Choice under uncertainty

Part 1

1. Introduction to choice under uncertainty 2
2. Risk aversion 15
3. Acceptable gambles 19

Part 2
4. Measures of risk aversion 24
5. Insurance 30
6. Efficient risk sharing 35
7. Portfolio choice 47

57 slides

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").
An element of X might be a consumption vector, health status, inches of rainfall etc.
Initially, simply think of each element of X as a consumption bundle. Let \bar{x} be the most preferred element of X and let \underline{x} be the least preferred element.

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").
An element of X might be a consumption vector, health status, inches of rainfall etc.
Initially, simply think of each element of X as a consumption bundle. Let \bar{x} be the most preferred element of X and let \underline{x} be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X=\left\{x_{1}, x_{2}\right\}$ Let π_{1} be the probability that the state is x_{1} so that $\pi_{2}=1-\pi_{1}$ is the probability that the state is x_{2}.

We write this "consumption prospect" as follows:

$$
(x ; \pi)=\left(x_{1}, x_{2} ; \pi_{1}, \pi_{2}\right)
$$

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").
An element of X might be a consumption vector, health status, inches of rainfall etc.
Initially, simply think of each element of X as a consumption bundle. Let \bar{X} be the most preferred element of X and let \underline{x} be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X=\left\{x_{1}, x_{2}\right\}$ Let π_{1} be the probability that the state is x_{1} so that $\pi_{2}=1-\pi_{1}$ is the probability that the state is x_{2}.

We write this "consumption prospect" as follows:

$$
(x ; \pi)=\left(x_{1}, x_{2} ; \pi_{1}, \pi_{2}\right)
$$

If we make the usual assumptions about preferences, but now on prospects, it follows that preferences over prospects can be represented by a continuous utility function

$$
U\left(x_{1}, x_{2}, \pi_{1}, \pi_{2}\right)
$$

Prospect or "Lottery"
$L=\left(x_{1}, x_{2}, \ldots, x_{S} ; \pi_{1}, \ldots, \pi_{S}\right)$
(outcomes; probabilities)
Consider two prospects or "lotteries", L_{A} and L_{B}
$L_{A}=\left(x_{1}, x_{2}, \ldots, x_{S} ; \pi_{1}^{A}, \ldots, \pi_{S}^{A}\right) \quad L_{B}=\left(c_{1}, c_{2}, \ldots ., c_{S} ; \pi_{1}^{B}, \ldots, \pi_{S}^{B}\right)$
Independence Axiom (axiom of complex gambles)
Suppose that a consumer is indifferent between these two prospects (we write $L_{A} \sim L_{B}$).
Then for any probabilities π_{1} and π_{2} summing to 1 and any other lottery L_{C}
$\left(L_{A}, L_{C} ; \pi_{1}, \pi_{2}\right) \sim\left(L_{B}, L_{C} ; \pi_{1}, \pi_{2}\right)$

Tree representation

This axiom can be generalized as follows:
Suppose that a consumer is indifferent between the prospects L_{A} and L_{B}
and is also indifferent between the two prospects L_{C} and L_{D},
i.e. $L_{A} \sim L_{B}$ and $L_{C} \sim L_{D}$

Then for any probabilities π_{1} and π_{2} summing to 1 ,
$\left(L_{A}, L_{C} ; \pi_{1}, \pi_{2}\right) \sim\left(L_{B}, L_{D} ; \pi_{1}, \pi_{2}\right)$

Tree representation

We wish to show that if $L_{A} \sim L_{B}$ and $L_{C} \sim L_{D}$ then

Proof: $L_{A} \sim L_{B}$ and $L_{C} \sim L_{D}$
Step 1: By the Independence Axiom, since $L_{A} \sim L_{B}$

Proof: $L_{A} \sim L_{B}$ and $L_{C} \sim L_{D}$
Step 1: By the Independence Axiom, since $L_{A} \sim L_{B}$

Step 2: By the Independence Axiom, since $L_{C} \sim L_{D}$

Expected utility

Consider some very good outcome \bar{x} and very bad outcome \underline{x} and outcomes x_{1} and x_{2} satisfying
$\underline{x} \prec x_{1} \prec \bar{x}$ and $\underline{x} \prec x_{2} \prec \bar{x}$
Reference lottery
$L_{R}(v)=(\bar{w}, \underline{w}, v, 1-v)$ so v is the probability of the very good outcome.
$L_{R}(0) \prec x_{1} \prec L_{R}(1)$ and $L_{R}(0) \prec x_{2} \prec L_{R}(1)$
Then for some probabilities $v\left(x_{1}\right)$ and $v\left(x_{2}\right)$
$x_{1} \sim L_{R}\left(v\left(x_{1}\right)\right)=\left(\bar{x}, \underline{x} ; v\left(x_{1}\right), 1-v\left(x_{1}\right)\right)$ and $x_{2} \sim L_{R}\left(v\left(x_{2}\right)\right)=\left(\bar{x}, \underline{x} ; v\left(x_{2}\right), 1-v\left(x_{2}\right)\right)$
Then by the independence axiom
$\left(x_{1}, x_{2} ; \pi_{1}, \pi_{2}\right) \sim\left(L_{R}\left(v\left(x_{1}\right)\right), L_{R}\left(v\left(x_{2}\right)\right) ; \pi_{1}, \pi_{2}\right)$

Definition: Expectation of $v(x)$

$$
\mathbb{E}[v(x)] \equiv \pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right)
$$

Note that in the big tree there are only two outcomes, \bar{x} and \underline{x}. The probability of the very good outcome is $\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right)=\mathbb{E}[v(x)]$

The probability of the very bad outcome is $1-\mathbb{E}[v(x)]$. Therefore

\bar{x}
\underline{x}

We showed that

\bar{x}
\underline{x}
i.e.

$$
\left(x_{1}, x_{2} ; \pi_{1}, \pi_{2}\right) \sim(\bar{x}, \underline{x} ; \mathbb{E}[v], 1-\mathbb{E}[v])
$$

Thus the expected win probability in the reference lottery is a representation of preferences over prospects.

An example:

A consumer with wealth \hat{w} is offered a "fair gamble". With probability $\frac{1}{2}$ his wealth will be $\hat{w}+x$ and with probability $\frac{1}{2}$ his wealth will be $\hat{w}-x$. If he rejects the gamble his wealth remains \hat{w}. Note that this is equivalent to a prospect with $x=0$

In prospect notation the two alternatives are

$$
\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}, \hat{w}, \frac{1}{2}, \frac{1}{2}\right)
$$

and

$$
\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \frac{1}{2}, \frac{1}{2}\right)
$$

These are depicted in the figure assuming $x>0$.

Expected utility

$U\left(w_{1}, w_{2}, \pi_{1}, \pi_{2}\right)=\mathbb{E}[v]=\pi_{1} v\left(w_{1}\right)+\pi_{2} v\left(w_{2}\right)$
Class discussion

MRS if $v(w)$ is a concave function

Convex preferences

The two prospects are depicted opposite.
The level set for $U\left(w_{1}, w_{2} ; \frac{1}{2}, \frac{1}{2}\right)$ through the riskless prospect N is depicted.

Note that the superlevel set

$$
U\left(w_{1}, w_{2} ; \frac{1}{2}, \frac{1}{2}\right) \geq U\left(\hat{w}, \hat{w} ; \frac{1}{2}, \frac{1}{2}\right)
$$

is a convex set.

Convex preferences

The two prospects are depicted opposite.
The level set for $U\left(w_{1}, w_{2}, \frac{1}{2}, \frac{1}{2}\right)$ through the riskless prospect N is depicted.

Note that the superlevel set

$$
U\left(w_{1}, w_{2} ; \frac{1}{2}, \frac{1}{2}\right) \geq U\left(\hat{w}, \hat{w} ; \frac{1}{2}, \frac{1}{2}\right)
$$

is a convex set.

This is the set of acceptable gambles for the consumer.
As depicted the consumer strictly prefers the riskless prospect N to the risky prospect R.
Most individuals, when offered such a gamble (say over $\$ 5$) will not take this gamble.

2. Risk aversion

Class Discussion: Which alternative would you choose?
$N:\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}, \hat{w} ; \pi_{1}, \pi_{2}\right) \quad R:\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \pi_{1}, \pi_{2}\right)$ where $\pi_{1}=\frac{50}{100}$

What if the gamble were "favorable" rather than "fair"
$R: \quad\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \pi_{1}, \pi_{2}\right)$ where (i) $\pi_{1}=\frac{55}{100}$ (ii) $\pi_{1}=\frac{60}{100}$ (iii) $\pi_{1}=\frac{75}{100}$

Class Discussion: Which alternative would you choose?
$N:\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}, \hat{w} ; \pi_{1}, \pi_{2}\right) \quad R:\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \pi_{1}, \pi_{2}\right)$ where $\pi_{1}=\frac{50}{100}$

What if the gamble were "favorable" rather than "fair"
$R: \quad\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \pi_{1}, \pi_{2}\right)$ where (i) $\pi_{1}=\frac{55}{100}$ (ii) $\pi_{1}=\frac{60}{100}$ (iii) $\pi_{1}=\frac{75}{100}$

What is the smallest integer n such that you would gamble if $\pi_{1}=\frac{n}{100}$?

Preference elicitation

In an attempt to elicit your preferences write down your number n (and your first name) on a piece of paper. The two participants with the lowest number n will be given the riskless opportunity.

Let the three lowest integers be n_{1}, n_{2}, n_{3}. The win probability will not be $\frac{n_{1}}{100}$ or $\frac{n_{2}}{100}$. Both will get the higher win probability $\frac{n_{3}}{100}$.

2. Risk preferences

$$
U(x, \pi)=\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right) \quad \text { or } \quad U(x, \pi)=\mathbb{E}[v]
$$

Risk preferring consumer

Consider the two wealth levels x_{1} and $x_{2}>x_{1}$.

$$
v\left(\pi_{1} x_{1}+\pi_{2} x_{2}\right)<\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right)
$$

If $v(x)$ is convex, then the slope of $v(x)$
is strictly increasing as shown in the top figure.

Consumer prefers risk

$$
U(x, \pi)=\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right)
$$

Risk averse consumer

$$
v\left(\pi_{1} x_{1}+\pi_{2} x_{2}\right)>\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right) .
$$

In the lower figure $u(x)$ is strictly concave so that

$$
v\left(\pi_{1} x_{1}+\pi_{2} x_{2}\right)>\pi_{1} v\left(x_{1}\right)+\pi_{2} v\left(x_{2}\right)=\mathbb{E}[v] .
$$

In practice consumers exhibit aversion to such a risk.
Thus we will (almost) always assume that the expected utility function $v(x)$ is a strictly increasing strictly concave function.

Class Discussion:

If consumers are risk averse why do they go to Las Vegas?

Consumer prefers risk

Risk averse consumer
3. Acceptable gambles: Improving the odds to make the gamble just acceptable.

New risky alternative: $\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \frac{1}{2}+\alpha, \frac{1}{2}-\alpha\right)$.
Choose α so that the consumer is indifferent between gambling and not gambling.
3. Acceptable gamble: Improving the odds to make the gamble just acceptable.

New risky alternative: $\left(w_{1}, w_{2} ; \pi_{1}, \pi_{2}\right)=\left(\hat{w}+x, \hat{w}-x ; \frac{1}{2}+\alpha, \frac{1}{2}-\alpha\right)$.
Choose α so that the consumer is indifferent between gambling and not gambling.
For small x we can use the quadratic approximation of the utility function

Quadratic approximation of his utility

As long as x is small we can approximate his utility as a quadratic. Suppose $u(w+x)=\ln (w+x)$.

Define $\bar{u}(x)=\ln (w+x)$.
Then (i) $\bar{u}(0)=\ln w$ (ii) $\bar{u}^{\prime}(0)=\frac{1}{w}$ and (iii) $\bar{u}^{\prime \prime}(0)=-\frac{1}{w^{2}}$
Consider the quadratic function

$$
\begin{equation*}
q(x)=\ln w+\left(\frac{1}{w}\right) x-\frac{1}{2}\left(\frac{1}{w^{2}}\right) x^{2} . \tag{3.1}
\end{equation*}
$$

If you check you will find that $\bar{u}(x)$ and $q(x)$ have the same, value, first derivative and second derivative at $x=0$. We then use this quadratic approximation to compute the gambler's (approximated) expected gain.

With probability $\frac{1}{2}+\alpha$ his payoff is $q(x)$ and with probability $\frac{1}{2}-\alpha$ his payoff is $q(-x)$. Therefore his expected payoff is

$$
\mathbb{E}[q(x)]=\left(\frac{1}{2}+\alpha\right) q(x)+\left(\frac{1}{2}-\alpha\right) q(-x)
$$

Substituting from (3.1)

$$
\begin{aligned}
\mathbb{E}[q(x)]= & \left(\frac{1}{2}+\alpha\right)\left[\ln w+\left(\frac{1}{w}\right) x-\frac{1}{2}\left(\frac{1}{w^{2}}\right) x^{2}\right. \\
& +\left(\frac{1}{2}-\alpha\right)\left[\ln w+\left(\frac{1}{w}\right)(-x)-\frac{1}{2}\left(\frac{1}{w^{2}}\right)(-x)^{2} .\right.
\end{aligned}
$$

With probability $\frac{1}{2}+\alpha$ his payoff is $q(x)$ and with probability $\frac{1}{2}-\alpha$ his payoff is $q(-x)$. Therefore his expected payoff is

$$
\mathbb{E}[q(x)]=\left(\frac{1}{2}+\alpha\right) q(x)+\left(\frac{1}{2}-\alpha\right) q(-x)
$$

Substituting from (3.1)

$$
\begin{aligned}
\mathbb{E}[q(x)]= & \left(\frac{1}{2}+\alpha\right)\left[\ln w+\left(\frac{1}{w}\right) x-\frac{1}{2}\left(\frac{1}{w^{2}}\right) x^{2}\right. \\
& +\left(\frac{1}{2}-\alpha\right)\left[\ln w+\left(\frac{1}{w}\right)(-x)-\frac{1}{2}\left(\frac{1}{w^{2}}\right)(-x)^{2}\right.
\end{aligned}
$$

Collecting terms,

$$
\mathbb{E}[q(x)]=\ln w+2 \alpha\left(\frac{1}{w}\right) x-\frac{1}{2}\left(\frac{1}{w^{2}}\right) x^{2} .
$$

If the gambler rejects the opportunity his utility is $\ln w$. Thus his expected gain is

$$
\mathbb{E}[q(x)]-\ln w=2 \alpha\left(\frac{1}{w}\right) x-\frac{1}{2}\left(\frac{1}{w^{2}}\right) x^{2}=\frac{2 x}{w}\left[\alpha-\frac{1}{4}\left(\frac{1}{w}\right) x\right] .
$$

Thus the gambler should take the small gamble if and only if $\alpha>\frac{1}{4}\left(\frac{1}{w}\right) x$.

The general case: quadratic approximation of his utility

$$
q(x)=v(\hat{w})+v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}
$$

Class Exercise: Confirm that the value and the first two derivatives of $\bar{u}(x) \equiv v(\hat{w}+x)$ and $q(x)$ are equal at $x=0$.

The expected value utility of the risky alternative is

$$
\mathbb{E}[u(\hat{w}+x)] \approx \mathbb{E}[q(x)]=\left(\frac{1}{2}+\alpha\right) q(x)+\left(\frac{1}{2}-\alpha\right) q(-x)
$$

The general case: quadratic approximation of his utility

$$
q(x)=v(\hat{w})+v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}
$$

Class Exercise: Confirm that the value and the first two derivatives of $v(\hat{w}+x)$ and $q(x)$ are equal at $x=0$.

The expected value utility of the risky alternative is

$$
\begin{aligned}
\mathbb{E}[u(\hat{w}+x)] & \approx \mathbb{E}[q(x)]=\left(\frac{1}{2}+\alpha\right) q(x)+\left(\frac{1}{2}-\alpha\right) q(-x) \\
= & \left(\frac{1}{2}+\alpha\right)\left[v(\hat{w})+v^{\prime}(\hat{w}) x-\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}\right. \\
+ & \left(\frac{1}{2}-\alpha\right)\left[v(\hat{w})+v^{\prime}(\hat{w})(-x)-\frac{1}{2} v^{\prime \prime}(\hat{w})(-x)^{2}\right.
\end{aligned}
$$

Collecting terms,

$$
\mathbb{E}[q(x)]=v(\hat{w})+2 \alpha v^{\prime}(\hat{w}) x-\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}
$$

The general case: quadratic approximation of his utility

$$
q(x)=v(\hat{w})+v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}
$$

Class Exercise: Confirm that the value and the first two derivatives of $v(\hat{w}+x)$ and $q(x)$ are equal at $x=0$.

The expected value utility of the risky alternative is

$$
\begin{aligned}
\mathbb{E}[u(\hat{w}+x)] & \approx \mathbb{E}[q(x)]=\left(\frac{1}{2}+\alpha\right) q(x)+\left(\frac{1}{2}-\alpha\right) q(-x) \\
= & \left(\frac{1}{2}+\alpha\right)\left[v(\hat{w})+v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2}\right. \\
& +\left(\frac{1}{2}-\alpha\right)\left[v(\hat{w})+v^{\prime}(\hat{w})(-x)+\frac{1}{2} v^{\prime \prime}(\hat{w})(-x)^{2} .\right.
\end{aligned}
$$

Collecting terms,

$$
\mathbb{E}[q(x)]=v(\hat{w})+2 \alpha v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2} .
$$

The gain in expected utility is therefore

$$
\begin{aligned}
\mathbb{E}[q(x)]-v(\hat{w}) & =2 \alpha v^{\prime}(\hat{w}) x+\frac{1}{2} v^{\prime \prime}(\hat{w}) x^{2} \\
& =2 v^{\prime}(\hat{w}) x\left[\alpha-\frac{1}{4}\left(-\frac{v^{\prime \prime}(\hat{w})}{v^{\prime}(\hat{w})}\right) x\right]
\end{aligned}
$$

Thus the probability of the good outcome must be increased by $\alpha=\frac{1}{4}\left(-\frac{v^{\prime \prime}(\hat{w})}{v^{\prime}(\hat{w})}\right) x$.

