Optimal Spatial Policies, Geography and Sorting

Pablo D. Fajgelbaum Cecile Gaubert

UCLA and NBER UC Berkeley and NBER

September 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- Spatial concentration of economic activity leads to spillovers
 - Productivity
 - Amenities
 - Different across workers (e.g. by skill)
- Relevant to explain geographic distribution of economic activity
 - Wages and city size
 - Sorting by skill (college graduates)

• Governments routinely shape the spatial distribution through policies

- Place-based policies
- Taxes and transfers

Research questions

- Is the observed spatial allocation inefficient?
- What policies (taxes and transfers) would restore efficiency?
- Are spatial income disparities and sorting too strong?

Spatial equilibrium model with various dimensions of heterogeneity

- Flexible economy geography, e.g. Allen and Arkolakis (2014)-Redding (2016)
- Worker sorting and spillovers, e.g. Diamond (2016)
- Key generalization: transfers across regions and workers

2 Characterization of optimal spatial transfers and policies

- Homogeneous workers and constant elasticities: generically inefficient
- · Additional source of inefficiency due to sorting

Quantification on U.S. data across MSA's using existing spillover estimates

- Welfare gains 3%-6% due to inefficient sorting
- Observed urban premia (wages, sorting, returns to skill) too strong

Literature Background

- Optimal policies with externalities: Sandmo (1975), Dixit (1985), Brown and Heal (1983)
- Optimal city sizes: Henderson (1974), Helpman (1980), Albouy et al. (2017), Eeckhout and Guner (2017)
- Quantitative Economic Geography: Eaton and Kortum (2002), Krugman (1991), Helpman (1998), Allen and Arkolakis (2014), Caliendo et al. (2014), Redding (2016), Ahlfeldt et al. (2015), Desmet and Rossi-Hansberg (2014), Monte et al. (2018),...
- Spatial Sorting: Combes at al. (2008), Moretti (2013), Baum-Snow and Pavan (2013), De la Roca and Puga (2017), Diamond (2016), Giannone (2017), Behrens et al. (2014), Davis and Dingel (2016), Helsley and Strange (2014), Eeckhout at al. (2014)

Spatial Misallocation:

- Wedges: Brandt et al. (2013), Desmet and Rossi-Hansberg (2013), Hsieh and Moretti (2015)
- Policies: Fajgelbaum et al. (2018), Gaubert (2018), Ossa (2015)
- Place-based Policies: Glaeser and Gottlieb (2008), Kline and Moretti (2014), Neumark and Simpson (2015), Duranton and Venables (2018),..

Simple Example

- $j \in 1, ..., N$ city sites, homogeneous workers
 - L_j: population in city j
- Utility of a worker in city $j: u_j = a_j (z_j + t_j)$
 - $a_j = A_j L_j^{\gamma_A}$: amenity
 - $z_j = Z_j L_j^{\gamma_P}$: output per worker
 - t_j: transfer
- Free mobility: $u_j = u$

• Starting from no transfers, reallocate *dL* from *i* to *j* then:

$$\frac{du}{u} \propto \left(\gamma^{P} + \gamma^{A}\right) \left(z_{i} - z_{j}\right) dL$$

- Welfare gains from transfers \longleftrightarrow there are compensating differentials
- Even if elasticities are constant

Simple Example

- $j \in 1, ..., N$ city sites, homogeneous workers
 - L_j: population in city j
- Utility of a worker in city $j: u_j = a_j (z_j + t_j)$
 - $a_j = A_j L_j^{\gamma_A}$: amenity
 - $z_j = Z_j L_j^{\gamma_P}$: output per worker
 - t_j: transfer
- Free mobility: $u_j = u$
- Starting from no transfers, reallocate *dL* from *i* to *j* then:

$$rac{du}{u} \propto \left(\gamma^{P} + \gamma^{A}
ight) \left(z_{i} - z_{j}
ight) dL$$

- Welfare gains from transfers \longleftrightarrow there are compensating differentials
- Even if elasticities are constant

Add:

- Multiple types $\boldsymbol{\theta}$ with asymmetric spillovers
- Production of differentiated tradeable goods and non-tradeables

- Land, labor and intermediate inputs in production
- City-type specific productivities and amenities
- Trade frictions
- Characterize transfers that implement global optimum

Preferences and Labor Aggregate

• Utility of a type- θ worker in city *j*:

$$u_{j}^{\theta} = U\left(c_{j}^{\theta}, h_{j}^{\theta}\right) a_{j}^{\theta}\left(L_{j}^{1}, .., L_{j}^{\Theta}\right)$$

- $U(c_j^{\theta}, h_j^{\theta})$: traded and non-traded ("housing") consumption
- $a_j^{\theta} (L_j^1, ..., L_j^{\Theta})$: local amenities of type θ city j
- Labor aggregate:

$$N_j \equiv N\left(z_j^1 L_j^1, .., z_j^{\Theta} L_j^{\Theta}\right)$$

- Imperfect substitution
- $z_j^{\theta} = z_j^{\theta} \left(L_j^1, ..., L_j^{\Theta} \right)$: productivity of type θ in city j
- Spillover Elasticities:

• Productivity:
$$\gamma_{\theta,\theta'}^{P,j} \equiv \frac{L_j^{\theta}}{z_j^{\theta'}} \frac{\partial z_j^{\theta}}{\partial l_j^{\theta}}$$

• Amenities: $\gamma_{\theta,\theta'}^{A,j} = \frac{L_j^{\theta}}{a_j^{\theta'}} \frac{\partial a_j^{\theta'}}{\partial L_j^{\theta}}$

Preferences and Labor Aggregate

• Utility of a type- θ worker in city *j*:

$$u_{j}^{\theta} = U\left(c_{j}^{\theta}, h_{j}^{\theta}\right) a_{j}^{\theta}\left(L_{j}^{1}, .., L_{j}^{\Theta}\right)$$

- $U(c_j^{\theta}, h_j^{\theta})$: traded and non-traded ("housing") consumption
- $a_j^{\theta} (L_j^1, ..., L_j^{\Theta})$: local amenities of type θ city j
- Labor aggregate:

$$N_j \equiv N\left(z_j^1 L_j^1, .., z_j^{\Theta} L_j^{\Theta}\right)$$

- Imperfect substitution
- $z_j^{\theta} = z_j^{\theta} \left(L_j^1, ..., L_j^{\Theta} \right)$: productivity of type θ in city j
- Spillover Elasticities:

• Productivity:
$$\gamma_{\theta,\theta'}^{P,j} \equiv \frac{L_{\theta}^{\theta}}{z_{f}^{\theta'}} \frac{\partial z_{f}^{\theta'}}{\partial L_{\theta}^{\theta}}$$

• Amenities: $\gamma_{\theta,\theta'}^{A,j} = \frac{L_{\theta}^{\theta}}{a_{f}^{\theta'}} \frac{\partial a_{\theta}^{\theta'}}{\partial L_{\theta}^{\theta}}$

- Differentiated traded good produced in $j: Y_j = Y_j(N_j^Y, I_j^Y)$
 - Q_{ji} exported to city i
 - trade cost $d_{ji} \geq 1$
- Bundle of traded goods consumed in j: $Q(Q_{1j,...}Q_{Nj}) = C_j + I_j^Y + I_j^H$

- Non Traded good: $H_j = H_j(N_j^H, I_j^H)$
 - decreasing returns in $H_j \rightarrow$ housing supply elasticity

Competitive Equilibrium

• Type- θ worker:

$$u^{\theta} = \max_{j,c,h} U(c,h) a_{j}^{\theta}$$

s.t. $P_{j}c + R_{j}h = x_{j}^{\theta}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Expenditure:
$$\mathbf{x}_{j}^{\theta} = w_{j}^{\theta} + b^{\theta} \Pi + t_{j}^{\theta}$$

Producers

• Maximize profits in each sector

• Wage:
$$w_j^{\theta} = W_j \frac{\partial N(z_j^1 L_j^1, ..., z_j^{\Theta} L_j^{\Theta})}{\partial L_j^{\theta}}.$$

- Government budget balance = zero net transfers
- + Market clearing conditions

• Planner chooses $\{L_j^{\theta}, c_j^{\theta}, h_j^{\theta}, Q_{ji}, I_j^{Y}, I_j^{H}\}$ to solve

 $\begin{array}{l} \max \, u^{\theta} \\ \text{s.t.} : \, u^{\theta'} = \underline{u}^{\theta'} \ \, \textit{for} \ \, \theta' \neq \theta \\ + \text{feasibility constraints} \\ + \text{spatial mobility constraint} \end{array}$

• for arbitrary $\underline{u}^{\theta'}$ (traces out the Pareto frontier)

Proposition

If the competitive equilibrium is efficient, then, $\forall j$ with $L_i^{\theta} > 0$:

$$w_{j}^{\theta} + \sum_{\theta'} \frac{L_{j}^{\theta'}}{L_{j}^{\theta}} w_{j}^{\theta'} \gamma_{\theta,\theta'}^{\mathcal{P},j} + \sum_{\theta'} \frac{L_{j}^{\theta'}}{L_{j}^{\theta}} x_{j}^{\theta'} \gamma_{\theta,\theta'}^{\mathcal{A},j} = x_{j}^{\theta} + E^{\theta}$$

where E^{θ} are multipliers of the type- θ labor market clearing constraint.

• Equalization of marginal welfare effect of worker θ across j

- Marginal output + spillovers
- Consumes locally

• Extension of familiar "MPL=constant" efficiency condition to a spatial economy

- Information about x_i^{θ} needed to assess efficiency, on top of w_i^{θ}
- Condition is sufficient if planner's problem is concave

Proposition

Assume constant elasticity spillovers:

$$\gamma_{\theta,\theta'}^{P,j} = \gamma_{\theta,\theta'}^{P} \text{ and } \gamma_{\theta,\theta'}^{A,j} = \gamma_{\theta,\theta'}^{A}.$$

Then the optimal allocation can be implemented by the transfers

$$t_j^{\theta} = \frac{s_j^{\theta} w_j^{\theta}}{T} + T^{\theta}$$

where

$$\mathbf{s}_{j}^{ heta} = rac{\gamma^{ heta}_{ heta, heta} + \gamma^{ heta}_{ heta, heta}}{1 - \gamma^{ heta}_{ heta, heta}} + \sum_{ heta'
eq heta} rac{\gamma^{ heta}_{ heta, heta'} w^{ heta'}_j + \gamma^{ heta}_{ heta, heta'} x^{ heta'}_j}{1 - \gamma^{ heta}_{ heta, heta}} rac{L^{ heta'}_j}{w^{ heta}_j L^{ heta}_j}$$

and $T^{\theta} = b^{\theta} \Pi + \frac{E^{\theta}}{1 - \gamma^{A}_{\theta, \theta}}$ targets the planner's Pareto weights.

- Global optimum implemented by city-type specific subsidy: s_j^{θ} (**w**, **x**, **L**; γ)
 - Regardless of micro details (e.g. production functions, fundamentals, trade elasticity,..)

Special cases

• Single worker type: $t_j^* = sw_j^* + T$ where

$$\mathbf{s} = \frac{\gamma^{P} + \gamma^{A}}{1 - \gamma^{A}}$$

- If -γ^A > γ^P: s < 0, redistribution to low-wage cities
 tax policy (s, T) constant over space
- Two worker types, only cross-productivity spillovers:

$$s_{j}^{\theta} = \gamma_{\theta,\theta'}^{P} \left(\frac{w_{j}^{\theta'} L_{j}^{\theta'}}{w_{j}^{\theta} L_{j}^{\theta}} \right)$$

If γ^P_{θ,θ'} > 0, type θ subsidized more where "scarce"
 Gains from transfers even without compensating differentials

Special cases

• Single worker type: $t_j^* = sw_j^* + T$ where

$$\mathbf{s} = \frac{\gamma^{P} + \gamma^{A}}{1 - \gamma^{A}}$$

- If $-\gamma^A > \gamma^P$: s < 0, redistribution to low-wage cities
- tax policy (s, T) constant over space
- Two worker types, only cross-productivity spillovers:

$$\boldsymbol{s}_{j}^{\theta} = \gamma_{\theta,\theta'}^{P} \left(\frac{\boldsymbol{w}_{j}^{\theta'} \boldsymbol{L}_{j}^{\theta'}}{\boldsymbol{w}_{j}^{\theta} \boldsymbol{L}_{j}^{\theta}} \right)$$

- If $\gamma^{P}_{\theta,\theta'} > 0$, type θ subsidized more where "scarce"
- · Gains from transfers even without compensating differentials

Monopolistic competition and economic geography models

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Commuting more
- Spillovers across cities more
- Idiosyncratic preference draws within types < more

- Impose constant elasticity (CES or CD) functional forms for all functions

- Solving for optimal allocation requires:
 - Elasticities (production, preferences, spillovers)
 - 2 City-type distributions of: wages, employment, expenditures + trade flows

• Calibrate city-type specific shifters of utility and output to match observed distributions (Dekle et al, 2008)

Data and Calibration

- U.S. data across MSA's in 2007
 - 2 worker types: college and non-college workers
- By MSA: BEA Regional Economic Accounts
 - $\bullet\,$ Labor Income, Capital Income, Taxes, Transfers $\rightarrow\,$ Disposable Income
 - Construct expenditure as disposable income
- Breakdown by skill: IPUMS-ACS (income and transfers) and March CPS (taxes)
 - Control for observable characteristics (age, education, sector, race)
- Use spillover elasticities $(\gamma^{A}_{\theta',\theta}, \gamma^{P}_{\theta',\theta})$ from Diamond (2016) and Ciccone and Hall (1996) details

- High skill: $\gamma^{P}_{S,\theta} > 0$, $\gamma^{A}_{S,\theta} > 0$
- Low skill: $\gamma^{P}_{U,\theta} \approx 0$, $\gamma^{A}_{U,\theta} << 0$

Data: Correlations with City Size

SQC.

æ

Utility Frontier

• Gains of 4%

- 3% 6% across a range of spillovers and specifications
 - other gammas
 other specs

• Driven by inefficient sorting:

- With homogeneous workers: 0.06%
- With heterogeneous workers but without sorting: 0.25%

< ≥ > < ≥ >

э

Actual vs. Optimal Transfers

• Optimal redistribution is stronger than in the data

- Low skill: $\gamma^{A}_{U,U}, \gamma^{A}_{U,S} < 0 \rightarrow tax$ in high-wage (bigger) cities
- High skill: $\gamma^{A}_{S,S}, \gamma^{P}_{S,S} > 0 \rightarrow subsidy$ in high-wage cities,
 - offset by $\gamma^{A}_{S,U}, \gamma^{P}_{S,U} > \mathbf{0}$

Reallocation away From Large Cities

On average, smaller cities grow more...

Slope (SE): -0.16 (0.03)

ロト 《聞 と 《臣 と 《臣 と 三 三 のへの

Stronger Reallocation for High Skill Workers

...in particular through reallocation of high skill workers...

Low Skill: -0.15 (0.03)

ъ

э

(日)、

Reduction in Skill Premium

...leading to a reduction of the skill premium in more unequal cities.

Slope (SE): -0.4 (0.07)

(日) (同) (日) (日)

э

Weakening of Urban Premia

Which Elasticities Matter?

- Calibrated vs "revealed-optimal" elasticities
- Optimal transfer rule from planner:

$$t_j^{\theta} = \mathbf{a}_0^{\theta} + \mathbf{a}_1^{\theta} \mathbf{w}_j^{\theta} + \mathbf{a}_2^{\theta} \frac{\mathbf{w}_j^{\theta'} \mathbf{L}_j^{\theta'}}{\mathbf{L}_j^{\theta}} + \mathbf{a}_3^{\theta} \frac{\mathbf{x}_j^{\theta'} \mathbf{L}_j^{\theta'}}{\mathbf{L}_j^{\theta}} + \varepsilon_j^{\theta}$$

for $\theta = U, S$

• If data is efficient: $\gamma_{\theta,\theta}^{A} = \frac{a_{\theta}^{\theta} - \gamma_{\theta,\theta}^{P}}{1+a_{\theta}^{\theta}}, \ \gamma_{\theta,\theta'}^{P} = a_{2}^{\theta} \left(1 - \gamma_{\theta,\theta}^{A}\right), \ \gamma_{\theta,\theta'}^{A} = a_{3}^{\theta} \left(1 - \gamma_{\theta,\theta}^{A}\right)$

- Efficient elasticities vs. calibration
 - Similar order of magnitude
 - But calibrated has $\tilde{\gamma}^{A}_{S,\theta} > 0$, "revealed-optimal" $\gamma^{A}_{S,\theta} < 0$

Conclusion

• Quantitative framework combining flexible economic geography, heterogeneous workers, and spillovers

• Characterization of first best allocation and optimal transfers

- Scope for welfare-enhancing transfers even with common spillovers
- Additional source of inefficiency from sorting

Quantification

• Optimal spatial transfers feature stronger redistribution to low-income cities

- Weaker patterns of urban premia
- Losses from inefficient sorting

Caveats

- Static model, invariant worker types
- First best policies, no fiscal competition

Parametrization of Spillover Elasticities

- Spillovers set to match Diamond (2016) estimates
 - Productivities:

$$\begin{bmatrix} \gamma_{UU}^{P} & \gamma_{US}^{P} \\ \gamma_{SU}^{P} & \gamma_{SS}^{P} \end{bmatrix} = \begin{bmatrix} 0.003 & 0.02 \\ 0.044 & 0.053 \end{bmatrix}$$

- Level matches elasticity of 0.06 (Ciccone and Hall, 1996)
- Also multiply by 2
- Amenities:

$$\begin{bmatrix} \gamma_{UU}^A & \gamma_{US}^A \\ \gamma_{SU}^A & \gamma_{SS}^A \end{bmatrix} = \begin{bmatrix} -0.43 & -1.24 \\ 0.18 & 0.77 \end{bmatrix}$$

Also:

- Divide all by 2
- Scale $\gamma_{ heta, heta'}$ by +/- 1 SD around Diamond (2016) estimates

Other Parameters

- $(\alpha_C, \rho) = (0.38, 0.39)$
- $\{d_{H,j}\} = 0.13$ (average)
- $\sigma = 5$ (Head and Mayer, 2014)

Optimal Imbalances in Quantitative Spatial Models

• Standard quantitative geography models are a special case

- Single worker type, no intermediate inputs, fixed housing supply
- Cobb-Douglas utility: $U(c, h) = c^{\alpha_c} h^{1-\alpha_c}$
- Constant spillover elasticities (γ^P, γ^A)
- Optimal Expenditures:

$$x_j = w_j(1-\eta) + \eta \bar{w}$$

• Composite elasticity
$$\eta \equiv 1 - rac{\alpha_C \left(1 + \gamma^P\right)}{1 - \gamma^A}$$

$$t_j = \eta \left(\bar{w} - w_j \right)$$

• Uniqueness region ($\eta > 0$): net transfers to

Optimal Policies across models given η

- Helpman (1998): transfers from low to high income cities
- Allen and Arkolakis (2014), Redding (2016): transfers from high to low income cities

◀ back

Commuting

- Homogeneous workers with commuting (Ahlfeldt et al. 2015; Monte et al. 2018):
 - Allocation determines commuters L_{ji} from residence j to workplace i
- Utility and output:

$$egin{aligned} u_{ji} &= a_j \left(L_j^R
ight) U_{ji} \left(c_{ji}, h_{ji}
ight) \ z_i &= z_i \left(L_i^W
ight) \end{aligned}$$

• Optimal transfers separable into a residence-based and a workplace-based tax:

$$t_{ji}^* = t_i^W + t_j^R - T$$

where

$$\begin{split} t^W_i &= \gamma^P_i \, w^*_i \\ t^R_j &= \gamma^A_j \sum_{i'} \frac{L^*_{ji'} x^*_{ji'}}{L^R_j} \end{split}$$

 Homogeneous workers with spillovers across locations (Rossi-Hansberg, 2005; Ahlfeldt et al. 2015):

$$\gamma^{P,j,j'} = \frac{\partial z_{j'}}{\partial L_j} \frac{L_j}{z_{j'}}$$

Optimal transfers:

$$t_j = \frac{\gamma^{P,j,j} + \gamma^A}{1 - \gamma^A} w_j + \sum_{j' \neq j} \frac{\gamma^{P,j,j'}}{1 - \gamma^A} \frac{L_{j'} w_{j'}}{L_j} + T$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Idiosyncratic draws. Utility of worker *I* of type θ in *j*: $u_j^{\theta} \epsilon_j^I$
 - Extreme value (Fréchet) draws: $\Pr(\epsilon_j^l < x) = e^{-x^{-1/\sigma_{\theta}}}$
 - Higher $\sigma_{\theta} \rightarrow$ lower labor supply elasticity
- Optimal transfers exactly as before with $\gamma_{\theta,\theta}^{A,j} \sigma_{\theta}$ instead of $\gamma_{\theta,\theta}^{A,j}$
 - σ_{θ} isomorphic to congestion
- Without spillovers, optimal subsidy: $s^{ heta} = -rac{\sigma_{ heta}}{1+\sigma_{ heta}}$
 - Tackle distributional concerns (rather than inefficiencies)

back

Quantitative Implementation

Functional Forms and Uniqueness

• Preferences:
$$U(c, h) = c^{\alpha c} h^{1-\alpha c}$$

• Varieties: $Q = \left(\sum_{i} Q_{ji}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$
• Labor: $N_{j} = \left(\sum_{\theta} \left(z_{j}^{\theta} L_{j}^{\theta}\right)^{\rho}\right)^{1/\rho}$
• Output in Y: $z_{j}^{Y} \left(N_{j}^{Y}\right)^{1-b_{Y,j}^{\prime}} \left(I_{j}^{Y}\right)^{b_{Y,j}^{\prime}}$,
• Output H: $z_{j}^{H} \left(\left(N_{j}^{H}\right)^{1-b_{H,j}^{\prime}} \left(I_{j}^{H}\right)^{b_{H,j}^{\prime}}\right)^{1/(1+d_{H,j})}$
• Spillovers: $a_{j}^{\theta} = A_{j}^{\theta} \prod_{\theta'} \left(L_{j}^{\theta'}\right)^{\gamma_{\theta',\theta}^{\theta}}$ and $z_{j}^{\theta} = Z_{j}^{\theta} \prod_{\theta'} \left(L_{j}^{\theta'}\right)^{\gamma_{\theta',\theta}^{\rho}}$

Proposition

The planning problem is concave if

$$\min_{\theta} \left\{ -\sum_{\theta'} \gamma^{A}_{\theta',\theta} \right\} > \max \left\{ \max_{\theta} \left\{ \sum_{\theta'} \gamma^{P}_{\theta',\theta} \right\}, 0 \right\}$$

and $\gamma^{\mathsf{A}}_{\theta,\theta'} > 0$ for $\theta \neq \theta'$.

Utility Frontiers under Alternative Parametrizations

Spillovers	Welfare Gain (%)
Benchmark	4.0
High efficiency spillover	4.3
Low amenity spillover	2.8
High cross-amenity spillover	5.6
Low cross-amenity spillover	3.1

◄ return

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Welfare Gains Under Other Specifications

	Welfare Gain (%)
Benchmark	4.0
Land Regulations, keeping distortions	3.7
Land Regulations, removing distortions	8.6
Three skill groups	3.9
Imperfect Mobility	4.3
Expenditures = Income	6.3
Local land rents distribution	4.9

(ロ)、(型)、(E)、(E)、 E) の(の)

✓ return

- Benchmark: housing supply elasticity is a technological constraint
- Introduce tax in problem of housing producers:

$$\Pi_{j}^{H} = \max_{N_{j}^{H}, I_{j}^{H}} \left(1 - t_{H,j}\right) R_{j} H_{j} \left(N_{j}^{H}, I_{j}^{H}\right) - W_{j} N_{j}^{H} - P_{j} I_{j}^{H}, \tag{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where
$$t_{H,j} = 1 - \frac{1}{1 - \tau_{H,j}} (R_j H_j)^{-\tau_{H,j}}$$

• Housing supply elasticity:

$$\frac{\partial \ln H_j}{\partial \ln R_j} = \frac{1 - \tau_{H,j}}{d_{H,j} + \tau_{H,j}}$$

• Define $\tau_{H,j}$ as land-use regulations

◀ return

Growth in Skill Share vs. Initial Skill Share

<ロト <回ト < 注ト < 注ト

æ

✓ return

Regional Patterns

Red = (+) change, Blue = (-) change; Size = Initial Population

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ