OPTIMAL TRANSPORT NETWORKS IN SPATIAL EQUILIBRIUM

Pablo D. Fajgelbaum
Edouard Schaal

Working Paper 23200
http://www.nber.org/papers/w23200

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
February 2017

We thank Esteban Rossi-Hansberg, Thomas Chaney, Jonathan Eaton, Cecile Gaubert, Gueorgui Kambourov, and Jonathan Vogel for helpful comments and suggestions. We thank seminar participants at Chicago Booth, CEMFI, Chinese University of Hong Kong, Humboldt, National University of Singapore, RIDGE, Penn State, Science Po, SMU, Toronto, and USC. Edouard Schaal acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563) and the Barcelona GSE (grant SG-2017-07). The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2017 by Pablo D. Fajgelbaum and Edouard Schaal. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
ABSTRACT

We develop a framework to study optimal transport networks in general equilibrium spatial models. We model a general neoclassical economy with multiple goods and factors in which arbitrarily many locations are arranged on a graph. Goods must be shipped through linked locations, and transport costs depend on congestion and on the infrastructure in each link, giving rise to an optimal transport problem in general equilibrium. The framework nests neoclassical trade models, such as Armington or Hecksher-Ohlin, and allows for labor mobility. The globally optimal transport network is the solution to a social planner’s problem of building infrastructure in each link. We provide conditions such that this problem is globally convex, guaranteeing its numerical tractability. We also study and implement cases with increasing returns to transport technologies in which global convexity fails. We match the model to data on actual road networks and economic activity at high spatial resolution across 25 European countries, and then compute the optimal expansion and reallocation of current roads within each country. We find larger gains from road expansion and larger losses from misallocation of current roads in lower-income countries. The optimal expansion of current road networks reduces regional inequalities.

Pablo D. Fajgelbaum
Department of Economics
University of California, Los Angeles
8283 Bunche Hall
Los Angeles, CA 90095
and NBER
pfajgelbaum@gmail.com

Edouard Schaal
Centre de Recerca en Economia Internacional
Universitat Pompeu Fabra
Ramon Trias Fargas, 23-25
08005 Barcelona
Spain
edouard.schaal@gmail.com
1 Introduction

Trade costs are a ubiquitous force in international trade and economic geography, as they rationalize spatial distributions of prices, real incomes, and trade flows. Some central questions, such as the magnitude of the gains from trade, involve counterfactuals with respect to trade costs, as in recent quantitative research summarized by Costinot and Rodríguez-Clare (2013). Domestic and international transport networks are important determinants of trade costs (Limao and Venables, 2001; Atkin and Donaldson, 2015) and every year the world economy invests a large amount of resources to improve transport infrastructure (WorldBank, 2009).¹ Many studies assess the economic impact of such investments, including empirical analyses of actual changes in transport infrastructure, reviewed by Donaldson (2015) and Redding and Turner (2015), and simulations of counterfactuals in quantitative spatial models, reviewed by Redding and Rossi-Hansberg (2016)

A limitation of this burgeoning body of research is the capacity to study optimal transport networks. What would be the gains from optimally expanding current transport networks, how large are the losses associated with inefficient networks, and how do these effects vary across countries? How do optimal transport network investments depend on standard sources of comparative advantages, such as relative productivity and factor endowments? How would optimal investments reshape the observed distribution of economic activity?

In this paper, we develop and apply a framework to study optimal transport networks in general-equilibrium trade and economic geography models. We model a general neoclassical environment with multiple goods and factors in which arbitrarily many locations are arranged on a graph. Goods can only be shipped through connected locations. For example, connected locations may correspond to bordering locations in the geographical space. In addition, resources can be invested to improve the transport infrastructure in any link (e.g., the number of lanes or the quality of the road) and therefore lower per-unit transport costs. The framework nests all the commonly used neoclassical trade models (such as the Ricardian, Armington, and factor-endowment models), and it allows for either a fixed spatial distribution of the primary factors (as in international trade models) or for labor and potentially other factors to be mobile (as in economic geography models).²

The transport network is defined by the set of infrastructure investments. Solving for the globally optimal transport network is challenging because of dimensionality—the space of all networks is very large—and because of interactions—an investment in one link asymmetrically impacts the returns to investments across the network. It is also complicated by the potential increasing returns due to the complementarity between network investments and shipping. Our approach deals with these hurdles. First, rather than optimizing over the network in the competitive equilibrium, we tackle the planner’s problem of simultaneously choosing the allocation, the gross trade flows, and the infrastructure in every link.³ Given the transport network the welfare theorems hold, so that

¹See WorldBank (2011) and IADB (2013) for assessments of transport costs and infrastructure in Africa and Latin-America, respectively.
²We limit the analysis to transport of goods. In the case with labor mobility, labor is perfectly mobile.
³The problem of choosing the gross trade flows is related to minimum cost flow problems studied in engineering and operations research, and to the optimal transport problem on a network studied in the optimal transport literature,
the planner’s optimal allocation and gross trade flows correspond to a competitive equilibrium.\footnote{Because congestion acts as an externality not internalized by traders, in the decentralized allocation the welfare theorems hold under corrective Pigouvian taxes.} Second, we convexify the social planner’s problem by allowing for continuous infrastructure investments (including the case of no investment), instead of a binary choice of whether to connect locations or not. Third, to offset the increasing returns, we allow for curvature in the technology to transport goods: the more that is shipped between connected locations, the higher is the marginal cost of shipping an extra unit due to congestion.

The first main implication of these assumptions is a reduction in dimensionality. Using the first-order conditions with respect to infrastructure investments avoids a search in the very large space of all networks. Because the investment is continuous, the optimal infrastructure investment between connected locations i and j is determined as a function of goods’ shadow values—the equilibrium prices in the decentralized allocation—in locations i and j alone. Hence, instead of searching in the space of all networks, these properties allow us to optimize in the considerably smaller space of equilibrium prices. The second main implication is the convexity of the planner’s problem: if congestion in transport is strong relative to the returns to investments in infrastructure, the planner’s problem is a standard convex optimization problem. Therefore, besides being a realistic force, congestion ensures the sufficiency of the first-order conditions of the planner’s problem and guarantees the convergence of efficient numerical algorithms. These properties hold regardless of the number of goods, sectors, and factors, and regardless of whether labor is fixed or mobile, as long as the model lies within the neoclassical realm.

While strong enough congestion in transport guarantees convexity of the planner’s problem, our framework is also tractable when congestion is weak or non-existent. We discuss theoretical properties and implement cases where global convexity fails. We theoretically demonstrate that, in simple non-convex cases, the optimal network is a tree, so that every pair of locations is connected by only one route. In various examples and in the main application, we numerically implement cases without global convexity by combining the necessary first-order conditions from the planner’s problem with standard global-search numerical methods, such as simulated annealing, to approximate for the global solution. The ensuing networks in these cases are sparser, and the distribution of infrastructure investments is more skewed towards fewer but wider “highways”.

We first develop the framework, characterize its main properties, and discuss the numerical implementation. Then, we illustrate its uses by computing the optimal transport network in different spatial equilibrium environments. Our examples start from the simplest case nested within our model, an endowment economy without labor mobility and only one traded and one non-traded good in a symmetric graph. Then, we progressively move to more complex cases with randomly located cities, multiple sectors, labor mobility, geographic frictions, and increasing returns to transport. In the examples, we illustrate the contrast between the globally optimal networks in convex cases, where the congestion forces dominate the returns to network building, and the approximate optimal networks in cases where global convexity of the planner’s problem fails.

as we discuss in the literature review section.
We apply the framework to study optimal road networks in Europe. Our goal is to answer two questions: how large would be the gains from optimal expansions of current road networks, and how large are the losses from misallocation of current roads? The first question is motivated by the fact that a large fraction of public investment is directed to expansion of roads, yet no quantitative general-equilibrium analysis exists of the optimal placement of these investments and their impact across and within countries. The second question is motivated by the fact that the allocation of regional investments in transportation is often sensitive to frictions and political interests, potentially leading to inefficiencies in the observed transport networks.\footnote{See Castells and Solé-Ollé (2005) for an analysis of the role of political factors in driving the allocation of infrastructure investment across Spanish departments. Collier et al. (2016) provide evidence that the costs of building road networks in low- and middle-income countries are related to political conflict.}

Before implementing the counterfactuals, we calibrate the model to match geocoded data on the shape of road networks, population, and income across 25 European countries. We combine these data into a 0.5 x 0.5 spatial resolution grid (approximately 50 km2). As a step towards this discretization, we construct a measure of infrastructure that captures the features of the roads linking any two contiguous cells, such as number of lanes and type of road. For the quantification, we specialize the framework to a case where locations are heterogeneous in productivity and in the supply of non-traded goods. We allow for two types of geographic frictions: in the cost of building infrastructure in each link, and in the cost of shipping given the infrastructure of each link. We choose the degree of congestion to match the empirical elasticity of travel times to traffic, and we entertain different assumptions on labor mobility and on the returns to infrastructure, encompassing both convex cases and non-convex cases. In every case, we discipline the distribution of productivity and non-traded goods so that, given the observed road network, the model reproduces as an equilibrium outcome the observed population and value added across the 1511 cells in the 25 countries of our data.

To implement the counterfactuals we impose alternative assumptions on road building costs. In one case, we assume that the observed road network is the outcome of our planning problem, allowing us to back out these costs from the first-order conditions of the planner’s problem. In another, we are agnostic on whether the observed network results from an optimization, and instead use existing estimates from the literature for how building costs vary with observable geographic features. In terms of aggregate effects, we find that an optimal 50% expansion in the size of the road network would lead to average welfare gains across countries of between 1% and 5%, depending on our assumptions on returns to infrastructure, building costs, and labor mobility. The average welfare loss across countries from misallocation of current roads is between 2% and 4% across specifications. These effects are heterogeneous, with welfare gains in the order of 10% in some relatively small countries. We find a negative relationship between income per capita and welfare gains from either expanding the network or optimally reallocating current roads, suggesting larger returns to optimal infrastructure investment and larger road misallocation in poorer economies.

We also analyze the regional impacts associated with optimal network expansion and reallocation of current roads. We find that, regardless of the type of counterfactual or the various
assumptions on parameters and building costs, the optimal allocation of infrastructure reduces regional inequalities in real consumption and in the level of economic activity. This reallocation pattern reflects a central force in the model: the goal of the optimal investments in infrastructure is to reduce variation in the marginal utility of consumption of traded commodities across locations. Different assumptions on building costs, however, do imply different ways of achieving this goal of reducing spatial inequalities in terms of where the infrastructure investments are specifically placed. We illustrate the alternative road investment plans implied by the different assumptions and counterfactuals by considering in detail two of the largest economies in our data, France and Spain.

The rest of the paper proceeds as follows. Section 2 discusses the connection to the literature. Section 3 develops the framework, establishes its key properties, and discusses the numerical implementation. Section 4 presents the simple illustrative examples. Section 5 applies the model to road networks in Europe. Section 6 concludes. We relegate proofs, additional derivations, details of the quantitative exercise, tables, and figures to the appendix.

2 Relation to the Literature

Our paper is related to a recent quantitative literature in international trade and spatial economics. Eaton and Kortum (2002) and Anderson and Van Wincoop (2003) developed quantitative versions of the Ricardian and Armington trade models, respectively, allowing counterfactuals with respect to trade costs in a multi-country competitive equilibrium. Recently, these frameworks were applied to setups allowing for factor mobility and trade frictions within countries as in Allen and Arkolakis (2014), Caliendo et al. (2014), Ramondo et al. (2012) and Redding (2016).

Some recent studies in this tradition introduce traders who, given the transport network, choose the least cost route to ship their goods. These studies undertake counterfactuals with respect to the cost of shipping across specific links of the transport network, but do not optimize in the space of networks like we do. In this vein, Allen and Arkolakis (2014) measure the aggregate welfare effect of the U.S. highway system, Redding (2016) compares the impact of infrastructure changes in models with varying degrees of increasing returns, Alder (2016) simulates counterfactual transport networks in India, Nagy (2016) measures the historical impact of railroad growth in the U.S., and Sotelo (2016) simulates the impact of highway investments on agricultural productivity in Peru; in an urban setup, Redding et al. (2016) study innovations to urban transport systems and applies it to Berlin. These studies rest upon methodological insights from Dekle et al. (2008) to simulate the impact of changes in infrastructure as function of observed data.

To the best of our knowledge, only a few papers feature some form of search or optimization over transport networks: Alder (2016) applies an heuristic algorithm that progressively eliminates links according to their impact on market access, and Felbermayr and Tarasov (2015) study

6Chaney (2014a) studies endogenous networks of traders in contexts with imperfect information. For a review of recent literature on the role of various types of networks in international trade see Chaney (2014b).
optimal infrastructure investments by competing planners in an Armington model on the line. Allen and Arkolakis (2016) use envelope conditions to compute the first-order welfare impact of reductions to the cost of shipping across specific links of the transport network in an Armington model matched to the U.S., but do not optimize over the space of networks. In contrast, we solve a global optimization over the space of networks, given any primitive fundamentals, in a general neoclassical framework. The fundamentals can be chosen to match data on economic activity and actual transport networks at high spatial resolution, as we do in our application to Europe. Given the transport network, our framework nests as special cases the Ricardian and Armington models and canonical factor-endowment models such as Hecksher-Ohlin.

Both our model and the studies cited above include an optimal transport problem—i.e., the trader’s problem of choosing least-cost routes across pairs of locations. However, there is an important difference. In the studies cited above, the optimal transport problem does not include congestion and can therefore be solved independently from any general-equilibrium outcome. In addition, in these previous studies, each location sources each good from only one origin, as in for example the Armington model where each commodity is produced in only one location. In contrast, here, the solution to the optimal transport problem depends on the solution to the general equilibrium of the neoclassical allocation problem, and markets may source the same good from different locations. The least-cost route optimization present in the applications of gravity trade models discussed before corresponds to the solution of our optimal transport problem in the special case in which there is no congestion.

The optimal transport problem embedded within our framework is related to problems studied early on by Monge (1781) and Kantorovich (1942). More specifically, because we analyze the optimal route problem—not solely the direct assignment of sources to destinations, as is commonly done in this literature—our approach is more closely related to optimal flow problems on a network as studied in Chapter 8 of Galichon (2016) and Santambrogio (2015). Our problem differs, however, because we compute the gains from reducing trade costs or improving infrastructure rarely account for the costs of doing so, while we consider both sides of the trade-off by including the cost of building infrastructure in each link. In our counterfactuals, the parametrization of these costs has important implications for where optimal infrastructure is placed, but not for which regions grow.

It also nests the neoclassical spatial equilibrium model of Rosen-Roback (Roback, 1982).

Note that we use “optimal transport” to refer to the optimal shipping of goods throughout the network. This is one of the subproblems embedded in our framework, alongside the optimal network design problem.

An exception to this second property is Sotelo (2016), who models a factor-endowment economy where different locations may produce the same agricultural good.

See Bertsekas (1998) for a survey of algorithms and numerical methods for optimal flow and transport problems on a network.
from this literature in two important aspects. First, in our model, consumption and production in every location are endogenous because they respond to standard general-equilibrium forces. Instead, the aforementioned optimal transport problems are typically concerned with mapping sources with fixed supply to sinks with fixed demand. Second, our focus is on the optimization over the transport network itself, whereas this literature usually takes the transport costs between links as a primitive. In that regard, the problem that we study is akin to the optimal transport network problems in non-economic environments analyzed in Bernot et al. (2009).

Despite these differences, our model inherits key appealing properties of optimal transport problems. More precisely, strong duality obtains in our framework and the optimal flow patterns derive from a “potential field”, i.e., prices in our context. While the optimal transport literature shows that strong duality holds under weak conditions in a wide variety of environments, it holds in our model as a special case of convex duality. Hence, our way of embedding an optimal transport problem into a general neoclassical equilibrium model extended with a network design problem does not preclude the validity of key earlier insights from the optimal transport literature. The main benefit of duality, in our context, is a reduction of the search space and substantial gains in computation times.

A large body of empirical research estimates how actual changes in transport costs impact economic activity. For instance, Fernald (1999) estimates the impact of road expansion on productivity across U.S. industries; Chandra and Thompson (2000), Baum-Snow (2007) and Duranton et al. (2014) estimate the impact of the U.S. highways on various regional economic outcomes; Donaldson (2010) and Donaldson and Hornbeck (2016) estimate the impact of access to railways in India and the U.S., respectively; and Faber (2014) estimates the impact of connecting regions to the expressway system in China. Our application measures the aggregate country-level welfare gains from optimally expanding current road networks. In the counterfactuals, we inspect the relationship between infrastructure investment and growth across regions. Feyrer (2009) and Pascali (2014) assess how the arrival of new transport technologies impacted countries or cities whose geographic position made them differentially likely to use the new transport mode. In Section 4 we illustrate how our model could be used to determine the impact of new transport technologies operating through the optimal investments reshaping the network.

Finally, we also apply the model to measure the potential losses from misallocation of current roads. In that sense, this paper is broadly related to the literature on the aggregate effects of misallocation such as Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). Recent papers such as Desmet and Rossi-Hansberg (2013), Brandt et al. (2013), and, more recently, Hsieh and Moretti (2015) and Fajgelbaum et al. (2015), specifically focus on misallocation across geographic units. Asturias et al. (2016) study how transport infrastructure impacts misallocation in a model where

15See Beckmann (1952) for an early continuous-space example of such an optimal transport problem in economics.
16Our paper also relates to the network-design and planning literature in operations research, which studies related network-design problems in telecommunications and transport industries without embedding them in general-equilibrium spatial models. See Ahuja et al. (1989) for a handbook treatment of the subject.
17See also Coşar and Demir (2016) and Martincus et al. (2017) for empirical studies of how infrastructure investments impact the international shipments of different regions.
misallocation is endogenous through variable markups. In our case, the counterfactuals study the inefficient placement of roads in space from the perspective of a welfare-maximizing central planner.

3 Model

3.1 Environment

Preferences The economy consists of a discrete set of locations \(J \). We let \(L_j \) be the number of workers located in \(j \in J \), and \(L \) be the total number of workers. We will entertain cases with labor mobility, where \(L_j \) is determined endogenously, and cases without mobility, where \(L_j \) is given. Workers consume a bundle of traded goods and a non-traded good in fixed supply, such as land or housing. Utility of an individual worker who consumes \(c \) units of the traded goods bundle and \(h \) units of the non-traded good is

\[
U(c, h),
\]

where the utility function \(U \) is homothetic and concave in both its arguments.\(^{18}\) In location \(j \), per-capita consumption of traded goods is

\[
c_j = \frac{C_j}{L_j},
\]

where \(C_j \) is the aggregate supply of the traded goods bundle in location \(j \). There is a discrete set of tradable sectors \(n = 1, \ldots, N \), combined into \(C_j \) through a homogeneous of degree 1 and concave aggregator,

\[
C_j = C_j^T (C_j^1, \ldots, C_j^N)
\]

where \(C_j^n \) is the total quantity of sector \(n \)'s output consumed in location \(j \). A convenient, but not necessary, functional form that corresponds to what is typically assumed in the literature is the CES technology,

\[
C_j = \left(\sum_{n=1}^{N} (C_j^n)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{1}{\sigma}}
\]

where \(\sigma > 0 \) is the elasticity of substitution.\(^{19}\)

Production The supply-side of the economy corresponds to a general neoclassical economy. In addition to labor, there is a fixed supply \(V_j = (V_j^1, \ldots, V_j^M) \) of primary factors \(m = 1, \ldots, M \) in location \(j \). These factors are immobile across regions but mobile across sectors.\(^{20}\) Output of sector

\(^{18}\)Except when noted explicitly, we do not impose the Inada condition. The utility function could also vary by location to encompass cases where they vary in how attractive they are, e.g., because of amenities.

\(^{19}\)Since we only require \(C_j^T \) to be concave, under the CES assumptions our formulation allows the traded sectors to be either complements \((\sigma < 1)\) or substitutes \((\sigma > 1)\). For simplicity we assume that traded commodities are only used for final consumption. The framework can be generalized to allow traded goods as intermediates in production, as we discuss below.

\(^{20}\)We can allow for some of these factors to be mobile across regions as well as immobile across sectors as well. We do not present these cases to shorten notation.
In location \(j \) is:

\[
Y^n_j = F^n_j (L^n_j, V^n_j),
\]

where \(L^n_j \) is the number of workers and \(V^n_j = (V^n_{1j}, \ldots, V^n_{mnj})' \) is the quantity of other primary factors allocated to the production of sector \(n \) in location \(j \). The production function \(F^n_j \) is either neoclassical (constant returns to scale, increasing and concave in all its arguments) or a constant (endowment economy). Therefore, the production structure encompasses the neoclassical trade models. The Armington model (Anderson and Van Wincoop, 2003) corresponds to \(N = J \) (as many sectors as regions) and \(F^n_j = 0 \) for \(n \neq j \), so that \(Y^n_j \) is region \(j \)'s output in the differentiated commodity that (only) region \(j \) provides. The Ricardian model corresponds to labor as the only factor of production and linear technologies, \(Y^n_j = z^n L^n_j \). The specific-factors and Hecksher-Ohlin models are also special cases of this production structure.

Underlying Graph The locations \(J \) are arranged on an undirected graph \((J, E)\), where \(E \) denotes the set of edges (i.e., unordered pairs of \(J \)). For each location \(j \) there is a set \(\mathcal{N}(j) \) of connected locations, or neighbors in short. Goods can be shipped only through connected locations; i.e., goods shipped from \(j \) can be sent to any \(k \in \mathcal{N}(j) \), but to reach any \(k' \notin \mathcal{N}(j) \) they must transit through a sequence of connected locations. The transport network design problem will consist in determining the level of infrastructure linking each pair of connected locations.

A natural case encompassed by this setup corresponds to \(j \) being a geographic unit such as county, \(\mathcal{N}(j) \) being its bordering counties, and shipments being done by land. More generally, neighbors in our theory do not need to be geographically contiguous; e.g., it could be possible to ship directly between geographically distant locations by air or sea. Moreover, the fully connected case in which every location may ship directly to every other location, \(\mathcal{N}(j) = J \) for all \(j \), is one special case.

Transport Technology In the model, goods will typically transit through several locations before reaching a point where they are consumed. Hence, each location typically reships goods received from other locations. We let \(Q^n_{jk} \) be the quantity of goods in sector \(n \) shipped from \(j \) to \(k \in \mathcal{N}(j) \), regardless of where the good was produced.\(^{21}\) Transporting \(Q^n_{jk} \) from \(j \) to \(k \) requires \(\tau^n_{jk} Q^n_{jk} \) units of the good \(n \) itself, where \(\tau^n_{jk} \) denotes the per-unit cost of transporting good \(n \) from \(j \) to \(k \). This unit cost may depend on the quantity shipped, \(Q^n_{jk} \), and on the level of infrastructure \(I_{jk} \) along link \(jk \) through the following transport technology:

\[
\tau^n_{jk} = \tau_{jk} (Q^n_{jk}, I_{jk}).
\]

\(^{21}\)We adopt the convention that the \(\mathcal{N}(j) \) does not include \(j \), i.e., \(j \) is not defined as a neighbor of itself. Shipments of product \(n \) to the own region are therefore represented by \(C^n_j \), which we have already defined, rather than by \(Q^n_{jj} \), which is not defined.
The term $1 + \tau_{jk}^n$ corresponds to the iceberg cost typically considered in the literature, except that here it is allowed to depend on endogenous quantities.\footnote{In the standard formulation in the trade literature, the iceberg trade cost is defined as a coefficient greater than one such that one unit arrives if that many units are shipped. Here, 1 unit arrives if $1 + \tau$ units are shipped.} We assume:

$$\frac{\partial \tau_{jk}^n}{\partial Q_{jk}^n} \geq 0.$$

This assumption allows for decreasing returns in the shipping sector. We refer to these decreasing returns as congestion, with the understanding that this concept encapsulates several real-world forces whereby an increase in traffic leads to higher marginal transport costs.\footnote{The Handbook on Estimation of External Costs in the Transport Sector commissioned by the European Commission (Maibach et al., 2013) lists various forces that would impact shipping costs such as higher travel times, higher accident rate, and road damage. Other social costs described by the report include environmental damage and noise.} Besides increased road use, other standard forces leading to decreasing returns at the sectoral level for the transport sector are consistent with this assumption.\footnote{E.g., the transport sector may operate subject to decreasing returns to scale due to land-intensive fixed factors such as warehousing, or due, for instance, to specialized physical and human capital. Our framework and main results can be extended to encompass cases where the cost of transporting goods is defined in terms of primary factors, the final traded good, or the final non-traded good. We skip the presentation of these cases to save notation, but their incorporation in the planner’s problem would be straightforward.} In short, the more is shipped, the higher the per-unit shipping cost. When $\partial \tau_{jk} / \partial Q = 0$, the marginal cost of shipping is invariant to the quantity shipped.

We interpret I_{jk} as capturing features that lead to reductions in the cost of transporting goods. E.g., when shipping over land, I_{jk} may correspond to whether a road linking j and k is paved or includes a median, its number of lanes, or the availability of roadside services. Hence, we assume:

$$\frac{\partial \tau_{jk}^n}{\partial I_{jk}^n} < 0.$$

We adopt the conventions that, in the absence of infrastructure, transport along jk is prohibitively costly, $\tau_{jk} \left(Q_{jk}^n, 0\right) = \infty$, and that only when infrastructure goes to infinity there is free transport, $\tau_{jk} \left(Q_{jk}^n, \infty\right) = 0$.\footnote{The technology could also vary by good n to accommodate that shipping some goods is more costly given the same aggregate flows. We avoid introducing that margin to save on notation. The extension to congestion across goods discussed in Section 3.6 accommodates asymmetries in the congestion exerted by different commodities.}

The transport technology τ_{jk} is allowed to vary by jk,\footnote{The locations $k \notin N(j)$ unconnected to j can be equivalently modeled as connected locations for which $\tau_{jk} (Q, I) = \infty$ for all Q and I.} denoting that shipping along some links may be more costly than along others for the same quantity shipped Q and infrastructure I. This variation may reflect geographic characteristics such as distance or ruggedness. The per-unit cost function $\tau_{jk}(Q, I)$ may also depend on the direction of the flow; e.g., if elevation is higher in j than k and it is cheaper drive downhill then $\tau_{jk}(Q, I) > \tau_{kj}(Q, I)$.

Flow Constraint In every location there are tradable commodities being produced, coming in, and coming out. The balance of these flows requires that, for all locations $j = 1, \ldots, J$ and n

\begin{equation}
\tag{25}
\frac{\partial \tau_{jk}^n}{\partial I_{jk}^n} < 0.
\end{equation}
commodities \(n = 1, .., N \):

\[
C_j^n + \sum_{k \in N(j)} (1 + \tau_{jk}^n) Q_{jk}^n \leq Y_j^n + \sum_{i \in N(j)} Q_{ij}^n.
\] (6)

The left-hand side of this inequality is location \(j \)'s consumption of good \(n \), exports to neighbors and quantities used in the transport technology. These flows are bounded by the local production and imports from neighbors.27

We let \(P_{jn}^n \) be the multiplier of this constraint. This multiplier reflects society’s valuation of a marginal unit of good \(n \) in location \(j \). In the decentralized allocation, this multiplier will equal the price of good \(n \) in location \(j \); therefore, we simply refer to \(P_{jn}^n \) as the price of good \(j \) in location \(n \).

Network Building Technology We define the transport network as the distribution of infrastructure \(\{I_{jk}\}_{j \in J, k \in N(j)} \). The network-design problem will determine this distribution. For simplicity, we assume that building infrastructure requires a mobile resource such as “concrete” or “asphalt”, in fixed aggregate supply \(K \), which cannot be used for other purposes. This assumption represents a situation where society has sunk a fraction of its resources into network-building, but must still decide how to allocate these resources. At the time of characterizing the planner’s problem, it will lead to the intuitive property that the opportunity cost of building infrastructure in any location is simply foregoing infrastructure elsewhere.28

The cost of setting up the infrastructure \(I_{jk} \) may vary across links \(jk \). Specifically, building a level of infrastructure \(I_{jk} \) on the link \(jk \) requires an investment of \(\delta_{jk} I_{jk} \) units of \(K \). The network-building constraint therefore is:

\[
\sum_j \sum_{k \in N(j)} \delta_{jk} I_{jk} = K.
\] (7)

While both the transport technology \(\tau_{jk}(Q, I) \) in (5) and the infrastructure building cost \(\delta_{jk}^I \) in (7) vary across links according to similar geographic features, each type of variation reflects conceptually different forces that will manifest themselves differently in the observed data at the time of our main quantitative application. Variation in the transport technology \(\tau_{jk}(Q, I) \) by \(jk \) given \(Q \) and \(I \) captures how features of the terrain impact per-unit shipping costs given quantity shipped and infrastructure, whereas \(\delta_{jk}^I \) captures the trade-off, in terms of real resources, between setting up a given level of infrastructure in one link versus another. Importantly, in the planner’s problem below, \(\delta_{jk}^I \) will not impact the allocation other than through infrastructure \(I_{jk} \).

We allow the network-design problem to occur when some infrastructure is already in place. Letting the pre-existing network be \(\{I_{jk}^0\}_{j,k \in N(j)} \) and assuming that existing infrastructure cannot be reallocated implies the constraint:

\[
I_{jk} \geq I_{jk}^0 \geq 0.
\]

27In standard minimum-cost flow problems this restriction is referred to as “conservation of flows constraint”. E.g., see Bertsekas (1998) and Chapter 8 of Galichon (2016).

28See section 3.6 for a discussion on ways to endogenize the supply of infrastructure.
In our application to European countries, we will compute the optimal road network expansions starting from an observed road network I_{jk}^0. While the graph (J, \mathcal{E}) is undirected, there is no need to impose symmetry in investments or costs between connected locations, i.e., we can accommodate $I_{jk} \neq I_{kj}$.

We note that the actual direction of the flows Q_{jk}^n is endogenous and that the marginal transport cost $\tau_{jk} \left(Q_{jk}^n, I_{jk} \right)$ generically vary depending on the direction, due to geographic features, quantities shipped and the level of infrastructure.

3.2 Planner’s Problem

We solve the problem of a utilitarian social planner who maximizes welfare under two extreme scenarios: either labor is immobile or freely mobile. The first scenario corresponds to the standard assumption in international trade models, while the second corresponds to standard urban economics model in the tradition of Rosen-Roback (Roback, 1982). In the former case, we let ω_j be the planner’s weight attached to each worker located in region j. We define each problem in turn.

Definition 1. The planner’s problem with immobile labor is

$$W = \max_{c_j, h_j, \{ (I_{jk})_{k \in \mathcal{N}(j)} \}, \{ C^n_j, L^n_j, V^n_j, \{ Q^n_{jk} \}_{k \in \mathcal{N}(j)} \}, \{ \delta_{jk} \}_{j \in \mathcal{N}(j), k \in \mathcal{N}(j)} } \sum_j \omega_j L_j U \left(c_j, h_j \right)$$

subject to:

(i) availability of traded commodities,

$$c_j L_j \leq C_j^T \left(C_1^j, \ldots, C_N^j \right) \text{ for all } j;$$

and availability of non-traded commodities,

$$h_j L_j \leq H_j \text{ for all } j;$$

(ii) the balanced-flows constraint,

$$C_j^n + \sum_{k \in \mathcal{N}(j)} \left(Q_{jk}^n + \tau_{jk} \left(Q_{jk}^n, I_{jk} \right) Q_{jk}^n \right) \leq F_j^n \left(L_j^n, V_j^n \right) + \sum_{i \in \mathcal{N}(j)} Q_{ij}^n \text{ for all } j, n;$$

(iii) the network-building constraint,

$$\sum_j \sum_{k \in \mathcal{N}(j)} \delta_{jk} I_{jk} \leq K,$$

subject to a pre-existing network,

$$I_{jk} \geq I_{jk}^0 \geq 0 \text{ for all } j, k \in \mathcal{N}(j);$$

29We do, however, impose symmetry, $I_{jk} = I_{kj}$ and $\tau_{jk} = \tau_{kj}$, in our application to the road infrastructure in Europe in section 5, as it is a feature of the data.
(iv) local labor-market clearing,
\[\sum_n L^n_j \leq L_j \text{ for all } j; \]
and local factor market clearing for the remaining factors,
\[\sum_n V^{mn}_j \leq V^m_j \text{ for all } j \text{ and } m; \text{ and } \]
(v) non-negativity constraints on consumption, flows, and factor use,
\[C^n_j, c_j, h_j \geq 0 \text{ for all } j \in \mathcal{N}(j), n \]
\[Q^n_{jk} \geq 0 \text{ for all } j, k \in \mathcal{N}(j), n \]
\[L^n_j, V^{mn}_j \geq 0 \text{ for all } j, m, n. \]

If labor is freely mobile then the problem is defined as follows.

Definition 2. The planner’s problem with labor mobility is

\[W = \max_{u, c_j, h_j, \{I_{jk}\}_{k \in \mathcal{N}(j)}, L_j, \{C^n_j, L^n_j, V^n_j, \{Q^n_{jk}\}_{k \in \mathcal{N}(j)}\}_n} u \]

subject to restrictions (i)-(v) above; as well as:

(vi) free labor mobility,
\[L_j u \leq L_j U(c_j, h_j) \text{ for all } j; \text{ and } \]

(vii) aggregate labor-market clearing,
\[\sum_j L_j = L. \]

This formulation restricts the planner’s problem to allocations satisfying utility equalization across locations. Since \(U \) is strictly increasing, restriction (vi) implies that the planner will allocate \(u = U(c_j, h_j) \) across all populated locations, and \(c_j = 0 \) otherwise. Since per-capita utility equalization across locations holds in the competitive allocation, we restrict the planner’s problem to allocations that can be implemented in a market allocation.\(^{30}\)

The planner problem from Definition 1 can be expressed as nesting three problems:

\[W = \max_{L_{jk}} \max_{Q^n_{jk}} \max_{C^n_j, L^n_j, V^n_j} \sum_j \omega_j L_j U(c_j, h_j) \]

subject to the constraints. A similar nesting can be expressed in the case with labor mobility from Definition 2. The innermost maximization problem over \(\left(C^n_j, L^n_j, V^n_j\right) \) is a rather standard allocation problem of choosing consumption and the factor allocation subject to the production possibility frontier and the availability of goods in each location. In what follows we refer to it as

\[^{30}\text{Note that both planner’s problems are defined assuming weak inequality constraints except for the the aggregate labor-market clearing condition (vii), which must hold with equality. The weak inequalities allow for some locations to be unpopulated } (L^n_j = h_j = C^n_j = c_j = 0), \text{ as well as for some factors to be used in only some sectors } (V^n_j = 0).\]
the “optimal allocation” subproblem. We now discuss some intuitive properties of the planner’s solution to the optimal transport and optimal network problems which respectively determine \(Q_{jk} \) and \(I_{jk} \).

Optimal Transport The problem over \(Q_{jk} \) is the optimal transport problem that determines the gross flows through the network. If consumption \(C_{jn} \) and production \(Y_{jn} \) were taken as given, this would correspond to a familiar optimal flow problem on a network in the optimal transport literature, see for instance Chapter 8 of Galichon (2016). To understand the solution, remember that \(P_{jn} \) is the multiplier of the flows constraint (ii), equal to the price of good \(n \) in location \(j \) in the market allocation according to Proposition 4 below. Hence, we refer to \(P_{jn} \) as the price of good \(n \) in \(j \). The first-order condition from the planner’s problem gives the following equilibrium price differential for commodity \(n \) between \(j \) and \(k \in \mathcal{N}(j) \):

\[
\frac{P_{nk}}{P_{nj}} \leq 1 + \tau_{jk} + \frac{\partial \tau_{jk}}{\partial Q_{jk}} Q_{jk}, = \text{if } Q_{jk} > 0.
\]

Condition (8) is a standard no-arbitrage condition: the price differential between a location and any of its neighbors must be less than or equal to the marginal transport cost. From the planner’s perspective, this marginal cost takes into account the diminishing returns due to congestion. In the absence of congestion, \(\partial \tau_{jk} / \partial Q_{jk} = 0 \), the price differential would be bounded by the iceberg cost, \(1 + \tau_{jk} \).

This expression has a number of intuitive properties that we exploit throughout the analysis. Given the network investment, it identifies the trade flow \(Q_{jk} \) as a function of the price differential as long as the right-hand side can be inverted. This inversion is possible under the condition that the total transport cost, \(Q_{jk} \tau_{jk} \), is convex in the quantity shipped \(Q \). Under that condition, the gross trade flow \(Q_{jk} \) is increasing in the price differential \(P_{nk} / P_{nj} \): the larger the difference in marginal valuations, the higher the flow to the location where the product is more scarce. Condition (8) also implies that goods in each sector flow in only one direction; i.e. \(Q_{jk} > 0 \Rightarrow Q_{kj} = 0 \). However, along a given link there may be flows in opposite directions corresponding to different sectors.

The least-cost route optimization present in the applications of gravity trade models discussed in the literature review corresponds to the solution to this optimal transport problem assuming no congestion. In that case, the optimal transport problem can be solved independently from the rest of the model. In our case, determining the least-cost routes requires information about the flows, the supply, and the demand for each good, which are endogenously solved as part of the allocation. Therefore, the optimal transport problem must be solved jointly with the optimal allocation problem.

Optimal Network Consider now the outer problem of choosing the transport network \(I_{jk} \) for all \(j \in \mathcal{J} \) and \(k \in \mathcal{N}(j) \) given the optimal transport and the neoclassical allocation. Letting \(\mu \) be

31 Appendices A.1 and A.2 present the first-order conditions from the planner’s problem from which the expressions discussed through the paper are derived.
the multiplier of the network-building constraint (iii), the planner’s choice for \(I_{jk} \) implies

\[
\mu \delta_{jk} I_{jk} \geq \sum_n P^n_j Q^n_{jk} \left(-\frac{\partial \tau^n_{jk}}{\partial I_{jk}} \right),
\]

with equality if there is actual investment, \(I_{jk} > I^n_{jk} \). This condition compares the marginal cost and benefits from investing on the link \(jk \). The left-hand side is the opportunity cost of building an extra unit of infrastructure along \(jk \), equal to the marginal value of the scarce resource \(K \) in the economy (the multiplier \(\mu \) of the the network building constraint (7)) times the rate \(\delta_{jk} \) at which that resource translates to infrastructure. In turn, the gain from the additional infrastructure, on the right hand side of (9), is the reduction in per-unit shipping costs, \(-\partial \tau^n_{jk}/\partial I_{jk}\), applied to the total value of the goods used as input in the transport technology, the trade flows \(\sum_n P^n_j Q^n_{jk} \).

Recent papers provide expressions for the first-order impact of changes in bilateral trade costs on world welfare (Atkeson and Burstein, 2010; Burstein and Cravino, 2015; Lai et al. 2015; Allen et al. (2014)) or of changes in trade costs in specific links of a transport network on country-level welfare (Allen and Arkolakis, 2016). These expressions are function of trade flows. The right-hand side of (9) plays the same role here: it is the marginal welfare impact of infinitesimal changes \(\partial \tau^n_{jk}/\partial I_{jk} \) in the costs of trading along \(jk \) around an equilibrium where trade flows are \(P^n_j Q^n_{jk} \). In our context, it is one part of the full characterization of the global optimum, alongside the optimality conditions for the neoclassical allocation and the optimal transport. Specifically, at the global optimum, this marginal welfare impact of lowering trade costs equates the marginal cost of doing so in every link.

Importantly, the network investment problem inherits the properties that make the optimal transport problem tractable. Substituting the solution for \(Q^n_{jk} \) as function of the price differentials \(P^n_k/P^n_j \) into (9) implies that the optimal infrastructure \(I_{jk} \) between locations \(j \) and \(k \) is only a function of prices in each location. Hence, rather than searching in the very large space of all networks, this condition allows to solve for the optimal investment link by link given the considerably smaller set of all prices.

3.3 Properties

Convexity

We establish conditions for the convexity of the planner’s problem, which guarantee the sufficiency of the above first-order conditions as well as its numerical tractability.

Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network investments \(\{I_{jk}\} \), the joint optimal transport and allocation problem in the fixed (resp. mobile) labor case is a convex (resp. quasiconvex) optimization problem if \(Q\tau_{jk}(Q, I_{jk}) \) is convex in \(Q \) for all \(j \) and \(k \in N(j) \); and (ii) if in addition \(Q\tau_{jk}(Q, I) \) is convex in both \(Q \) and \(I \) for all \(j \) and \(k \in N(j) \), then the full planner’s problem including the network design problem from Definition 1 (resp. Definition 2) is a convex (resp. quasiconvex) optimization problem. In either the joint transport and allocation problem, or the full planner’s problem, strong duality holds when labor is fixed.
The first result establishes that the joint optimal allocation and optimal transport subproblems, taking the infrastructure network \(\{ I_{jk} \} \) as given, define a convex problem for which strong duality holds under the mild requirement that the transport cost \(Q\tau_{jk}(Q, I_{jk}) \) is (weakly) convex in \(Q \). This property ensures that our specific way of introducing an optimal-transport problem into a general neoclassical economy is tractable. Specifically, it guarantees the existence of Lagrange multipliers that implement the optimal allocation and transport subproblems and ensures the sufficiency of the Karush-Kuhn-Tucker (KKT) conditions, in turn allowing us to apply a duality approach to solve the model numerically—an approach which, as discussed in Section 3.5, substantially reduces computation times. Even if the full problem, including the network design, is not convex due to increasing returns to the network building technology (i.e., if part (ii) of the proposition fails but part (i) holds), a large subset of the full problem can be solved using these efficient numerical methods.\(^{32}\)

The second result establishes the convexity of the full planner’s problem, including the network design, under the stronger requirement that the transport cost function \(Q\tau_{jk}(Q, I_{jk}) \) is jointly convex in \(Q \) and \(I \). This condition restricts how congestion in shipping \(Q \) and the returns to infrastructure \(I \) enter in the transport technology in each link through \(\tau_{jk}(Q, I) \). In the absence of congestion (i.e., if \(\partial\tau_{jk}/\partial Q = 0 \)), convexity fails unless \(\tau_{jk} \) is a constant.

Example: Log-Linear Parametrization of Transport Costs A convenient parametrization of (5) is the constant-elasticity transport technology,

\[
\tau_{jk}(Q, I) = \delta \tau_{jk}^\beta \frac{Q}{I} \gamma \quad \text{with } \beta \geq 0, \gamma \geq 0.
\]

If \(\beta > 0 \), this formulation implies congestion in shipping: the more is shipped, the higher the per-unit shipping cost; when \(\beta = 0 \), the marginal cost of shipping is invariant to the quantity shipped, as in the standard iceberg formulation. In turn, \(\gamma \) captures the elasticity of the per-unit cost to infrastructure. The scalar \(\delta \tau_{jk}^\beta \) captures the geographic trade frictions that affect per-unit transport costs given the quantity shipped \(Q \) and the infrastructure \(I \), such as distance, ruggedness, or difference in elevation.

When the transport technology is given by (10), many of the preceding results admit intuitive formulations. First, the restriction that \(Q\tau_{jk}(Q, I) \) is convex in both arguments from Proposition 1 holds if and only if \(\beta \geq \gamma \). Intuitively, this inequality captures a form of diminishing returns to the overall transport technology: the elasticity of per-unit transport costs to investment in infrastructure is smaller than its elasticity with respect to shipments. Second, from the no-arbitrage condition (8) we obtain the following solution for gross trade flow of good \(n \) from \(j \) to \(k \) as function

\(^{32}\)The proof of Proposition 1 is immediate and can be summarized here. Given the neoclassical assumptions, the objective function is concave and the constraints are convex, except possibly for the balanced-flows constraint. Convexity of the transport cost \(Q\tau_{jk}(Q, I_{jk}) \) ensures convexity of that constraint as well. In the case with labor mobility, the planner’s problem can only be recast as a quasiconvex optimization problem, but the Arrow-Enthoven theorem for the sufficiency of the Karush-Kuhn-Tucker conditions under quasiconvexity, requiring that the gradient of the objective function is different from zero at the optimal point, is satisfied (Arrow and Enthoven, 1961).
of prices:

\[
Q_{jk}^n = \left[\frac{1}{1+\beta} \frac{I_{jk}^\gamma}{\delta_{jk}^\tau} \max \left\{ \frac{P^n_k}{P^n_j} - 1, 0 \right\} \right]^{\frac{1}{1+\gamma}}.
\] (11)

This solution naturally implies that better infrastructure is associated with higher flows given prices and geographic trade frictions. Third, using the log-linear transport technology (10), whenever the planner chooses to build on top of existing infrastructure \((I_{jk} > I_{jk}^0)\), the optimal infrastructure (9) arising from the optimal-network problem is

\[
I_{jk}^* = \left[\frac{\gamma \delta_{jk}^\tau}{\mu \delta_{jk}^\mu} \left(\sum_n P^n_j (Q^n_{jk})^{1+\beta} \right) \right]^{\frac{1}{1+\gamma}}.
\] (12)

Given the prices at origin, the optimal infrastructure increases with the gross flows \(Q_{jk}^n\). Given these flows, infrastructure also increases with prices at origin: because shipping requires the good being shipped as an input, a higher sourcing price implies a higher marginal saving from investing.\(^{33}\) Conditioning on these outcomes, infrastructure increases with \(\delta_{jk}^\tau\), reflecting that optimal infrastructure investments offset geographic trade frictions, and decreases with \(\delta_{jk}^\mu\), reflecting that the investment is smaller where it is more costly to build.

Expression (12) determines the level of infrastructure when there actually is investment \((I_{jk} > I_{jk}^0)\) in the link \(jk\). In addition, because it satisfies the Inada condition, the log-linear specification (10) implies that the solution to the planner’s problem features a positive investment whenever the price of any good varies between neighboring locations, \(P^n_j \neq P^n_k\) for any \(n\). Specifically, the optimal level of infrastructure is

\[
I_{jk} = \max \{I_{jk}^*, I_{jk}^0\},
\] (13)

where, combining (11) with (9), we reach an explicit characterization of the optimal infrastructure in each link as function of equilibrium prices alone:

\[
I_{jk}^* = \left[\frac{\kappa}{\mu \delta_{jk}^\mu \delta_{jk}^\tau} \left(\sum_{n: P^n_k > P^n_j} P^n_j \left(\frac{P^n_k}{P^n_j} - 1 \right)^{1+\beta} \right) \right]^{\frac{1}{\beta+\gamma}},
\] (14)

where \(\kappa \equiv \gamma (1+\beta)^{-\frac{1+\beta}{\beta}}\) is a constant and the multiplier \(\mu\) is such that the network-building constraint (7) is satisfied.

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given by (10), the full planner’s problem is a convex (resp. quasiconvex) optimization problem if \(\beta \geq \gamma\). The optimal infrastructure is given by (13) implying that, in the absence of a pre-existing network (i.e., if \(I_{jk}^0 = 0\)), then \(I_{jk} = 0 \iff P^n_k = P^n_j\) for all \(n\).

\(^{33}\)In cases where shipping requires local resources such as labor in \(j\), a similar logic would imply that a higher shadow value of labor in \(j\), or wages in the market allocation, translate into more investments in the link \(jk\) to economize on scarce resources.
We highlight that, under a general formulation of the transport technology $\tau_{jk}(Q, I)$ before imposing the log-linear form (10), and in the absence of a pre-existing network ($I_{jk}^0 = 0$), the solution to the full planner’s problem may feature no infrastructure and no trade in some links even if the prices vary between the pairs of nodes connected by those links. Similarly, in the presence of a pre-existing network ($I_{jk}^0 \geq 0$), the optimal transport subproblem may feature zero flows along links with positive infrastructure even if prices are different (i.e., there may be unused roads). However, Proposition 2 implies that, when the transport technology takes the log-linear form (10), these possibilities arise if and only if there are no incentives to trade ($P^n_j = P^n_k$ for all n) due to the Inada conditions implied by that technology.

Non-Convexity: the Case of Increasing Returns to Transport

When the condition guaranteeing global convexity in Proposition 1 fails, the constraint set in the planner’s problem is not convex, and the sufficiency of the first-order conditions is not guaranteed. As a result, such cases are in principle difficult to handle. We may nonetheless implement these cases numerically, as we discuss in Section 3.5, and characterize certain properties of the optimal network theoretically, as we do now. Focusing on the log-linear specification (10) introduced above, such nonconvexities arise when the transport technology features economies of scale, i.e., when $\gamma > \beta$.

We illustrate in a simple special case how the qualitative properties of the optimal network are affected by such economies of scale. In particular, increasing returns to investment in infrastructure create an incentive for the planner to concentrate flows on a few large “highways” that branch out to all the locations. As a result, the optimal network may, under some conditions, take the form of a tree, a property already highlighted for various non-economic environments in the optimal transport literature.34

Proposition 3. *In the absence of a pre-existing network (i.e., $I_{jk}^0 = 0$), if the transport technology is given by (10) and satisfies $\gamma > \beta$, and if there is a unique commodity produced in a single location, the optimal transport network is a tree.*

A tree is a connected graph with no loops (see Figure 1). Intuitively, under the conditions of the proposition, loops cannot be optimal, because they waste resources. On the margin, it is always better to remove alternative paths linking pairs of nodes and concentrate infrastructure investments and flows in fewer links. As a result, in the optimal network a single path connects any two locations, a defining characteristic of a tree.

Note that, even if $\gamma > \beta$, this property only holds when there is only one source for one commodity. When goods are produced in multiple regions, it may still be optimal to maintain loops in the network, depending on the underlying graph and comparative advantages. However, the incentives to concentrate flows on fewer but larger routes remain. In Section 4 we present several examples with multiple goods and multiple productive locations where, if $\gamma > \beta$, the topology of

34E.g., these applications range from the formation of blood vessels to irrigation or electric power supply systems (Banavar et al., 2000; Bernot et al., 2009).
the optimal network is sparser and concentrated on fewer links relative to cases with \(\gamma \leq \beta \). Similar patterns arise in the counterfactuals using the calibrated model from Section 5.

3.4 Decentralized Allocation Given the Network

We establish that the planner’s optimal allocation \(\max_{C^n_j, L^n_j, V^n_j} \) and optimal transport \(\max Q^n_{jk} \) subproblems given the network \(\{I_{jk}\} \) correspond to a decentralized competitive equilibrium. For the decentralization of these subproblems, we do not need to take a particular stand on whether the network is the result of a planner’s optimization.

Given the network, the decentralized economy corresponds to the perfectly competitive equilibrium of a standard neoclassical economy where consumers maximize utility given their budget, producers maximize profits subject to their production possibilities, and goods and factor markets clear. The only less standard feature is the existence of a transport sector. We assume perfect competition and free entry into transport. Atomistic traders purchase goods and ship them through connected locations using a constant-returns to scale shipping technology. I.e., each trader has a cost equal to \(\tau^n_{jk} q^n_{jk} \) of delivering \(q^n_{jk} \) units of good \(n \) from \(j \) to \(k \in N(j) \) and takes the iceberg trade cost \(\tau^n_{jk} \) as given, although this trade cost is determined endogenously through (10) as function of the aggregate quantity shipped.

As long as there is congestion in shipping, the traders will engage in an inefficient amount of shipping. We assume that the market allocation features policies that correct this externality. While there are multiple ways to achieve efficiency, we allow here for Pigouvian sales taxes \(t^n_{jk} \) on companies shipping good \(n \) on leg \(j \rightarrow k \). The profits made by an individual company from its shipments of good \(n \) from \(j \) to \(k \) are:

\[
\pi^n_{jk} = \max_{q^n_{jk}} \left[p^n_k (1 - t^n_{jk}) - p^n_j (1 + \tau^n_{jk}) \right] q^n_{jk},
\]

where \(p^n_j \) is the price of good \(n \) in location \(j \) in the market allocation and \(q^n_{jk} \) is the quantity shipped.\(^{35}\) Free entry ensures that \(\pi^n_{jk} \leq 0 \), with equality if there are actual shipments.

\(^{35}\)Because shipping companies have linear technologies on each link, defining whether a specific shipping company serves only one or multiple links or products is not necessary.
To define the competitive equilibrium, we must also allocate the returns to factors other than labor. Under no labor mobility we assume that, in addition to the wage, each worker in \(j \) receives a transfer \(t_j \) such that \(\sum_j t_j L_j = \Pi \), where \(\Pi \) is an aggregate portfolio including all the sources of income except for labor as well as tax revenues.\(^{36}\) Hence, no other agent except for workers own the primary factors or the non-traded goods, or are rebated the tax revenues. This formulation allows for trade imbalances, which are needed to implement the planner’s allocation under arbitrary weights. Under perfect labor mobility, we assume that all workers own an equal fraction of \(\Pi \) regardless of location.

Since it is standard, we relegate the Definition 3 of the competitive allocation with and without labor mobility to the appendix. Using that definition, we establish that the welfare theorems given the transport network hold.

Proposition 4. (First and Second Welfare Theorems) If the sales tax on shipments of product \(n \) from \(j \) to \(k \) is

\[
1 - t_{jk}^n = \frac{1 + \tau_{jk}^n}{1 + \left(\frac{\varepsilon_{n,jk}^Q + 1}{\tau_{jk}^n} \right) \tau_{jk}^n},
\]

where \(\varepsilon_{n,jk}^Q = \partial \log \tau_{jk}^n / \partial \log Q \), then:

(i) if labor is immobile, the competitive allocation coincides with the planner’s problem under specific planner’s weights \(\omega_j \). Conversely, the planner’s allocation can be implemented by a market allocation with specific transfers \(t_j \); and

(ii) if labor is mobile, the competitive allocation coincides with the planner’s problem if and only if all workers own an equal share of fixed factors and tax revenue, i.e., \(t_j = \frac{\Pi}{L} \).

In either case, the price of good \(n \) in location \(j \), \(p_{jk}^{n} \), equals the multiplier on the balanced-flows constraint in the planner’s allocation, \(P_{jk}^{n} \).

These results are useful to bring our model to the data in the application. Under the assumption that the observed allocation corresponds to the decentralized equilibrium, the welfare theorems will enable us to calibrate the model using the planner’s solution to the optimal allocation and optimal transport subproblems given the network.\(^{37}\)

3.5 Numerical Implementation

In this section we broadly discuss our numerical implementation and relegate details to Appendix A.4.

\(^{36}\)For simplicity we refer to \(t_j \) as a transfer, although it encompasses both ownership of fixed factors and government transfers. This formulation encompasses a case where both the returns to the fixed factors and the tax revenue in each location are owned by residents of that location. In that particular case, there would be no trade imbalances in the market allocation.

\(^{37}\)It would also be possible to calibrate the model assuming that the observed market allocation does not feature policies correcting the externality. Specifically, in that case, we could use the solution of a fictitious planner’s problem whose no-arbitrage condition (8) ignores congestion, i.e., \(\frac{\partial \pi_{jk}^n}{\partial \log \tau_{jk}^n} = 0 \). Under that modified first-order condition of the planner, Proposition 4 would hold assuming \(t_{jk}^n = 0 \) (no corrective taxes).
Convex Cases Under the conditions of Proposition 1, the full planner’s problem is a convex optimization problem and the KKT conditions are both necessary and sufficient. The system of first-order conditions is, however, a large system of non-linear equations in many unknowns. Fortunately, gradient-descent based algorithms make convex optimization problems like ours numerically tractable regardless of dimension and non-linearities in the first-order conditions, meaning that these algorithms are guaranteed to converge to the unique global optimum (Boyd and Vandenberghe, 2004). We use a numerical optimization software based on an interior point method, which converges in polynomial time\(^3\) and is able to handle thousands of variables as long as the problem is sufficiently sparse.\(^3\)

Our problem can be tackled numerically using two equally valid approaches. The first one is to feed the numerical solver with the *primal* problem, in other words the full planner’s problem exactly as written in Definition 1. Specifically, letting \(\mathcal{L}\) be the Lagrangian of the planner’s problem as a function of the variables controlled by the planner, \(\mathbf{x} = (l^n_j, l^n_j, v^n_j, q^n_{jk}, \ldots)\), and the multipliers \(\lambda = (p^n_j, \ldots)\) on the various constraints,\(^4\) the primal problem consists in solving the saddle-point problem

\[
\sup_{\mathbf{x}} \inf_{\lambda \geq 0} \mathcal{L} (\mathbf{x}, \lambda).
\]

The second approach, usually preferred in the optimal transport literature, is to solve instead the *dual* problem obtained by inverting the order of optimization, i.e.,

\[
\inf_{\lambda \geq 0} \sup_{\mathbf{x}} \mathcal{L} (\mathbf{x}, \lambda).
\]

In our context, the convexity of the full planner’s problem without labor mobility ensures that the dual problem coincides with the primal under weak conditions (Proposition 1), i.e., strong duality holds. The advantage of the dual is that we can use the first-order conditions from the optimal transport and the optimal investment problems, (8) and (12), as well as those from the neoclassical allocation problem, to express the control variables as functions of the multipliers, \(\mathbf{x} (\lambda)\). The remaining minimization problem, \(\inf_{\lambda \geq 0} \mathcal{L} (\mathbf{x} (\lambda), \lambda)\), is a convex minimization problem over fewer variables, subject to only non-negativity constraints.

Non-Convex Cases When the condition stated in Proposition 1 fails, the full planner’s problem is no longer globally convex, and the method described above is not guaranteed to find the global optimum. To solve for such non-convex cases, we exploit the property, stated at the beginning of Proposition 1, that the joint neoclassical allocation and optimal transport problem nested within the planner’s problem is convex as long as \(q_{\tau_{jk}} (Q, I_{jk})\) is convex in \(Q\). This condition is weaker and holds under the log-linear specification as long as \(\beta \geq 0\), including the standard case without

\(^3\)In the sense that the resolution time is \(O (n^a m^b)\), where \(n\) is the number of variables, \(m\) is the number of constraints and \(a, b\) some real numbers (Nesterov and Nemirovskii, 1994).

\(^4\)We use the open-source large-scale optimization package IPOPT (https://projects.coin-or.org/Ipopt), available for C/C++, Fortran, MATLAB and other languages.

\(^4\)These expressions are defined explicitly in Appendix A.1.
congestion ($\beta = 0$). We combine a primal/dual approach to solve for the joint neoclassical allocation and optimal transport problems with an iterative procedure over the infrastructure investments. Specifically, starting from a guess on the network investment I_{jk}, we solve for the optimum over C_j^n, L_j^n, V_j^n and Q_{jk}^n, and then use the optimal network investment condition (9) to obtain a new guess over I_{jk}, and then repeat until convergence. We then refine the solution using a simulated annealing method that perturbs the local optimum and gradually reaches better solutions. See Appendix A.4 for additional details.

3.6 Extensions

In this section, we briefly consider various extensions and how to preserve the convexity property in each case.

Congestion across goods We have assumed so far that congestion only applies within good types. A natural extension is to allow for congestion across goods. A simple way to introduce this feature is to add an argument Q_{jk} to the per-unit transport cost τ_{jk}, now equal to $\tau_{jk}^n (Q_{jk}, Q_{jk}, I_{jk})$. The additional variable aggregates the flows of all the goods transported over a given link: $Q_{jk} = Q_{jk}^1, \ldots, Q_{jk}^N$. In that case, the convexity of the full planner’s problem is preserved as long as the total transport cost for each good $\tau_{jk} (Q_{jk}, Q_{jk}, I_{jk}) Q_{jk}^n$ is jointly convex in all its arguments and Q_{jk} is a convex aggregator. For instance, the log-linear specification (10) of transport costs can be extended to allow for congestion as follows:

$$\tau_{jk} (Q_{jk}^n, Q_{jk}, I_{jk}) Q_{jk}^n = \delta_{jk} (m_0 (Q_{jk}^n)^{\chi_0} + (1 - m_0) (Q_{jk})^{\chi_0})^{\frac{1+\beta}{\chi_0}} I_{jk}^{-\gamma},$$

where $Q_{jk} = (\sum_{n=1}^N m_n (Q_{jk}^n)^{\chi_0})^{\frac{1}{\chi_0}}$ and (m_0, \ldots, m_N) are sector-specific weighting parameters. In this case, the full planner’s problem can be shown to be convex when $\chi \geq 1$ and $\chi_0 \geq 1$ in addition to the previous condition that $\beta \geq \gamma$. This generalized transport technology nests the log-linear specification (10) when $m_0 = 1$.

Trade in Intermediates Another desirable extension is to allow for trade in intermediate goods. As in standard multi-sector models with intermediate inputs, we can simply redefine the production technologies as neoclassical production functions $F_j^n (L_j^n, V_j^n, X_j^n)$, where X_j^n is a vector with the quantity of each sector’s traded good used in sector n as input. Under this extension, the only modification to the central planner’s problem is that the balanced-flows constraint (ii) in Definition 1 must be modified to account for the quantities used as input. Importantly, the key convexity properties from Proposition 1 are preserved.

Endogenous Supply of Resources in Infrastructures Finally, we have assumed for simplicity that the network building technology used a specific input, “asphalt”, in fixed supply. The
framework can also accommodate a network building technology using ordinary factors of production, endogenously supplied at the local level. For instance, we can assume that building I_{jk} requires local factors of production at j and k by letting $I_{jk} = F_{jk}^I (L_j^I + L_k^I, V_j^I + V_k^I)$ where F_{jk}^I is a neoclassical production function, and where $L_j^I + L_k^I$ and $V_j^I + V_k^I$ are labor and other primary factors from j and k used to build infrastructure on the link between j and k. After properly modifying the factor resource constraints, it is straightforward to show that the full planner’s problem is convex under the same conditions as before as long as F_{jk}^I is concave in all its arguments.

4 Illustrative Examples

In this section we implement simple examples that illustrate the basic economic forces captured by the framework. We start with simple, low-dimensional environments, and build up to more complex cases. For these examples, preferences are CRRA over a Cobb-Douglas bundle of traded and non-traded goods, $U = (c^\alpha h^{1-\alpha})^{1-\rho} / (1 - \rho)$ with $\alpha = \frac{1}{2}$ and $\rho = 2$. There is a single factor of production, labor, and all technologies are linear. We adopt the constant-elasticity functional forms (10) for the transport and network-building technologies. We start from simple symmetric cases and then build up to more complex cases.

4.1 One Good on a Regular Geometry

Comparative Statics over K in a Symmetric Network. To start we impose $\beta = \gamma = 1$, which lies at the boundary of the parameter space guaranteeing global convexity. We assume a single good, no labor mobility and no geographic frictions, $\delta_{jk}^T = \delta_{jk}^I = 1$.

Figure A.1 presents a network with 9×9 locations uniformly distributed in a square, each connected to 8 neighbors. All fundamentals except for productivity are symmetric: $(L_j, H_j) = (1, 1)$. Labor productivity is $z_j = 1$ at the center and 10 times smaller elsewhere.

Figure A.2 shows the globally optimal network when $K = 1$ (panel (a)) and when $K = 100$ (panel (b)). The upper-left figure in each panel displays the optimal infrastructure network I_{jk} corresponding to (12). The optimal network investments radiate from the center, and so do shipments. The bottom figures in each panel display the multipliers of the flows constraint (6)—the prices in the market allocation—and consumption. Because tradable goods are scarcer in the outskirts, marginal utility is higher and so are prices. As the aggregate investment grows from $K = 1$ to $K = 100$, the network grows into the outskirts and the differences in the marginal utility shrink.

Panel (a) of Figure A.3 displays the spatial distribution of prices (upper panels) and consumption (bottom). The left panels display outcomes across locations ordered by euclidean distance to the center. As the network grows, relative prices and consumption converge to the center, and spatial inequalities are reduced.

Panel (b) of Figure A.3 illustrates the difference between the welfare gains from uniform and optimal network expansion. For K close to zero, the levels of infrastructure I_{jk} are small everywhere and every location is close to autarky. We simulate an increase in K in two cases: a proportional
increase in infrastructure across all links (a “rescaled” network) and the optimal one. The figure reports the welfare increase associated with each network. Broadly speaking, the uniform network expansion corresponds to the standard counterfactual implemented in international trade, in which trade costs are reduced uniformly from autarky to trade. As K grows, the economy converges to the level of welfare under free internal trade regardless of whether the network is optimal. Moving from close to autarky to close to free trade across locations increases aggregate welfare by 5%. However, investing optimally leads to faster convergence to the free-trade welfare level. In the example, the welfare level attained in the uniform network when $K = 10^6$ is attained in the optimal network when $K = 10^3$.

Random Cities and Non-Convex Cases We now explore more complex networks and non-convex cases. Figure A.4 shows 20 “cities” randomly located in a space where each location has six neighbors. Population is $L_j = 1$ in each city and 0 otherwise. Productivity is again ten times larger at the center. The top panel shows the infrastructure and goods flows in the optimal network. The optimal network radiates from the center to reach all destinations. Due to congestion, some destinations are reached through multiple routes. However, to reach some faraway locations such as the one in the northwest, only one route is built.

The middle panel inspects the same spatial configuration but assumes $\gamma = 2$. Now, the sufficient condition for global convexity from Proposition 1 fails. We see a qualitative change in the shape of the network. Due to increasing returns to network building, less roads with higher capacity are built. In particular, there is now only one route linking any two destinations, consistent with the no-loops result in Proposition 3.41

Because in the non-convex network we can only guarantee convergence to a local optimum, we refine the solution applying simulated annealing. The bottom panel compares the non-convex network before and after the annealing refinement. The refined network economizes on the number of links, leading to a welfare increase but preserving the no-loops property.

4.2 Many Sectors, Labor Mobility, and Non-Convexity

We now further introduce multiple traded goods and labor mobility. We allow for 11 traded commodities, one “agricultural” good (good 1) that may be produced everywhere outside of “cities” ($z_j^1 = 1$ in all “countryside” locations) and ten “industrial” goods, each produced in one random city only ($z_j^n = 1$ in only one city j and $z_j^0 = 0$ otherwise). These goods are combined via the CES aggregator (3) with elasticity $\sigma = 2$. Labor continues to be the sole factor of production, but is now mobile. The supply of the non-traded good is uniform, $H_j = 1$ for all j.

Figure A.5 shows the convex case ($\beta = \gamma = 1$). The first panel shows the optimal network. In the figure, each circle’s size denotes the population share. The remaining figures show the shipments of each good, with the circle sizes representing the shares in total production for the corresponding

41While we derive the no-loop result when there is only one producer, in this example every populated location produces the good.
good. Figure A.6 shows the optimal network with annealing in the nonconvex case when $\gamma = 2$.

In these examples, we observe complex shipping patterns. There are bilateral flows over each link, now involving several commodities. Overall, the optimal network in the first panel reflects the spatial distribution of comparative advantages. Since industrial goods are relatively scarce, wages and population are higher in the cities that produce them. Due to the need to ship industrial goods to the entire economy and to bring agricultural goods to the more populated cities, the transport network has better infrastructure around the producers of industrial products. As Panel (a) of each figure illustrates, the optimal network links the industrial cities through wider routes branching out into the countryside. The agricultural good, being produced in many locations, travels short distances and each industrial city is surrounded by its agricultural hinterland.

The comparison between Figures A.5 and A.6 confirms the intuition that, in the presence of economies scale in transportation, the optimal network becomes more skewed towards fewer but wider “highways”. Note, however, that the tree property from Proposition 3 does no longer hold because there are multiple goods and it is sometimes beneficial for the various industrial cities to be connected.

4.3 Geographic Features and New Transport Technologies

We now show how the framework can accommodate geographic accidents. To highlight the role of these frictions we revert to a case with a single good and no factor mobility. Panel (a) of Figure A.7 shows 20 cities randomly allocated in a space where each location is connected to 8 other locations. Population equals 1 in all cities and productivity is the same everywhere (equal to 0.1) except in the central city, displayed in red, where it is 10 times larger. Each city’s size in the figure varies in proportion to consumption.

As implied by condition (12), the optimal infrastructure in a given link depends on the link-specific building cost δ_{jk}^L. In panel (a) we show the optimal network under the assumption that the cost of building infrastructure is proportional to euclidean distance:

$$
\delta_{jk}^L = \delta_0 \text{Distance}_{jk}^L.
$$

As in our first set of examples, the optimal network radiates from the highest-productivity city to alleviate differences in marginal utility.

In panel (b), we add a “mountain” by adding an elevation dimension to each link and reconfiguring the building cost as

$$
\delta_{jk}^L = \delta_0 \text{Distance}_{jk}^{L_1} \left(1 + |\Delta \text{Elevation}|_{jk}^{L_2}\right).
$$

Because it is more costly to build through the mountain, the optimal network circles around it to reach the cities in the northeast. Because more resources are invested in that region, the network shrinks elsewhere.

In the subsequent figures, we either increase or decrease the cost of building the network in
specific links. Specifically, we allow for the more general specification:

$$\delta_{jk}^I = \delta_0 \text{Distance}_{jk}^I \left(1 + |\Delta\text{Elevation}|_{jk}\right)^{\delta_2} \delta_3 \text{CrossingRiver}_{jk} \delta_4 \text{AlongRiver}_{jk}.$$ \hspace{1cm} (17)

In panel (c) we include a river and assume that $\delta_3 = \delta_4 = \infty$, so that investing in infrastructure either across or along the river is prohibitively costly. The optimal network linking cities across the river can only be built through the one patch of dry land. In that natural crossing there is a “bottleneck”, and a large amount of infrastructure is optimally built.

In panel (d) we assume instead that no dry patch exists and that building bridges is feasible, \(1 < \delta_3 < \infty\). Now, the planner builds two bridges, directly connecting the pairs of cities across the river. Panel (e) further allows for water transport by allowing to building transport capacity along the river \(\delta_4 < \infty\). The planner retains the bridges, but now faraway locations in the southeast are reached by water instead of ground transport.

Finally, panel (f) moves to the non-convex case, $\gamma = 2 > \beta$, implemented through the combination of first-order conditions and simulated annealing approach described in Section 3.5. Now, a unique route links any two cities, water transport is not used, and a single bridge is built.

We conclude by showing how the optimal reconfiguration of the transport network triggered by the arrival of a new transport technology can lead to a drastic reconfiguration of city sizes. Both panels of Figure A.8 correspond to an economy with random cities, all with same population, where productivity is \(10\) times larger in the city represented in red. The circle sizes again represent consumption per capita. Panel (a) shows an economy with strong dependence on water transport, with low δ_3 in (17). The optimal network implies high consumption in the city near the river. In panel (b) we assume that ground transport becomes cheap (e.g., due to the arrival of railways), represented by a lower δ_1 in (17). As a result, water transport is abandoned and the spatial distribution of consumption per worker is reconfigured. The city near the river shrinks and other cities that become more central to the new network, as well as those in their hinterland, grow.

5 Optimal Road Network Expansion and Reallocation in Europe

We apply the framework to study optimal road networks in Europe. Our goal is to answer two questions: how large would be the gains from optimal expansions of current road networks, and how large are the losses from misallocation of current roads? We start by describing the data sources and discretization procedure to represent geocoded data on economic activity and actual road networks in terms of the graph of our model. Then we show how we choose the fundamentals to match the observed distribution of economic activity within the countries in our data. We conclude by implementing counterfactuals that answer our questions.
5.1 Data and Discretization

Sources We combine geocoded data on the shape of road networks, population, and income across several European countries. The road network data is from EuroRegionalMap by EuroGeographics. This dataset combines information on the road network elaborated by each European country’s mapping and cadastral agencies. It includes a shapefile with line segments conforming the current road network. E.g., in the case of France, the road network is conformed by 38699 segments connecting 159519 distinct geographic points. An appealing feature of this dataset is that each segment has information about objective measures of road quality including road use (national, primary, secondary, or local) and number of lanes, as well as other features such as whether it is paved or includes a median. National roads encompass each country’s highway system, and, as shown in Table A.1, relative to other types of roads they are always paved, more likely to include a median, and feature twice as many average lanes.\(^{42}\)

We use population data from NASA-SEDAC’s Gridded Population of the World (GPW) v.4, and value added from Yale’s G-Econ 4.0. The GPW population data is reported for 30 arc-second cells (approximately 1 kilometer), and the G-Econ value-added data is reported for 1 arc-degree cells (approximately 100 km). We undertake all our analysis using 0.5 arc-degree cells (approximately 50 km). The resulting number of cells within each country is in most cases in between the number of level-3 NUTS subdivisions (provinces or counties) and the number of LAU subdivisions (municipalities or communes). We allocate population to each 0.5-degree cell by aggregating the smaller cells in GPW, and we allocate income by apportioning the G-Econ cells according to the GPW-based population measure.\(^{43}\)

We denote by \(L_{\text{obs}}^j\) and \(GDP_{\text{obs}}^j\) the population and value added observed in each cell \(j\) of each country. As we describe next, using these data we also construct empirical counterparts to the underlying geography \((\mathcal{J}, \mathcal{E})\) corresponding to the locations and links in the graph of our model, as well as an observed measure of infrastructure \(I_{jk}^{\text{obs}}\) for each link.

We perform all the analysis separately for each of the 25 countries included in EuroRegionalMap for which data on number of lanes is available. Table A.2 in Appendix C reports the list of countries with summary statistics about the size and average features of their road networks, the number of cells, and features of the discretized road network we describe next.\(^{44}\)

Underlying Graph To define the set of nodes \(\mathcal{J}\) in each country, we use the high-resolution GPW population data to locate the population centroid of each cell. The population centroids are usually very close to, but do not exactly coincide with, a node on the actual road network. Hence,\(^{42}\) E.g., roads labeled as national in the data include the Autobahn highway system in Germany, all autovias and autopistas in Spain, and the autoroute system in France.\(^{43}\) When a 1-degree cell in G-Econ is entirely contained within a country’s boundaries, it includes 4 cells in our subdivision. When it is not, it may include a smaller number of cells. In either case, we apportion income according to each cell’s population according to our subdivision.\(^{44}\) We exclude the following 10 countries for which road lane data is not available in EuroRegionalMap: Bulgaria, Croatia, Great Britain, Greece, Estonia, Iceland, Norway, Poland, Romania, and Sweden. For Luxembourg we use 0.25 arc-degree cells to allow for a significant number of cells.
we relocate each population centroid to the closest point on a national road crossing through the cell, or on other types of roads if no national roads cross through the cell.\(^{45}\) We define the observed population and income of each node \(j \in J\) equal to the total income \(\text{GDP}_\text{obs}_j\) and the population \(L_\text{obs}_j\) of the cell that contains it.

In turn, we define the set of edges \(E\) as the links between nodes in contiguous cells. This step defines a set of up to eight neighbors \(N(j)\) for each node \(j \in J\): the 4 nodes in horizontal or vertical neighbors and the 4 nodes along the diagonals.

Discretized Road Network We construct an observed measure of infrastructure, \(I_{jk}\) in our model. For that, we first aggregate the observed attributes of the road network over the actual roads linking each \(j \in J\) and \(k \in N(j)\). We use information on whether each segment \(s\) on the actual road network corresponds to a national road and its number of lanes.\(^{46}\) We define the average number of lanes and average road type for the link between \(j\) and \(k\) as follows:

\[
\text{lanes}_{jk} = \sum_{s \in S} \omega_{jk}(s) \text{lanes}(s),
\]

\[
\text{nat}_{jk} = \sum_{s \in S} \omega_{jk}(s) \text{nat}(s),
\]

where \(\text{lanes}(s)\) is the number of lanes on each segment \(s\) on the actual road network \(S\), \(\text{nat}(s)\) indicates whether segment \(s\) belongs to a national roadway, and \(\omega_{jk}(s)\) is the weight attached to the infrastructure of each segment when computing the level of infrastructure from \(j\) to \(k\). The weights \(\omega_{jk}(s)\) should be larger on segments of the actual road network that are more likely to be used when shipping from \(j\) to \(k\), and equal to zero everywhere if no direct route exists linking \(j\) and \(k\). We define \(\omega_{jk}(s)\) based on the fraction of the cheapest path \(\mathcal{P}(j,k)\) from \(j\) to \(k\) on the real network corresponding to that segment:

\[
\omega_{jk}(s) = \begin{cases}
\frac{\text{length}(s)}{\sum_{s' \in \mathcal{P}(j,k)} \text{length}(s')} & s \in \mathcal{P}(j,k) \\
0 & s \notin \mathcal{P}(j,k)
\end{cases}
\]

where \(\text{length}(s)\) is the length of segment \(s\) and \(\mathcal{P}(j,k)\) is the cheapest path from \(j\) to \(k\) on the actual road network.\(^{47}\) We follow these steps as long as the cheapest path does not stray from the

\(^{45}\)This leads to a very small adjustment: on average across countries, the average relocation across all cells within a country is 6.2 km.

\(^{46}\)As shown in Table A.1, roads labeled as primary, secondary, and tertiary have similar characteristics. Therefore for simplicity we bundle into a single “non-national roads” category.

\(^{47}\)Note that this step is different from the optimal paths across the network \((J,E)\) that we compute later when solving this model. This step is independent from our theory. Here, we simply take pairs of neighboring nodes \(j \in J\) and \(k \in N(j)\), and for each pair we ask: what are the average characteristics (number of lanes and type of road) of the route connecting these two locations in the real world? Among the many routes in the real world we must pick one, and the cheapest-route criterion is a selection device. This cheapest path is constructed weighting each segment \(s\) by its road user cost based on data from Combes and Lafourcade (2005) and other sources. See Appendix C.1 for details on these weights.
cells containing \(j \) and \(k \).\(^{48}\) When that happens, we assume that no direct path from \(j \) to \(k \) exists, \(\mathcal{P}(j,k) = \emptyset \), in which case \(\omega_{jk}(s) = 0 \) for all segments \(s \in S \).

Observed Measured of Infrastructure After implementing the previous steps, we obtain the measures \(lanes_{jk} \) and \(nat_{jk} \) capturing the average number of lanes and the likelihood of using national roads between \(j \) and \(k \) on the real network. However, our model includes a single index of infrastructure, \(I_{jk} \). Hence, we define the observed measure of infrastructure for each \(j \in J \) and \(k \in \mathcal{N}(j) \) by aggregating the observed attributes \(lanes_{jk} \) and \(nat_{jk} \) into a single index:

\[
I_{jk}^{obs} = lanes_{jk} \times \chi_{nat}^{1-nat_{jk}}. \quad (18)
\]

To compute the index we must assign a value to \(\chi_{nat} \). We note that, in the model, the resource cost of building a level of infrastructure \(I_{jk}^{obs} \) is \(\delta_{jk} I_{jk}^{obs} \), with features of the terrain entering through \(\delta_{jk} \). Therefore, the coefficient \(1/\chi_{nat} > 1 \) in (18) broadly captures the extent by which the features associated with national roads raise construction and maintenance costs relative to a non-national road. We set \(1/\chi_{nat} = 5 \), which corresponds to expenditures in road construction and maintenance per kilometer of federal motorways relative to the cost per kilometer of other trunk roads in Germany in 2007, as reported by Doll et al. (2008).

In sum, we construct the observed infrastructure between \(j \) and \(k \), \(I_{jk}^{obs} \), as the distance-weighted average of the number of national road lanes over the cheapest direct path from \(j \) to \(k \) on the actual road network, if a direct path exists.\(^{49}\) Panel (a) of Figure A.10 in Appendix A.4 displays the average \(I_{jk}^{obs} \) per kilometer for each country in the discretized network against each country’s income per capita.\(^{50}\) Richer countries have better infrastructure. On average, a real per-capita income increase of $10,000 is associated with an extra lane of national road.

We verify that our measure of infrastructure correlates with other external measures of road quality. First, across countries, our average infrastructure measure has a correlation of 0.45 with the road-quality index from the Global Competitiveness Report (World Economic Forum, 2016). Second, across all connected nodes in all countries in the discretized network, there is a correlation of 0.67 between our infrastructure index and the speed (kilometer per hour) on the quickest path according to GoogleMaps. This relationship between speed and infrastructure is depicted in Panel (b) of Figure A.10.

\(^{48}\)We classify a path from \(j \) to \(k \) as straying from the cells containing \(j \) and \(k \) if more than 50% of the path steps over cells that do not contain \(j \) or \(k \).

\(^{49}\)Note that \(nat_{jk} = 1 \) implies \(I_{jk}^{obs} = lanes_{jk} \), so that this measure can be interpreted as the saying that, on the real-word network, the resource cost on the path linking \(j \) to \(k \) is equivalent to the resource cost, for that same link, of a national road with \(I_{jk}^{obs} \) lanes.

\(^{50}\)I.e., it reports \(\sum_{j \in J} \sum_{k \in \mathcal{N}(j)} \omega_{jk} I_{jk}^{obs} \), where \(\omega_{jk} = \frac{\text{dist}_{jk}}{\sum_{j \in J} \sum_{k \in \mathcal{N}(j)} \text{dist}_{jk}} \) is the fraction of total distance in the discretized network corresponding to the link from \(j \) to \(k \). Column (6) of Table A.2 in Appendix C reports this value for each country. Note that the average infrastructure index captures both the number of lanes and the prevalence of national roads, and it is therefore not directly comparable to the average lane per kilometer reported in Column (3).
Examples: France and Spain Figures 2 and 3 represent each of the steps described above for two large countries in our data, France and Spain. Panel (a) of each panel shows the discretized map and associated population. Brighter cells are more populated and specifically correspond to higher deciles of the population distribution across cells. The (b) panels display the cells, the centroids (light blue circles) and the edges (red segments) of the underlying graph. The (c) panels show the centroids and the full road network. Green segments correspond to national roads and red segments correspond to other roads, and the width of each road is proportional to its number of lanes.

Finally, the (d) panels show the infrastructure in the discretized road network. Each of the edges from the (b) panels is now assigned a width depending on the average number of lanes, \(\text{lanes}_{jk}\), and a color ranging from red to green depending on the likelihood of using a national road, \(\text{nat}_{jk}\). The width and color scale are the same as in panel (c). When no direct link from \(j\) to \(k\) is identified by our procedure, no edge is shown. The resulting discretized networks on the baseline grids clearly mirror the actual road networks for both countries, but they are now expressed in terms of the nodes and edges of our model and therefore allow us to quantify it, as we described next.

5.2 Parametrization

Preferences and Technologies The individual utility over traded and non-traded goods defined in (1) is assumed to be Cobb-Douglas,

\[
U = c^\alpha h^{1-\alpha},
\]

while the aggregator of traded goods is CES as in (3). The production technologies (4) are linear:

\[
Y^n_j = z^n_j L^n_j.
\]

We need to impose values to the preference parameters \((\alpha, \sigma)\). In our benchmark parametrization we assume \(\alpha = 0.4\) to match a standard share of non-traded goods in consumption and \(\sigma = 5\) which corresponds to a central value of the demand elasticities reported by Head and Mayer (2014) across estimates from the international trade literature. As we discuss below, our model gives a reasonable prediction for the distance elasticity of trade, which is typically closely linked to \(\sigma\) in existing studies.

Labor Mobility We undertake the entire analysis for the case in which labor is fixed and for the case in which it is perfectly mobile.

Transport Technology We adopt the log-linear transport technology (10). Under this assumption we must parametrize the congestion parameter \(\beta\), the parameter \(\gamma\) capturing the return to infrastructure investments, and the frictions \(\delta_{jk}^r\).
As discussed in Section 3.1, the congestion parameter β admits several interpretations. Here, we associate congestion in the model with the impact of traffic on speed on actual roads, under the assumption that lower speed translates linearly into higher per-unit shipping cost. Wang et al. (2011) reviews and estimate a standard class of traffic density-speed relationship from traffic flow theory and transportation engineering. As detailed in Appendix C, we choose β such that the relationship between flows and inverse-shipping costs in our model matches the empirical relationship between traffic density and speed reported in their paper. As a result of this step, we obtain $\beta = 1.245$.51

51To preserve the global convexity of the problem, we adopt the log-linear specification of the transport technology rather than the logistic relationship assumed in Wang et al. (2011).
Figure 3: Discretization of the Spanish Road Network

(a) Population on the Discretized Map (b) Nodes and Edges in the Baseline Graph

(c) Nodes in the Actual Road Network (d) Actual Road Network on the Baseline Graph

Notes: Panel (a) shows total population from GPW aggregated into 50 km cells. Panel (b) shows the nodes \(J \) corresponding to the population centroids of each cell in Panel (a), reallocated to their closest point on the actual road network, and the edges \(E \) corresponding to all the vertical and diagonal links between cells. Panel (c) shows the centroids and the actual road network. Green segments correspond to national roads, red segments are all other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows the same centroids and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to the average number of lanes on the cheapest path between each pair of nodes on the road network. The color shade ranges from red to green according to the fraction of the shortest path traveled on a national road.

Having set \(\beta \), we perform the entire analysis, including the calibration with fixed and mobile labor, for values of \(\gamma \) that span convex and non-convex cases:

\[
\gamma = \{0.5 \times \beta, \beta, 1.5 \times \beta\}
\]

Geographic Trade Frictions We also need to calibrate the matrix of trade frictions \(\delta_{jk}^T \), applying to the transport technology \((10) \). As far as we know, data on trade flows within countries is not readily available at a reasonable level of spatial disaggregation for almost any of the countries in our data. Therefore, trade flows are not observed across the cells in our discretization; if that data were available, \(\delta_{jk}^T \) could in principle be backed out for each pair of links as part of our calibration to rationalize the observed trade flows as an equilibrium outcome.

To sidestep this shortcoming we assume instead that \(\delta_{jk}^T \) is a function of distance,
\[\delta^T_{jk} = \delta^0_0 \text{dist}^T_{jk}. \]

We set \(\delta^0_0 \) such that the model matches the share of total intra-regional trade in total intra-national trade of 39% reported by Llano et al. (2010) using average flows from 1995 to 2005 across Spanish regions. Because this ratio is only available for Spain, we undertake the calibration of \(\delta^0_0 \) using our model predictions for Spain, and then, using this estimate, we construct \(\delta^T_{jk} \) across all cells in each country. In Table A.3, we report the mean and standard deviation of the intra-regional trade share across the countries in our data, as well as the calibrated \(\delta^0_0 \). The average intra-regional trade share in total domestic trade is often close to 50%.

This approach is in spirit similar to Ramondo et al. (2012), who study a model featuring within-country trade without access to within-country trade data except for one country (in their case, the U.S.).52 They jointly set \((\delta^0_0, \delta^T_1)\) to target the elasticity of trade with respect to distance from a standard gravity equation, as well as the share of intra-regional trade in domestic trade within the U.S., and then apply these coefficients to all other regions in their data. As we discuss in detail in Appendix C.1, in our model the coefficient \(\delta^T_1 \) has approximately no impact on the elasticity of shipping costs with respect to distance, and therefore has close to no impact on the trade-distance elasticity recovered from a standard gravity regression run on data generated by our model. Moreover, \(\delta^T_1 \) has close to no impact on any equilibrium outcome once we have chosen \(\delta^0_0 \) to match the intra-regional trade share. Therefore, we normalize \(\delta^T_1 = 1. \)53

While, in our model, the trade distance elasticity is rather insensitive to \(\delta_1 \), it is sensitive to both \(\beta \) and \(\sigma \). We have calibrated these parameters to match external sources, but we note that the calibrated model indeed makes reasonable predictions for the trade-distance elasticity. As reported in Table A.3 in Appendix C, the average trade-distance elasticity across all the countries in our data is close to 1 without labor mobility and close to 1.1 with labor mobility. A trade-distance elasticity around one corresponds to the typical value of existing estimates on both intra-national and inter-national trade data as summarized by Ramondo et al. (2012).

Productivities and Non-Traded Services We must impose values for the productivities \(z^n_{j} \) and the endowment of non-traded services \(H_{j} \). In the case with perfect labor mobility we interpret \(L^\text{obs}_{j} \) and \(GDP^\text{obs}_{j} \) as outcomes of the planner’s solution for the optimal allocation and optimal transport problems discussed in Section 3.2 taking the observed network \(I^\text{obs}_{jk} \) as given, and use this information to back out these fundamentals. In the case with fixed labor, we interpret \(GDP^\text{obs}_{j} \) as the outcome of the planner solution and use this information to back the productivities \(z^n_{j} \). In that case, we normalize \(H_{j} = 1 \) and set the planner’s weights \(\omega_{j} = 1 \) everywhere.

Since our data includes aggregate measures of economic activity for each cell but not industry-
level data, we cannot back out a productivity z_j^n for different sectors n within the same location j. Therefore, we assume that each location produces only one good, but we allow for $N_0 + 1$ goods: N_0 “industrial” goods, and one “agricultural” good. We assume that each of the N_0 industrial goods is produced in each of the N_0 cells with the largest observed population, and that the agricultural good is produced by all the remaining locations. In the special case of this approach where every location produces a different product ($N_0 = J$), the production structure of our model corresponds to the standard Armington model. While the Armington assumption is sensible at higher levels of aggregation, it is somewhat less appealing for the high geographic resolution (50 km square cells) that we consider. Hence, we rather exploit the flexibility of our model to allow for cases where many locations produce the same good.

This approach leaves us with J productivity parameters z_j, each corresponding to the productivity of a different location. Given the observed infrastructure I_{jk}^{ob} and the previous parameter choices, we choose each location’s productivity and supply of non-traded goods $\{z_j, H_j\}$ such that, taking the observed network I_{jk}^{ob} as given, the planner’s solution to the optimal allocation and optimal transport problems from Definition 2 reproduces the observed value-added and population $\{GD_{j}^{obs}, L_{j}^{obs}\}$ as an outcome.\(^{54}\) The model solution readily yields the level of population in each location, L_j. As for the model’s prediction for GDP, we invoke the second welfare theorem from Proposition 4 to recover the prices in the observed allocation as the multipliers of the various constraints in the planner’s problem.\(^{55}\)

The various panels in Figure A.11 in Appendix C show the results of the calibration for the case of $\gamma = \beta$ (similar relationships hold for alternative values of γ). Panels (a) and (b) contrast the model-implied population share and income share of each location against the data, over the 1511 locations in the 25 countries in the data. Except for very few locations, both population and income shares are matched with high precision. Panels (c) and (d) show the calibrated fundamentals (productivity and endowment of non-traded services per capita) in the vertical axes against income and population shares in the data, respectively, for the case with labor mobility. The calibration implies higher productivity and slightly lower supply of non-traded goods per capita in more populated places.\(^{56}\) A similar positive relationship between productivity and income share is implied by the calibration of the model with fixed labor, in Panel (e).

Cost of Building Infrastructure To implement the optimal transport network in counterfactual scenarios we must parametrize the cost of infrastructure along each edge, δ_{jk}^I. We implement

\[^{54}\text{Based on the discussion of the preceding section, we first implement this step for Spain, where we jointly calibrate } \{z_j, H_j\} \text{ and } \delta_{ij}^I. \text{ For the remaining countries, we apply that } \delta_{ij}^I, \text{ but still back out } \{z_j, H_j\} \text{ using each country’s income and value-added distribution.}\]

\[^{55}\text{More specifically, in the solution of the planner’s problem each location’s value added is } P_{n}^{(j)} z_{j} L_{j} + P_{j}^{H} H_{j} + \sum_{n} \sum_{k \in N(j)} \left[P_{k}^{n} - P_{n}^{(j)} (1 + \tau_{jk} (Q_{jk}^{obs}, I_{obs}^{jk})) \right] Q_{jk}^{n}, \text{ where } n (j) \text{ denotes the good produced by location } j, P_{j}^{n} \text{ is the price of good } n \text{ in location } j (\text{i.e., multiplier of the flows constraint for good } n \text{ in } j \text{ in the planner’s problem}), \text{ and } P_{j}^{H} \text{ is the price of non-traded services in sector } j (\text{i.e., the multiplier of the availability of non-traded goods constraint in the planner’s problem}). \text{ This step assumes that value added in the transport sector is empirically accounted to the exporting node.}\]

\[^{56}\text{Population and total supply of non-traded goods are highly correlated with a slope slightly below 1.}\]
two approaches. In the first approach, we interpret the observed infrastructure \(I_{jk}^{\text{obs}} \) as the result of the full planner’s problem. We do so under the assumption that \(\delta_{jk}^I = \delta_{ij}^I \), so that it is equally costly to build in either direction, and that \(I_{jk}^{\text{obs}} = I_{kj}^{\text{obs}} \), implying that infrastructure applies equally in either direction. In this case the observed network, \(I_{jk}^{\text{obs}} \), is consistent with the planner’s first-order condition for \(I_{jk} \) in (12) under the assumption that \(I_{jk}^0 = 0 \).\(^{57}\)

Imposing symmetry on that first-order condition we then recover the cost of infrastructure \(\delta_{jk}^I, \text{FOC} \) as function of outcomes from the calibrated model (see Appendix A.2).

The first approach we have just described takes a strong stand about the process that generated the network, but is agnostic about how costs may depend on observable geographic features of the terrain. Conversely, our second approach is agnostic about whether the observed network results from any sort of optimization by a central authority, but takes a strong stand about how the building costs \(\delta_{jk}^I \) depends on geographic features. Specifically, we rely on data from Collier et al. (2016), who estimate highway building costs from more than three thousand World-Bank investment projects across the world, and then relate these costs to a host of geographic and non-geographic frictions.\(^{58}\)

We assume here that \(\delta_{jk}^I \) is a function of two geographic features included in their study, distance and ruggedness of the terrain. We refer to this building-cost measure as the “geographic” measure, \(\delta_{jk}^I, \text{GEO} \). In our notation, their estimates imply:

\[
\ln \left(\frac{\delta_{jk}^I, \text{GEO}}{\text{dist}_{jk}} \right) = \ln (\delta_0^I) - 0.11 \ast (\text{dist}_{jk} > 50 \text{km}) + 0.12 \ast \ln (\text{rugged}_{jk}),
\]

(20)

where \(\text{dist}_{jk} \) is the distance between \(j \) and \(k \) and \(\text{rugged}_{jk} \) is the average over the ruggedness in locations \(j \) and \(k \).\(^{59}\) This expression implies that it is more costly to build on rugged terrain, but less costly per kilometer to build on longer links. We assume that the elasticity of building costs with respect to features of the terrain is the same across all countries, but that the constant \(\delta_0^I \) may be country-specific.

These steps give two alternative measurements of \(\delta_{jk}^I \) up to scale in each country. In the case of \(\delta_{jk}^I, \text{FOC} \), the scale corresponds to the multiplier \(\mu \) of the planner’s resource constraint (see (A.3) in Appendix (A.2)) and in the case of \(\delta_{jk}^I, \text{GEO} \) it corresponds to \(\delta_0^I \). In either case, the network-building constraint (7) must be satisfied in every country, implying \(\sum_j \sum_{k \in \mathcal{N}(j)} \delta_{jk}^I I_{jk}^{\text{obs}} = K \). Hence, given

\(^{57}\)The same first-order condition applies regardless of whether labor is mobile.

\(^{58}\)The investment projects in their data are concentrated in low- and middle-income countries, of which only 3 (Lithuania, Georgia, and Macedonia) are in our data. The coefficients from their study introduced in our equation (20) correspond to the average of the coefficients over the distance dummy and the ruggedness index across the 6 specifications in Tables 4 and 5 of their paper.

\(^{59}\)To construct ruggedness, we use elevation data from the ETOPO1 Global Relief Model. The ETOPO1 dataset corresponds to a 1 arc-minute degree grid. We construct average elevation and ruggedness for each cell in our discretization as the average elevation and ruggedness across the 900 arc-minute cells from the ETOPO1 data contained in each 0.5 arc-degree cell in our discretized maps. We use the ruggedness index by Riley et al. (1999). Letting \(\mathcal{J}^{\text{etopo}}(j) \) be the set of cells in ETOPO1 contained in each cell \(j \in \mathcal{J} \) of our discretization and \(\mathcal{N}^{\text{etopo}}(i) \) be the 8 neighboring cells to each cell in ETOPO1, this index is defined here as: \(\text{rugged}_j = \left(\sum_{i \in \mathcal{J}^{\text{etopo}}(j)} \sum_{k \in \mathcal{N}^{\text{etopo}}(i)} (\text{elev}_k - \text{elev}_i)^2 \right)^{1/2} \); i.e., it is the standard deviation of the difference in elevation across neighboring cells. Then, we define \(\text{rugged}_{jk} \) in (20) as \(\text{rugged}_{jk} = \frac{1}{2} (\text{rugged}_j + \text{rugged}_k) \).
K, we can pin down the scale of δ_{jk} for each of the two measures in each country. We note, however, that these constants do not impact the answer to our counterfactuals; i.e., the results we report below for how each outcome changes when we optimally modify or expand the network are independent from what particular value we pick for K in each country. Therefore, in our implementation we normalize $K = 1$ in every country.60

5.3 Optimal Expansion and Reallocation

We simulate two types of counterfactuals. First, we measure the aggregate gains from the optimal expansion of the observed road network within each country. For that, we solve the planner’s problem assuming that the total resources K are increased by 50% relative to the observed network, I_{jk}^{obs}. I.e., in the notation of definitions 1 and 2, $I_{jk}^0 = I_{jk}^{obs}$. Second, we measure the potential losses due to misallocation of current roads within each country. For that, we solve the planner’s problem assuming that the total resources K are the same as in the observed network, but without imposing any constraint to build on top of the existing network, I_{jk}^{obs}. I.e., in the notation of definitions 1 and 2, $I_{jk}^0 = 0$.

In short, the first “optimal expansion” counterfactual amounts to optimally expanding the network on top of what is already observed. In turn, the second “optimal reallocation” counterfactual amounts to optimally reallocating the existing roads or, equivalently, to building the globally optimal network without constraints employing the same amount of resources as those used to build the observed network. The first counterfactual is more policy-relevant, as it prescribes where new roads should be built and yields the aggregate gains of those investments. The second counterfactual is unfeasible in reality, but gives a sense of the losses from misallocation of existing roads.

We implement the optimal expansion under the two measures of building costs, the optimization measure $\delta_{jk}^{I,FOC}$ and the geographic measure $\delta_{jk}^{I,GEO}$. The optimal reallocation is only meaningful under the geographic measure, since, by construction, the observed network is optimal and cannot be improved under the $\delta_{jk}^{I,FOC}$ measure. We implement each of these three counterfactuals for each of the three values $\gamma = \{0.5\beta, \beta, 1.5\}$, assuming both fixed and mobile labor, separately for each of the 25 countries in our data. We re-calibrate the model each time following the steps from the previous section.

Regional Impact within Countries We inspect first the within-country regional implications. Which regions are more likely to receive infrastructure investments? How is economic activity reallocated?

Figure 4 depicts the pattern of investment and population in the countries of Figures 2 and 3, Spain and France, for counterfactuals under the geographic measure of building costs, $\delta_{jk}^{I,GEO}$. Panels (a) and (b) show the optimal reallocation counterfactual and panels (c) and (d) show the

60Note that, across countries, we are unable to distinguish whether largest networks correspond to more resources available to build the network (higher K) or lower costs to translate these resources into observed lanes (lower average δ_{jk}). Whether we assume one or the other does not affect our counterfactuals.
Figure 4: Optimal Network Reallocation and Expansion, $\delta^I = \delta^{I,GEO}$

(a) Optimal Network Reallocation, $\gamma = \beta$

(b) Optimal Network Reallocation, $\gamma = \beta$

(c) Optimal Network Expansion, $\gamma = \beta$

(d) Optimal Network Expansion, $\gamma = \beta$

(e) Optimal Network Expansion, $\gamma > \beta$

(f) Optimal Network Expansion, $\gamma > \beta$

Notes: The width and brightness of each link is proportional to the difference between the optimal counterfactual network and the observed network, $I^*_jk - I^0_k$ for each link $jk \in \mathcal{E}$ shown in panel (b) of Figures 2 and 3. The color scale is the same as in Figure 2. In the misallocation counterfactuals, red links represent negative investment. Brighter green (red) nodes represent larger population increase (decrease).

optimal expansion assuming $\gamma = \beta$ (convex case). Panels (e) and (f) reproduce the optimal expansion assuming $\gamma > \beta$ (non-convex case). Figure A.12 in Appendix C shows the optimal expansion counterfactual under the optimality measure of building costs, $\delta^{I,FOC}$, in the convex case.
All the figures correspond to assuming mobile labor. The thickness of each link increases with the absolute value of the investment, defined as the difference between the counterfactual and the observed infrastructure, \(I_{jk}^* - I_{jk}^{obs} \). In the reallocation counterfactual, links with negative investment, \(I_{jk}^* - I_{jk}^{obs} < 0 \), are shown in red, while all other links are shown in green. In turn, green nodes denote positive population change, and red nodes denote negative population change. Brighter nodes represent a larger absolute value of population change.

In the optimal reallocation counterfactual, we observe positive investments radiating away from the area with higher economic activity producing differentiated products.\(^{61}\) As we compare panels (a) and (b) with panels (c) and (d), we observe very similar investment patterns in the optimal reallocation and expansion. The links identified as having too much infrastructure, depicted in red in panels (a) and (b), typically feature no expansion in panels (c) and (d). In turn, the comparison between panels (c)-(d) and panels (e)-(f) reveals that, under increasing returns to building the network, the optimal expansion is concentrated on fewer roads, in tune with our results in Proposition 3 and the examples in Section 4.2. Optimal road investments still radiate away from the center, but the overall investment patterns is more sparse. Figure A.12 in Appendix C shows a very different pattern of investment in the optimal-expansion counterfactual under the alternative measure of building costs.

Despite the different investment patterns across the 3 counterfactuals, in the cases of France and Spain population is always reallocated to the south and to the regions producing differentiated products within each country. This consistency in labor reallocation across counterfactuals is common to every country in our data. Across the 1511 locations in the 25 countries, the correlation between the population change in the optimal reallocation and the optimal expansion is 0.98 under the geographic measure \(\delta^{I,GEO} \) and 0.78 under the optimality measure \(\delta^{I,FOC} \).\(^{62}\) Due to the labor mobility constraint in the planner’s problem, labor reallocation patterns within each country are perfectly correlated with changes in consumption of traded commodities per worker, \(c_j \).\(^{63}\) Hence, the changes in real consumption per capita mirror the changes in population. For the cases without labor mobility, we observe a similar consistency across all the counterfactuals in the changes in consumption of traded commodities per capita \(c_j \) across locations.\(^{64}\)

Therefore, we conclude that, regardless of the type of counterfactual and assumptions on \(\gamma, \delta^I \) or labor mobility, the optimal allocation of roads always leads to growth in similar areas within each country. With labor mobility, growth takes the form of more population and consumption per

\(^{61}\)As we discussed in the calibration section, these regions are assumed to be the nodes in the 5 cells with largest population. These are the cells containing Paris, Marseille, Lyon, Toulouse, and Lille in France; and Madrid, Barcelona, Valencia, Sevilla, and Bilbao in Spain.

\(^{62}\)These correlations correspond to \(\gamma = \beta \). The corresponding correlations are 0.99 and 0.79 for \(\gamma = 0.5\beta \), and 0.91 and 0.77 for \(\gamma = 1.5\beta \).

\(^{63}\)I.e., because all locations are initially populated, the labor mobility constraint (vi) from Definition 2 holds everywhere in both the initial and counterfactual allocations. This implies \(\alpha \Delta \ln c_j = (1 - \alpha) \Delta \ln L_j + \Delta \ln u \), where \(\Delta \ln x \) denotes the difference in the log of variable \(x \) between the counterfactual and calibrated allocation.

\(^{64}\)Across the 1511 locations in the 25 countries, the correlation between the change in consumption per capita under the misallocation counterfactual and under the optimal expansion is 0.97 under \(\delta^{I,GEO} \) and 0.78 under \(\delta^{I,FOC} \) when \(\gamma = 1 \). The corresponding correlations are 0.98 and 0.86 when \(\gamma = 0.5\beta \), and 0.95 and 0.74 when \(\gamma = 1.5\beta \).
capita. Without labor mobility, it takes the form of higher consumption of traded goods per capita, and therefore higher welfare per capita. Under different assumptions and type of counterfactual we obtain a different overall magnitude for these changes, but the same ranking across locations.

A natural question, therefore, is: what observable characteristics make specific regions more likely to receive infrastructure or to grow in the counterfactuals? Is growth correlated with receiving infrastructure? The empirical literature on the impacts of trade costs on regional outcomes reviewed in Section 2 does not always find that larger exposure to transport networks leads to an increase in economic activity. Here, we can inspect the relationship between infrastructure investment and regional growth in the context of our model based optimal-reallocation and optimal-expansion counterfactuals.

Our model implies a complex mapping from the distribution of fundamentals (productivities, endowments of non-traded goods, trade frictions, and building costs) to the key outcomes (optimal investment, population growth, and consumption growth) in each location in the counterfactuals. We can ask how a few typically observable regional characteristics map to these outcomes. Table 1 reports results from regressions of infrastructure and population growth on each location’s initial population, income per capita, consumption of traded goods per capita and level of infrastructure, and on whether the location produces differentiated products. To run these regressions we use data from the counterfactuals over the 1511 locations in the 25 countries. We report here results corresponding the case where $\gamma = \beta$, but similar patterns are present under alternative assumptions on γ.

Columns (1) and (3) imply that, under the geographic measure of building costs, optimal road investments are more intensely directed to locations with initially higher levels of population and consumption per worker, as well as to producers of differentiated goods. They are also directed to locations with initially lower levels of infrastructure, capturing decreasing marginal aggregate welfare gains from infrastructure in specific links. The few variables that we include in the regression have a high explanatory power. Under the optimality based measure of building costs, these variables have a smaller explanatory power, reflecting larger variation in the building cost measure $\delta^{I,FOC}$ relative to the geographic cost measure $\delta^{I,GEO}$.

In turn, the even columns imply that, regardless of the counterfactual or measure of building costs, only two variables have a significant relationship with population growth: initial consumption of traded goods per capita and whether each location is a producer of differentiated goods. Moreover, the handful of variables included in the regression explain between 60% and 76% percent of the population changes. Initial consumption per capita, in particular, has a very strong explanatory power. This reallocation pattern reflects a central force in the model: the goal of the optimal investments in infrastructure is to reduce variation in the marginal utility of consumption of traded commodities across locations. Since changes in population and consumption per capita between the counterfactual and initial allocation are perfectly correlated, the optimal allocation leads to

65 For a review of these results see Donaldson (2015).
66 The R^2 of regressions (2), (4), and (6) falls to 0.36, 0.41, and 0.56, respectively, when consumption per capita is excluded.
Table 1: Optimal Infrastructure Investment, Population Growth and Local Characteristics (Mobile Labor).

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Reallocation (δ = δ^{L,GEO})</th>
<th>Expansion (δ = δ^{L,GEO})</th>
<th>Expansion (δ = δ^{L,FOC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>0.52***</td>
<td>0.000</td>
<td>0.13***</td>
</tr>
<tr>
<td>Income per Capita</td>
<td>-0.19</td>
<td>0.03</td>
<td>-0.33</td>
</tr>
<tr>
<td>Consumption per Capita</td>
<td>0.91**</td>
<td>-0.17***</td>
<td>0.77*</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>-0.65***</td>
<td>-0.000</td>
<td>-0.40***</td>
</tr>
<tr>
<td>Differentiated Producer</td>
<td>0.33***</td>
<td>0.02***</td>
<td>0.31***</td>
</tr>
<tr>
<td>Observations</td>
<td>1511</td>
<td>1511</td>
<td>1511</td>
</tr>
<tr>
<td>R^2</td>
<td>0.40</td>
<td>0.60</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Each column corresponds to a different regression pooling all locations across all countries assuming $\gamma = \beta$ and mobile labor. All regressions include country fixed fixed effects. Standard errors are clustered at the country level. ***=1% significance, **=5%, *=10%. Dependent variables: Investment is defined as $\Delta \ln I_j$, where $\bar{I}_j = \frac{1}{\# N(j)} \sum_{k \in N(j)} I_{jk}$ is the average level of infrastructure across all the links of location j, and population growth is defined as $\Delta \ln L_j$, where $\Delta \ln x$ denotes the difference between the log of variable x in the counterfactual and in the calibrated allocation. Independent variables: all correspond to the log of the level of each variable in the calibrated model. Population and income per capita are the two outcomes matched by the calibration. Consumption per capita corresponds to traded goods, c_j in the model. Infrastructure is the average infrastructure of each location, \bar{T}_j. Differentiated producer is a dummy for whether the location is a producer of differentiated goods in the calibration.

We note that these properties are essentially unchanged under the alternative values of γ. The results are also very similar assuming fixed labor and using the change in consumption per capita instead of population as dependent variable, as shown in Table A.4 in Appendix C. In that case, initial consumption has an even stronger role in shaping regional growth, consistent with the intuition that labor mobility partially offsets differences in marginal utility across locations. We conclude that, regardless of the type of counterfactual, assumption on γ, or assumption on labor mobility, the optimal investment reduces spatial inequalities. The different assumptions on building costs and type of counterfactual, however, imply different ways of achieving this goal in terms of where the optimal infrastructure investments are placed.

Aggregate Welfare Impact Across Countries
We conclude with the aggregate welfare effects. Table 2 shows the average welfare gain for each counterfactual across all countries, while Tables

\footnote{Income per capita is not significant in regressions (2), (4) and (6) because consumption is included. If consumption per capita was excluded, then the coefficient on income per capita (either total value added or traded-sector value added) would always be negative and significant, and about half as large in absolute value as the coefficient for consumption per capita in the current regressions.}
Table 2: Average Welfare Gains Across Countries

<table>
<thead>
<tr>
<th>Returns to Scale:</th>
<th>(\gamma = 0.5\beta)</th>
<th>(\gamma = \beta)</th>
<th>(\gamma = 1.5\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Reallocation</td>
<td>(\delta = \delta_{I,ENG})</td>
<td>2.2%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Optimal Expansion</td>
<td>(\delta = \delta_{I,ENG})</td>
<td>2.6%</td>
<td>2.3%</td>
</tr>
<tr>
<td></td>
<td>(\delta = \delta_{I,FOC})</td>
<td>0.8%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 25 countries in our data.

A.5 and A.5 in Appendix C show the results for each country.

Starting from the case \(\gamma = \beta \) as our benchmark, we find that the growth of the network leads to average welfare gains across countries of between 1.4% and 5%, depending on whether labor is allowed to be mobile and whether we compute building costs according to the geographic measure or the planner’s first-order conditions. The losses from misallocation are on average somewhat below the gains from optimally expanding the network under the geographic measure. The gains from optimally expanding the network tend to be larger under the geographic measure and the welfare gains are increasing with the returns to infrastructure investments, \(\gamma \). Assuming labor mobility implies lower gains in convex cases (\(\gamma \leq \beta \)), and higher gains in the non-convex case, \(\gamma = 1.5\beta \).

Each panel of Figure 5 shows the welfare gain across countries for each of the three counterfactuals for the case of \(\gamma = \beta \) under both fixed labor and labor mobility. In every case, we find a negative relationship between income per capita and welfare gains from either optimally expanding or reallocating current roads, suggesting larger returns to infrastructure and larger misallocation in poorer economies. This negative relationship reflects in part that poorer countries have worse infrastructure, as implied by Figure A.13 in Appendix C.

We also find that the distributions of welfare gains across countries are highly correlated across all counterfactuals, regardless of the parametrization of \(\gamma \), the assumption on labor mobility, the parametrization of the building costs \(\delta^I \), or the type of counterfactual.\(^{68}\) For example, across all the parametrizations of \(\gamma \) and labor mobility, the correlation between the gains from optimally expanding the network under the two measures of building costs, \(\delta_{I,geo} \) and \(\delta_{I,OPT} \), is between 0.95 and 0.98. Therefore, the answer to the question of which countries would gain more from a given expansion in the network is robust across these cases.

\(^{68}\) For each country we run 18 counterfactuals spanning the assumptions on \(\gamma \), \(\delta^I \), type of counterfactual (expansion or reallocation), and labor mobility. Across all pairwise conditions of these 18 cases, the lowest correlation in welfare gains across countries is 0.85.
Figure 5: Gains from Optimal Reallocation and Expansion and Income Per Capita

(a) Optimal Reallocation with $\delta^{I,GEO}$

(b) Optimal Expansion with $\delta^{I,GEO}$

(c) Optimal Expansion with $\delta^{I,FOC}$

Notes: Each figure displays the % welfare gains across countries in each counterfactual against each country’s log-income per capita, for the case $\gamma = \beta$. The same patterns are present for $\gamma = 0.5\beta$ and $\gamma = 1.5\beta$.

41
6 Conclusion

In this paper, we develop a framework to study optimal transport networks in general-equilibrium trade and economic-geography models. The framework combines a general neoclassical environment where each location is a node in a graph, an optimal transport problem subject to congestion in shipping, and an optimal network design. It nests commonly used neoclassical trade models and it allows for either fixed or mobile factors across space. We provide conditions such that the network design problem is globally convex, guaranteeing its numerical tractability. We also study the theoretical properties and implementation of non-convex cases with increasing returns. The ensuing networks in these cases are sparser, and the distribution of infrastructure investments is more skewed towards fewer but wider “highways”.

In our quantitative application, we match the model to data on actual road networks and economic activity at a 0.5 x 0.5 degree spatial resolution across 25 European countries. Given the observed road network, the model reproduces the population and value added observed across the 1511 cells of our data. Using the calibrated model, we find larger gains from road expansion and larger losses from misallocation of current roads in lower-income countries. We also find that the optimal expansion of current road networks reduces regional inequalities within countries. These results hold consistently across different parametrizations of infrastructure building costs, although these costs impact where the optimal infrastructure investments are placed in each counterfactual.

The framework could serve as basis for alternative applications. For instance, it could be used to study political-economy issues associated with infrastructure, such as spatial competition among planning authorities. Our application was limited to European countries, but low-income economies are likely to benefit more from infrastructure investment. It is also well understood that networks of cities and transport networks are highly persistent; the model could be used to study inefficient network lock-in due to existing investments corresponding to dated economic fundamentals. The empirical literature mentioned in Section 2 and summarized by Donaldson (2015) relies on exogenous sources of variation for the placement of infrastructure investments; the framework may be used to construct instruments for the location of transport infrastructure as function of observable regional characteristics. Finally, a number of forces such as commuting, agglomeration in production, or dynamic adjustment were left out of our analysis. These are all interesting avenues to pursue in future research.

References

[See Davis and Weinstein (2002) and Michaels and Rauch (2013).]

IADB (2013). Too far to export: Domestic transport costs and regional export disparities in latin america and the caribbean.

A Appendix to Section 3 (Model)

A.1 Planner’s Problem

In this section we present the first-order conditions to the planner’s problem. We refer to these first-order conditions in some of the characterizations in the text and in the proofs below.

Immobile Labor

The Lagrangian of the problem in Definition 1 is

$$\mathcal{L} = \sum_j \omega_j L_j U(c_j, h_j) - \sum_j P^n_j \left[c_j L_j - C^T_j \left(C^1_j, ..., C^N_j \right) \right] - \sum_j P^H_j \left(h_j L_j - H_j \right)$$

$$- \sum_j \sum_n P^n_j \left[C^n_j + \sum_{k \in \mathcal{N}(j)} (Q^n_{jk} + \tau_{jk} (Q^n_{jk}, I_{jk}) Q^n_{jk}) - F^n_j (L^n_j, V^n_j) - \sum_{i \in \mathcal{N}(j)} Q^i_{jk} \right]$$

$$- \sum_j W_j \left[\sum_n L^n_j - L_j \right] - \sum_j \sum_l R^l_j \left[\sum_n V^n_j - V_j \right]$$

$$- \mu \left(\sum_j \sum_{k \in \mathcal{N}(j)} \delta^j_{jk} I_{jk} - K \right) + \sum_{j,k} \zeta^j_{jk} (I_{jk} - I^0_{jk})$$

$$+ \sum_{j,k,n} \zeta^{Q}_{jkn} Q^n_{jk} + \sum_{j,n} \zeta^{L}_{jnn} L^n_j + \sum_{j,n,d} \zeta^{V}_{jnd} V^n_{jd} + \sum_{j,n} \zeta^{C}_{jnn} C^n_j + \sum_j \zeta^c_j c_j + \sum_j \zeta^h_j h_j$$

where $P^n_j, P^H_j, P^N_j, W_j, R^l_j, \mu, \zeta^c_j, \zeta^h_j, \zeta^{Q}_{jkn}, \zeta^{L}_{jnn}, \zeta^{V}_{jnd}, \zeta^{C}_{jnn}$ are the multipliers of all constraints implied by (i)-(v) in Definition 1. The first-order conditions with respect to consumption and production are:

$$[c_j] \quad \omega_j L_j U_C (c_j, h_j) + \zeta^c_j = P^n_j L_j$$

$$[h_j] \quad \omega_j L_j U_H (c_j, h_j) + \zeta^h_j = P^H_j L_j$$

$$[C^n_j] \quad P^n_j \frac{\partial C^n_j}{\partial C^n_j} + \zeta^{C}_{jnn} = P^n_j$$

$$[L^n_j] \quad P^n_j \frac{\partial Y^n_j}{\partial L^n_j} + \zeta^{L}_{jnn} = W_j$$

$$[V^n_j] \quad P^n_j \frac{\partial Y^n_j}{\partial V^n_j} + \zeta^{V}_{jnn} = R^l_j$$

The first-order conditions with respect to flows is:

$$[Q^n_{jk}] \quad - P^n_j \left(1 + \tau^n_{jk} + \frac{\partial \tau^n_{jk}}{\partial Q^n_{jk}} Q^n_{jk} \right) + P^o_j + \zeta^{Q}_{jkn} = 0$$

which, along with the complementary slackness condition for Q^n_{jk}, implies (8) in the main text.

Finally, the first order condition with respect to the network investment is

$$[I_{jk}] \quad \sum_n P^n_j Q^n_{jk} \left(- \frac{\partial \tau^n_{jk}}{\partial I_{jk}} \right) + \zeta^i_{jk} = \mu \delta^i_{jk}$$

which, along with the complementary slackness condition for I^0_{jk}, implies (9) in the text.
Mobile Labor

The Lagrangian of the problem in Definition 2 is

\[L = u - \sum_j \tilde{\omega}_j L_j (u - U(c_j, h_j)) - W^L \left(\sum_j L_j - L \right) \]

\[+ \sum_j P^C_j c_j L_j - \omega_j \left(\sum_j \left(C^j_1, \ldots, C^j_{N(j)} \right) \right) - \sum_j \omega_j \left(h_j L_j - H_j \right) \]

\[- \sum_j \sum_n P^n_j \left[C^n_j + \sum_{k \in N(j)} (Q^n_{jk} + \tau_{jk} (Q^n_{jk}, I_{jk}) Q_{jk}^n) - F^n_j (L_j^n, V^n_j) - \sum_{i \in N(j)} Q_i^n \right] \]

\[- \sum_j W_j \left[\sum_n L_j^n - L_j \right] - \sum_j \sum_l R^l_j \left[\sum_n V_j^n - V_j \right] \]

\[- \mu \left(\sum_j \sum_{k \in N(j)} \delta^i_{jk} I_{jk} - K \right) + \sum_{j,k} \zeta^i_{jk} (I_{jk} - l_{jk}^0) \]

\[+ \sum_{j,k,n} \zeta^Q_{jk,n} Q^n_{jk} + \sum_{j,n,l} \zeta^C_{jn,l} L^n_{jn,l} + \sum_{j,n,l} \zeta^V_{jn,l} V^n_{jn,l} + \sum_{j,n} \zeta^n_{j} C^n_j + \sum_{j} \zeta^H_{j} c_j + \sum_{j} \zeta^h_{j} h_j \]

where, in addition to the previous notation for the multipliers, in the first line we have defined \(\tilde{\omega}_j \) and \(W^L \) as the multipliers of constraints (vi) and (vii) in Definition 2.

The first-order conditions with respect to consumption of traded services \([C^n_j] \), factor allocation within locations \([L^n_j] \) and \([V^n_j] \), optimal transport \([Q^n_{jk}] \), and optimal investment \([I_{jk}] \) are the same as in the problem without labor mobility. In turn, the first-order conditions with respect to \(u \) and \(L_j \) are:

\[[u] = 1 = \sum_j L_j \tilde{\omega}_j \]

\[[L_j] = P^C_j c_j + P^H_j h_j - \tilde{\omega}_j [U(c_j, h_j) - u] = W_j - W^L \]

where, from monotonicity of \(U(c_j, h_j) \) if follows that

\[U(c_j, h_j) = \begin{cases} u & \text{if } L_j > 0, \\ 0 & \text{if } L_j = 0. \end{cases} \]

In addition, the first-order conditions with respect to consumption of traded and non-traded services, \([c_j] \) and \([h_j] \), are the same as in the problem without labor mobility replacing the planner’s weights \(\omega_j \) with the multipliers of the mobility constraint \(\tilde{\omega}_j \). Combining \([L_j] \) with \([c_j] \) and \([h_j] \) gives the multiplier on the labor-mobility constraint. Specifically, for populated locations:

\[\tilde{\omega}_j = \frac{W_j - W^L}{U_C(c_j, h_j) c_j + U_H(c_j, h_j) h_j}. \]

A.2 Symmetry in Infrastructure Investments

For the applications in Section 5 we impose symmetry in infrastructure levels, i.e., \(I_{jk} = I_{kj} \). This section provides the first-order condition for \(I_{jk} \) in that case. The first-order condition with respect to \(I_{jk} \) is

\[[I_{jk}] \sum_n P^n_j Q^n_{jk} \left(\frac{\partial F^n_j}{\partial I_{jk}} \right) + \sum_n P^n_j Q^n_{kj} \left(-\frac{\partial F^n_j}{\partial I_{jk}} \right) + \zeta^i_{jk} = \mu \left(\delta^i_{jk} + \delta^i_{kj} \right). \tag{A.1} \]

Assuming symmetry leaves all the remaining first-order conditions presented in Section A.1 unchanged. Under the log-linear specification (10) of the transport technology, the optimal infrastructure investment, conditional on \(I_{jk} > 0 \), is
\[I_{jk} = \left(\frac{\gamma}{\mu (\delta_{jk}^G + \delta_{jk})} \left(\sum_{n, P_n^G > P_n^T} (Q_{jk}^n)_{1+\beta} + \sum_{n} \delta_{jk}^G (Q_{jk}^n)_{1+\beta} \right) \right)^{\frac{1}{1+\gamma}}, \]

(A.2)

which, substituting for the optimal flows, yields:

\[I_{jk} = \left(\frac{\kappa}{\mu (\delta_{jk}^G + \delta_{jk})} \left(\sum_{n, P_n^G > P_n^T} (\delta_{jk}^G)^{1/\beta} P_n^T \left(\frac{P_n^T}{P_j^T} - 1 \right)^{\frac{1+\beta}{\beta}} + \sum_{n, P_n^G > P_n^T} (\delta_{jk}^G)^{1/\beta} P_n^T \left(\frac{P_n^T}{P_k^T} - 1 \right)^{\frac{1+\beta}{\beta}} \right) \right)^{\frac{\beta}{1+\gamma}}. \]

(A.3)

Expressions 12 and 14 in Section 3 are the analog to these condition when symmetry is not imposed. As discussed in Section 5.2, to build \(\delta_{jk}^{GEO} \) we use (A.2) under the symmetry assumption \(\delta_{jk}^G = \delta_{kj}^G \). Setting \(I_{jk} = I_{jk}^{obs} \), \(\delta_{jk}^{GEO} \) can be backed out as function of calibrated parameters, the observed network \(I_{jk}^{obs} \), and the equilibrium prices generated by the calibrated model. Note that, to generate these prices, we use the model calibrated given the network \(I_{jk}^{obs} \), as discussed in Section 5.2.

A.3 Proofs of the Propositions

Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network investments \(\{I_{jk}\} \), the joint optimal transport and allocation problem in the fixed (resp. mobile) labor case is a convex (resp. quasiconvex) optimization problem if \(Q_{jk} (Q, I_{jk}) \) is convex in \(Q \) for all \(j \) and \(k \in N(j) \); and (ii) if in addition \(Q_{jk} (Q, I) \) is convex in both \(Q \) and \(I \) for all \(j \) and \(k \in N(j) \), then the full planner’s problem including the network design problem from Definition 1 (resp. Definition 2) is a convex (resp. quasiconvex) optimization problem. In either the joint transport and allocation problem, or the full planner’s problem, strong duality holds when labor is fixed.

Proof. Consider the planner’s problem from Definition 1. We can write it as

\[
\max \left\{C_j, \{C_j^k, Q_{jk}^{k-1, k}\}_{k \in N(j)} \right\} \quad \text{subject to: (i) availability of traded commodities,}
\]

\[
g_j^1 = C_j - C_j^T \left(C_j^1, ..., C_j^N\right) \leq 0 \text{ for all } j;
\]

(ii) the balanced-flows constraint,

\[
g_j^{2,n} = C_j^n + \sum_{k \in N(j)} Q_{jk}^n \left[1 + \tau_{jk} (Q_{jk}^{n, k}, I_{jk})\right] - F_j^n (L_j^n, V_j^n) - \sum_{i \in N(j)} Q_{ij}^n \leq 0 \text{ for all } j, n;
\]

(iii) the network-building constraint,

\[
\sum_j \sum_{k \in N(j)} I_{jk} \leq K;
\]

and conditions (iv)-(v) in the text. Since constraints (iii)-(v) are linear, we need \(f \) to be concave and \(g_j^1 \) and \(g_j^{2,n} \) to be convex. Since \(U \) is jointly concave in both its arguments, \(f \) is concave. \(C_j \left(C_j^1, ..., C_j^N\right) \) is concave, hence \(g_j^1 \) is convex. If \(Q_{jk} (Q, I) \) is convex in then \(g_j^{2,n} \) is the sum of linear and convex functions, hence it is convex. To show that this problem admits strong duality, a constraint qualification is required. Note first that constraints \(g_j^1 \) and \(g_j^{2,n} \) must hold with equality at an optimum and therefore can be substituted into the objective function. The remaining constraints (iii)-(v) are all linear and thus satisfy the Arrow-Hurwicz-Uzawa qualification constraint (Takayama (1985), Theorem 1.D.4). Hence, the global optimum must satisfy the KKT conditions and the duality gap is 0.

\[70^\text{\footnote{Despite having substituted constraints } g_j^1 \text{ and } g_j^{2,n} \text{ into the objective function, the multipliers for these constraints, } P_j^C \text{ and } P_j^F, \text{ can be recovered from the above KKT conditions such that } \omega_C C_j (h_j) = P_j^C \text{ and } P_j^C \partial C_j^k / \partial C_j^k = P_j^F.} \]
Consider now the planner’s problem with labor mobility from Definition 2. Because U is homothetic, we can express it as $U = G(U_0(c, h))$, where G is an increasing continuous function and U_0 is homogeneous of degree 1. Therefore, imposing the change of variables $\tilde{u} = G^{-1}(u)$, the planner’s problem can be restated as

$$\max \tilde{u}$$

subject to the convex constraints (i)-(v) and $L_j \tilde{u} \leq U_0(C_j, H_j)$. To make the latter constraint convex, let us denote $U_j = L_j \tilde{u}$ and replace \tilde{u} in the objective function by $\min_{|L_j| > 0} \left\{ \frac{U_j}{L_j} \right\}$. So that the problem becomes

$$\max_{C_j, \left\{ C_j^0, L_j^0 \right\}, \left\{ \tilde{u}_j^0 \right\}_{k \in N(j)}} \min_{U_j, L_j, |L_j| > 0} \left\{ \frac{U_j}{L_j} \right\}$$

subject to the convex restrictions (i)-(v) above as well as

$$U_j \leq U_0(C_j, H_j) \text{ for all } j;$$

The objective function is quasiconcave because U_j / L_j is quasiconcave and the minimum of quasiconcave functions is quasiconcave. In addition, all the restrictions are convex. Arrow and Enthoven (1961) then implies that the Karush-Kuhn-Tucker conditions are sufficient if the gradient of the objective function is different from zero at the candidate for an optimum, and here the gradient never vanishes.

\[\square\]

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given by (10), the full planner’s problem is a convex (resp. quasiconvex) optimization problem if $\beta \geq \gamma$. The optimal infrastructure is given by (13) implying that, in the absence of a pre-existing network (i.e., if $I_{jk}^0 = 0$), then $I_{jk} = 0 \leftrightarrow P_{jk}^n = P_{jk}^n$ for all n.

Proof. First, note that if $\beta \geq \gamma$ then $Q \tau(Q, I) \propto Q^{1+\beta} I^{-\gamma}$ is convex in $Q \in \mathbb{R}_+$ and $I \in \mathbb{R}_+$. To see that, note that the determinant of the Hessian of $Q^{1+\beta} I^{-\gamma}$ is $(1 + \beta) \gamma (\beta - \gamma) Q^{2\beta} I^{-2(\gamma + 1)}$, which is positive for $Q \in \mathbb{R}_+$ and $I \in \mathbb{R}_+$ if $\beta \geq \gamma \geq 0$. Next, from the first-order condition for optimal infrastructure (9), if the solution to the planning problem implies $I_{jk} = I_{jk}^0$, so that there is no investment, then:

$$\mu \geq -\frac{1}{\delta_{jk}} \sum_n P_{jk}^n Q_{jk}^n \frac{\partial \tau_{jk}}{\partial I_{jk}} \bigg|_{I_{jk} = I_{jk}^0}$$

$$\geq \frac{\gamma \delta_{jk}^0 \sum_n P_{jk}^n (Q_{jk}^n)^{1+\beta}}{(I_{jk}^0)^{\gamma + 1}}$$

$$\geq \frac{\gamma (1 + \beta) \delta_{jk}^0 \sum_n P_{jk}^n (Q_{jk}^n)^{1+\beta}}{(I_{jk}^0)^{\gamma + 1}}$$

where the second line follows from (10) and the third line follows from (11). Note that the last inequality is equivalent to $I_{jk}^0 \geq I_{jk}^0$ for I_{jk}^0 defined in (14). Therefore, if $I_{jk}^0 < I_{jk}^0$ then $I_{jk} > I_{jk}^0$ and $I_{jk} = I_{jk}^0$. Moreover, if there is any n such that $P_{jk}^n \neq P_{jk}^n$ then $I_{jk}^0 > 0$.

\[\square\]

Proposition 3. (Tree Property) Assume that $\lim_{c \to 0^+} U_C(c, h) = \infty$. In the absence of a pre-existing network (i.e., $I_{jk}^0 = 0$), if the transport technology is given by (10) and satisfies $\gamma > \beta$, and if there is a unique commodity produced in a single location, then the optimal transport network is a tree.

\(^{71}\)Since the objective function is strictly increasing in \tilde{u} and because \tilde{u} only shows up in the constraints $L_j \tilde{u} \leq U_0(C_j, H_j)$ for all j, it is necessarily the case that $\tilde{u} = \min_{|L_j| > 0} U_j / L_j$.

50
Proof. To establish the result, we focus on the case with fixed labor.72 We assume WLOG that production Y_j is exogenous (endowment economy) since there is only one commodity and factors are immobile. To fix ideas, let us assume that $I = \{0, 1, \ldots, J - 1\}$ and $Y_0 > 0$ but $Y_j = 0$ for $j \geq 1$. We write down the Lagrangian of the problem

$$
\mathcal{L} = \sum_j \omega_j L_j U (c_j, h_j) - \sum_j P_j \left[L_j c_j + \sum_{k \in N(j)} \left(1 + \delta_{jk} Q^j_{jk} \right) Q_{jk} - Y_j - \sum_{k \in N(j)} Q_{kj} \right]
- \mu \left(\sum_j \sum_{k \in N(j)} \delta_{jk} I_{jk} - K \right) + \sum_{j,k} \zeta_{jk} Q_{jk} + \sum_{j,k} \zeta_{jk} I_{jk}, \quad \zeta_{jk} \geq 0, \zeta_{jk} I_{jk} \geq 0.
$$

Despite being a nonconvex optimization problem, there must exist a vector of Lagrange multipliers such that the KKT conditions hold.73 As a preliminary step, we eliminate the infrastructure investment I_{jk} using (12), so that $I_{jk} = \left(\frac{\delta_{jk} Q^j_{jk}}{\delta_{jk}} P_j Q^{1+\beta}_{jk} \right)^{1+\gamma}$ whenever $Q_{jk} > 0$, otherwise $I_{jk} = 0$. Solving for the multiplier μ such that (7) is satisfied, we reformulate the problem with allocation and flows only as follows

$$
\mathcal{L} = \sum_j \omega_j L_j U (c_j, h_j) - \sum_j P_j \left[L_j c_j + \sum_{k \in N(j)} Q_{jk} - Y_j - \sum_{k \in N(j)} Q_{kj} \right]
- K^{-\gamma} \left[\sum_{j,k} \left(\frac{\delta_{jk}^i}{\delta_{jk}^\gamma} \right)^{1+\gamma} \left(P_j Q^{1+\beta}_{jk} \right)^{1+\gamma} \right] + \sum_{j,k} \zeta_{jk} Q_{jk}, \quad \zeta_{jk} I_{jk} \geq 0.
$$

(A.4)

The source of nonconvexities is the term $\left[\sum_{j,k} \left(\frac{\delta_{jk}^i}{\delta_{jk}^\gamma} \right)^{1+\gamma} \left(P_j Q^{1+\beta}_{jk} \right)^{1+\gamma} \right]$, which is convex when $\beta \geq \gamma$, but neither convex nor concave when $\gamma > \beta$. Let us now assume that $(\mathbf{c}^*, \mathbf{Q}^*)$ with $\mathbf{c}^* = (c^*_0, \ldots, c^*_J)^\prime$ and $\mathbf{Q}^* = (Q^*_j)_{j,k \in N(j)}$ is a local optimum, i.e., it satisfies the FOCs and SOCs of the Lagrangian (A.4). We are going to show that the graph associated with \mathbf{Q}^* is a tree. Define the (undirected) graph associated to \mathbf{Q}^* as the tuple $(\mathcal{I}, \mathcal{E}^*)$ such that $\mathcal{E}^* \subset \mathcal{E}$ is a subset of the edges of the underlying geography such that

$$
\mathcal{E}^* = \{ (j,k) \in \mathcal{E} \mid Q^*_{jk} > 0 \}.
$$

Note that since I_{jk} is non-zero whenever $Q_{jk} > 0$ or $Q_{kj} > 0$, the support of graph $(\mathcal{I}, \mathcal{E}^*)$ coincides with that of the transport network $\{I_{jk}\}$. After this preparatory work, we now refer the reader to Proposition 5 in Appendix D which establishes that \mathcal{E}^* is a tree.

Definition 3. The decentralized equilibrium without labor mobility consists of quantities $c_j, h_j, C_j, C_j^\alpha, L_j^\alpha, V_j^\alpha, \{Q^*_j\}_{k \in N(j)}$, goods prices $\{p_j^a\}_n, p_j^C, p_j^H$ and factor prices $w_j, \{r_j^m\}_m$ such that:

(i) (a) consumers optimize:

$$
\{c_j, h_j\} = \arg \max_{\hat{c}_j, \hat{h}_j} U \left(\hat{c}_j, \hat{h}_j \right)
$$

$$
p_j^C \hat{c}_j + p_j^H \hat{h}_j = c_j \equiv w_j + t_j,
$$

where c_j are expenditures per worker in j and where p_j^C is the price index associated with $C_j (c_j^1, \ldots, c_j^N)$ at prices ω_j.74 In the labor mobility case, an identical argument can be made by taking the optimal allocation of L_j as given and replacing the Pareto weights ω_j with the Lagrange multipliers of the constraints $L_j u \leq L_j U (c_j, h_j)$.

73The resource constraint can be substituted in the objective function to yield $P_j = \omega_j U_C (c_j, h_j)$. The Arrow-Hurwitz-Uzawa theorem (Takayama (1985), Theorem 1.D.4) tells us that all the other constraints being affine, then there must exist a vector of Lagrange multipliers such that the KKT conditions hold.

74The labor mobility case, an identical argument can be made by taking the optimal allocation of L_j as given and replacing the Pareto weights ω_j with the Lagrange multipliers of the constraints $L_j u \leq L_j U (c_j, h_j)$.
\(\{p^n_j\}_n \) and \(t_j \) is a transfer per worker located in \(j \). The set of transfers satisfy

\[
\sum_j t_j L_j = \Pi
\]

where \(\Pi \) adds up the aggregate returns to the portfolio of fixed factors and the government tax revenue,

\[
\Pi = \sum_j p^n_j H_j + \sum_j \sum_m r_j^n V_j^m + \sum_j \sum_{k \in N(j)} \sum_n t^n_{jk} p^k Q^n_{jk};
\]

(i)/(b) firms optimize:

\[
\{L^n_j, V^n_j\} = \arg\max_{L^n_j, V^n_j} F^n_j \left(L^n_j, V^n_j \right) - w_j L^n_j - \sum_m r_j^m V_j^{mn};
\]

(i)/(c) transport companies optimize and there is free entry:

\[
p^n_k \left(1 - t^n_{jk} \right) \leq p^n_j \left(1 + \tau^n_{jk} \right), \quad \text{if } Q^n_{jk} > 0;
\]

(i)/(d) producers of final commodities optimize:

\[
\{C^n_j\} = \arg\max_{C^n_j} C_j \left(\{C^n_j\} \right) - \sum_j p^n_j \hat{C}^n_j;
\]

as well as the market-clearing and non-negativity constraints (i), (ii), (iv), and (v) from Definition 1.

If, in addition, if labor is mobile, then the decentralized equilibrium also consists of utility \(u \) and employment \(\{L_j\} \) such that

\[
u = U_j (c_j, h_j)
\]

whenever \(L_j > 0 \), and condition (vii) from Definition 2 holds. If labor is mobile, we further impose equal ownership across workers regardless of location: \(b_j = \frac{1}{n} \).

Proposition 4. (First and Second Welfare Theorems) If the sales tax on shipments of product \(n \) from \(j \) to \(k \) is

\[
1 - t^n_{jk} = \frac{1 + \tau^n_{jk}}{1 + \tau^n_{jk} + 1 + \tau^n_{jk}}
\]

where \(\tau^n_{jk} = \partial \log \tau^n_{jk} / \partial \log Q^n_{jk} \), then: (i) if labor is immobile, the competitive allocation coincides with the planner’s problem under specific planner’s weights \(\omega_j \). Conversely, the planner’s allocation can be implemented by a market allocation with specific transfers \(t_j \); and (ii) if labor is mobile, the competitive allocation coincides with the planner’s problem if and only if all workers own an equal share of fixed factors and tax revenue, i.e., \(t_j = \frac{1}{n} \). In either case, the price of good \(n \) in location \(j \), \(p^n_j \), equals the multiplier on the balanced-flows constraint in the planner’s allocation, \(p^n_j \).

Proof. Under the tax scheme in the proposition, condition (i)/(c) from the market allocation is equivalent to the first-order condition (8) from the planner’s problem. Without labor mobility, the rest of the allocation corresponds to a standard neoclassical economy with convex technologies and preferences where the welfare theorems hold. Specifically, the first-order conditions from the consumer and firm optimization problems (i)/(a) and (i)/(b) yield:

\[
\begin{align*}
\left[\hat{c}^n_j \right] & \quad \frac{1}{\lambda^n_j} U_C (c_j, h_j) = p^n_j \\
\left[\hat{h}^n_j \right] & \quad \frac{1}{\lambda^n_j} U_H (c_j, h_j) = p^n_{hf} \\
\left[\hat{C}^n_j \right] & \quad p^n_j \frac{\partial C^T}{\partial C^n_j} = p^n_j \]
\end{align*}
\]

\[
\begin{align*}
\left[\hat{L}^n_j \right] & \quad \frac{\partial Y^n_j}{\partial L^n_j} p^n_j \leq w_j, = \text{if } L_{jn} > 0 \\
\left[\hat{V}^{mn}_j \right] & \quad \frac{\partial Y^n_j}{\partial V^{mn}_j} p^n_j \leq r^n_j, = \text{if } V^{mn}_j > 0
\end{align*}
\]
Since the market clearing constraints are the same in the market’s and the planner’s allocation, the planner’s allocation coincides with the market if the planner’s weights are such that the planner’s FOC for C_j coincide with the market.

This is the case if the weight ω_j from the planner’s problem equals the inverse of the multiplier on the budget constraint from the consumer’s optimization problem (i)(a) in the market allocation. To find that weight, using that U is homothetic we can write $U = G(U_0(c, h))$, where U_0 is homogeneous of degree 1. Then, the planner’s allocation coincide with the market’s under weights

$$\omega_j = \frac{e_j}{G'(U_0(c_j, h_j))U_0(c_j, h_j)},$$

where e_j is the expenditure per worker and c_j, h_j are the consumption per worker of the traded and non-traded good in the market allocation. If U is homogeneous of degree one, then $\omega_j = P_j^C$, where P_j^C is the price index associated with $U(c_j, h_j)$ at the market equilibrium prices P_j^L, P_j^H. In the opposite direction, given arbitrary weights ω_j, the market allocation implements the planner’s under the transfers $t_j = P_j^C c_j + P_j^H h_j - W_j$ constructed using the quantities (c_j, h_j) from the planner’s allocation and the multipliers (P_j^C, P_j^H) and W_j corresponding to the constraints (i) and (iv) of the planner’s problem, respectively.

For the case with labor mobility, note that, for populated locations, the planner’s first-order condition with respect to L_j implies: gives:

$$P_j^C c_j + P_j^H h_j = W_j - W^L$$

Therefore, the market allocation and the planner’s solution coincide if and only if in the market allocation expenditure per work in location j takes the form $e_j = w_j + \text{Constant}$ for all j. The only transfer scheme delivering the same transfer per capita is $t_j = \frac{e_j}{L_j}$.

\[\square\]

A.4 Appendix to Section 3.5 (Numerical Implementation)

In this section, we provide a more detailed explanation of the numerical algorithms we use to solve the model.

Duality Approach

As explained in section 3.5, our preferred approach to solve the model relies on solving the dual Lagrangian problem of the planner. We provide, here, a simple example of how to solve the joint optimal allocation and transport problem taking the infrastructure network $\{I_{jk}\}$ as given. This example can easily be generalized to the full problem, including the network design problem, in the convex case, but is also part of our resolution method for the nonconvex case. We focus on the case studied in the quantitative part of the paper, in which: i) we use the log-linear specification of transport costs, $\tau^n_{jk} = \delta^n_{jk} (Q^n_{jk})^\beta L^n_{jk}^{-\gamma}$; ii) labor is the sole production factor, $E_j^n (L^n_j) = e^n_j (L^n_j)^{\tau/2}$; and iii) G^T is a CES aggregator with elasticity of substitution σ. We consider the case with immobile labor.\(^{74}\)

We write the Lagrangian of the problem

$$\mathcal{L} = \sum_j \omega_j L_j U(c_j, h_j) - \sum_j P_j^C [c_j L_j - \left(\sum_n (C_j^n)_{2\bar n} \right)^{\frac{\bar\sigma + 1}{\bar\sigma}}]$$

$$- \sum_j \sum_n P_j^H \left[C_j^n + \sum_{k \in N(j)} (Q^n_{jk} + \delta^n_{jk} (Q^n_{jk})^{1+\beta} L^n_{jk}^{-\gamma}) - z^n_j (Ljn_j)^{\tau} - \sum_{i \in N(j)} Q^n_{ij}\right]$$

$$- \sum_j W_j \left[\sum_n L^n_j - L_j \right] + \sum_{j,k,n} \zeta^n_{jk,n} Q^n_{jk} + \sum_{j,n} \zeta^n_{jn} L^n_j + \sum_{j,n} \zeta^n_{jn} C_j^n + \sum_j \zeta^n_j c_j.$$

\(^{74}\)In the mobile labor case, we can only show that the planner’s problem is a quasiconvex optimization problem. Hence, a duality gap may exist. We therefore adopt a (slower) primal approach in that case.
Recall that the dual problem consists in solving

$$
\inf_{\lambda \geq 0} \sup_x J^* (x, \lambda).
$$

We start by expressing our control variables \(x = (c_j, C_j^a, Q_{jk}^n, L_j^n) \) as functions of the Lagrange multipliers \(\lambda = (P_j^C, P_j^n, W_j, \zeta_{jk}^Q, \zeta_{jk}^L, \zeta_{jk}^C, \zeta_{jk}^\ell) \). Using the optimality conditions, one obtains the following expressions:

$$
c_j = U_c < -1 > \left(\frac{\left(\sum_{n'} (P_{j'}^n)^{1-\sigma} \right)^{1-\sigma}}{c_j} \right) / \omega_j, h_j
$$

$$
C_j^n = \frac{P_{j}^n}{\left(\sum_{n'} (P_{j'}^n)^{1-\sigma} \right)^{1-\sigma}} L_j c_j
$$

$$
Q_{jk}^n = \frac{1}{1 + \beta \delta_{jk}} \max \left(\frac{P_{j}^n}{P_{j'}^n} - 1, 0 \right) \right)^{\frac{1}{\sigma}}
$$

$$
L_j^n = \frac{\left(P_{j}^n z_{jk}^n \right)^{1-\sigma}}{\sum_{n'} (P_{j'}^n z_{jk}^n)^{1-\sigma}} L_j.
$$

As these expressions illustrate, we have been able to eliminate a large number of the multipliers directly, so that the only remaining Lagrange multipliers are \(\lambda = (P_{j}^n)_{j,n} \). We may now compute the inner part of the saddle-point problem:\footnote{Note that, due to complementary slackness, we can drop the constraints that correspond to all the Lagrange multipliers that we were able to solve by hand. As a result, only the balanced flows constraints remain.}

$$
\mathcal{L} (x (\lambda), \lambda) = \sum_j \omega_j L_j U (c_j (\lambda), h_j)
$$

$$
- \sum j \sum n P_{j}^n \left[C_j^n (\lambda) + \sum_{k \in N(j)} \left(Q_{jk}^n (\lambda) + \delta_{jk} (Q_{jk}^n (\lambda))^{1+\beta} I_{jk}^{-\gamma} \right) - z_{jk} (L_j^n (\lambda)) a - \sum_{i \in N(j)} Q_{ij}^n (\lambda) \right].
$$

The dual problem then consists in the simple unconstrained, convex\footnote{Dual problems are always convex, by construction, even when the primal problem is not.} minimization problem in \(J \times N \) unknowns:

$$
\min_{\lambda \geq 0} \mathcal{L} (x (\lambda), \lambda).
$$

This problem can be readily fed into a numerical optimization software. Faster convergence can be achieved by providing the software with an analytical gradient and hessian. Note that, as a direct implication of the envelope theorem, the gradient of the dual problem is simply the vector of constraints:

$$
\nabla \mathcal{L} (x (\lambda), \lambda) = - \left(C_j^n (\lambda) + \sum_{k \in N(j)} \left(Q_{jk}^n (\lambda) + \delta_{jk} (Q_{jk}^n (\lambda))^{1+\beta} I_{jk}^{-\gamma} \right) - z_{jk} (L_j^n (\lambda)) a - \sum_{i \in N(j)} Q_{ij}^n (\lambda) \right).
$$

Nonconvex cases

When the conditions for convexity fail to obtain, the full planner’s problem is not a convex optimization problem. It is, however, easy to find local optima by using the following iterative procedure. We then search for a global maximum using a simulated annealing method that we describe below.
Finding Local Optima Despite the failure of global convexity for the full planner’s problem, the joint optimal allocation and transport problems, taking the network as given, is always convex as long as $\beta \geq 0$. We thus use our duality approach to solve for $(c_j, C^n_j, Q^n_{jk}, L^n_j)$ for a given level of infrastructure I_{jk}, and then iterate on the (necessary) first order conditions that characterize the optimal network. The procedure can be summarized in pseudo-code as follows.

1. Let $l := 1$. Guess some initial level of infrastructure $\{I^{(1)}_{jk}\}$ that satisfies the network building constraint.
2. Given the network $\{I^{(l)}_{jk}\}$, solve for $(c_j, C^n_j, Q^n_{jk}, L^n_j)$ using a duality approach.
3. Given the flows Q^n_{jk} and the prices P^n_{jk}, get a new guess $I^{(l+1)}_{jk}$ such that $\sum \delta_{jk} I^{(l+1)}_{jk} = K$.
4. If $\sum_{j,k} |I^{(l+1)}_{jk} - I^{(l)}_{jk}| \leq \varepsilon$, then we have converged to a potential candidate for a local optimum. If not, set $l := l + 1$ and go back to (2).

Simulated Annealing In the absence of global convexity results, the above iterative procedure is likely to end up in a local extremum. Unfortunately, there exists to our knowledge few global optimization methods that would guarantee convergence to a global maximum in a reasonable amount of time.\(^7\) We opt for the simple but widely used heuristic method of simulated annealing, which is a very popular probabilistic method to search for the global optimum of high dimensional problems such as, for instance, the traveling salesman problem. Simulated annealing can be described as follows:

1. Let $l := 1$. Set the initial network $\{I^{(1)}_{jk}\}$ to a local optimum from the previous section and compute its welfare $v^{(1)}$. Set the initial “temperature” T of the system to some number.
2. Draw a new candidate network $\{\hat{I}_{jk}\}$ by perturbing $\{I^{(l)}_{jk}\}$ randomly. [Optional: deepen the network.] Compute the corresponding optimal allocation and transport $\{c_j, C^n_j, Q^n_{jk}, L^n_j\}$. Compute associated welfare \hat{v}.
3. Accept the new network, i.e., set $I^{(l+1)}_{jk} = \hat{v}$ and $v^{(l+1)} = \hat{v}$ with probability $\min \left[\exp \left(\left(\hat{v} - v^{(l)} \right) / T \right), 1 \right]$, if not keep the same network, $\{I^{(l+1)}_{jk}\} = \{I^{(l)}_{jk}\}$ and $v^{(l+1)} = v^{(l)}$.
4. Stop when $T < T_{\text{min}}$. Otherwise set $l := l + 1$ and $T := \rho T$ and return to (2),

where $\rho T < 1$ controls the speed of convergence. Note that we improve the algorithm by allowing to “deepen” the network in step (2), meaning that we additionally apply the iterative procedure from the previous section for a pre-specified number of iterations so that the candidate network $\{\hat{I}_{jk}\}$ is more likely to be a local optimum itself.

\(^7\) Techniques such as the branch-and-bound method are guaranteed to converge to the global optimum, but remain heavy to implement and computationally intensive.
B Appendix to Section 4 (Illustrative Examples)

Figure A.1: A Simple Underlying Geography

(a) Population

(b) Productivity

Notes: On panel (a), each circle represents one location. The links represent the underlying network, i.e., links upon which the transport network can be built. Population and housing is uniform across space, normalized to 1. On panel (b), the size of circles captures the productivity in each location.
Figure A.2: The Optimal Network for $K = 1$ and $K = 100$

(a) $K = 1$

(b) $K = 100$

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built on a given link. Thicker and darker colors represent more infrastructure. On the bottom panels, the heat map represents the level of prices and consumption, normalized to 1 at the center. Lighter color represents higher values for prices and consumption. Prices and consumption levels are linearly interpolated across space to obtain smooth contour plots.
Figure A.3: Optimal Network Growth

(a) Spatial Inequalities

- (a) Price (rel. to center)
- K=10
- K=100
- K=10000

- (b) Sidet log prices

- (c) C_i (rel. to center)

- (d) Sidet log cons

(b) Uniform versus Optimal Network

- Welfare (cons. equivalent)
 - Optimal
 - Rescaled

58
Figure A.4: Optimal Network with Random Cities, Convex and Non-Convex Cases

(a) Convex Case: $\gamma = \beta = 1$

(b) Non-Convex Case: $\gamma = 2 > \beta = 1$

(c) Optimal Network Before and After Annealing Refinement in Non-Convex Case

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built or the shipment sent on a given link. Thicker and darker colors represent higher infrastructure or quantity.
Figure A.5: Optimal Network with 10+1 Goods, Convex Case ($\beta = \gamma = 1$), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link, and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped through each link and the circles represent the location of producers.
Figure A.6: Optimal Network with 10+1 Goods, Nonconvex Case ($\beta = 1, \gamma = 2$), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link, and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped through each link and the circles represent the location of producers.
Figure A.7: The Optimal Transport Network under Alternative Building Costs

(a) Baseline Geography
(b) Adding a Mountain
(c) Adding a River and a Bottleneck Access by Land
(d) Allowing for Endogenous Bridges
(e) Allowing for Water Transport
(f) Non-Convex Case ($\gamma = 2; \beta = 1$) with Annealing

Notes: The thickness and color of the segments reflects the level of infrastructure built on a given link. Thicker and darker colors represent more infrastructure and quantities. The circles represent the 20 cities randomly allocated across spaces. The larger red circle represents the city with the highest productivity. The different panels vary in the parametrization of the cost of building infrastructure. In panel (a), it is only a function of Euclidean distance. In panel (b), we add a mountain and assume that the cost also depend on difference in elevation. In panel (c), we add a river with a natural land crossing and assume that the cost of building along or across the river is infinite. In panel (d) there is no natural land crossing but allow for construction of bridges. In panel (e) we additionally allow for investment in water transport. Panel (d) makes the assumptions as Panel (e) but assumes increasing returns to network building.
Figure A.8: Arrival of a New Transport Technology and Network Reoptimization

Notes: The bright blue curve represents a river. The thickness and color of the other segments reflects the level of infrastructure built on a given link. Thicker and darker colors represent more infrastructure/quantities. The circles represent the 10 cities randomly allocated across spaces. The larger red circle represents the city with the highest productivity.
C Appendix to Section 4 (Calibration and Counterfactuals)

C.1 Details of the Calibration

Construction of $\mathcal{P}(j,k)$ The definition of the weights $\omega_{jk}(s)$ assigned to the construction of I_{jk}^{obs} we must compute the cheapest path $\mathcal{P}(j,k)$ for all $j \in \mathcal{J}$ and $k \in \mathcal{N}(j)$ in every country. To find the cheapest path $\mathcal{P}(j,k)$, we first convert the shapefile with all the road segments from EuroGeographics into a fully weighted connected graph, where each edge corresponds to a segment s on the road network. We define $\mathcal{P}(j,k)$ as the shortest path under segment-specific weights $\text{length}_s \times \text{lanes}_s \times \chi_{\text{lane}} + \chi_{\text{use}} + \chi_{\text{paved}} + \chi_{\text{median}}$, where length_s is the length of the segment, lanes_s is the number of lanes, χ_{use} equals 1 if the segment belongs to a national road, χ_{paved} equals 1 if the segment is paved, and χ_{median} equals 1 if the segment has a median. We parametrize χ_{lane}, χ_{use}, χ_{paved}, and χ_{median} based on the extent by which adding a lane, using a national road, using paved road, or using a road with a median reduces road user costs. Specifically, Table 4 of Combes and Lafourcade (2005) reports that, in France, the reference cost per km in a national road with at least 4 lanes is 25% higher than in other national roads. In our road network data for France, the average number of lanes in national roads with at least 4 lanes is 4.43, and the average number of lanes in national roads with less than 4 lanes is 1.9. From this, we infer that adding 2.5 on top of 2 lanes, a 125% increase in the number of lanes, reduces costs by 25%, implying an elasticity of costs with respect to number of lanes $\chi_{\text{use}} = 1.07$. According to Figueroa et al. (2013), road user costs are 35% higher on gravel relative to paved roads, implying $\chi_{\text{paved}} = 1.35$, and according to Tay and Churchill (2007), adding a median increases speed by 5%, implying $\chi_{\text{median}} = 1.05$.

Calibration of β Under the assumption that the transport cost per unit of transported good, $\tau = \delta^T Q^T$, is proportional to the travel time and that the flow of goods, Q, is proportional to the flow of vehicles on a highway, we calibrate the elasticity β to empirical observations relating speed of vehicles on highways to observed car density. We use estimates from Wang et al. (2011) who assembled data from various segments of the GA500 route in Georgia, USA. The data was collected at 5min frequency over the span of year 2003 with speed and density computed over 20s windows. The authors estimate the five-parameter logistic relationship

$$v(k,\theta) = v_b + \frac{v_f - v_b}{1 + \exp\left(\frac{k - k_t}{\theta_2}\right)}\theta_1,$$

where speed v (km/h) is a function of car density k (cars/km). Parameter v_f is the free flow speed, v_b is the average travel speed at stop-and-go conditions, k_t is the threshold parameter at which traffic transitions from free flow to congested flow, and (θ_1, θ_2) are specific scale and shape parameters. Wang et al. (2011) report estimates of these parameters for 63 sections of the route. We use these estimates to produce artificial observations of speed and density ranging from 18.96 (average threshold k_t at which congestion starts) to 150 cars per km (maximum reported by the authors) for all sections. We then compute the average time per km ($1/v$) and regress its log on the log density to obtain an estimate of the elasticity $\beta = 1.2446$. Figure A.9 below presents the fit of our log-linear model to the data generated by their empirical logistic model.

Calibration of δ^T_0 As mentioned in the text, we calibrate the coefficients δ^T_0 entering in 19 to match the share of total intra-regional trade to total intra-national trade (sum of intra-regional trade and exports from Spanish regions.
Notes: The blue scatter plot displays all the pooled artificial observations across the 63 stations on GA500. The green curve is the fitted relationship.

to other Spanish regions) of 39% reported by Llano et al. (2010). 78 In our model, this summary statistic is:

\[
\frac{\sum_j \sum_n P^n_j Y^n_j}{\sum_j \left(\sum_n P^n_j Y^n_j + \sum_{k \in N(j)} X_{jk} \right)}
\]

(A.5)

where \(X_{jk}\) are total exports from \(j\) to \(k \in N(j)\):

\[
X_{jk} = \sum_n P^n_j Q^n_{jk}
\]

(A.6)

The numerator of this expression is the sum value added in the tradeable sector across all regions. Because in the model there are no international flows, this term corresponds to the sum of total intra-regional trade. 79 The denominator equals total intra-national trade, defined as the sum total of intra-regional trade and total exports to other regions. When all regions gross exports equal \(x\)% of their value added, this ratio equal\(\frac{1}{1+x}\). 80

Impact of \(\delta_t^1\) on Equilibrium Outcomes We show here that \(\delta_t^1\) does not impact the trade-distance elasticity because it does not impact the elasticity of per-unit shipping costs with respect to distance. Consider first a fully symmetric configuration of the model. In logs, the number of units of product \(n\) that must be shipped from

78 This is the ratio of the value in the last row of Column 1 of Table 1 in their paper to the sum of that value and the value reported in the last row of Column 2 of that table.

79 Specifically, if we let \(D_j = \sum_n P^n_j Y^n_j + M_j - X_j\) be the domestic absorption of region \(j\), where \(M_j\) are region \(j\) imports and \(X_j\) are region \(j\) exports, then intra-regional trade at the country level is \(\sum_j D_j = \sum_j \sum_n P^n_j Y^n_j\) because, each country being a closed economy, \(\sum_j M_j = \sum_j X_j\).

80 I.e., this ratio can be defined as \(\frac{\sum_j D_j}{\sum_j D_j + \sum_j X_j}\), where \(D_j = \sum_n P^n_j Y^n_j + M_j - X_j\) is the domestic absorption of region \(j\), \(X_j = \sum_n \sum_{k \in N(j)} P^n_j Q^n_{jk}\) are gross exports, and \(M_j = \sum_n \sum_{i \in N(j)} P^n_j Q^n_{ij}\) are gross imports. If each region gross exports is fraction \(x\) of its value added, then \(D_j = X_j \left(\frac{1}{x} - 1\right) + M_j\), hence the ratio of intra-regional to intra-national trade becomes \(\frac{1}{1+x}\). If each region openness coefficient is \(\frac{X_j + M_j}{X_j}\), then \(D_j = \frac{X_j + M_j}{x} + M_j - X_j\), hence the ratio of intra-regional to intra-national trade becomes \(\frac{1}{1+x}\).
j_0 for one unit to arrive in j_n through the intervening locations j_1, \ldots, j_{n-1} is:

$$\log \left(\prod_{i=0}^{N-1} \left(1 + \delta^{j_i,j_{i+1}} \left(\frac{Q^n_{j_i,j_{i+1}}}{I_{j_i,j_{i+1}}} \right)^{\beta} \right) \right) \approx \sum_{i=0}^{N-1} \delta^{j_i,j_{i+1}} \left(\frac{Q^n_{j_i,j_{i+1}}}{I_{j_i,j_{i+1}}} \right)^{\beta}$$

$$= \text{DIST}_{j_0,j_N} \Delta_0 \left(\frac{Q^n}{I^n} \right), \quad (A.7)$$

where $\Delta_0 \equiv \delta^{j_0}_0 \text{dist}^{j_1-1}$ is a constant, $\text{DIST}_{j_0,j_N} = N \ast \text{dist}$ is the total distance between locations j_0 and j_n, and where dist is the distance between any two connected locations. The approximation in the first line follows from assuming that per-unit shipping costs between connected locations in our model are not large, and the second line follows from assuming symmetry, $Q^n_{j_i,j_{i+1}} = Q^n$; $I_{j_i,j_{i+1}} = I$; and $\text{dist}_{j_i,j_{i+1}} = \text{dist}$. The expression above implies that, in the model, the elasticity of per-unit transport costs between any two faraway locations j_0 and j_n to the distance DIST_{j_0,j_n} is equal to 1. This means that $\delta^{j_1}_0$ impacts the level of per-unit costs, but not the elasticity of per-unit costs with respect to distance in the cross-section. It also implies that $\delta^{j_1}_1$ and $\delta^{j_0}_0$ impact the overall level trade costs through the constant Δ_0. Our calibration strategy chooses $\delta^{j_1}_0$ to match the intra-regional trade share. Furthermore, we can note that $\delta^{j_1}_1$ and $\delta^{j_0}_0$ only impact the economy through Δ_0, so that, once we have matched the intra-regional trade share the value of $\delta^{j_1}_1$ is not relevant for any equilibrium outcome.

Our assumption that $\text{dist}_{j_i,j_{i+1}}$ is constant is not a bad approximation to our actual implementation since all cells are equally-sized. However, the equilibria that we study through the paper are clearly asymmetric. In that case, $(A.7)$ becomes:

$$\text{DIST}_{j_0,j_N} \Delta_0 \left(\frac{1}{N} \sum_{i=0}^{N-1} \left(\frac{Q^n_{j_i,j_{i+1}}}{I_{j_i,j_{i+1}}} \right)^{\beta} \right).$$

Hence, as long as the average per-unit cost over links (the term between parenthesis in the last expression) does not vary systematically with the total distance of shipments, the model preserves the property we just described.
Table A.1: Average Features of the Road Network across Countries, by Type of Road

Note: The table reports summary statistics from the EuroRegionalMap by EuroGeographics. The table reports the average of each summary statistic across the 25 countries included in our data.

<table>
<thead>
<tr>
<th>Type of Road</th>
<th>Local</th>
<th>Secondary</th>
<th>Primary</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of Km. of Road Network</td>
<td>10%</td>
<td>49%</td>
<td>31%</td>
<td>9%</td>
</tr>
<tr>
<td>Average Number of Lanes</td>
<td>1.84</td>
<td>2.18</td>
<td>1.92</td>
<td>4.12</td>
</tr>
<tr>
<td>Standard Deviation of Number of Lanes</td>
<td>0.24</td>
<td>0.18</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>% with a median</td>
<td>0.4%</td>
<td>0.5%</td>
<td>4.4%</td>
<td>92.7%</td>
</tr>
<tr>
<td>% paved</td>
<td>88%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table A.2: Summary Statistics of Actual and Discretized Road Network by Country

Note: Columns (1) to (3) report statistics from EuroRegionalMap, and Columns (4) to (6) report statistics from the discretization of road networks described in Section 5.1.
Table A.3: Average Trade-Distance Elasticity

<table>
<thead>
<tr>
<th>Value of γ</th>
<th>0.5β</th>
<th>β</th>
<th>1.5β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Labor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade-Distance Elasticity</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Intra-Regional Trade Share</td>
<td>0.49</td>
<td>0.09</td>
<td>0.52</td>
</tr>
<tr>
<td>Calibrated δ\textsubscript{δ}</td>
<td>0.100</td>
<td>0.165</td>
<td>0.271</td>
</tr>
<tr>
<td>Mobile Labor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade-Distance Elasticity</td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Intra-Regional Trade Share</td>
<td>0.47</td>
<td>0.09</td>
<td>0.49</td>
</tr>
<tr>
<td>Calibrated δ\textsubscript{δ}</td>
<td>0.250</td>
<td>0.442</td>
<td>0.729</td>
</tr>
</tbody>
</table>

Table A.4: Optimal Infrastructure Investment, Population Growth and Local Characteristics (Fixed Labor).

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Reallocation (δ = δ\textsubscript{L,GEO})</th>
<th>Expansion (δ = δ\textsubscript{L,GEO})</th>
<th>Expansion (δ = δ\textsubscript{L,FOC})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investment</td>
<td>Cons. PC Growth</td>
<td>Investment</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>Population</td>
<td>0.75***</td>
<td>0.008*</td>
<td>0.19***</td>
</tr>
<tr>
<td>Income per Capita</td>
<td>0.30</td>
<td>-0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>Consumption per Capita</td>
<td>0.16</td>
<td>-0.37****</td>
<td>0.01</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>-0.69***</td>
<td>-0.01</td>
<td>-0.36***</td>
</tr>
<tr>
<td>Differentiated Producer</td>
<td>0.11</td>
<td>-0.003</td>
<td>0.22***</td>
</tr>
<tr>
<td>Observations</td>
<td>1511</td>
<td>1511</td>
<td>1511</td>
</tr>
<tr>
<td>R²</td>
<td>0.46</td>
<td>0.68</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Each column corresponds to a different regression pooling all locations across all countries assuming γ = β and fixed labor. All regressions include country fixed effects. Standard errors are clustered at the country level. ***=1% significance, **=5%, *=10%. Dependent variables: Investment is defined as ∆ ln I\textsubscript{j}, where \(I\textsubscript{j} = \sum_{k \in N(j)} I\textsubscript{jk} \) is the average level of infrastructure across all the links of location \(j \), and consumption per capita growth is defined as ∆ ln c\textsubscript{j}, where ∆ ln x denotes the difference between the log of variable x in the counterfactual and in the calibrated allocation. Independent variables: all correspond to the log of the level of each variable in the calibrated model. Population and income per capita are the two outcomes matched by the calibration. Consumption per capita corresponds to traded goods, c\textsubscript{j} in the model. Infrastructure is the average infrastructure of each location, I\textsubscript{j}. Differentiated producer is a dummy for whether the location is a producer of differentiated goods in the calibration.
<table>
<thead>
<tr>
<th>Building Costs</th>
<th>Counterfactual</th>
<th>Misallocation</th>
<th>Expansion</th>
<th>Expansion</th>
<th>Misallocation</th>
<th>Expansion</th>
<th>Expansion</th>
<th>Misallocation</th>
<th>Expansion</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Gamma</td>
<td></td>
<td></td>
<td></td>
<td>Middle Gamma</td>
<td></td>
<td></td>
<td>High Gamma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEO (1)</td>
<td>GEO (2)</td>
<td>FOC (3)</td>
<td>GEO (4)</td>
<td>GEO (5)</td>
<td>FOC (6)</td>
<td>GEO (7)</td>
<td>GEO (8)</td>
<td>GEO (9)</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>2.6%</td>
<td>3.0%</td>
<td>0.8%</td>
<td>3.6%</td>
<td>4.2%</td>
<td>1.5%</td>
<td>3.8%</td>
<td>5.1%</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>1.3%</td>
<td>1.6%</td>
<td>0.6%</td>
<td>1.8%</td>
<td>2.4%</td>
<td>1.1%</td>
<td>1.9%</td>
<td>2.8%</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>1.3%</td>
<td>1.6%</td>
<td>0.7%</td>
<td>1.7%</td>
<td>2.2%</td>
<td>1.3%</td>
<td>1.9%</td>
<td>2.8%</td>
<td>2.1%</td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1.2%</td>
<td>1.5%</td>
<td>0.6%</td>
<td>1.9%</td>
<td>2.3%</td>
<td>1.2%</td>
<td>2.3%</td>
<td>3.0%</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>1.2%</td>
<td>1.5%</td>
<td>0.6%</td>
<td>1.6%</td>
<td>2.1%</td>
<td>1.2%</td>
<td>1.1%</td>
<td>2.3%</td>
<td>1.9%</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>3.0%</td>
<td>3.8%</td>
<td>1.0%</td>
<td>4.6%</td>
<td>6.5%</td>
<td>2.1%</td>
<td>5.5%</td>
<td>8.1%</td>
<td>3.6%</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.4%</td>
<td>1.8%</td>
<td>0.6%</td>
<td>2.0%</td>
<td>2.6%</td>
<td>1.2%</td>
<td>2.1%</td>
<td>2.9%</td>
<td>2.1%</td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>3.1%</td>
<td>3.4%</td>
<td>1.0%</td>
<td>6.6%</td>
<td>6.7%</td>
<td>2.2%</td>
<td>10.3%</td>
<td>10.3%</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.5%</td>
<td>0.8%</td>
<td>0.4%</td>
<td>0.7%</td>
<td>1.0%</td>
<td>0.6%</td>
<td>0.7%</td>
<td>1.1%</td>
<td>0.8%</td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>2.3%</td>
<td>2.6%</td>
<td>0.6%</td>
<td>2.7%</td>
<td>3.2%</td>
<td>1.3%</td>
<td>2.4%</td>
<td>3.4%</td>
<td>2.3%</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>2.8%</td>
<td>3.2%</td>
<td>0.8%</td>
<td>4.4%</td>
<td>5.1%</td>
<td>1.7%</td>
<td>5.0%</td>
<td>6.3%</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>1.6%</td>
<td>2.3%</td>
<td>0.9%</td>
<td>1.7%</td>
<td>2.9%</td>
<td>1.7%</td>
<td>1.3%</td>
<td>2.7%</td>
<td>2.5%</td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>4.1%</td>
<td>4.3%</td>
<td>1.0%</td>
<td>7.4%</td>
<td>7.3%</td>
<td>2.1%</td>
<td>9.0%</td>
<td>9.3%</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>2.2%</td>
<td>2.7%</td>
<td>1.0%</td>
<td>3.5%</td>
<td>4.5%</td>
<td>2.2%</td>
<td>4.7%</td>
<td>6.6%</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>1.1%</td>
<td>0.9%</td>
<td>0.7%</td>
<td>1.6%</td>
<td>1.4%</td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td>2.1%</td>
<td>2.3%</td>
<td>0.7%</td>
<td>3.2%</td>
<td>3.9%</td>
<td>1.8%</td>
<td>3.4%</td>
<td>4.1%</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>Moldova</td>
<td>2.7%</td>
<td>3.4%</td>
<td>0.9%</td>
<td>4.2%</td>
<td>5.7%</td>
<td>2.0%</td>
<td>5.1%</td>
<td>6.7%</td>
<td>3.2%</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.1%</td>
<td>1.4%</td>
<td>0.5%</td>
<td>1.6%</td>
<td>2.0%</td>
<td>1.0%</td>
<td>1.7%</td>
<td>2.2%</td>
<td>1.5%</td>
<td></td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>1.0%</td>
<td>1.4%</td>
<td>0.7%</td>
<td>1.5%</td>
<td>2.2%</td>
<td>1.5%</td>
<td>2.5%</td>
<td>3.4%</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>2.3%</td>
<td>2.8%</td>
<td>0.8%</td>
<td>3.0%</td>
<td>3.9%</td>
<td>1.6%</td>
<td>2.8%</td>
<td>4.3%</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>7.3%</td>
<td>7.3%</td>
<td>1.9%</td>
<td>12.8%</td>
<td>12.5%</td>
<td>4.3%</td>
<td>17.2%</td>
<td>18.5%</td>
<td>10.4%</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>3.2%</td>
<td>3.6%</td>
<td>1.0%</td>
<td>4.1%</td>
<td>4.6%</td>
<td>2.0%</td>
<td>3.6%</td>
<td>5.2%</td>
<td>3.8%</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>1.6%</td>
<td>2.0%</td>
<td>0.7%</td>
<td>2.0%</td>
<td>2.6%</td>
<td>1.4%</td>
<td>1.7%</td>
<td>2.9%</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2.3%</td>
<td>3.0%</td>
<td>1.0%</td>
<td>2.9%</td>
<td>4.2%</td>
<td>2.0%</td>
<td>2.7%</td>
<td>4.3%</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.1%</td>
<td>2.3%</td>
<td>0.7%</td>
<td>3.1%</td>
<td>3.6%</td>
<td>1.4%</td>
<td>3.3%</td>
<td>4.4%</td>
<td>2.5%</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>2.2%</td>
<td>2.6%</td>
<td>0.8%</td>
<td>3.3%</td>
<td>4.0%</td>
<td>1.7%</td>
<td>3.9%</td>
<td>5.0%</td>
<td>3.0%</td>
<td></td>
</tr>
</tbody>
</table>

Table A.5: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Fixed Labor
<table>
<thead>
<tr>
<th>Building Costs</th>
<th>Counterfactual</th>
<th>Misallocation</th>
<th>Expansion</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEO</td>
<td>GEO</td>
<td>FOC</td>
<td>GEO</td>
</tr>
<tr>
<td>Austria</td>
<td>2.6%</td>
<td>3.0%</td>
<td>0.8%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.9%</td>
<td>1.1%</td>
<td>0.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.6%</td>
<td>0.7%</td>
<td>0.3%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1.4%</td>
<td>1.7%</td>
<td>0.6%</td>
<td>2.3%</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Finland</td>
<td>3.2%</td>
<td>4.3%</td>
<td>1.1%</td>
<td>4.9%</td>
</tr>
<tr>
<td>France</td>
<td>2.1%</td>
<td>2.7%</td>
<td>1.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Georgia</td>
<td>2.6%</td>
<td>2.8%</td>
<td>0.9%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Germany</td>
<td>0.5%</td>
<td>0.8%</td>
<td>0.4%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Hungary</td>
<td>2.1%</td>
<td>2.4%</td>
<td>0.6%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Ireland</td>
<td>2.5%</td>
<td>2.9%</td>
<td>0.8%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Italy</td>
<td>1.1%</td>
<td>1.6%</td>
<td>0.6%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Latvia</td>
<td>4.7%</td>
<td>4.9%</td>
<td>1.1%</td>
<td>9.8%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>1.9%</td>
<td>2.4%</td>
<td>0.9%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.4%</td>
<td>0.8%</td>
<td>0.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Macedonia</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Moldova</td>
<td>1.3%</td>
<td>1.6%</td>
<td>0.4%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>0.4%</td>
<td>0.5%</td>
<td>0.3%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Portugal</td>
<td>2.0%</td>
<td>2.5%</td>
<td>0.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Serbia</td>
<td>12.5%</td>
<td>12.3%</td>
<td>2.4%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>2.1%</td>
<td>2.3%</td>
<td>0.7%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.6%</td>
<td>0.7%</td>
<td>0.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Spain</td>
<td>2.3%</td>
<td>3.1%</td>
<td>1.1%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1.0%</td>
<td>1.1%</td>
<td>0.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Average</td>
<td>2.0%</td>
<td>2.3%</td>
<td>0.7%</td>
<td>3.3%</td>
</tr>
</tbody>
</table>

Table A.6: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Mobile Labor
Figure A.10: Quality of the Road Network, Income Per Capita, and Speed

(a) Income Per Capita and Average Infrastructure

(b) Speed and Infrastructure

Notes: Panel (a) shows income per capita against the average infrastructure index across the countries from Table A.2. Panel (b) shows the speed, according to GoogleMaps, on the route linking the two nodes in every link of the discretized network, against the quality of infrastructure of each link. The figure pools all links across all countries. The red circles correspond to the average infrastructure and speed across all links within each country.
Figure A.11: Calibration of Population and Income Shares, All Locations and Countries

(a) Population Shares in Model and Data

(b) Income Shares in Model and Data

(c) Fundamentals and Income Shares, Mobile Labor

(d) Fundamentals and Population Shares, Mobile Labor

(e) Fundamentals and Income Shares, Fixed Labor

Notes: All the figures pool the 1511 cells from the 25 countries when \(\gamma = \beta \). Similar relationships hold for the alternative values of \(\gamma \) assumed in the calibration. In the Panels (c) to (e), log-productivity and log-endowment of the non-traded good per capita are demeaned within each country.
Figure A.12: Optimal Network Expansion, $\delta I = \delta I^{FOC}$

(a) Optimal Expansion Counterfactual, France
(b) Optimal Expansion Counterfactual, Spain

Notes: The width and brightness of each link is proportional to the difference between the optimal counterfactual network and the observed network, $I^*_j - I^0_j$, for each link $jk \in \mathcal{E}$ shown in panel (b) of Figures 2 and 3. The color scale is the same as in Figure 2. In the misallocation counterfactuals, red links represent cases of negative investment. All investments are positive by construction in the expansion counterfactuals. The color of each node represents the change in population share between the optimal counterfactual network and the calibrated economy. Brighter colors represent higher absolute values of population change. Red shades correspond to areas where population falls, green shades denote an increase.
Figure A.13: Gains from Optimal Reallocation and Expansion and Average Infrastructure

(a) Optimal Reallocation with \(\delta^{I,GEO} \)

(b) Optimal Expansion with \(\delta^{I,GEO} \)

(c) Optimal Expansion with \(\delta^{I,FOC} \)

Notes: Each figure displays the % welfare gains across countries in each counterfactual against each country’s log-income per capita, for the case \(\gamma = \beta \). The same patterns are present for \(\gamma = 0.5\beta \) and \(\gamma = 1.5\beta \).
D Online Appendix I: Auxiliary Material to Proposition 3

D.1 Definitions

Let $G = (\mathcal{I}, \mathcal{E})$ be an undirected graph. We say that a path of length $n \in \mathbb{N}^*$ from a node $a \in \mathcal{I}$ to $b \in \mathcal{I}$ is a finite sequence of nodes (i_1, \ldots, i_n) such that $i_k \in \mathcal{I}$ for $1 \leq k \leq n$, $i_1 = a$ and $i_n = b$ and $\{i_k, i_{k+1}\} \in \mathcal{E}$. A simple path is a path that contains no repeated node, i.e., $i_k \neq i_l$ for all $1 \leq k, l \leq n$ and $k \neq l$. A cycle of length n is a path $p = (i_1, \ldots, i_n)$ such that $i_1 = i_n$ and $\{i_k, i_{k+1}\} \in \mathcal{E}$ for $1 \leq k \leq n - 1$ and $i_k \neq i_l$ for all $1 \leq k, l \leq n - 1$ and $k \neq l$. A tree is a connected graph such that has no simple cycle. Equivalently, in a tree, there is a unique simple path connecting any two nodes.

D.2 Propositions and Lemmas

Proposition 5. \mathcal{E}^* is a tree.

Proof. Because node 0 is the unique productive center and there is an Inada condition in consumption, there must exist a path connecting each node to 0. Hence, \mathcal{E}^* must be connected. It remains to show that \mathcal{E}^* cannot have simple cycles. We proceed by contradiction. Assume there exists a simple cycle $p = (i_1, \ldots, i_n)$. Figure A.14 illustrates the different types of cycles that can arise. Case (i) is a cycle with circular flows that run in only one direction. Lemma 1 tells us that such cycle cannot arise if (c^*, Q^*) is locally optimal, as they inefficiently waste goods in transportation. Cases (ii) and (iii) correspond to cycles along which flows run into different directions. Lemma 3 establishes that whenever there is a cycle of type (iii), then there must exists a cycle of type (ii). We conclude with Lemma 4 by showing that cycles of type (ii) cannot arise if (c^*, Q^*) is locally optimal. The reason is that one is better off redirecting flows into one of the two branches because of economies of scale in the transport technology when $\gamma > \beta$. Hence, simple cycles may not exist and \mathcal{E}^* is a tree.

![Figure A.14: Different types of simple cycles](image)

Lemma 1. If (c^*, Q^*) is a local optimum with $(\mathcal{I}, \mathcal{E}^*)$ its associated graph, then there exists no simple cycle $p = (i_1, \ldots, i_n)$ such that $Q^*_{i_l, i_{l+1}} > 0$ for all $1 \leq k \leq n - 1$.

Proof. Case (i) in Figure A.14 presents the type of cycle with circular flows that cannot exist in a local optimum. By contradiction, assume that there exists such a cycle $p = (i_1, \ldots, i_n)$. Then, for $\varepsilon > 0$ small, consider the allocation of flows

$$Q^*_{jk} = \begin{cases} Q_{jk} - \varepsilon & \text{if } \exists l, 1 \leq l \leq n - 1, \text{ such that } j = i_l \text{ and } k = i_{l+1} \\ Q^*_{jk} & \text{elsewhere} \end{cases}$$

75
If \(\varepsilon \leq \min_{1 \leq k \leq n-1} Q_{ik}^\ast \), then \((\{c_i\}, \{Q'_{jk}\}) \) is a feasible allocation that is strictly preferable to \((\{c_i\}, Q^\ast) \) since it yields the same utility at a lower transport cost. Hence, the gradient of the Lagrangian with respect to \(\varepsilon \) is strictly greater than 0 (recall that \(P_j = u_c(c_j, h_i) > 0 \)), contradicting the assumption that \((e^\ast, Q^\ast) \) is a local optimum.

\[\]

\textbf{Lemma 2.} For every node \(a \in \mathcal{I} \) distinct from the productive center \(0 \in \mathcal{I} \) and such that \(L_a > 0 \), there exists a simple path \(p = (i_1, \ldots, i_n) \) that connects \(0 \) to \(a \) and such that \(Q_{ik},i_{k+1} > 0 \) for \(1 \leq k \leq n-1 \).

\textbf{Proof.} The proof is constructive. We build a simple path \(p = (i_1, \ldots, i_n) \) with \(i_1 = a, i_k \neq i_l \) for all \(1 \leq k,l \leq n \) and \(k \neq l \). We proceed by recursion on the length of path \(p \), which we denote by \(|p| = n \). We start the recursion by setting \(i_1 = a \). Because of the Inada conditions in the utility function and \(L_a > 0 \), we know that \(c_aL_a > 0 \). The balanced flow constraint at \(a \),

\[c_aL_a = \sum_{k \in N(a)} Q_{ka} - \sum_{k \in N(a)} Q_{ak} \left[1 + \delta_{ak} \frac{Q^\ast_{ka}}{I_{ak}} \right] > 0, \]

tells us that location \(a \) must be a net recipient of goods from its neighbors. Hence, there exists \(k \in N(a) \) such that \(Q_{ka} > 0 \). Let \(i_2 = k \). If \(i_2 = 0 \), then we have found a simple path connecting \(a \) to \(0 \) with positive flows from \(0 \) to \(a \). If not, we now have a path \(p_2 = (i_1, i_2) \) of length 2 such that \(i_1 = a, i_1 \neq i_2 \neq 0 \) and \(Q_{i_1,i_2} > 0 \). Assume now that \(n > 2 \) and, by recursion hypothesis, that we have a path \(p_n = (i_1, \ldots, i_n) \) with \(i_1 = a, i_k \neq i_l \) for all \(1 \leq k,l \leq n \) and \(k \neq l \). We conclude as follows. Since \(\mathcal{I} \) is finite, the above recursion must finish in a finite number of iterations. Since the recursion only stops after finding a path that ends in \(0 \), then there must exists a simple path \(p \) of size \(n < |\mathcal{I}| \) with \(p = (i_1, \ldots, i_n) \) such that \(i_1 = a, i_n = 0 \) and \(Q_{i_n,i_{n+1}} > 0 \) for \(1 \leq k \leq n-1 \). By construction, the path \(p = (i_1, \ldots, i_n) \) proves the statement.

\[\]

\textbf{Lemma 3.} Assume there exists a simple cycle \(p = (i_1, \ldots, i_n) \). Then, there exists \(a,b \in \mathcal{I}, a \neq b, \) such that there exists two distinct simple paths from \(a \) to \(b \), \(p_1 = (i_1^1, i_2^1, \ldots, i_n^1) \) and \(p_2 = (i_1^2, i_2^2, \ldots, i_n^2) \) such that the flows are strictly positive from \(a \) to \(b \) along both paths, i.e., \(Q_{i_i^{1},i_k^{1}} > 0 \) for \(i \in \{1,2\} \) and \(1 \leq k \leq n_i - 1 \).

\textbf{Proof.} The objective of this lemma is to establish that if there exists a simple cycle, then there must exist a cycle of type (ii) as illustrated on Figure A.14.

Consider the simple cycle \(p = (i_1, \ldots, i_n) \). For convenience of notation, denote \(i_0 = i_{n-1} \) and \(i_{n+1} = i_2 \). Denote \(\hat{Q}_{ik},i_{k+1} = Q_{ik},i_{k+1} - Q_{i_{k+1},ik} \) the net flow from \(ik \) to \(i_{k+1} \) for \(0 \leq k \leq n \), which can be either strictly positive or strictly negative. We know from Lemma 1 that the net flows \(\hat{Q}_{ik},i_{k+1} \) cannot have the same sign, otherwise we would have a cycle with circular flow, violating the local optimality condition of \((e^\ast, Q^\ast) \). Hence, there must exist \(1 \leq k \leq n \) such that \(\hat{Q}_{ik-1},i_k > 0 \) and \(\hat{Q}_{ik+1},i_k < 0 \). Node \(k \) is a location that receives goods from its two neighbors on the cycle, as illustrated by node \(c \) in case (iii) of Figure A.14. Set \(a = 0 \) and \(b = i_k \). We know from Lemma 2 that there exists a path \(p_1 = (j_1^1, \ldots, j_{n_1}^1) \) such that \(j_{n_1}^1 = a = 0 \), \(j_{k-1}^1 = i_{k-1} \) and \(\hat{Q}_{j_{k-1}^1,j_k^1} > 0 \) for all \(1 \leq l \leq n_1 \). Similarly, there exists a path \(p_2 = (j_1^2, \ldots, j_{n_2}^2) \) such that \(j_{n_2}^2 = a = 0 \), \(j_{l}^2 = i_{l+1} \) and \(\hat{Q}_{j_{l}^2,j_{l+1}^2} > 0 \) for all \(1 \leq l \leq n_2 \). We now argue

76
that the paths \(\hat{p}_1 = (j_1, \ldots, j_{n_1}, b) \) and \(\hat{p}_2 = (j_1', \ldots, j_{n_2}', b) \) are two distinct simple paths from \(a \) to \(b \) with strictly positive flows. By construction, we know that \(\hat{Q}_{i_{n_1}1}^{\hat{p}_1} > 0 \) and \(\hat{Q}_{i_{n_2}1}^{\hat{p}_2} > 0 \) so that the flows are strictly positive along both paths. We must only check that they are simple paths, i.e., that the nodes are not repeated. Let us treat the case of \(\hat{p}_1 \). The other one follows symmetrically. We must show in particular that there is no \(l \) with \(1 \leq l \leq n_1 \) such that \(j_l^1 = b \). If this was the case, then \((b, j_{l+1}^1, \ldots, j_{n_1}^1, b) \) would be a cycle with circular flows running in the same direction, which Lemma 1 rules out. Hence, \(\hat{p}_1 \) is a simple path.

Lemma 4. For all \((a, b) \in \mathcal{I}^2, a \neq b\), if there are two simple paths \(p_1 \) and \(p_2 \) connecting \(a \) to \(b \), i.e., \(p_1 = (i_k^1)_{1 \leq k \leq n_1} \) and \(p_2 = (i_k^2)_{1 \leq k \leq n_2} \) with \(i_1^1 = i_1^2 = a \) and \(i_{n_1}^1 = i_{n_2}^2 = b \), such that \(Q_{i_k^1 i_{k+1}^1} > 0 \) for \(l \in \{1, 2\} \) and \(1 \leq k \leq n_l \), then \(p_1 \neq p_2 \).

Proof. The objective of this lemma is to show that cycles of the type (ii) in Figure A.14 cannot exist. Assume by contradiction that such a cycle exists and that \(p_1 \neq p_2 \). Note that we can assume WLOG that \(i_k^1 \neq i_k^2 \) for all \(1 < k < n_1 \) and \(1 < l < n_2 \). To see this, let \(k = \min \{k | i_k^1 \neq i_k^2\} \) and \(k_1 = \min \{k | k_1 \leq l, i_k^1 = i_k^2\} \) and \(k_2 \) be such that \(i_{k_1}^1 = i_{k_2}^2 \). By construction, the path \(p_1' = (i_{1}^1, \ldots, i_{k_1}^1) \) and \(p_2' = (i_{k_2}^2, \ldots, i_{n_2}^2) \) are two paths such that \(i_k^1 = i_k^2 \) for all \(k < k_1 \) and \(k < l < k_2 \).

Figure A.15: Redirecting the flows to one branch

We are now going to show that \(p_1 \neq p_2 \) leads to a contradiction. The idea behind the proof is illustrated in Figure A.15 below. We are going to show that if there exists two distinct simple paths with positive flows going from \(a \) to \(b \), then it would be strictly preferable to redirect the flows from one branch to the other due to the non-concavity of the Lagrangian, violating the local optimality of \((e^*, Q^*)\). Consider the allocation \(Q^\varepsilon = \{Q^\varepsilon_{jk}\} \) for \(\varepsilon \in \mathbb{R} \) such that

\[
Q^\varepsilon_{jk} = \begin{cases}
Q^*_{jk} + \varepsilon & \text{if } \exists \ell \text{ such that } j = i_{\ell}^1 \text{ and } k = i_{\ell+1}^1 \\
Q^*_{jk} - \varepsilon & \text{if } \exists \ell \text{ such that } j = i_{\ell}^2 \text{ and } k = i_{\ell+1}^2 \\
Q^*_{jk} & \text{elsewhere.}
\end{cases}
\]

In other words, \(Q^\varepsilon_{jk} \) corresponds to the pattern of flows \(Q^*_{jk} \) where a volume \(\varepsilon \) of the flows going through path 2 are redirected through path 1. By construction, \(Q^\varepsilon_{jk} \) is feasible (we are redirecting a fraction of flows that were running through locations on path 2 but not serving any of these locations). In particular, it leaves the value of the Lagrangian (A.4) unchanged except through the term \(\sum_{j,k} \delta_{jk} \frac{\hat{Q}_{j}^{\hat{p}_1+j+1}}{\hat{Q}_{j}^{\hat{p}_1+j+1}} \) where \(\delta_{jk} = \delta_{jk}^1 / \delta_{jk}^2 \).

Consider the derivative of the Lagrangian with respect to \(\varepsilon \):

\[
\frac{\partial L}{\partial \varepsilon} = -(1 + \beta) \left[\sum_{j,k} \delta_{jk} \left(P_j Q^1_{jk} \right)^{1+\beta} \right] \sum_{1 \leq k \leq n_1-1} \delta_{j_k} \frac{P_{i_k} Q_{i_{k+1}}^{1+\beta}}{P_{i_k} Q_{i_{k+1}}^{1+\beta}} - \sum_{1 \leq k \leq n_2-1} \delta_{j_k} \frac{P_{i_k} Q_{i_{k+1}}^{1+\beta}}{P_{i_k} Q_{i_{k+1}}^{1+\beta}}
\]

77
which satisfies $\frac{\partial \mathcal{L}}{\partial \varepsilon} = 0$ by assumption (local optimum). Let us examine the second order condition:

$$\frac{\partial^2 \mathcal{L}}{\partial \varepsilon^2} = -(1 + \beta) \left(\frac{1 + \beta}{1 + \gamma} - 1 \right) \left[\sum_{j,k} \delta_{jk} \left(P_j Q_{jk}^{1+\beta} \right)^{\gamma+1} \right]^\gamma \times$$

$$\left[\sum_{1 \leq k \leq n_1 - 1} \delta_{1k} \left(\frac{\gamma}{1+\gamma} \right) P_{1k} Q_{1k+1}^{1+\beta} - \sum_{1 \leq k \leq n_2 - 1} \delta_{1k} \left(\frac{\gamma}{1+\gamma} \right) P_{1k} Q_{2k+1}^{1+\beta} \right]$$

$$- (1 + \beta)^2 \frac{\gamma}{\gamma+1} \left[\sum_{j,k} \delta_{jk} \left(P_j Q_{jk}^{1+\beta} \right)^{\gamma+1} \right]^{\gamma-1} \times$$

$$\left[\sum_{1 \leq k \leq n_1 - 1} \delta_{1k} \left(\frac{\gamma}{1+\gamma} \right) P_{1k} Q_{1k+1}^{1+\beta} - \sum_{1 \leq k \leq n_2 - 1} \delta_{1k} \left(\frac{\gamma}{1+\gamma} \right) P_{1k} Q_{2k+1}^{1+\beta} \right]^{2}.$$

Hence, we see that $\frac{\partial^2 \mathcal{L}}{\partial \varepsilon^2} \geq 0$ when $\gamma > \beta$. Therefore, the point under consideration cannot be a local maximum. A tiny deviation in either direction for ε would increase welfare, thereby yielding a contradiction.