Global Reallocations in the US-China Trade War

 $^{\rm II}$ UCLA, [‡]Yale, [†]Berkeley, [±]World Bank, [◊]NBER

December 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation

- In 2018-19, US-China engaged in a trade war, taxing \$450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This paper: How are bystanders' exports affected?

Motivation

- In 2018-19, US-China engaged in a trade war, taxing \$450b of annual trade
 - thousands of goods tariffed, avg US tariffs from about 4% to 25%
 - US and China tariffs targeted 3.6% of US GDP and 5.5% of China GDP
- This paper: How are bystanders' exports affected?
- Trade war is a natural experiment to understand the key forces driving world trade

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Substitution/complementarities?
- Scale?
- Specialization?

This Paper

- Framework to guide empirical analysis that captures these elements
- 2 Estimate impacts of tariffs on bystanders' exports to US, CH, rest of world (RW)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Examine possible forces driving the responses

This Paper

- Framework to guide empirical analysis that captures these elements
- 2 Estimate impacts of tariffs on bystanders' exports to US, CH, rest of world (RW)
- Second Se

Method:

 model motivates product-level regressions to estimate impact of trade-war tariffs on countries' exports

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• ...allowing for country-, sector-, and size-specific tariff responses

Bystanders increased exports to US, no change to CH, increased to RW

trade war created net trade opportunities, rather than re-shuffling trade across destinations

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Bystanders increased exports to US, no change to CH, increased to RW

- trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - ▶ avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

sd is just 1.4% under homogenous tariff elasticities

- Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- sd is just 1.4% under homogenous tariff elasticities
- Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest

- Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities
- Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest
- Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities
- Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest
- Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply

MEX, TWN, COL, UKR operate along downward sloping supply

- Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities
- Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest
- Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - ★ MEX, TWN: beneficiaries bc they substitute US and China

- Bystanders increased exports to US, no change to CH, increased to RW
 - trade war created net trade opportunities, rather than re-shuffling trade across destinations
- Cross-country het. in export growth in tariffed products (relative to untaxed)
 - avg export growth in taxed products (relative to untaxed) is 6.5%, sd 6.1%
 - sd is just 1.4% under homogenous tariff elasticities
- Country component of tariff elasticities explains 80.5% of export growth variation
 - size and sector component of tariff elasticities account for rest
- Model reveals how to infer supply- and demand-forces driving country response
 - countries classified as complements or substitutes of US/China, and operating along upward or downward supply
 - MEX, TWN, COL, UKR operate along downward sloping supply
 - ★ MEX, TWN: beneficiaries bc they substitute US and China
 - ★ COL, UKR: not beneficiaries bc they complement US and China

Related Literature

Interdependency across export destinations

- Morales et al 19, Alfaro et al 23, Alumnia et al 18, Mau 17, Flaaen et al 20, Albornoz et al 21
- Cross-country variation in trade elasticities
 - Anderson VW 03, Eaton Kortum 02, Costinot et al 12, Caliendo Parro 15, Adao et al 17, Lind Ramondo 18

Scale economies

 Antweiler Trefler 02, Costinot et al 19, Bartelme et al 19, Lashkaripir Lugovskyy 22

US-China Trade War

 Amiti et al. 19, Fajgelbaum et al. 20, Cavallo et al. 21, Flaaen et al. 20, Flaaen Pierce 19, Waugh 19

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Framework

- Ricardian-Armington trade model
- Translog aggregator of varieties (origins) of product ω from sector j in country n:

$$s_{i\omega}^n = a_{i\omega}^n + \sum_{i' \in \mathcal{I}} \sigma_{i'i}^j \ln p_{i'\omega}^n$$

• with prices
$$p_{i'\omega}^n = \tau_{i'\omega}^n T_{i\omega}^n p_{i'\omega}$$

• σ^{j}_{iCH} , σ^{j}_{iUS} capture *i*'s substitution with *CH* and US

▶ assume
$$\sigma_{ii'}^j = \sigma_{RW}^j$$
 for $i' \neq i$ and $i \neq US$, CH

Framework

- Ricardian-Armington trade model
- Translog aggregator of varieties (origins) of product ω from sector j in country n:

$$s_{i\omega}^n = a_{i\omega}^n + \sum_{i' \in \mathcal{I}} \sigma_{i'i}^j \ln p_{i'\omega}^n$$

• with prices
$$p_{i'\omega}^n = \tau_{i'\omega}^n T_{i\omega}^n p_{i'\omega}$$

• σ^{j}_{iCH} , σ^{j}_{iUS} capture *i*'s substitution with *CH* and US

• assume
$$\sigma_{ii'}^j = \sigma_{RW}^j$$
 for $i' \neq i$ and $i \neq US$, CH

• Supply (sales) curve of exporter *i* of product ω :

$$X_{i\omega} \equiv A_{ij} p_{i\omega}^{\frac{1}{b_i'}} Z_{i\omega}$$

- A_{ij}: endogenous sector (j)-level cost shifters (ie, wages, input costs)
- Z_i exogenous cost shifter
- ► $b_i^j = \frac{1}{\epsilon_i^j} \gamma_i^j$, where ϵ_i^j reflects factor mobility & γ_i^j reflects scale
- Equilibrium: prices $\{p_{i\omega}\}$ such that goods markets clear

Proposition

Given tariff shocks $\{T_{i\omega}^n\}$, first-order approximation around an arbitrary initial equilibrium:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \beta_{5i\omega}^{n} \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{CH} + \beta_{6i\omega}^{n} \sum_{j \neq CH,US,i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^{n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

۲

Proposition

Given tariff shocks $\{T_{i\omega}^n\}$, first-order approximation around an arbitrary initial equilibrium:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \beta_{5i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{US} + \beta_{6i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^{n}$$

• $\beta_{1i\omega}^n$: tariff response to US tariff on China:

$$eta_{1i\omega}^{n}\equiv\left(1_{n=\mathit{US}}+rac{{\it E}_{\omega}^{\it US}}{{\it E}_{\omega}}rac{1}{rac{X_{i\omega}/{\it E}_{\omega}}{{\it b}_{i}^{\it J}\sigma_{ii}^{\it J}}}-1}
ight)rac{\sigma_{\it CHi}^{\it J}}{s_{i\omega}^{\it n}}$$

- substitutability: σ_{CHi}^{j}
- scale: $b_i^j \sigma_{ii}^j$ • size: $\frac{E_{\omega}^n}{E_{\omega}}$, $\frac{X_{i\omega}}{E_{\omega}}$, $\frac{X_{i\omega}^n}{E_{\omega}^n}$

Proposition

Given tariff shocks $\{T_{i\omega}^n\}$, first-order approximation around an arbitrary initial equilibrium:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \beta_{5i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{CH} + \beta_{6i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^{n}$$

• $\eta_{i\omega}^n$: other goods prices, factor prices, aggregate demand shifts

$$\eta_{i\omega}^{n} = \frac{\left(\sum_{n'\in\mathcal{I}}\frac{X_{i\omega}^{n'}}{X_{i\omega}}\hat{E}_{\omega}^{n'} - \hat{A}_{ij}\right)b_{i}^{j}\sigma_{ii}^{j} + \sum_{i'=US,CH}\sigma_{CHi}^{j}\hat{p}_{i'\omega} + \sigma_{RW}^{j}\sum_{i'\neq i}\hat{p}_{i'\omega}}{1 - \frac{\sigma_{ii}^{i}b_{i}^{j}}{X_{i\omega}/E_{\omega}}}\frac{1}{s_{i\omega}^{n}} + \hat{E}_{\omega}^{n}$$

vanishes with

- ★ Cobb-Douglas product-level shifters
- \star \rightarrow 0 price changes in US and China
- ★ → 0 cross-substitutions ($\sigma_{RW}^{j} = 0$)

implementation: exporter-importer-sector FEs, size controls, assess pre-trends

Proposition

Given tariff shocks $\{T_{i\omega}^n\}$, first-order approximation around an arbitrary initial equilibrium:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \beta_{5i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{CH} + \beta_{6i\omega}^{n} \sum_{j \neq CH, US, i} \Delta \ln T_{j,\omega}^{CH} + \eta_{i\omega}^{n}$$

• $\eta_{i\omega}^n$: other goods prices, factor prices, aggregate demand shifts

$$\eta_{i\omega}^{n} = \frac{\left(\sum_{n'\in\mathcal{I}}\frac{X_{i\omega}^{n'}}{X_{i\omega}}\hat{E}_{\omega}^{n'} - \hat{A}_{ij}\right)b_{i}^{j}\sigma_{ii}^{j} + \sum_{i'=US,CH}\sigma_{CHi}^{j}\hat{p}_{i'\omega} + \sigma_{RW}^{j}\sum_{i'\neq i}\hat{p}_{i'\omega}}{1 - \frac{\sigma_{ii}^{j}b_{i}^{j}}{X_{i\omega}/E_{\omega}}}\frac{1}{s_{i\omega}^{n}} + \hat{E}_{\omega}^{n}$$

- vanishes with
 - ★ Cobb-Douglas product-level shifters
 - $\star~\rightarrow$ 0 price changes in US and China
 - ★ → 0 cross-substitutions ($\sigma_{RW}^{j} = 0$)

implementation: exporter-importer-sector FEs, size controls, assess pre-trends

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Set $\beta_5 = \beta_6 = 0$ because of lack of tariff variation

Proposition

When the US imposes a tariff on China in product ω , then: (i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease) (ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

	Exports:					
	Decrease to US $\left(eta_{1i\omega}^{US} < 0 ight)$ Increase to US $\left(eta_{1i\omega}^{US} ight)$					
Increase to RW $\left(eta_{1i\omega}^{RW} > 0 ight)$						
Decrease to RW $\left(eta_{1i\omega}^{RW} < 0 ight)$						

Proposition

When the US imposes a tariff on China in product ω , then: (i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease) (ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

	Exports:			
	Decrease to US $\left(eta^{US}_{1i\omega} < 0 ight)$	Increase to US $\left(eta_{1i\omega}^{US}>0 ight)$		
Increase to RW $\left(eta_{1i\omega}^{RW} > 0 ight)$		China substitute ($\sigma_{CHi} > 0$)		
Decrease to RW $\left(eta_{1i\omega}^{RW} < 0 ight)$		China substitute ($\sigma_{CHi} > 0$)		

Proposition

When the US imposes a tariff on China in product ω , then: (i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease) (ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

	Exports:		
	Decrease to US $\left(eta^{US}_{1i\omega} < 0 ight)$	Increase to US $\left(eta_{1i\omega}^{US}>0 ight)$	
Increase to $\mathbf{P}\mathcal{W}$ ($\beta RW > 0$)		China substitute ($\sigma_{CHi} > 0$)	
Increase to RVV $(p_{1i\omega} > 0)$		neg sloping supply $(b_i < 0)$	
Decrease to $DW(\rho RW < 0)$		China substitute ($\sigma_{CHi} > 0$)	
Decrease to RVV $(p_{1i\omega} < 0)$		pos sloping supply $(b_i > 0)$	

Proposition

When the US imposes a tariff on China in product ω , then: (i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease) (ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

	Exports:		
	Decrease to US $\left(eta^{US}_{1i\omega} < 0 ight)$	Increase to US $\left(eta_{1i\omega}^{US}>0 ight)$	
Increases to $D(M_{\ell}(\rho RW > 0))$	China complement ($\sigma_{CHi} < 0$)	China substitute ($\sigma_{CHi} > 0$)	
Increase to RVV $(p_{1i\omega}^{com} > 0)$	pos sloping supply $(b_i > 0)$	neg sloping supply $(b_i < 0)$	
Decrease to $DW(\rho RW < 0)$	China complement ($\sigma_{CHi} < 0$)	China substitute ($\sigma_{CHi} > 0$)	
Decrease to RVV $(p_{1i\omega} < 0)$	neg sloping supply $(b_i < 0)$	pos sloping supply $(b_i > 0)$	

Proposition

When the US imposes a tariff on China in product ω , then: (i) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$), exports from i to the US generally increase (decrease) (ii) if $\sigma_{CHi} > 0$ ($\sigma_{CHi} < 0$) and $\sigma_{ii} < 0$, exports increase (decrease) from i to RW iff $\frac{X_{i\omega}/E_{\omega}}{\sigma_{ii}} < b_i < 0$.

	Exports:		
	Decrease to US $\left(eta^{US}_{1i\omega} < 0 ight)$	Increase to US $\left(eta_{1i\omega}^{US} > 0 ight)$	
Increase to RW $\left(eta_{1i\omega}^{RW} > 0 ight)$	China complement ($\sigma_{CHi} < 0$)	China substitute ($\sigma_{CHi} > 0$)	
	pos sloping supply $(b_i > 0)$	neg sloping supply $(b_i < 0)$	
Decrease to RW $\left(eta_{1i\omega}^{RW} < 0 ight)$	China complement ($\sigma_{CHi} < 0$)	China substitute ($\sigma_{CHi} > 0$)	
	neg sloping supply $(b_i < 0)$	pos sloping supply $(b_i > 0)$	

- Same logic applies to Chinese tariffs on US
 - In that case, sign of σ_{USi} is revealed

- Global bilateral trade data, 2014:1-2019:12 Comtrade
 - ▶ Top 50 countries, 95.9% of world trade

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ US, CH, RW as destinations

- Global bilateral trade data, 2014:1-2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations
- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T^{US}_{CH,\omega}$: US tariff changes on China in product ω US ITC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter *i* US ITC
- $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
- $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019

- Global bilateral trade data, 2014:1-2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations
- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T^{US}_{CH,\omega}$: US tariff changes on China in product ω US ITC

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter *i* US ITC
- $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
- $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019
- Definitions
 - ▶ *i*: exporter
 - ω: products (hs6)
 - j: 9 sectors
 - $\Delta \ln X_{CH\omega}^{US}$: exports from CH to US

- Global bilateral trade data, 2014:1-2019:12 Comtrade
 - Top 50 countries, 95.9% of world trade
 - US, CH, RW as destinations
- Statutory tariff schedules, 2018:1–2019:12
 - $\Delta T^{US}_{CH,\omega}$: US tariff changes on China in product ω US ITC
 - $\Delta T_{i,\omega}^{US}$: US tariffs changes on exporter *i* US ITC
 - $\Delta T_{US,\omega}^{CH}$: China tariffs changes on US China MoF
 - $\Delta T_{i,\omega}^{CH}$: China MFN tariffs (ex USA) Bown et al. 2019
- Definitions
 - i: exporter
 - ω: products (hs6)
 - j: 9 sectors
 - $\Delta \ln X_{CH\omega}^{US}$: exports from CH to US
- Aggregate data to 24-month periods, study long differences
 - Examine 2016/17 to 2018/19 export growth in response to tariffs
 - Scale tariffs in proportion to their duration through the 24-month interval

Summary Statistics: World Trade in 2017

Industry	Examples	USD	Share	# HS6	Share
Machinery	Engines, computers, cell phones	5,632	0.30	771	0.15
Materials	Plastics, lumber, stones, glass	2,246	0.12	639	0.12
Transport	Vehicles, airplanes, parts	2,121	0.11	130	0.02
Chemicals	Medications, cosmetics, vaccines	1,884	0.10	787	0.15
Agriculture	Soy beans, wine, coffee, beef	1,617	0.09	899	0.17
Minerals	Oil, coal, salt, electricity	1,586	0.08	148	0.03
Metals	Copper, steel, iron, aluminum	1,350	0.07	563	0.11
Apparel	Footwear, t-shirts, hand bags	1,100	0.06	912	0.18
Miscellaneous	Medical devices, furniture, art	1,255	0.07	354	0.07

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• 5203 HS6 products classified into 9 sectors

specialization

US Tariff Changes $\Delta T_{CH}^{US} \& \Delta T_i^{US}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

China Tariff Changes $\Delta T_{US}^{CH} \& \Delta T_i^{CH}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

China Exports to US on ΔT_{CH}^{US}

China's exports to US fall with US tariff

(日) (四) (日) (日) (日)

Pre-period: β=-0.12 (0.29).

China Exports to US on ΔT_{CH}^{US}

China's exports to US fall with US tariff

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

Panel B US Export Value to China

(日) (四) (日) (日) (日)

US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

イロト 不得 トイヨト イヨト

3

RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

 $\Delta X^{US}_{RW\omega} = \alpha + \beta \Delta T^{US}_{CH\omega} + \epsilon^{US}_{RW\omega}$

Panel A Bystanders' Export Value to US

(日) (四) (日) (日) (日)

RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

イロト 不得 トイヨト イヨト

3

RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

 $\Delta X^{CH}_{RW\omega} = \alpha + \beta \Delta T^{CH}_{US\omega} + \epsilon^{CH}_{RW\omega}$

Panel B Bystanders' Export Value to China

イロト 不得 トイヨト イヨト

3

▶ fe

RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with US tariff

 $\Delta X^{RW}_{RW\omega} = \alpha + \beta \Delta T^{US}_{CH\omega} + \epsilon^{RW}_{RW\omega}$

Panel C Bystanders' Export Value to RW

(日) (四) (日) (日) (日)

Pre-period: β=-0.14 (0.08).

RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with US tariff

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Pre-period: β=-0.14 (0.08). Post-period: β=0.20 (0.08).

् ► fe

RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

 $\Delta X^{RW}_{RW\omega} = \alpha + \beta \Delta T^{CH}_{US\omega} + \epsilon^{RW}_{RW\omega}$

Panel D Bystanders' Export Value to RW

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

3

RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Main Specification

• Full specification:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \alpha_{ij}^{n} + \Omega^{n} SIZE_{i\omega} + \pi^{n} \Delta \ln X_{i\omega,t-1}^{n} + \epsilon_{i\omega}^{n},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\flat \ \ \beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega} \qquad z = 1, 2, 3, 4$$

- run separately to destinations n = US, CH, RW
- country-sector fixed effects, lagged growth controls for pretrends

Main Specification

• Full specification:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \alpha_{ij}^{n} + \Omega^{n} SIZE_{i\omega} + \pi^{n} \Delta \ln X_{i\omega,t-1}^{n} + \epsilon_{i\omega}^{n},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $\flat \ \ \beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega} \qquad z = 1, 2, 3, 4$
- run separately to destinations n = US, CH, RW
- country-sector fixed effects, lagged growth controls for pretrends
- SIZE_{ziw} contains three proxies:
 - \star share US (or CH) imports in global imports in ω
 - \star share of exporter *i* exports in global imports in ω
 - ***** share of variety $i\omega$ in destination *n* imports

Main Specification

• Full specification:

$$\Delta \ln X_{i\omega}^{n} = \beta_{1i\omega}^{n} \Delta \ln T_{CH,\omega}^{US} + \beta_{2i\omega}^{n} \Delta \ln T_{US,\omega}^{CH} + \beta_{3i\omega}^{n} \Delta \ln T_{i,\omega}^{US} + \beta_{4i\omega}^{n} \Delta \ln T_{i,\omega}^{CH} + \alpha_{ij}^{n} + \Omega^{n} SIZE_{i\omega} + \pi^{n} \Delta \ln X_{i\omega,t-1}^{n} + \epsilon_{i\omega}^{n},$$

- $\flat \ \ \beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega} \qquad z = 1, 2, 3, 4$
- run separately to destinations n = US, CH, RW
- country-sector fixed effects, lagged growth controls for pretrends
- SIZE_{ziw} contains three proxies:
 - \star share US (or CH) imports in global imports in ω
 - \star share of exporter *i* exports in global imports in ω
 - ***** share of variety $i\omega$ in destination *n* imports
- Predicted values:

$$\widehat{\Delta \ln X_i^{WD}} = \sum_{\omega} \sum_{n} \lambda_{i\omega}^n \left(\widehat{\beta_{1i\omega}^n} \Delta \ln T_{CH,\omega}^{US} + \widehat{\beta_{2i\omega}^n} \Delta \ln T_{US,\omega}^{CH} + \widehat{\beta_{3i\omega}^n} \ln T_{i,\omega}^{US} + \widehat{\beta_{4i\omega}^n} \Delta \ln T_{i,\omega}^{CH} \right)$$

$$\triangleright \quad \lambda_{i\omega}^n \text{ pre-war export shares of variety } i\omega \text{ in total exports of } i \text{ to } n$$

$$\triangleright \text{ homogeneous } \triangleright \text{ rw}$$

A D N A 目 N A E N A E N A B N A C N

Relative Export Growth in Targeted Products Takeaway 2: Large Heterogeneity in Predicted Exporter Growth

90/10 bootstrapped error bars

Decomposing Relative Exports, $\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Decomposing Relative Exports, $\beta_{zi\omega}^n = \beta_{zi}^n + \frac{\beta_{zi(\omega)}^n}{\beta_{zi(\omega)}^n} + \frac{\Gamma_n SIZE_{zi\omega}}{\beta_{zi(\omega)}^n}$

Takeaway 3: Importance of Country Component

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Decomposing Relative Exports, $\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Decomposing Relative Exports, $\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Decomposing Relative Exports, $\beta_{zi\omega}^n = \beta_{zi}^n + \beta_{zj(\omega)}^n + \Gamma_z^n SIZE_{zi\omega}$

Takeaway 3: Importance of Country Component

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Takeaway 4: Supply and Demand Forces Driving Response

Takeaway 4: Supply and Demand Forces Driving Response

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Takeaway 4: Supply and Demand Forces Driving Response

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Takeaway 4: Supply and Demand Forces Driving Response

Conclusion

- US-China trade war was seen as a major turning point in the globalization era
 - our results do not support this view, at least for the time horizon we analyze
 - several countries increased global exports in products with higher US-China tariffs, relative to non-taxed products

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Future work to uncover the factors driving the country-component of tariff elasticities

Countries' Pre-War Export Baskets

Export Response to US, CH, RW, All Coefficients

	(1)	(2)	(3)
	$\Delta \ln X_{i,\omega,t}^{US}$	$\Delta \ln X_{i,\omega,t}^{CH}$	$\Delta \ln X_{i,\omega,t}^{RW}$
$\Delta T^{US}_{CH,\omega}$ (β_1)	0.21^{*}	-0.84***	0.12
	(0.11)	(0.18)	(0.09)
$\Delta T_{US,\omega}^{CH}(\beta_2)$	-0.02	-0.06	0.35***
,u	(0.11)	(0.20)	(0.08)
$\Delta T_{i,\omega}^{US}(\beta_3)$	-0.59**	-0.12	0.09
.,	(0.29)	(0.34)	(0.20)
$\Delta T_{i,\omega}^{CH}(\beta_4)$	-0.15	-1.46***	-0.19
.,	(0.21)	(0.40)	(0.20)
Pre-trend control?	Yes	Yes	Yes
Country $ imes$ Sector FE	Yes	Yes	Yes
R2	0.07	0.08	0.11
N	102,901	90,128	223,556

Robustness: RW to RW

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\Delta T_{CH,\omega}^{US}(\beta_1)$	0.12	0.12	0.10	0.29**	0.11	0.08	0.07
	(0.09)	(0.08)	(0.09)	(0.11)	(0.09)	(0.08)	(0.08)
$\Delta T_{US,\omega}^{CH}(\beta_2)$	0.35***	0.32***	0.29***	0.37***	0.34***	0.33***	0.34***
,	(0.08)	(0.07)	(0.08)	(0.09)	(0.08)	(0.08)	(0.08)
$\Delta T_{i,\omega}^{US}(\beta_3)$	0.09	0.09	0.26	-0.19	0.12	0.52***	0.54***
.,	(0.20)	(0.18)	(0.20)	(0.26)	(0.20)	(0.19)	(0.19)
$\Delta T_{i,\omega}^{CH}(\beta_4)$	-0.19	-0.20	-0.01	0.73***	-0.21	0.30	0.26
.,	(0.20)	(0.19)	(0.20)	(0.27)	(0.20)	(0.18)	(0.18)
Pre-trend control	Yes	Yes	No	Yes	Yes	Yes	Yes
Fixed Effects	cty-ind9	cty-ind9	cty-ind9	cty-hs2	ind9	cty	none
Winsorized	No	Yes	No	No	No	No	No
R2	.11	.097	.009	.14	.099	.1	.098
N	223,556	223,556	223,556	223,552	223,556	223,556	223,556
Exporters	48	48	48	48	48	48	48

Outcome is the log change in bystander countries' exports to countries other than the US and China. Column 1 is the baseline specification. Column 2 winsorizes the top and bottom 1% of the outcome. Column 3 excludes the pre-trend control. Columns 4-7 show robustness to alternative fixed effects: respectively, country-hs2, industry only, country only, and none.

▶ return

Framework Details

- In country *i*, a bundle K_{ij} of inputs is used in tradeable sector *j*
- Each unit $k \in K_{ij}$ solves:

$$\max_{\omega} \max_{x} \left(p_{i\omega} z_{i\omega}^{0} e_{\omega}^{k} \right)^{1-\alpha_{j}^{l}} x^{\alpha_{j}^{l}} - c_{ij}^{l} x,$$

z⁰_{iω} = Z_{iω}K^{γ_i}_{iω} captures scale effects
 e^k_ω is distributed Frechet with shape parameter ε_i
 c^l_{ij} is the cost of intermediates

• Yields
$$X_{i\omega} \equiv A_{ij} p_{i\omega}^{rac{1}{b_i}} Z_{i\omega}$$
 where

$$A_{ij} \equiv \left(\frac{c_{ij}^{l}}{\alpha_{j}^{l}}\right)^{\frac{\alpha_{j}^{l}}{\alpha_{j}^{l}-1}} K_{ij}^{\frac{1}{b_{i} \in i}} r_{ij}^{\frac{b_{i}-1}{b_{i}}}$$

where

$$r_{ij}^{\varepsilon_i} = \sum_{\omega \in \Omega^j} \left(p_{i\omega} \left(c_{ij}^l / \alpha_j^l \right)^{\frac{\alpha_j^l}{\alpha_j^l - 1}} z_{i\omega}^0 \right)^{\varepsilon_i}$$

China Exports to US on ΔT_{CH}^{US}

China's exports to US fall with US tariff

A D > A P > A D > A D >

ж

US Exports to China on ΔT_{US}^{CH}

US exports to CH fall with CH tariff

イロト 不得 トイヨト イヨト

3

RW Exports to US on ΔT_{CH}^{US}

Takeaway 1: RW exports to US increase with US tariff

イロト 不得 トイヨト イヨト

3

RW Exports to CH on ΔT_{US}^{CH}

Takeaway 1: RW exports to CH flat with CH tariff

$$\begin{split} \Delta X^{CH}_{RW\omega} &= \alpha_{ij} + \beta \Delta T^{CH}_{US\omega} + \epsilon^{CH}_{RW\omega} \\ \hline \mathbf{Panel B} \\ \text{Bystanders' Export Value to China} \\ & \circ \ 2015\text{-}17 \quad \bullet \ 2017\text{-}19 \end{split}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

RW Exports to RW on ΔT_{CH}^{US}

Takeaway 1: RW exports to RW increase with US tariff

A D > A P > A B > A B >

э

Pre-period: β=-0.00 (0.09). Post-period: β=0.15 (0.09).

RW Exports to RW on ΔT_{US}^{CH}

Takeaway 1: RW exports to RW increase with CH tariff

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Pre-period: β=0.12 (0.08). Post-period: β=0.30 (0.08).

Export Growth Correlates

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Takeaway 4: Supply and Demand Forces Driving Response

Takeaway 4: Supply and Demand Forces Driving Response

