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Abstract: We examine the impact of air pollution on infant death in California
over the 1990s.  Our work offers several innovations:  First, many previous studies
examine populations subject to far greater levels of pollution.  In contrast, the experience
of California in the 1990s is clearly relevant to current debates over the regulation of
pollution.   Second, many studies examine a single pollutant in isolation, generally
because of data limitations.  We examine three “criteria” pollutants in a common
framework    Third,  we use rich individual-level data to investigate effects of pollution
on infant mortality and low birth weight in a common framework, and we consider the
potential impact of pollution on fetal deaths.  Fourth,  we develop an identification
strategy based on within zip code-month variation in pollution levels to control for
potentially important unobserved characteristics of high pollution areas as well as
seasonal factors. We find a significant effect of CO on infant mortality and conclude that
reductions in carbon monoxide over the 1990s saved approximately 1,000 infant lives in
California.
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1 As of May 12, 2003, the EPA’s Scientific Advisory Board was debating whether to include an
analysis of infant health effects in its 2003 report to Congress on the benefits of the Clean Air
Act.  However, they had determined that “[these] estimates are not meant to be additive to the
primary estimates of mortality” (U.S. EPA, 2003, page 6-13).
2 California’s experience  is also of special interest, since under the Clean Air Act of 1970, it is
the only state allowed to set automobile emission standards at a level higher than the federal
standard.  Other states may adopt California’s standards, but may not draft their own.
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Air quality regulations are costly to both producers and consumers and the

optimal level of pollution abatement is hotly contested.   For example, in October 2002,

the Bush administration joined Daimler Chrysler and General Motors in a lawsuit against

Californian regulations that would have mandated that one in ten cars sold in California

be “low emission” or “zero-emission” vehicles, beginning in 2003 (Doggett, 2002; New

York Times, October 14, 2002).   New standards for ozone and particulates were

proposed by the Environmental Protection Agency (EPA) in 1997 but were held up in the

courts until a Supreme Court decision in 2001 (Stafford, 2001).

Pollution abatement is often justified as something that will promote health yet

there is still much to be learned about the specific health effects.  The EPA did not

include infant mortality in the primary quantitative benefit analysis of the 1990 Clean Air

Act Amendments in 1999 (U.S. EPA 1999) because the weight of the scientific evidence

linking infant health to air pollution was viewed as insufficient.1 

 This paper addresses this issue by examining the impact of air pollution on infant

health in California over the 1990s.  Infants are of interest for two reasons.  First, policy

makers and the public are highly motivated to protect these most vulnerable members of

society.  Second, in the case of infant death, the link between cause and effect is

immediate, whereas for adults, diseases today may reflect pollution exposure that

occurred many years ago.2 



3 An earlier version of this paper also examined Nitrogen Dioxide (NO2).  NO2 is an important
precurser of particulate matter and is highly correlated with both CO and 
PM10 as it comes from many of the same sources.  We found little evidence that NO2 
had an independent effect on infant death and so we have excluded it here.  We do not examine
the two other criteria pollutants, SO2 and lead because levels are now so low that many monitors
have been removed from service.
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Our work offers several innovations over the existing literature.  First, many

previous studies examine populations subject to greater levels of pollution because they

lived further in the past or in some more heavily polluted place.   In contrast, the

experience of California in the 1990s is clearly relevant to the contemporary debate over

pollution levels in the United States.

 Second, many studies examine a single pollutant in isolation, generally because

of data limitations.  We examine three “criteria” pollutants that are commonly monitored

in the U.S.:  Ozone (O3), carbon monoxide (CO), and particulate matter (PM10).    Thus

our results may shed light on the important question of which pollutants are most harmful

to infants.3   

Third, we exploit rich individual-level data to estimate linear models that

approximate hazard models, where the hazard is defined over weeks of life and the

baseline hazard is specified as a flexible non-parametric spline.   A fourth innovation is

that we consider possible effects of pollution on fetal death, rather than focusing only on

live births.

Fifth, while epidemiological studies have documented correlations between

pollution and poor infant outcomes, it is possible that these correlations reflect some

omitted characteristics (such as differences in socio-economic status or pollution of

ground water) that are correlated with both air pollution and infant health outcomes.  We
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will control for this possibility both by including a rich set of covariates, such as whether

the birth was covered by public health insurance, and by estimating models with zip

code-month level fixed effects, which will capture any unobserved characteristics of zip

codes that are unchanged over time as well as seasonal effects.  Hence, only unusual

changes in pollution within zip codes and months are used to identify the effects.

  Our estimates confirm that air pollution has a significant effect on infant mortality

even at the relatively low levels of pollution experienced in recent years.   In particular

the reductions in CO that occurred over the 1990s saved approximately 1,000 infant lives

in California.   We find little evidence that pollution affects fetal death or the probability

of low birth weight among infants with gestation of 26 weeks or more.

The rest of the paper is laid out as follows: Section II provides necessary

background information about the previous literature and the ways in which pollution

may affect infant health.  Section III describes our data while methods are described in

Section IV.  Section V offers results, and Section VI ends with a discussion and

conclusions.

II. Background  

Carbon Monoxide is an odorless, colorless gas which is poisonous at high levels. 

CO bonds with  hemoglobin more easily than oxygen, so that it reduces the body’s ability

to deliver oxygen to organs and tissues.   Because infants are small, and many have

respiratory problems in any case, CO may be particularly harmful to them.    As much as

90% of CO in cities comes from motor vehicle exhaust (EPA, January 1993).
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Particulate matter can take many forms, including ash and dust and motor vehicle

exhaust is a major source.  It is thought that the most damage comes from the smallest

particles since they are inhaled deep into the lungs (U.S. EPA, 2003b).   The mechanism

through which particles harm health are controversial.  The leading theory is that they

cause an inflammatory response which weakens the immune system (Seaton, et al. 1995).

We focus on PM10, particles less than 10 microns in diameter, although many older

studies use measures of Total Suspended Particles or TSPs.   In general one would expect

TSP and PM10 to move together because PM10 is a component of TSP, but some of the

larger particles included in TSP may be less damaging than the particles found in PM10.

  Ozone (the major component of smog) is a highly reactive compound that

damages tissue, reduces lung function, and sensitizes the lungs to other irritants.  For

example, exposure to O3 during exercise reduces lung functioning in adults and causes

symptoms such as chest pain, coughing, and pulmonary congestion.   Ozone is formed 

through reactions between nitrogen oxides and volatile organic compounds (which are

found in auto emissions, among other sources) in heat and sunlight.   Ozone is not

generally found in homes because it quickly reacts with household surfaces

(http://www.hc-sc.gc.ca/hecs-sesc/air_quality/faq.htm).

Compliance with standards for PM10 is assessed by looking at annual means as

well as 24-hour means while compliance with standards for O3 and CO is assessed by

examining whether the level of pollution exceeded the standard over any eight-hour

period during the year.  These different approaches to standards suggest that the effects

of PM10 may be expected to be cumulative while the effects of CO and O3 are expected

to be more acute. 



4 The web site http://www.epa.gov/ttn/atw/hapindex.html provides a list of the chemicals
present in vehicle exhaust, and evidence regarding their health effects.
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 A link between air pollution and infant health has long been suspected although

the exact biological mechanisms through which it occurs are not known.  We also know

little about what levels of these pollutants are sufficient to affect infant mortality (death

in the first year of life) or about the extent that infants are protected from the negative

effects of pollution while they are in the womb.   Pollution exposure could affect the

health of the mother by, for example, weakening her immune system which could have

negative effects on the fetus.  In infants, a weakened immune system could make them

more susceptible to death from a wide range of causes.

Since motor vehicle exhaust is a major contributor of CO and PM10, these

pollutants may themselves be markers for other components of exhaust such as

polycyclic aromatic hydrocarbons (PAHs), acetonitrile, benzene, butadiene, and cyanide. 

Many of these compounds have been shown to have effects on developing fetuses in

animal studies which may include retarded growth.4  Studies in humans have shown

elevated levels of an enzyme induced by PAHs in women about to have preterm

deliveries (Huel et al., 1993).  However, this research gives very little guidance about

what levels of pollution might be necessary to induce negative effects or about when

fetuses are most vulnerable.

Many studies have demonstrated links between very severe pollution episodes

and increased mortality of infants and others.  For example, Logan and Glasg (1953)

found dramatic increases in cardiopulmonary mortality during a killer fog that occurred

in London,  England in 1952.   Chart 1 summarizes some of the more recent studies,
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dividing them into two groups.  The first group focus on the link between poor infant

outcomes and high levels of pollution.  Most of these studies report negative associations

between pollution and outcomes.   The second part of the chart focuses on U.S. studies,

many of which also report a link between air pollution and infant health, although some

do not.  For example, Lipfert, Zhang, and Wyzga (2000) find that while they can

replicate previous findings of a negative effect of PM10 on infant health, the result is not

robust to changes in specification.

An important limitation of all of these studies is that it is possible that the

observed relationships could reflect an unobserved factor that was correlated with both

air pollution and child outcomes.  This is likely to be a greater problem in studies such as

Lui et al. (2003) that do not control for factors like maternal education, but it may be a

problem even in studies that include such controls.  Suppose for example, that areas with

high levels of air pollution also tended to have high levels of water pollution.  If water

pollution causes infant deaths but is unobserved, then one might falsely conclude that air

pollution was to blame for infant deaths, with potentially negative consequences for

remediation efforts.   Similarly, as we will show below, zip codes with high pollution

have many other characteristics that may have a direct effect on infant outcomes, such as

high rates of teen parenthood and low average levels of education.  Many previous

studies have not controlled adequately for these characteristics. 

 Two studies by Chay and Greenstone deal with the problem of omitted

confounders by focusing on “natural experiments” provided by the implementation of the

Clean Air Act of 1970 and geographic variation in pollution levels induced by the



 5 These studies are similar in spirit to a sequence of papers by C. Arden Pope, who investigated the
health effects of the temporary closing of a Utah steel mill (Pope, 1989; Ransom and Pope, 1992;
Pope, Schwartz, and Ransom (1992)) and to Friedman et al. (2001) who examine the effect of
changes in traffic patterns in Atlanta due to the 1996 Olympic games.   However, these studies did not
look specifically at infants.

6 Although Almond, Chay, and Lee (2002) argue that birth weight does not have a causal effect
on infant mortality, low birth weight is still widely acknowledged to be the leading indicator of
poor health at birth.
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recession of the early 1980s.5 Chay and Greenstone show that on average TSPs fell from

95 to 60 micrograms per cubic meter of air between 1970 and 1984.  However, both the

Clean Air Act and the recession induced sharper reductions in TSPs in some counties 

than in others, and they use this exogenous variation in levels of pollution at the county-

year level to identify its effects.  They estimate that a one unit decline in TSPs associated

with the Clean Air Act (recession) led to between five and eight (four and seven) fewer

infant deaths per 100,000 live births but had little effect on the incidence of low birth

weight.6   

Although these studies provide compelling evidence of the link between pollution

and infant health, it is not clear that reductions from the much lower levels of ambient

pollution today would have the same effect.  For example, it might be the case that only

pollution above some threshold is harmful, and pollution has already been reduced below

that threshold.   Moreover, the Chay and Greenstone studies cannot speak to the question

of whether other pollutants affect infant health because only TSPs were measured during

the time period that they study.  

In this paper, we propose an alternative identification strategy using individual-

level data and exploiting within-zip code-month variation in pollution levels.   We create

measures of pollution at the zip code-week level and control for individual differences
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between mothers that may be associated with variation in birth outcomes.  As we show

below, even after controlling for seasonal differences at the zip code-month level, there is

sufficient variation in pollution levels to identify an effect.  Using this strategy allows us

to identify the effects of pollution in more recent data and to compare the effects of

several criteria pollutants.  The zip code-month fixed effects and the individual data

allow us to control for many factors (such as poverty) which are both strongly

geographically concentrated and associated with poorer prospects for infants.  They also

control for the possible seasonal differences in mortality within zip codes, although as we

show below there is little evidence of a seasonal pattern in mortality in California.

A final issue is that this paper (like the others discussed above) examines the

effect of outdoor air quality measured using monitor in fixed locations.   Actual personal

exposures are affected by ambient air quality, indoor air quality, and the time the

individual spends indoors and outdoors.  One might expect, for example, that infants

spend little time outdoors so that outdoor air quality might not be relevant.

The research on the relationship between indoor and outdoor air quality has

established several results (see Spengler, Samet and McCarthy (2000) for a survey of the

literature on indoor air pollution).  First, much of what is outdoors comes

indoors–estimates of the fraction of indoor fine particles that originated outdoors range

from 46% to 84% depending on whether the house was air-conditioned and whether

windows were left open (Wilson, Mage, and Grant, 2000).  The rate at which outdoor air

circulates through a house depends on the season and the weather, variables we will

control for in our analysis.



7 The data is the California Ambient Air Quality Data from the California Air Resources Board,
a department of the California Environmental Protection Agency (available at
http://www.arb.ca.gov/aqd/aqdcd/aqdcd.htm).   

9

Second, although the cross-sectional correlation between ambient air quality and

personal exposure is low (between .2 and .6 in most studies of PM for e.g.), the time-

series correlation is higher.  This is because for a given individual indoor sources of air

pollution may be relatively constant and uncorrelated with outdoor air quality.  So for a

given individual much of the variation in air quality comes from variation in ambient

pollution levels (Wilson, Mage, and Grant, 2000)

III Data

Detailed data on atmospheric pollution comes from the California Environmental

Protection Agency’s air monitoring stations.  These monitors record ambient levels of

“criteria pollutants”, which are those air pollutants considered most responsible for urban

air pollution.   Monitors tend to be located in the most densely populated areas of the

state, and also in those that are most polluted.  The location of monitors may also change

over time.  Hence, in this analysis, we use only those monitors that existed continuously

throughout the period, although using all monitors does not change our results.7    

Following Neidell (2004), we use the monitor data to construct a measure of

pollution for each zip code in the state as follows: First, we calculate the centroid of each

zip code.  We then measure the distance between the EPA monitor and the center of the

zip code.  Finally, we calculate a weighted average pollution level using all monitors

within a 20-mile radius of the zip code’s center, using the inverse of the distance to the



8 These measures are highly correlated with measures of short-term spikes in pollutants.  For
example, the correlation between the maximum 1 hour reading for CO and the maximum 8 hour
average for CO ranges from .91 to .95, depending on the month of the year. For ozone, the
comparable figures are .89 to .97.
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monitor as the weight.  We use this method to construct a pollution measure for each zip

code and time period.  Using this method, we are able to assign a pollution level to zip

codes covering about 70 percent of the births in the state.  Zip codes that we were not

able to assign pollution levels to are overwhelmingly rural.  While not every urban zip

code has a monitor, 76% of the births included in our sample were within 10 miles of a

monitor and we obtain very similar results if we limit our analysis to this subsample.  

In order to assess the accuracy of our measure, we compare the actual level of

pollution at each monitor location with the level of pollution that we would assign using

our method (i.e. using the distance weighted average of data from all other monitors less

than 20 miles away), if the monitor in question was not there.  The correlations between

the actual and predicted levels of pollution are remarkably high for O3 (.92). 

Correlations for PM10 and CO are somewhat lower, but still high (.77 and .78)

suggesting that our measure is reasonably accurate.   Note that as long as there is no

systematic pattern to these errors, measurement error will tend to bias our estimates of

the effects of pollution towards zero.

Descriptive statistics for the pollution variables are shown in the first panel of

Table 1, which also describes the units. 8   Table 1 shows that there is considerable

variation in these measures both between zip code-months and within zip code-months 

over our sample period.  For example, the within zip code-month standard deviation for
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CO is .447 compared to the between zip code standard deviation of 1.018 (which can be

compared to the mean of 1.998 units.)  

The pollutants we examine display strong seasonal patterns as shown in Figure 1.  

The vertical lines show the first quarter of each year.  In California, ambient levels of CO

and PM10 tend to increase in cold weather when they are trapped by damp cold air. 

PM10 also spikes in cold weather because it is produced by combustion sources used for

heating.   In general, levels of CO and PM10 are highly correlated which may make it

difficult to disentangle their effects.   On the other hand, ozone forms at a higher rate in

heat and sunlight.  Thus ozone emissions spike during the summer.   As we show below,

the negative correlation of ozone with other pollutants can yield wrong-signed effects in

single-pollutant models.  

Our models include zip code-month fixed effects in order to control for seasonal

effects which could be different in northern and southern California, for example.  These

effects also remove some of the variation in pollution, but Figure 2 shows that a great

deal of residual variation remains.  Figure 2 plots residual levels of pollution after the zip

code-month dummies,  year dummies, weather indicators and all of the other variables

included in our base models (described further below) have been controlled for. 

Residuals are normalized by mean pollution levels so that they are expressed in

percentage terms.   It is very important to establish that there is significant within zip

code-month variation since mean differences in the level of pollutants between zip code-

months are not used to identify the effects of pollution in the zip code-month fixed

effects models.
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Since weather is a key determinant of pollution levels but could also have

independent effects on infant health, we include controls for maximum temperatures and

average precipitation in our models.   The weather data come from the Surface Summary

of the Day (TD3200) from the National Climatic Data Center available at

http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwAW~MP#MR.  Weather stations are

not particularly well matched to pollution monitors.  We use county-level average

weather data in our models.  Although these measures are somewhat crude, they should

capture the effects of, for example, unusual heat waves or rainy spells that are not

captured by our zip code-month fixed effects.   To the extent that weather affects

pollution without having an independent effect on infant health, including the weather

variables will reduce the amount of variation in our pollution measures and make it more

difficult to detect its effects (Samet et al., 1997). 

Data on birth weight, infant deaths and fetal deaths come from the California

Birth Cohort files for 1989 to 2000.  These data are abstracted from birth, death, and fetal

death certificates.  Birth weight is the single most widely used summary measure of

infant health, and low birth weight (defined as birth weight less than 2500 grams) is a

marker for higher rates of infant mortality and other negative outcomes.   Note that there

is no birth cohort file for 1998, so this year is excluded from our analysis.

   The distinction between fetal and infant death is that a child must be born alive in

order to be registered as an infant death.   In California, a live birth is defined as “the

complete expulsion or extraction from its mother of a product of conception...which,

after such separation, breathes or shows any other evidence of life...”, while a fetal death



9 This yields a sample of 4,593,001 live births.  There were 127,189 live births with gestation less
than 26 weeks.
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is a “death prior to complete expulsion or extraction from its mother of a product of

conception” (California Code of Regulations, Title 17, sections 915 and 916).  

Hence, a premature delivery that ended in a child dying before birth would be

classified not as an infant death but as a fetal death.  If pollution has an effect on fetal

deaths, then examining only the population of live births may yield biased estimates of its

true effects.   For example, if pollution causes a fetus that would have been born alive,

but low birth weight to be stillborn, then it could even appear that pollution increased

birth weight.  

Since fetal death certificates give birth weight and gestation, we combined live

births and fetal deaths in order to create a sample of pregnancies lasting at least 26

weeks.9  Examination of the effects of pollution on this sample will give us estimates of

the effects of pollution that are not biased by fetal selection that occurs after 26 weeks. 

While pollution might also cause fetal deaths before 26 weeks, fetal deaths before 26

weeks are not accurately reported.  We also confine our analysis of infant outcomes to

infants with at least 26 weeks gestation so that we can define pollution exposure in the

first, second, and third trimesters of the pregnancy.  

Since we do not examine the effects of pollution on gestation or on infants with

less than 26 weeks gestation our results leave open the possibility that pollution could

lead to premature termination of pregnancies and/or high rates of infant death in this

population.  Hence, our estimates will under-state the total effect of pollution on infant
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health if it causes fetal losses before 26 weeks, or an increased probability of death in

surviving infants with very short gestations.

Figure 3 shows seasonal variation in infant mortality, fetal death, and birth weight

over time.  In contrast to Figure 1, there is no strong seasonal pattern in these outcomes. 

A comparison of Figure 1 and Figure 3 shows that while both pollution and infant

mortality have been trending downwards, the rate of low birth weight has remained flat. 

Hence, the idea that reductions in pollution may have reduced infant mortality without

having much impact on birth weight is consistent with the aggregate data.

Descriptive statistics for these outcome variables are also shown in Table 1.  

Over the sample period 3.91 children per 1,000 with gestation of 26 weeks or more died

in their first year.   The incidence of fetal death was slightly lower while 48.35 children

per 1,000 were low birth weight.   

 In addition to the infant health measures, Birth Cohort File variables relevant for

our analysis include the date of birth, mother’s age, race and ethnicity, education, marital

status, and the 5-digit zip code of maternal residence, as well as information about use of

prenatal care and whether the birth was covered by public health insurance.   The rapid

increase in the fraction of births covered by Medicaid is a potential confounding factor

when examining birth outcomes because there is evidence that Medicaid coverage

changed the way that at risk infants were treated (c.f. Currie and Gruber, 1996), so it is

fortunate that we can control for Medicaid coverage of the birth directly.  Unfortunately,

it is not possible to control for maternal smoking because this information is not included

on California’s birth certificate.  To the extent that smoking is correlated with other

variables included in our model, bias due to this omission will be reduced.
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The third panel of Table 1 shows trends in pollution levels over the sample

period.   All the  pollutants show considerable declines.   Like Figure 3, the fourth panel

of Table 1 shows that although the infant mortality rate fell sharply over a relatively short

time, trends in low birth weight were much flatter.  This part of the table suggests then

that declines in mortality were largely due to events occurring after the birth, rather than

to improvements in prenatal health.  Finally, the last panel of Table 1 lists the federal

standards for the pollutants we examine.  A comparison of the first and last panels of the

tables suggests that on an average day,  pollution levels in California are well under the

thresholds for these standards.  However the fact that Los Angeles is consistently out of

compliance for both ozone and CO indicates that there is substantial variability in

pollution levels around these means.

Table 2 shows mean annual outcomes and pollution levels as well as means of

various control variables by zip code pollution level.  In order to rank zip code-years by

pollution level, we first standardized all of the pollution measures using a “z-score” and

then took the average of the three measures.   While this is a rough way to rank areas,

Table 2 indicates that it is informative--there are sharp differences in ambient pollution

levels between the most polluted and the least polluted areas of the state.  For example,

the CO measure is almost three times higher in the most polluted areas compared to the

least polluted ones.  

These gradients correspond to gradients in birth outcomes: The most polluted

areas have uniformly worse outcomes than the least polluted ones.   As the third part of

the table shows, this association could be due to the fact that pollution levels are highly

correlated with socioeconomic characteristics that are themselves predictive of poorer
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birth outcomes.   For example, 73 percent of mothers are married in the least polluted

areas compared to 63 percent in the most polluted areas; 25 percent are high school

dropouts in the cleaner areas compared to 41 percent in the dirtiest; and the comparable

figures for use of government insurance are 38 percent and 50 percent.  These are very

large differences in the average characteristics of mothers and failure to adequately

control for them could generate spurious relationships between pollution and birth

outcomes.   In our models, we will control for these important observable differences

between locations as well as for unobservable zip code-level characteristics and seasonal

differences by including zip code-month level fixed effects.

IV. Methods

Evidently, air pollution affects infants differently before and after birth.  Before

birth, pollution may affect infants either because it crosses the protective barrier of the

placenta or because it has a systemic effect on the health of the mother.  After birth,

infants are directly exposed to inhaled pollutants.  However, one might wonder whether

effects observed after birth actually reflect the lingering effects of exposures before birth. 

In order to control for this possibility we estimate models that include the infant’s birth

weight and gestation.  These variables can be regarded as summary statistics for the

infant’s health at birth and hence will help to capture any effects of pollution before the

birth.  We also include controls for average pollution levels during the infants first

trimester, second trimester, and third trimester of gestation, though as we show below

this has no effect on the estimated effect of post-natal pollution exposure.

The probability of death Pizt is specified as:
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Pizt = "(t) + wiz( + hizH+ xzt1$1 + xzt2$2 + Nzt + Yt, (1)

where i indexes the individual, z indexes the zip code, t indexes the time period and "(t)

is a measure of duration dependence and is specified as a linear spline in the weeks since

the child’s birth, with breaks after 1, 2, 4, 8, 12, 20, and 32 weeks.   These break points

reflect the fact that death is much more common in the first weeks than thereafter.  The

wiz are time-invariant covariates measured at the individual level, such as the mother’s

demographic and background characteristics; the hiz are time-invariant measures of the

infant’s health and pollution exposure at the time of the birth including indicators for low

birth weight and short gestation and for pollution exposure in the 1st, 2nd, and 3rd

trimesters;  the xzt1 are time-varying measures of pollution exposure after the birth, the xzt2

are weather indicators; Nzt  is a vector of zip code-month specific fixed effects;  and Yt  is

a vector of year dummies that allows for state-wide trends in these outcomes.   We

consider several variations on (1) including estimation of models that include both zip

code-month and small area-year fixed effects which are described further below.  The

main coefficient of interest is $1, the effect of post-natal pollution exposure on the

probability of death.   

This model can be thought of as a flexible, discrete-time, hazard model that

allows for time-varying covariates, non-parametric duration dependence, and zip code-

month level fixed effects.  The model imposes little “structure” on the pattern of

coefficients, allowing the data to “speak for itself”, a consideration that is particularly

important given the lack of guidance in the literature regarding mechanisms and

functional form.  Allison (1982) shows that estimates from models of this type converge



10 In contrast, suppose we took all children who died, and selected a control group by sampling all
children who survived their first year.  At any point in time during the year, we would have a
sample that excluded infants who were at risk of death, but survived only to die later. We
reproduce Mantel’s discussion of why retaining individuals on the basis of their outcomes only
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to those obtained from continuous time models, as discussed further in the appendix. 

(Note that we have also estimated models using f(Pizt) as the dependent variable, where f 

is the logit transformation–the results were very similar).   

In order to implement this estimation strategy, we treat an individual who lived

for n weeks as if they contributed n person-week observations to the sample. The

dependent variable is coded as 1 in the period the infant dies, and 0 in all other periods.

Each time-invariant covariate is repeated for every period, while the time-varying

covariates are updated each period.  Pizt is then regressed on the covariates specified in

(1) by ordinary least squares.

This procedure yields a very large number of observations.  Most infants survive

all 52 weeks of their first year, yielding a sample of 250 million weekly observations.

Hence, we employ case-control sampling to reduce the number of observations.    First,

we keep all individuals who died (the cases) in the week that they died.  Then, in order to

select controls, we choose randomly among all the observations on children who lived for

at least as many periods as the index child and take the control child’s observation for

that week.   That is, if a child died in week 3, the controls would be chosen from

observations on all children who lived at least 3 weeks regardless of whether they later

died.   For each week, we randomly chose fifteen times as many non-deaths as deaths.   

This method greatly reduces computational burden while yielding unbiased estimates of

the effects of pollution on the probability of death (Mantel (1973), Prentice and Breslow

(1978), Lubin and Gail (1984)).10



adds a constant to the log odds ratio in the Appendix.  Since we begin with the entire universe of
births and can choose the sample to analyze, we have followed the case control literature that
specifies the correct way to choose an analysis sample rather than the economics literature on
“choice-based sampling” which suggests estimation methods to deal with samples that have been
chosen non-randomly (c.f. Manski and Lerman, 1977; Imbens, 1992).
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As discussed above, we chose a week as the unit of time in our base specification. 

 A potential problem with choosing such a small interval is that children who die from

exposure to high amounts of pollution in week t might have died at t+1 in any case.  This

problem of mortality displacement is sometimes referred to as “harvesting” (Schwartz

(2001)).   If mortality displacement is an important phenomenon, then estimates based on

weekly pollution measures will tend to overstate the loss of life caused by pollution.  For

example, the actual loss of life might be only one week rather than average life

expectancy at birth.  Moreover, models estimated using weekly pollution focus on the

short-term effects of pollution exposure and the cumulative impacts of post-natal

exposure might also be important. 

 Estimating models using longer time units, such as months, involves more

measurement error because the measure of pollution is imprecisely assigned.  For

example, if we use the month as the time unit, children who die in their first week of life

are incorrectly assigned average pollution levels for all of the days in the month.  

Moreover, if it really was a sharp spike in a pollutant that caused death, these spikes

would tend to be averaged out in more aggregate data.  An alternative is to estimate

models that include cumulative pollution measures, in order to see whether it is truly

short-term effects of pollution exposure that matter.  

In addition to the specification checks discussed above we show that our results

are robust to several other changes to model (1).  First, we drop observations from the



11 In California, an MCD corresponds to a township, which is a subdivision of a county.
In many cases, the MCD may be the same as a Census “Place”, which is an incorporated
or unincorporated population center.  We have also estimated our models using place-year fixed
effects and obtained very similar estimates.
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first week of life since many infants who die in the first week may never leave the

hospital and thus may never be exposed to outdoor air.  We also estimate models that

include fixed effects for the interaction between minor civil division and year in addition

to the zip code-month effects.   A minor civil division is a small cluster of two or three

contiguous zip codes.  Examples in Los Angeles county include Santa Monica and

Pasadena.   It did not prove practical to include both zip code-month and zip code-year

fixed effects in our models for computational reasons.    The inclusion of MCD-year

effects controls for characteristics of local areas that might change over time, such as

access to medical facilities.11

Finally, we estimate models that include leads of the weekly pollution measures. 

Pollution that has not yet occurred should have no impact on mortality once

contemporaneous pollution levels are controlled, and we show that leads are indeed

statistically insignificant.

Our results show a very robust effect of post-natal CO exposure on infant

mortality.  In contrast, we find no significant effect of prenatal exposures.  In order to

investigate the effect of prenatal exposures further, we go on to estimate models of the

effects of prenatal exposure on the probability of fetal death and on the probability of low

birth weight in a 10 percent random sample of all pregnancies that lasted at least 26

weeks.   These models have the form:

Piz = wiz( + pz101  + pz202  + Nzt  + Yt,   (2)
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where Piz is the relevant probability; the wiz are time-invariant covariates

measured at the individual level, such as the mother’s demographic and background

characteristics; the vector pz1 measures prenatal pollution exposure in each trimester; pz2

is a vector of weather variables;  Nzt  is a zip code-month specific fixed effect; and Yt  is a

vector of year dummies that allows for state-wide trends in these outcomes.   In this

model the main coefficient of interest is 01,  the effect of prenatal pollution exposure on

the probability of a negative outcome.

V. Results

a) Effects on Infant Mortality

Table 3 shows estimates of model (1).   For comparison with previous work we

first estimate cross sectional models for each pollutant separately.   These cross-sectional

models include indicator variables for each month and year but do not include any

controls for zip codes.  The “single pollutant” models without zip code-month fixed

effects are shown in columns (1) through (3).  They indicate that post-natal exposure to

CO increases infant mortality while, as discussed above, O3 has a perverse negative

effect.  This negative effect disappears however, when all three pollutants are included in

a single cross-sectional model, as shown in column (4).  Columns (5) through (8) show

estimates of similar models including zip code-month effects.   It is remarkable that the

the addition of these controls has little effect on the estimated effect of CO, and in fact

increases it slightly.

Of the measures of prenatal pollution exposure included in model (8), only the
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coefficient for 2nd trimester exposure to PM10 is significant and it is wrong signed. 

However, while it is not quite significant, the coefficient on 3rd trimester exposure to

PM10 is of similar magnitude and positive.   This pattern of coefficients is what one

would expect if there were collinearity in the measures of prenatal pollution.  Therefore,

in order to guage the overall effect of prenatal pollution we test to see whether we can

reject the null hypothesis that the sum of the coefficients on the prenatal pollution

measures are equal to zero.  The F-tests shown at the bottom of Table 3 indicate that we

cannot, suggesting that prenatal pollution exposure has little effect.  We have

investigated the sensitivity of these results by including controls only for pollution in the

first trimester, the last three months of pregnancy, or the last month of pregnancy, with

similar insignificant results.  

Because of the case-control sampling, the coefficients in Table 3 are difficult to

interpret.   The bottom of Table 3 presents calculations of the magnitude of the effects in

terms of the implied number of deaths per 100,000 births (of gestation 26 weeks or more)

associated with a one unit increase in the pollutant in question.  Given the 4,593,001 such

births in areas where pollution could be assigned over our sample period, the estimate of

18.125  in the last column suggests that the 1.1 unit decline in CO that took place saved

991 infant lives.  (Note that we do not consider possible lives saved in areas without

pollution monitors.  If these areas did not have monitors because they had little pollution

and/or were sparely populated, then reductions in pollution could be expected to have

relatively little effect).

Table 3 also shows the estimated effects of the other covariates included in our

models.  Birth weight and gestation are significant predictors of mortality, consistent
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with other research.   Maximum temperatures are estimated to reduce mortality in the

cross-sectional models, but have little effect in the models that include zip-month fixed

effects, suggesting that the inclusion of these variables does help to control for the effects

of weather.  The coefficients on "(t) indicate that most infants who die, do so in the first

two weeks, which is consistent with past research.  Males, Hispanics, children of foreign-

born mothers, and children whose mothers commenced prenatal care in the first trimester

are all less likely to die, while children of high school dropouts,  teen mothers, people on

government insurance, and babies of high parity are more likely to die, consistent with

our expectations.

Table 4 shows that the effect of post-natal CO exposure is robust to many changes

in specification.   The first column shows that dropping infants who died in the first week

(who may not have been exposed to much outdoor air) does not change the qualitative

result. (Although the coefficient rises, the implied number of deaths remains similar at

1,148 because the mortality rate among infants falls after the first week).  

Column (2) shows that the key coefficient is not affected by dropping the prenatal

pollution measures entirely.  We have also tried dropping birth weight and gestation with

similar results.  Column (3) shows estimates without the weather variables, which again

are similar to those reported in Table 3.

Columns (4) and (5) show the effect of restricting our sample to people within 10

miles of a zip code monitor.  In column (4), the pollution measure is calculated using

data from zip codes that lie within 20 miles of the zip code centroid, while in column (5),

only monitors within 10 miles are used to create the pollution measure.  Again, these

changes make little difference to the estimated coefficients.
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Column (6) shows estimates using the month rather than the week as the unit of

observation.  This is the only specification in which the effect of CO is not statistically

signficant.  Nevertheless, the coefficient estimate is remarkably similar to that shown in

Table 3 and the increase in the standard error is consistent with the idea that there is more

measurement error in pollution measured at the monthly level.  In monthly models with

zip code rather than zip code-month fixed effects the coefficient on CO is quite similar to

those reported here and statistically significant.   

Column (7) shows estimates including MCD-year effects as well as zip-month

effects.  Including these effects causes the estimated coefficient on CO to rise slightly.  

The coefficient of 3.623 implies that the reduction in CO over the 90s saved 1,243 infant

lives.  This specification check suggests that the results in Table 3 yields conservative

estimates of the number of lives saved.

Table 5 offers two additional specification checks.   Columns (1) and (2) show

models that include leads of pollution.   An infant who dies in week t should not be

affected by pollution in week t+1 and in fact, Table 5 shows that leads are not statistically

significant and that their inclusion has little impact on the estimated effect of CO.  This

finding is remarkable given the strong seasonal correlations in CO and suggests that we

really are capturing the effect of acute exposure in a given week.

Column (3) takes a somewhat different approach by including a measure of

average cumulative exposure in addition to the weekly pollution measure.  Only the

weekly pollution measure is significant, and again, the coefficient on CO is robust.  It is

worth noting however that for PM10 the cumulative effect of PM10 is greater than the

weekly effect, although it is not statistically significant in the multi-pollutant models.  In
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single-pollutant models that only include PM10 (not shown), the coefficient on the

cumulative measure reaches significance at the 90 percent level of confidence.   We also

found that in monthly hazard models with separate zip code and month fixed effects

rather than zip code-month fixed effects,  PM10 had a significant effect.  All this

suggests that it is possible that PM10 has a cumulative post-natal effect that is difficult to

capture in models that rely on weekly variation in PM10 within zip code-months. 

b) Effects on Birth Weight and Fetal Death

The results so far show that post-natal exposure to CO has a remarkably robust

effect on infant mortality.  In contrast, the F-statistics indicate that the effects of prenatal

pollution exposure sum to zero, suggesting that the estimated effect of post-natal

exposure is not driven by prenatal pollution exposure.

However, prenatal pollution exposures might still have harmful effects on birth

weight and fetal death.   In order to investigate these effects, we present estimates of

model (2) for birth weight in Table 6.  In Table 6 the only coefficients that are

individually statistically significant are those on 2nd trimester CO exposure, and they are

wrong-signed.  However, the F-tests shown at the bottom of the page indicate that we

cannot reject the null hypothesis that the coefficients on prenatal CO exposure (and other

prenatal pollution exposures) sum to zero.  

Table 7 presents similar estimates for fetal deaths.  We find no evidence of any

effect of prenatal pollution exposure, though as discussed above, we cannot reliably

examine the effects on fetal deaths before 26 weeks.  
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c) Estimated Effects in More Aggregate Data

Several previous studies have used aggregate rather than individual-level data and

it is of interest to see what happens if we move to more aggregate data.   Most previous

studies use data aggregated to the county-year level.   We aggregate up to the zip code-

quarter level and estimate models similar to (1) and (2) which include zip code fixed

effects.   Previous estimates using more aggregated data have not attempted to sort out

the effects of post-natal and pre-natal exposures, presumably because of the difficulty of

precisely assigning such exposures in aggregate data.   We do not do so here either.  The

sample size for the infant mortality regressions is slightly smaller than for the birth

outcome regressions, because for 1989, the rate can only be calculated for the last quarter

of the year.  

The first panel of Table 8 shows that in the aggregate-level data, only PM10 has a

statistically significant effect in the multi-pollutant models--there is no statistically

significant effect of CO on infant mortality.   This observation suggests that estimates

based on aggregate data will significantly under-estimate the effects of CO perhaps

because it is acute exposure to CO that matters.   The point estimate of .0034 on PM10 in

column (4) indicates that there was a decline of .34 deaths per 100,000 per unit of  PM10

reduction per quarter, which is smaller than the Chay and Greenstone estimate of the

effects of TSPs.   The smaller estimate may reflect a non-linear effect of particulates on

infant health, the fact that TSPs are a broader measure than PM10, or a California-

specific effect given that Chay and Greenstone use national data.  

Panel 2 indicates that the coefficient on CO is significant in the multi-pollutant

model for low birth weight and very large.  However, the fact that CO is not significant



12 Due to increased driving, trucks burning diesel emitted more nitrogen oxides and
particles in 1997, than they did in 1970 when the Clean Air Act was passed
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in the single-pollutant model suggests that the finding in the multi-pollutant model may

be due to collinearity between the pollution measures in this more aggregate data.  Panel

3 shows that, once again, we find little effect of pollution on the probability of fetal

death.     

VI. Discussion and Conclusions 

Environmental policy continues to be contentious.  For example, the EPA has

responded to the threat posed by increased diesel emissions by proposing new rules that

would require refiners to phase in cleaner diesel fuel between 2006 and 2010, but the

American Petroleum Institute and the National Petro-Chemical and Refiners Association

have filed suit in an effort to block implementation of these standards (Stafford, 2001).12  

Similarly, there is controversy over the Bush administration’s recent “Clear Skies”

initiative, which would eliminate the requirement that older power plants upgrade their

pollution controls when they upgrade or modernize their equipment and replace them

with “cap and trade” provisions.  Critics contend that the plan would not regulate CO

production, provides weaker caps than alternative legislation introduced in the Senate,

and will not necessarily reduce pollution in the most polluted areas, an important

consideration if the effects of pollution are non-linear (Environmental Defense, 2003).

In order to begin to evaluate the costs and benefits of such policies, it is necessary

to understand how changes from current, historically low levels of air pollution are likely
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to affect health and which pollutants have the greatest health effects.  This paper

examines the effects of air pollution on infant health, using recent data from California.  

Our models are identified using within zip code-month variation in pollution so that we

are able to control for unobservable fixed characteristics of zip codes, seasonal effects,

and a detailed group of observable time-varying characteristics.   

Our most interesting and novel finding is that high levels of post-natal exposure

to CO have a significant effect on infant mortality.   We believe that this effect has been

overlooked because it is acute and hard to detect in data that has been aggregated even to

the monthly level.  This finding is remarkably robust to many changes in specification

and suggests that decreases in CO levels over the 1990s saved about 1,000 infant lives in

California.   These findings are clearly relevant to policy debates over automobile

emissions and the Clear Skies Initiative, for example.

We test carefully to see if the estimated effect of post-natal CO exposure on

infant mortality actually reflects the lingering impact of prenatal exposures but we find

little evidence in favor of this hypothesis.  Prenatal pollution exposures are not jointly

significant and prenatal pollution exposure has no impact on birth weight or on fetal

death in models estimated using individual-level data for gestations that lasted at least 26

weeks.  

PM10, which has been the focus on most research to date on the effects of

pollution on health, is seldom statistically significant in our multi-pollutant models.  One

interpretation of this result is that previous studies have wrongly attributed the effects of

CO to PM10.   But there is some suggestive evidence that it is the cumulative effects of

PM10 that matter and our hazard models may be better suited to detecting acute rather



 13 See Greenstone (2002) who calculates the cost of the 1970 and 1977 Clean Air Act Amendments
or Sieg et al. (2000) who examine willingness to pay for air quality improvements in the context of a
general equilibrium model of housing prices.    
14 Viscusi (1993) suggests that the value of a life was between $3.5 and $8.5 million, and U.S.
EPA (1999) values infant lives lost due to lead at $4.8 million, the same value that they used for
adult lives.
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than cumulative effects.  Given that CO and PM10 are highly correlated and come from

many of the same sources, policies aimed at reducing one are likely to have significant

effects on ambient levels of both. 

A complete evaluation of the costs and benefits of improvements in air quality is

far beyond the scope of this paper.13  It is likely that the costs of reducing pollution may

be greater at low levels of pollution than at higher levels.  But there are also several

reasons why conventional measures of the benefits of pollution abatement (such as the

effects of pollution levels on housing prices) might understate them.  First, the effects of

pollution on infant health are not well known—that is a starting point for this research. 

Second, CO is a colorless, odorless gas and people may not be willing to pay for

reductions in pollution that they do not observe.  Third, to the extent that parents place a

lower value on infant health relative to other goods than infants would, the value of their

health will not be fully captured by the parents’ willingness to pay for pollution

reduction.

What is the value then, of improvements in infant health due to reductions in

pollution?   If, following Chay and Greenstone (2001a), we value a life at a very

conservative $1.6 million, then the estimated reduction in infant deaths due to reduced air

pollution in California over the 1990s would be valued at about $1.6  billion.14    If we use

the EPA(1999) value of $4.8 million, the benefit would grow to $4.8 billion.  These
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estimates are based on a conservative estimation strategy which nets out pollution

changes that are correlated with seasons or weather.  These estimates also ignore the

value of improvements in health in infants who are not at the life-death margin.  Hence,

we regard these estimates as lower bounds on the benefits to infants.   But they may still

provide a useful benchmark for assessing the benefits of further reductions in air

pollution in terms of infant health.
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Appendix: 

1. Description of the survival model

The description of this model follows Allison (1982). Define a discrete-time hazard rate:

Pr[ | , ]it i i itP T t T t x= = >

where Pit is the probability of death for individual i in period t, T is the time of
occurrence, and x are covariates that affect death. 

We can now specify the likelihood function:
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where *i is a dummy variable equal to 1 if the observation is uncensored and 0 otherwise.
This is analogous to the continuous time model in that each individual contributes to the
likelihood function the hazard rate if uncensored and the survivor function if censored.

Using conditional probabilities, we can restate the hazard and survivor function as:
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After substituting these into the likelihood function, taking logs, and rearranging terms,
we are left with:
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where yit = 1 if person i dies in period t, and 0 otherwise. This now amounts to the
analysis of binary data, and, after specifying the hazard as a function of the covariates,
can be estimated by logit model. Alternatively, we can specify the hazard as a linear
probability model and estimate it by least squares.

2. A Note on Case Control Sampling
Mantel (1973, pages 481-482) provides a simple explanation of case-control sampling. 
In his analysis, a random proportion d1 of cases, and a random proportion d2 of controls
are chosen.   It is key that people be chosen from both groups randomly.  Intuitively,
there is little to be gained by arbitrarily increasing the size of the control group, if the size
of the treatment group is fixed.  However, it still seems that selecting the individuals to
be retained on the basis of their outcome will introduce a bias.  Mantel shows however,
that only the intercept of the log odds ratio is changed.   Specifically,

“The possible outcomes for individual I with vector Xi are: 
1) he can develop disease and be in the sample, with probability d1P(Yi=1|Xi); 
2) he can develop disease and not be in the sample, with probability (1-d1)P(Yi=1|Xi); 
3) he can remain disease free and be in the sample, with probability d2P(Yi=0|Xi); 
4) he can remain disease free and not be in the sample, with probability (1-d2)P(Yi=0|Xi).

We now make use of the fact that for any truncated multinomial...the probability P’, for a
particular observable outcome is its unconditional probability divided by the total of
probabilities for observable outcomes.  Thus we may write

P’(Yi=1|Xi) = d1P(Yi=1|Xi)/[d1P(Yi=1|Xi) + d2P(Yi=0|Xi)]                                 (1)

in consequence of which

P’(Yi=1|Xi)/P’(Yi=0|Xi) = d1P(Yi=1|Xi)/d2P(Yi=0|Xi)                                          (2)

or the log odds

log{P’(Yi=1|Xi)/P’(Yi=0|Xi) = log(d1/d2) + log{P(Yi=1|Xi)/P(Yi=0|Xi).             (3)

What this implies is that the conditional log odds for being a case has the same
dependence on Xi as the unconditional log odds; only the intercept is changed.”

 



Figure 1. Seasonal Variation in Pollution
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Figure 2. Percent Residual Variation in 
Pollution
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Figure 3. Seasonal Variation in Infant Health 
Outcomes
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Chart 1: Selected Epidemiological Studies of Effects of Pollution on Infant Health

A: Studies Outside the U.S. and Canada
Study Location Years Outcomes Pollutants Effects
Bobak (2000) Czech Republic 1991 low birth weight SO2, TSP, NOX Mean exposure during pregnancy related to 

  preterm birth,   increased risk of LBW and preterm birth.  Effects 
  growth retard.   greatest for exposure in first trimester.

Bobak and Leon (1999) Czech Republic 1989-91 infant mortality SO2, TSP, NOX Mean lifetime exposure to TSPs increased mortality
  due to respiratory causes when all pollutants
  entered in model.

Dejmek et al. (1999) Northern Bohemia, 1994-96 Growth PM10, PM2.5 Exposure in 1st month of pregnancy related to 
  Europe   retardation   interuterine growth retardation.

Loomis et al. (1999) Mexico City 1993-95 infant mortality PM10 PM10 associated with higher risk of mortality within
  3 to 5 days.

Luiz et al (1998) Sao Paulo, Brazil 1991,92, 95 fetal death index of CO, NO2 Index associated with increased risk of fetal death 
  SO2, O3, PM10   within 5 days.

Wang, Ding, Ryan, Beijing, China 1988-91 low birth weight SO2 & TSP Exposure in last trimester increases risk of low 
  and Xu (1997)   birth weight.
Xu, Ding, and Wang (1995) Beijing, China 1988 preterm birth SO2 & TSP 7-day lagged moving average of each pollutant 

  associated with increased risk of preterm birth.

B: Studies of the U.S. and Canada
Alderman et al. (1987) Colorado 1975-83 low birth weight CO No association CO in last trimester in LBW once

  maternal education and race were controlled.
Lipfert, Zhang, and Wyzga (2All of U.S. 1990 infant mortality PM10, CP, SO2, County level annual avg. pollution measures did not

  SO4, PM2.5   have robust relationships to pollutants when
  maternal variables were controlled.

Liu et al. (2003) Vancouver, 1985-1998 low birth weight CO, NO2, SO2, SO2 in 1st month increases LBW.  SO2 and CO in
  Canada   preterm birth,   O3   last month increases preterm birth.  Growth retard-

  growth retard.   ation associated with CO, NO2, SO2 in 1st month.
Mainsonet et al. (2001) Northeastern U.S. 1994-96 low birth weight CO, PM10, SO2 CO in last trimester and SO2 in 2nd trimester 

  increase LBW.  No effect of PM10.
Ritz et al. (2000) Los Angeles 1989-1993 preterm birth CO, NO2, O3,  PM10 exposure 6 weeks before birth increases

  & PM10   preterm birth.  CO exposure in same interval has
 effects only in some areas.

Ritz and Yu (1999) Los Angeles 1989-1993 low birth weight CO, NO2, O3,  CO exposure in last trimester increased incidence
  & PM10   of low birth weight.

Williams, Spence,  Los Angeles early 1970s low birth weight TSP Lower mean birth weight in areas with high pollution
  & Tideman (1977)   among women who were non-smokers.
Woodruff et al. (1997) 86 U.S. MSAs 1989-91 infant mortality PM10 Infants with high exposure more likely to die in 

  postneonatal period.



Table 1: Levels and Trends in Pollution and Infant Health

Between Zip- Within Zip
Variable Mean Std. Dev. Month Std. Dev. Month Std. Dev.
Panel 1
CO 8-hr ppm 1.998 1.169 1.018 0.447
PM10 24-hr ug/m3 39.448 14.755 12.899 7.869
O3 8-hr ppb 40.456 17.107 15.832 5.509

Panel 2
IMR per 1000 3.91 6.24 1.35 6.23
low birth weight per 1,000 48.35 21.45 3.45 21.40
fetal deaths per 1,000 3.58 5.97 0.84 5.96

Panel 3
year CO PM10 O3
1989 2.458 49.651 46.139
1990 2.472 46.575 41.664
1991 2.288 46.377 43.516
1992 2.279 41.285 42.830
1993 1.974 37.040 41.089
1994 2.111 37.384 40.351
1995 1.857 34.256 40.037
1996 1.798 35.790 39.681
1997 1.608 34.052 36.630
1999 1.580 36.510 36.109
2000 1.376 33.572 35.657

Panel 4 Low Birth Fetal Sample #
year IMR Weight Deaths of births
1989 5.33 51.02 4.10 388,097
1990 4.76 48.23 3.95 444,021
1991 4.46 47.41 3.79 454,902
1992 4.18 48.15 3.70 445,760
1993 4.08 48.59 3.55 449,374
1994 3.96 49.33 3.46 441,080
1995 3.56 48.42 3.59 419,948
1996 3.27 48.32 3.56 407,923
1997 3.21 48.31 3.20 386,137
1999 2.90 46.64 3.15 372,232
2000 2.96 47.39 3.21 383,527

National Ambient Air Quality Standards
O3 85 ppb 8-hr

125 ppb 1-hr
CO 9.5 ppm 8-hr

35.5 ppm 1-hr
PM10 155 ug/m3 24-hr



Table 2: Pollution Levels for Bottom, Middle, and Top Third of Zipcode-Years
Ranked by Mean Pollution Levels

Variable bottom 1/3 middle 1/3 top 1/3
CO 8-hr 1.176 1.907 2.912
PM10 24-hr 25.647 38.558 54.139
O3 8-hr 34.837 39.828 46.705

IMR 3.583 3.728 4.406
low BW per 1,000 47.094 48.448 49.506
fetal death per 1,000 3.370 3.528 3.840

% male 0.487 0.489 0.488
% black 0.083 0.081 0.083
% hispanic 0.317 0.513 0.550
% asian 0.161 0.105 0.089
% other race 0.012 0.006 0.005
% married 0.725 0.653 0.629
% foreign mom 0.394 0.503 0.524
% racial diff b/w parents 0.189 0.156 0.139
% HS dropout 0.254 0.370 0.408
% HS grads 0.359 0.347 0.348
% AD degree 0.148 0.121 0.114
% college grads 0.239 0.161 0.130
% teen mothers 0.064 0.077 0.081
% age 19 to 25 0.304 0.346 0.366
% age 26 to 30 0.281 0.279 0.281
% age 31 to 35 0.233 0.202 0.187
% age >= 36 0.117 0.097 0.084
% first born 0.419 0.392 0.391
% second born 0.318 0.306 0.299
% third born 0.154 0.168 0.170
% gov't insurance 0.384 0.490 0.495
% prenatal care in 1st trimester 0.816 0.788 0.742



Table 3: Effects of Pollution on Infant Mortality

(1) (2) (3) (4) (5) (6) (7) (8)
CS CS CS CS FE FE FE FE

CO 2.458 2.466 2.631 2.89
[0.488]** [0.651]** [0.977]** [1.040]**

PM10 0.053 -0.026 0.002 -0.036
[0.031] [0.037] [0.039] [0.042]

O3 -0.141 -0.038 -0.077 -0.046
[0.043]** [0.050] [0.065] [0.067]

CO 1st trim. 0.513 -0.29 1.708 1.095
[0.763] [0.913] [1.444] [1.539]

CO 2nd trim. -2.493 -1.137 -2.065 -0.565
[0.889]** [1.029] [1.022]* [1.157]

CO 3rd trim. 0.015 -0.969 1.418 0.323
[0.807] [0.938] [1.553] [1.607]

PM10 1st trim. 0.03 0.06 -0.009 -0.002
[0.055] [0.067] [0.078] [0.088]

PM10 2nd trim. -0.253 -0.205 -0.256 -0.245
[0.060]** [0.071]** [0.067]** [0.081]**

PM10 3rd trim. 0.228 0.214 0.198 0.172
[0.057]** [0.072]** [0.081]* [0.088]

O3 1st trim. -0.067 -0.07 -0.062 -0.009
[0.060] [0.075] [0.091] [0.101]

O3 2nd trim. -0.031 0.002 0.012 0.07
[0.070] [0.080] [0.073] [0.085]

O3 3rd trim. 0.187 0.056 0.171 0.085
[0.054]** [0.064] [0.085]* [0.090]

Birthweight -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006
[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**

Gestation -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081 -0.081
[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**

Maximum temp. -0.312 -0.442 -0.262 -0.269 -0.276 -0.169 -0.114 -0.225
  after birth [0.057]** [0.052]** [0.073]** [0.073]** [0.122]* [0.118] [0.127] [0.134]
Precipitation 0.026 0.005 0.003 0.021 0.013 -0.016 -0.012 0.012
  after birth [0.042] [0.042] [0.041] [0.042] [0.049] [0.048] [0.048] [0.049]
Max Temp. 1st trim. 0.218 0.338 0.355 0.404 0.131 0.266 0.294 0.359

[0.123] [0.130]** [0.144]* [0.149]** [0.165] [0.168] [0.186] [0.189]
Max Temp. 2nd trim. 0.236 0.197 0.236 0.165 0.155 0.113 0.142 0.069

[0.127] [0.133] [0.147] [0.154] [0.157] [0.162] [0.174] [0.182]
Max Temp. 3rd trim. -0.348 -0.313 -0.352 -0.336 -1.357 -1.340 -1.305 -1.361

[0.142]* [0.145]* [0.146]* [0.148]* [1.481] [1.481] [1.481] [1.480]
Precip. 1st trim. 0.003 0.081 0.041 0.076 0.047 0.086 0.065 0.092

[0.118] [0.120] [0.118] [0.122] [0.129] [0.128] [0.129] [0.130]
Precip. 2nd trim. -0.107 -0.173 -0.072 -0.184 -0.105 -0.166 -0.062 -0.201

[0.124] [0.123] [0.121] [0.127] [0.140] [0.142] [0.142] [0.144]
Precip. 3rd trim. 0.099 0.109 0.092 0.111 -0.202 -0.202 -0.175 -0.211

[0.055] [0.056]* [0.055] [0.063] [1.003] [1.004] [1.005] [1.004]
1-2 weeks old -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353 -0.353

[0.007]** [0.007]** [0.007]** [0.007]** [0.006]** [0.006]** [0.006]** [0.006]**
3-4 weeks old -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025 -0.025

[0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]**
5-8 weeks old -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
9-12 weeks old -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004



[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
13-20 weeks old -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004

[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
21-32 weeks old -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
> 32 weeks old 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]**
Male -0.018 -0.018 -0.018 -0.018 -0.017 -0.017 -0.017 -0.017

[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
Black 0.003 0.004 0.003 0.003 -0.001 -0.001 0.000 -0.001

[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]
Hispanic -0.011 -0.011 -0.011 -0.011 -0.012 -0.012 -0.012 -0.012

[0.001]** [0.001]** [0.001]** [0.001]** [0.002]** [0.002]** [0.002]** [0.002]**
Asian -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
Other race -0.001 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002

[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006]
Married mother 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002]
Foreign born mother -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013 -0.013

[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
Parents diff. race 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
HS grad mother -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008 -0.008

[0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
AD degree mother -0.010 -0.010 -0.010 -0.010 -0.009 -0.009 -0.009 -0.009

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
College grad. -0.016 -0.016 -0.016 -0.016 -0.014 -0.014 -0.014 -0.014

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
Parents educ. Differs 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
19-25 mother -0.008 -0.008 -0.008 -0.008 -0.007 -0.007 -0.007 -0.007

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
26-30 mother -0.012 -0.012 -0.012 -0.012 -0.011 -0.011 -0.011 -0.011

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
31-35 mother -0.015 -0.015 -0.015 -0.015 -0.014 -0.014 -0.014 -0.014

[0.002]** [0.002]** [0.002]** [0.002]** [0.003]** [0.003]** [0.003]** [0.003]**
Mother >=36 -0.012 -0.012 -0.012 -0.012 -0.010 -0.010 -0.010 -0.010

[0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]** [0.003]**
1st born -0.031 -0.031 -0.031 -0.031 -0.030 -0.030 -0.030 -0.030

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
2nd born -0.018 -0.018 -0.018 -0.018 -0.016 -0.016 -0.016 -0.016

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
3rd born -0.011 -0.011 -0.011 -0.011 -0.010 -0.010 -0.010 -0.010

[0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]** [0.002]**
Gov't insurance 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007
  for birth [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
Prenatal care 1st -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007
  trimester [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**
Observations 206352 206352 206352 206352 206352 206352 206352 206352
R-squared 0.27 0.27 0.27 0.27 0.29 0.29 0.29 0.29

Notes: Robust standard errors in parentheses.  A ** indicates significance at the 99% level of confidence.
A * indicates significance at the 95% level of confidence.



Table 3: Continued.

F tests of the hypothesis that prenatal pollution coefficients sum to zero 
CO 4.77 4.31 0.12 0.07

[0.029] [0.038] [0.732] [0.787]
PM10 0.01 0.80 0.20 0.22

[0.929] [0.372] [0.657] [0.638]
O3 1.36 0.02 0.56 0.79

[0.244] [0.897] [0.453] [0.374]

Notes: The first value is the F-statistic, the value in brackets is the p-value.

Magnitude of Effects on Infant Mortality
CO 2.458 2.466 2.631 2.89

15.416 15.466 16.501 18.125
PM10 0.053 -0.026 0.002 -0.036

0.332 -0.163 0.013 -0.226
O3 -0.141 -0.038 -0.077 -0.046

-0.884 -0.238 -0.483 -0.288

Note: The first value is the coefficient estimate, the second (in bold) is the number of lives saved per unit reduction
pollutant, which is the coefficient*100*(the overall IMR/sample IMR)) where overall IMR = 17,939/4,576,562.



Table 4: Alternative Specifications of the Infant Mortality Models

(1) (2) (3) (4) (5) (6) (7)
Drop 1st 

week
w/o prenatal 

pollution w/o weather
Monitor 

within 10 m
Monitor 

within 10 m 
Monthly 
hazard

MCD-year 
FE

CO 4.648 2.986 2.169 2.879 3.491 2.854 3.623
[1.504]** [1.017]** [0.952]* [1.045]** [0.920]** [1.719] [1.070]**

PM10 -0.038 -0.035 -0.038 -0.044 -0.061 0.128 -0.075
[0.058] [0.042] [0.042] [0.042] [0.039] [0.089] [0.044]

O3 -0.141 -0.041 -0.099 -0.041 0.001 -0.128 -0.054
[0.095] [0.065] [0.061] [0.069] [0.065] [0.118] [0.072]

CO 1st trim 1.981 1.07 1.228 1.382 0.7 4.281
[2.130] [1.539] [1.553] [1.302] [1.638] [2.034]*

CO 2nd trim -0.577 -0.514 -0.475 -0.778 -1.958 0.049
[1.560] [1.134] [1.173] [0.934] [1.290] [1.272]

CO 3rd trim 1.67 -0.057 0.635 0.747 -0.605 3.252
[2.254] [1.613] [1.627] [1.371] [1.618] [2.142]

PM10 1st trim -0.069 -0.043 0.004 -0.037 -0.051 -0.158
[0.123] [0.085] [0.089] [0.079] [0.094] [0.105]

PM10 2nd trim -0.293 -0.203 -0.256 -0.222 -0.07 -0.354
[0.112]** [0.080]* [0.083]** [0.075]** [0.097] [0.096]**

PM10 3rd trim 0.175 0.175 0.16 0.142 0.112 0.032
[0.119] [0.087]* [0.090] [0.082] [0.090] [0.107]

O3 1st trim 0.053 0.075 -0.006 -0.004 -0.018 0.034
[0.143] [0.094] [0.102] [0.086] [0.116] [0.128]

O3 2nd trim 0.176 0.065 0.073 0.065 -0.016 0.109
[0.119] [0.077] [0.087] [0.077] [0.090] [0.096]

O3 3rd trim 0.096 0.063 0.094 0.069 0.08 0.154
[0.122] [0.087] [0.091] [0.079] [0.114] [0.118]

Birthweight -0.006 -0.006 -0.006 -0.006 -0.006 -0.006 -0.006
[0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.000]** [0.0003]**

Gestation -0.08 -0.081 -0.081 -0.082 -0.081 -0.089 -0.081
[0.002]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]** [0.001]**

Observations 131488 206352 206352 201990 201990 205214 206352
R-squared 0.16 0.29 0.29 0.29 0.29 0.23 0.296

Notes: Robust standard errors in parentheses.  A ** indicates significance at the 99% level of confidence.
A * indicates significance at the 95% level of confidence.  The difference between columns (4) and (5)
is that in column (4) pollution is still measured using monitors up to 20 miles away, while in column (5) only
monitors within 10 miles are used to assign pollution.



Table 5: Additional Specification Checks for Infant Mortality
(1) (2) (3)

1 lead 2 leads Cumulative
CO 2.907 2.969 2.607

[1.192]* [1.235]* [1.021]*
CO lead or -0.171 -0.247 1.048
  cumulative [1.142] [1.247] [2.146]
CO 2nd lead 0.013
 [1.157]
PM10 -0.049 -0.052 -0.063

[0.043] [0.044] [0.040]
PM10 lead or 0.025 0.024 0.175
  cumulative [0.045] [0.049] [0.120]
PM10 2nd lead 0.016

[0.047]
O3 -0.026 -0.032 -0.014

[0.076] [0.078] [0.068]
O3 lead or -0.047 -0.062 -0.106
  cumulative [0.076] [0.086] [0.125]
O3 2nd lead 0.014

[0.078]
CO 1st trim 1.249 1.402 1.1

[1.551] [1.576] [1.629]
CO 2nd trim -0.562 -0.604 -0.128

[1.160] [1.184] [1.239]
CO 3rd trim 0.427 0.518 0.307

[1.609] [1.641] [1.613]
PM10 1st trim -0.005 -0.026 -0.008

[0.088] [0.090] [0.089]
PM10 2nd trim -0.246 -0.236 -0.236

[0.081]** [0.083]** [0.081]**
PM10 3rd trim 0.182 0.182 0.147

[0.088]* [0.089]* [0.088]
O3 1st trim 0.005 0.016 -0.004

[0.102] [0.105] [0.108]
O3 2nd trim 0.078 0.077 0.075

[0.085] [0.087] [0.088]
O3 3rd trim 0.089 0.103 0.083

[0.090] [0.092] [0.091]
Birthweight -0.006 -0.006 -0.006

[0.000]** [0.000]** [0.000]**
Gestation -0.081 -0.082 -0.081

[0.001]** [0.001]** [0.001]**
Observations 205981 201898 206352
R-squared 0.29 0.29 0.29

Notes: Robust standard errors in parentheses.  A ** indicates significance at the 99% level of confidence.
A * indicates significance at the 95% level of confidence.



Table 6: Prenatal Pollution and Probability of Low Birthweight

(1) (2) (3) (4) (5) (6) (7) (8)
CS CS CS CS FE FE FE FE

CO 1st trim 0.564 0.147 -2.048 -2.029
[0.468] [0.585] [3.059] [2.906]

CO 2nd trim -1.692** -2.225** -5.556 -6.427*
[0.531] [0.638] [3.230] [3.150]

CO 3rd trim 0.461 0.652 -0.83 -0.318
[0.504] [0.604] [2.432] [2.392]

pm10 1st trim 0.018 0.021 -0.05 -0.038
[0.032] [0.041] [0.120] [0.117]

pm10 2nd trim -0.093* 0.008 -0.229 -0.09
[0.039] [0.046] [0.134] [0.124]

pm10 3rd trim 0.07 0.025 0.03 0.001
[0.039] [0.049] [0.118] [0.115]

o3 1st trim -0.036 -0.037 -0.007 0.072
[0.037] [0.047] [0.187] [0.181]

o3 2nd trim -0.079 -0.135** -0.168 -0.272
[0.042] [0.050] [0.194] [0.194]

o3 3rd trim 0.055 0.052 0.025 -0.005
[0.033] [0.041] [0.197] [0.198]

Observations 459837 454974 461027 453756 459837 454974 461027 453756
R-squared 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

Notes: Robust standard errors in parentheses.  A ** indicates significance at the 99% level of confidence.
A * indicates significance at the 95% level of confidence.

F tests of the hypothesis that prenatal pollution coefficients sum to zero 
CO 1.56 4.89 2.71 3.30

[0.211] [0.027] [0.100] [0.069]
PM10 0.01 1.49 2.33 0.67

[0.913] [0.223] [0.127] [0.413]
O3 2.05 5.26 0.40 0.77

[0.152] [0.022] [0.530] [0.381]

Notes: The first value is the F-statistic, the value in brackets is the p-value.



Table 7: Prenatal Pollution and Fetal Deaths

(1) (2) (3) (4) (5) (6) (7) (8)
CS CS CS CS FE FE FE FE

CO 1st trim -0.159 -0.266 -0.329 -0.399
[0.134] [0.166] [0.470] [0.509]

CO 2nd trim -0.138 -0.058 -0.061 -0.074
[0.155] [0.186] [0.493] [0.542]

CO 3rd trim -0.019 -0.106 0.356 0.471
[0.157] [0.189] [0.491] [0.553]

pm10 1st trim 0.001 0.01 0.007 0.017
[0.009] [0.012] [0.021] [0.022]

pm10 2nd trim -0.012 -0.011 -0.012 -0.014
[0.011] [0.014] [0.023] [0.024]

pm10 3rd trim 0.015 0.017 0.011 -0.001
[0.012] [0.016] [0.023] [0.025]

o3 1st trim -0.001 -0.011 0.015 -0.001
[0.011] [0.014] [0.034] [0.037]

o3 2nd trim 0.002 0.004 -0.01 -0.008
[0.013] [0.015] [0.037] [0.040]

o3 3rd trim 0.002 -0.006 -0.013 -0.002
[0.010] [0.013] [0.039] [0.042]

Observations 461628 456748 462822 455526 461628 456748 462822 455526
R-squared 0 0 0 0 0.02 0.02 0.02 0.02

Notes: Robust standard errors in parentheses.  A ** indicates significance at the 99% level of confidence.
A * indicates significance at the 95% level of confidence.

F tests of the hypothesis that prenatal pollution coefficients sum to zero 
CO 3.80 4.71 0.00 0.00

[0.051] [0.030] [0.970] [0.998]
PM10 0.08 1.27 0.03 0.00

[0.774] [0.260] [0.854] [0.949]
O3 0.05 0.72 0.03 0.06

[0.832] [0.396] [0.857] [0.803]

Notes: The first value is the F-statistic, the value in brackets is the p-value.



Table 8: Estimates Using Data Aggregated to Quarterly Level

(1) (2) (3) (4)
1. Infant Mortality
CO, quarter of death 0.043 0.030

[0.0362] [0.0379]
PM10, quarter of death 0.0044*** 0.0034**

[0.0017] [0.0017]
Ozone, quarter of death 0.002 0.001

[0.0017] [0.0017]
# Observations 29452 29452 29452 29452
R-squared 0.09 0.09 0.09 0.09

2. Low Birthweight
CO, quarter of birth 0.354 0.5274*

[0.3252] [0.3150]
PM10, quarter of birth -0.010 -0.027

[0.0168] [0.0205]
Ozone, quarter of birth 0.009 0.024

[0.0191] [0.0224]
# Observations 34269 34269 34269 34269
R-squared 0.25 0.25 0.25 0.25

3. Fetal Deaths
CO, quarter of birth -0.015 0.007

[0.1174] [0.1197]
PM10, quarter of birth 0.000 -0.002

[0.0052] [0.0062]
Ozone, quarter of birth 0.004 0.005

[0.0058] [0.0068]
# Observations 34269 34269 34269 34269
R-squared 0.06 0.06 0.06 0.06

Note: The dependent variable in all cases is events per 1,000, per quarter.  To get rates per 
100,000, multiply by 100.  Robust standard errors in brackets.  A * and ** indicate 
significance at the 5 and 1% levels,respectively.  Controls are similar to those 
shown in Tables 3 except that they are aggregated to the quarterly level.




