Module 1 Marginal analysis and single variable calculus

1.5 Maximization of a strictly concave function

Solving for the maximizing value of a differentiable function is especially easy if a function is concave. Consider the following problem.

 $M_{x}_{x}\{f(x) \mid x \in X = [s,t]\}$.

(a) Strictly concave differentiable function

Suppose that x^* is a critical point of such a function, i.e. $f'(x^*) = 0$. For a strictly concave differentiable function the slope is strictly decreasing on X = [s,t]. Therefore f'(x) > 0 for all $x < x^*$ and so f(x) is strictly increasing on $[s,x^*)$. Also f'(x) < 0 for all $x > x^*$ and so f(x) is strictly decreasing on $(x^*,b]$. Thus the critical point is unique and it is the maximizer. The three possible cases are depicted below

Fig. 1.5-1: Unique critical point is the maximizer.

Suppose next that there are no critical points. If f'(t) > 0 then f'(x) > f'(t) > 0 for all x < t. Then f(x) takes on its maximum at $x^* = t$. Similarly, If f'(s) < 0 then f'(x) < f'(s) < 0 for all x > s. Then f(x) takes on its maximum at $x^* = s$. These two cases are depicted below.

Fig. 1.5-2: Boundary solutions with no critical point

(a) Concave differentiable function

For a concave differentiable function the slope is decreasing but not necessarily strictly decreasing. For example f(x) = a + 2x, g(x) = k and h(x) = c - 3x are all concave functions on the interval X = [s,t]. Since g'(x) = 0, every point in X is a critical point and is a maximizer.

More generally there can be a subset of critical points. Suppose that x^* is the smallest and that x^{**} is the largest as depicted below. Then $f'(x^*) = f'(x^{**}) = 0$. Since the slope is decreasing it follows that the slope is zero everywhere on the interval $X^* = [x^*, x^{**}]$.

Thus the set of maximizers is an interval

Fig. 1.5-3: The set of solutions is an interval

We can summarize these conclusions as follows:

Proposition: Maximizer of a strictly concave function

Suppose that f(x) is strictly concave and continuously differentiable on [s,t].

(i) If f(x) has a critical point x^* in X = [s,t], it is the unique maximizer for the following problem.

 $Max\{f(x) | x \in X = [s,t]\}.$

(ii) If there are no critical points then either f'(s) < 0 and s is the unique maximizer or

f'(t) > 0 and x = t is the unique maximizer.

Proposition: Maximizer of a concave function

Suppose that f(x) is concave and continuously differentiable on [s,t].

(i) If f(x) has a critical point x^* in X = [s,t], then x^* is a maximizer for the following problem.

 $Max\{f(x) \mid x \in X = [s,t]\}.$

(ii) If there are no critical points then either $f'(s) \le 0$ and s is the unique maximizer or

 $f'(t) \ge 0$ and x = t is the unique maximizer.