** (0.017)

estimate std. err. estimate std. err. estimate std. err. estimate std. err.

0.4 0.26*** (0.018) 0.249*** (0.016) 0.173*** (0.024) 0.188*** (0.021)

0.42 0.213*** (0.015) 0.206*** (0.014) 0.19*** (0.022) 0.202*** (0.019)

0.44 0.177*** (0.014) 0.173*** (0.014) 0.204*** (0.02) 0.214*** (0.018)

0.46 0.145*** (0.015) 0.144*** (0.017) 0.217*** (0.02) 0.226*** (0.017)

0.48 0.111*** (0.02) 0.117*** (0.022) 0.228*** (0.019) 0.236*** (0.017)

0.5 0.072*** (0.028) 0.087*** (0.032) 0.237*** (0.019) 0.247*** (0.017)

Table 10: RDD Coverage Estimates, Lcc Presence

Predictor
One Endpoint Covered

Predictor
Both Endpoints Covered

τ(Porig<0.5,Pdest=0.5) τ(Porig=0.5,Pdest<0.5) τ(Porig>0.5,Pdest=0.5) τ(Porig=0.5,Pdest>0.5)

Lcc Presence ‐ No JFK Lcc Presence ‐ No JFK

Lcc Presence Lcc Presence
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