Module 1 Marginal analysis and single variable calculus

1.5 Maximization of a strictly concave function

Solving for the maximizing value of a differentiable function is especially easy if a function is concave. Consider the following problem.

$$
\operatorname{Max}_{x}\{f(x) \mid x \in X=[s, t]\}
$$

(a) Strictly concave differentiable function

Suppose that x^{*} is a critical point of such a function, i.e. $f^{\prime}\left(x^{*}\right)=0$. For a strictly concave differentiable function the slope is strictly decreasing on $X=[s, t]$. Therefore $f^{\prime}(x)>0$ for all $x<x^{*}$ and so $f(x)$ is strictly increasing on $\left[s, x^{*}\right)$. Also $f^{\prime}(x)<0$ for all $x>x^{*}$ and so $f(x)$ is strictly decreasing on $\left(x^{*}, b\right]$. Thus the critical point is unique and it is the maximizer. The three possible cases are depicted below

Fig. 1.5-1: Unique critical point is the maximizer.
Suppose next that there are no critical points. If $f^{\prime}(t)>0$ then $f^{\prime}(x)>f^{\prime}(t)>0$ for all $x<t$. Then $f(x)$ takes on its maximum at $x^{*}=t$. Similarly, If $f^{\prime}(s)<0$ then $f^{\prime}(x)<f^{\prime}(s)<0$ for all $x>s$. Then $f(x)$ takes on its maximum at $x^{*}=s$.

These two cases are depicted below.

Fig. 1.5-2: Boundary solutions with no critical point

(a) Concave differentiable function

For a concave differentiable function the slope is decreasing but not necessarily strictly decreasing. For example $f(x)=a+2 x, g(x)=k$ and $h(x)=c-3 x$ are all concave functions on the interval $X=[s, t]$. Since $g^{\prime}(x)=0$, every point in X is a critical point and is a maximizer.

More generally there can be a subset of critical points. Suppose that x^{*} is the smallest and that $x^{* *}$ is the largest as depicted below. Then $f^{\prime}\left(x^{*}\right)=f^{\prime}\left(x^{* *}\right)=0$. Since the slope is decreasing it follows that the slope is zero everywhere on the interval $X^{*}=\left[x^{*}, x^{* *}\right]$.

Thus the set of maximizers is an interval

Fig. 1.5-3: The set of solutions is an interval

We can summarize these conclusions as follows:

Proposition: Maximizer of a strictly concave function
Suppose that $f(x)$ is strictly concave and continuously differentiable on $[s, t]$.
(i) If $f(x)$ has a critical point x^{*} in $X=[s, t]$, it is the unique maximizer for the following problem.

$$
\operatorname{Max}\{f(x) \mid x \in X=[s, t]\} .
$$

(ii) If there are no critical points then either $f^{\prime}(s)<0$ and s is the unique maximizer or $f^{\prime}(t)>0$ and $x=t$ is the unique maximizer.

Proposition: Maximizer of a concave function

Suppose that $f(x)$ is concave and continuously differentiable on $[s, t]$.
(i) If $f(x)$ has a critical point x^{*} in $X=[s, t]$, then x^{*} is a maximizer for the following problem.

$$
\operatorname{Max}\{f(x) \mid x \in X=[s, t]\}
$$

(ii) If there are no critical points then either $f^{\prime}(s) \leq 0$ and s is the unique maximizer or
$f^{\prime}(t) \geq 0$ and $x=t$ is the unique maximizer.

