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Introduction

Manhattan has as many daily commuters as residents, ∼1.6m people

I Two months after lockdown, commutes were down 49%

Lockdowns were fairly uniform within cities and across bordering U.S. states

I Avg diff of 4 days, s.d 3.5 days

I NY, NJ, and Connecticut: almost simultaneous lockdown
I There is also some variation

F Illinois, more than two weeks before Missouri

F Variation in county-level policies

But economic activity and potential for virus spread is not uniform in space

So, potentially, there could be gains from targeting lockdown in space



This Paper

Optimal dynamic lockdown in a commuting network

Framework integrates:

I Standard trade model (Anderson and Van Wincoop (2003))

I Standard spatial epidemiology model (Arino and Van den Driessche (2003))

Estimated with real-time commuting and credit-card expenditure data

I Korea (Daegu and Seoul) and New York Metro

F Daegu and NYM: Large shocks

Questions:

1 What are the optimal lockdown patterns over time and space?

2 How do observed commuting reductions compare with optimal?

3 How large are the benefits from optimal spatial targeting?



Main Results

Optimal lockdown patterns

I NYM and Daegu: strict initial lockdown of some central places, which remain partially

closed for a long time

I Actual commuting reductions were too weak in central locations in Daegu and NYM,

and too strong across Seoul

Spatial lockdowns achieve substantially smaller income losses than uniform

I Spatial targeting vs. Uniform (space-blind): 20%, 32%, and 58% lower economic costs

in Daegu, Seoul, and NYM (given the number of infections)

I Gains can be largely achieved with spatially targeted business lockdowns
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Spatial SEIR Model

j = 1, .., J locations

I Exogenous pre-pandemic population with commuting flows λ (i , j)

I Policy χ (i , j , t) = Fraction of commutes (=jobs) allowed from i to j at time t

F Flows are turned on and off (no reallocations)

States: susceptible, exposed, infected, or recovered: S (j , t), E (j , t), I (j , t), and R (j , t)

% change in susceptible population (new infections):

Ṡ (i , t) = −
∑

j

βj [λ (i , j)S (i , t)χ (i , j , t)]

[
ζ
∑

i′
I
(
i ′, t
)
λ
(
i ′, j
)
χ
(
i ′, j , t

)]

I βj = β
areaj

estimated from changes in flows and cases across locations

I ζ= fraction asymptomatic

I Contagion happens in i or in j (not along route)

Transitions across other states:

Ė (t) = −Ṡ (t) − γIE (t)

İ (t) = γIE (t) − (γR + γD ) I (t)

Ṙ (t) = γR I (t)



Trade Model

Standard Armington trade model where lockdown policies affect labor supply and trade costs

Labor supply of type u = S ,E , I ,R from location i toj :

Nu (i , j , t) = u (i , t)λ (i , j)ζu [χ (i , j , t) + (1 − χ (i , j , t)) δ]

I ζI = fraction of asymptomatic infected (= 1 for other types)

F Infected with symptoms do not work

I δ = fraction of telecommuters

Real Income U (i , t) = Y (i,t)
P(i,t)

, where

I Income: Y (i , t) =
∑

u

∑
j Nu (i , j , t) w (j , t)

I Wages: w (j , t)
∑

u

∑
i Nu (i , j , t) =

∑
i s (i , j , t) Y (i , t)

I Expenditure shares: s (i , j , t) ≡
(
τ(i,j,t)
P(i,t)

w(j,t)
z(j)

)1−σ

Residents of i face costs τ (i , j , t) ≡ κ0distance (i , j)κ1 χ (i , j , t)−ε > 1 when shopping in j

In paper: virus diffusion through shopping



Planning Problem

In reduced form, trade model gives:

U (j , t,χ (t)) ≡ U (j ,S (t) ,E (t) , I (t) ,R (t) ,χ (t))

Vaccine becomes available at rate ω, instantaneous switch to:

Ū (j , t) ≡ U (j ; 0, 0, 0,S (t) + E (t) + I (t) + R (t) , 1J×J )

Planning problem:

max
χ(t)

∫ ∞
0

e−(r+ν)t
∑

j

[
U (j , t,χ (t)) +

ν

r
Ū (j , t) − ωγD I (j , t)

]
dt

subject to how the S (t) ,E (t) , I (t) ,R (t) dynamics depend on χ (t)

We use as initial condition the SEIR distribution at the the lockdown date



FOC

Assume multiplicative matching function:

Mj

(
Ĩ , S̃
)

= βj Ĩ S̃

FOC over χ (i , j , t) given wage w (j) (i.e., no GE through trade model):

(1 − δ) w (j) = ∆ (i , t)
S (i , t)

N (i , t)
βj

∑
i′
ζI
(
i ′, t
)
λ
(
i ′, j
)
χ
(
i ′, j , t

)
+
ζI (i , t)

N (i , t)
βj

∑
k

∆ (k, t) S (k, t)λ (k, j)χ (k, j , t) ,

where

I ∆ (i , t) ≡ µS (i , t) − µE (i , t), the difference between the co-states S (t) and E (t)

I N (i , t) is the surviving population of i at time t



Data

Korea

I Seoul (largest city, 25 districts) and Daegu (largest outbreak, 8 districts)

I Commuting data (individual transport cards in Seoul, subway entry and exits in Daegu)

I Credit-card district-to-district transactions at physical shops in Seoul (from one of

Korea’s top-3 banks)

I Wages and population (National tax records)

New York Metro (20 counties)

I Cellphone mobility data (SafeGraph)

I Wages and population (LEHD and Census)

Estimate:

I Decline in commuting relative to pre-pandemic period

I Virus transmission rate (β)

I Spatial frictions (κ, ε)



Summary Statistics



Daegu and NYM: Commute Responses and Disease Spread

Report πt from:
Nijt

N̄ij,τ(t)
= πt + εijt (NYM) and Eit

Ēi,τ(t)
= πt + εit (Daegu)
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Seoul: Commute Responses, Disease Spread, and Spending

Report πt from:
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Transmission Rate β

1 S (i , t) and I (i , t) are recovered from data on new infections and calibrated

transition rates (γI , γR ,γD )

2 Estimate β to fit diffusion after the peak:

∆S (i , t) = −β
∑

j

1

areaj
[λ (i , j)S (i , t)χ (i , j , t)]

[
ζ
∑

i′
I
(
i ′, t
)
λ
(
i ′, j
)
χ
(
i ′, j , t

)]
+ ε (i , t)

Model-implied city-level reproduction number during first week: 1.32 in Seoul, 1.32 in

Daegu, and 2.94 in NYM

Suggestive evidence: commuting and new daily cases link



Parameters

Parameter Definition To match Source

Disease Dynamics

γI Exposed to Infected Rate Incubation period of 5.1 (robustness: 4.2 days) Ferguson et al. (2020), Sanche et al. (2020)

γR Infected to Recovered Rate Recovery of 18 days (robustness: 10 days) Wang et al. (2020)

γD Infected to Death Rate Infection-Fatality ratio 0.9% (robustness: 0.3%) Ferguson et al. (2020), Hall et al. (2020)

ζI % asymptomatic 36% (robustness: 18%) Alamian et al. (2019)

Matching Function

β Transmission Rate

Daegu: 1.58

Case Data and CommutingSeoul: 4.17

NYM: 0.55

Gravity: ln X (i, j, t) = ψ (j) + η (i) − (σ − 1)κ1 ln (distance (i, j)) + (σ − 1) ε ln (χ (i, j, t)) + ε (i, j, t)

κ1 Distance-Trade Cost Elasticity (σ − 1)κ1 = 1.53

Credit Card Expenditures

κ0 Scale of Trade Costs Same-district expenditure share: 55%

ε Lockdown-Trade Cost Elasticity (σ − 1) ε = 0.45

σ Demand Elasticity 5 Ramondo et al. (2016)

Other Parameters

δ Telecommuting Rate
Korea: 62% Job Korea

NYM: 46% Dingel and Neiman (2020)

v Probability of Vaccine Expected time of 1.5 years

ω Value of Life 14.5 years x $185,000 Hall et al. (2020)

ρ Discount rate 4% Annually

http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696


Daegu

NY Metro

Note: Centrality: Largest eigenvalue of the viral spread matrix at time 0. Right panel shows inflow lockdown.

Seoul



“Pareto” Frontier: Cases versus Income
Cumulative cases and lost income, across values of life, by April 30

Bilateral: unconstrained χ (i , j , t)

Uniform: χ (i , j , t) = χ (t) for all i , j

Daegu NY Metro

Seoul



“Pareto” Frontier: Cases versus Income
Cumulative cases and lost income, across values of life, by April 30

By Origin: χ (i , j , t) = χ (i , t) for all j

By Destination: χ (i , j , t) = χ (j , t) for all i

Daegu NY Metro



Optimal and Observed Changes in Commuting Flows

Daegu

NY Metro

Seoul



Conclusion

Integrate spatial epidemiology and trade model, estimated on 3 cities

Results

1 Optimal lockdown targets some central locations for an extended period

2 Commute responses were too weak in NYM’s and Daegu’s central nodes (too strong

across Seoul)
3 Optimal spatial lockdowns have much smaller economic costs than uniform lockdowns

F Spatially targeted business lockdowns may be enough to reap the benefits of spatial targeting

Possible extensions

I Other spatial scales

I Endogenous job reallocations

I Optimal deployment of vaccine





Suggestive Evidence: Commuting and New Daily Cases

ln(1 + new casesit ) = αi + γcity(i),t +
21∑

k=0

δk ln(flowi,t−k ) + εit

return



Centrality and Optimal Lockdown: Seoul

return



Seoul: Baseline and Alternative Parametrizations

Figure: Seoul: Optimal Lockdown in Baseline and Alternative Scenarios

(a) Baseline (b) Large Shock (c) High Value of Life

Note: The three panels show the results for Seoul under the baseline calibration (left panel), a large shock infecting 1% of the

population (middle panel) and a value of life that is 100 times the benchmark (right panel).

return



“Pareto” Frontier: Seoul

return



Optimal and Observed Changes in Commuting Flows: Seoul

return
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