-1-

Choice under uncertainty

Part 1

1.	Introduction to choice under uncertainty	2
2.	Risk aversion	15
3.	Acceptable gambles	19
Part 2		
4.	Measures of risk aversion	24
5.	Insurance	30
6.	Efficient risk sharing	35
7.	Portfolio choice	47

57 slides

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let \overline{x} be the most preferred element of X and let \underline{x} be the least preferred element.

**

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let \overline{x} be the most preferred element of X and let \underline{x} be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X = \{x_1, x_2\}$ Let π_1 be the probability that the state is x_1 so that $\pi_2 = 1 - \pi_1$ is the probability that the state is x_2 .

We write this "consumption prospect" as follows:

 $(x;\pi) = (x_1, x_2; \pi_1, \pi_2)$

© John Riley

1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let \overline{x} be the most preferred element of X and let \underline{x} be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X = \{x_1, x_2\}$ Let π_1 be the probability that the state is x_1 so that $\pi_2 = 1 - \pi_1$ is the probability that the state is x_2 .

We write this "consumption prospect" as follows:

$$(x;\pi) = (x_1, x_2; \pi_1, \pi_2)$$

If we make the usual assumptions about preferences, but now on prospects, it follows that preferences over prospects can be represented by a continuous utility function

$$U(x_1, x_2, \pi_1, \pi_2)$$
.

Prospect or "Lottery"

 $L = (x_1, x_2, ..., x_s; \pi_1, ..., \pi_s)$

(outcomes; probabilities)

Consider two prospects or "lotteries", L_A and L_B

 $L_A = (x_1, x_2, \dots, x_S; \pi_1^A, \dots, \pi_S^A) \quad L_B = (c_1, c_2, \dots, c_S; \pi_1^B, \dots, \pi_S^B)$

Independence Axiom (axiom of complex gambles)

Suppose that a consumer is indifferent between these two prospects (we write $L_A \sim L_B$).

Then for any probabilities π_1 and π_2 summing to 1 and any other lottery L_C

 $(L_A, L_C; \pi_1, \pi_2) \sim (L_B, L_C; \pi_1, \pi_2)$

Tree representation

This axiom can be generalized as follows:

Suppose that a consumer is indifferent between the prospects L_A and L_B

and is also indifferent between the two prospects $\mathit{L}_{\!\mathit{C}}$ and $\mathit{L}_{\!\mathit{D}}$,

i.e. $L_A \sim L_B$ and $L_C \sim L_D$

Then for any probabilities π_1 and π_2 summing to 1,

 $(L_A, L_C; \pi_1, \pi_2) \sim (L_B, L_D; \pi_1, \pi_2)$

Tree representation

We wish to show that if $L_A \sim L_B$ and $L_C \sim L_D$ then

-6-

Proof: $L_A \sim L_B$ and $L_C \sim L_D$

Step 1: By the Independence Axiom, since $L_{A} \sim L_{B}$

Proof: $L_A \sim L_B$ and $L_C \sim L_D$

Step 1: By the Independence Axiom, since $L_{A} \sim L_{B}$

Step 2: By the Independence Axiom, since $L_C \sim L_D$

Expected utility

Consider some very good outcome \overline{x} and very bad outcome \underline{x} and outcomes x_1 and x_2 satisfying

 $\underline{x} \prec x_1 \prec \overline{x}$ and $\underline{x} \prec x_2 \prec \overline{x}$

Reference lottery

 $L_{R}(v) = (\overline{w}, \underline{w}, v, 1-v)$ so v is the probability of the very good outcome.

$$L_R(0) \prec x_1 \prec L_R(1)$$
 and $L_R(0) \prec x_2 \prec L_R(1)$

Then for some probabilities $v(x_1)$ and $v(x_2)$

 $x_1 \sim L_R(v(x_1)) = (\bar{x}, \underline{x}; v(x_1), 1 - v(x_1)) \text{ and } x_2 \sim L_R(v(x_2)) = (\bar{x}, \underline{x}; v(x_2), 1 - v(x_2))$

Then by the independence axiom

Definition: Expectation of v(x)

$$\mathbb{E}[v(x)] \equiv \pi_1 v(x_1) + \pi_2 v(x_2)$$

Note that in the big tree there are only two outcomes, \overline{x} and \underline{x} . The probability of the very good outcome is $\pi_1 v(x_1) + \pi_2 v(x_2) = \mathbb{E}[v(x)]$

The probability of the very bad outcome is $1 - \mathbb{E}[v(x)]$. Therefore

© John Riley

We showed that

i.e.

$$(x_1, x_2; \pi_1, \pi_2) \sim (\overline{x}, \underline{x}; \mathbb{E}[v], 1 - \mathbb{E}[v])$$

Thus the expected win probability in the reference lottery is a representation of preferences over prospects.

An example:

A consumer with wealth \hat{w} is offered a "fair gamble". With probability $\frac{1}{2}$ his wealth will be $\hat{w}+x$ and with probability $\frac{1}{2}$ his wealth will be $\hat{w}-x$. If he rejects the gamble his wealth remains \hat{w} . Note that this is equivalent to a prospect with x=0

In prospect notation the two alternatives are

$$(w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})$$

and

 $(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \frac{1}{2}, \frac{1}{2}).$

These are depicted in the figure assuming x > 0.

Expected utility

 $U(w_1, w_2, \pi_1, \pi_2) = \mathbb{E}[v] = \pi_1 v(w_1) + \pi_2 v(w_2)$

Class discussion

MRS if v(w) is a concave function

Convex preferences

The two prospects are depicted opposite. The level set for $U(w_1, w_2; \frac{1}{2}, \frac{1}{2})$ through the riskless prospect N is depicted.

Note that the superlevel set

 $U(w_1, w_2; \frac{1}{2}, \frac{1}{2}) \ge U(\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})$

is a convex set.

Convex preferences

The two prospects are depicted opposite. The level set for $U(w_1, w_2; \frac{1}{2}, \frac{1}{2})$ through the riskless prospect N is depicted.

Note that the superlevel set

 $U(w_1, w_2; \frac{1}{2}, \frac{1}{2}) \ge U(\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})$

is a convex set.

This is the set of acceptable gambles for the consumer.

As depicted the consumer strictly prefers the riskless prospect N to the risky prospect R .

Most individuals, when offered such a gamble (say over \$5) will not take this gamble.

2. Risk aversion

Class Discussion: Which alternative would you choose?

N:
$$(w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \pi_1, \pi_2)$$
 R: $(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2)$ where $\pi_1 = \frac{50}{100}$

What if the gamble were "favorable" rather than "fair"

R:
$$(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2)$$
 where (i) $\pi_1 = \frac{55}{100}$ (ii) $\pi_1 = \frac{60}{100}$ (iii) $\pi_1 = \frac{75}{100}$

© John Riley

N:
$$(w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \pi_1, \pi_2)$$
 R: $(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2)$ where $\pi_1 = \frac{50}{100}$

What if the gamble were "favorable" rather than "fair"

R:
$$(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2)$$
 where (i) $\pi_1 = \frac{55}{100}$ (ii) $\pi_1 = \frac{60}{100}$ (iii) $\pi_1 = \frac{75}{100}$

What is the smallest integer *n* such that you would gamble if $\pi_1 = \frac{n}{100}$?

Preference elicitation

In an attempt to elicit your preferences write down your number n (and your first name) on a piece of paper. The two participants with the lowest number n will be given the riskless opportunity.

Let the three lowest integers be n_1, n_2, n_3 . The win probability will not be $\frac{n_1}{100}$ or $\frac{n_2}{100}$. Both will get the higher win probability $\frac{n_3}{100}$.

- -

2. Risk preferences

$$U(x,\pi) = \pi_1 v(x_1) + \pi_2 v(x_2)$$
 or $U(x,\pi) = \mathbb{E}[v]$

Risk preferring consumer

Consider the two wealth levels x_1 and $x_2 > x_1$.

 $v(\pi_1 x_1 + \pi_2 x_2) < \pi_1 v(x_1) + \pi_2 v(x_2)$

If v(x) is convex, then the slope of v(x)

is strictly increasing as shown in the top figure.

Consumer prefers risk

 $U(x,\pi) = \pi_1 v(x_1) + \pi_2 v(x_2)$

Risk averse consumer

 $v(\pi_1 x_1 + \pi_2 x_2) > \pi_1 v(x_1) + \pi_2 v(x_2)$.

In the lower figure u(x) is strictly concave so that

 $v(\pi_1 x_1 + \pi_2 x_2) > \pi_1 v(x_1) + \pi_2 v(x_2) = \mathbb{E}[v].$

In practice consumers exhibit aversion to such a risk. Thus we will (almost) always assume that the expected utility function v(x) is a strictly increasing strictly concave function.

v(x) $\mathbb{E}[v]$ X $\pi_1 x_1 + \pi_2 x_2$ X_1 x_2 Consumer prefers risk v(x) $\mathbb{E}[v]$ $\pi_1 x_1 + \pi_2 x_2$ x_2 x_1 **Risk averse consumer**

Class Discussion:

If consumers are risk averse why do they go to Las Vegas?

3. Acceptable gambles: Improving the odds to make the gamble just acceptable.

New risky alternative: $(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \frac{1}{2} + \alpha, \frac{1}{2} - \alpha).$

Choose α so that the consumer is indifferent between gambling and not gambling.

3. Acceptable gamble: Improving the odds to make the gamble just acceptable.

-20-

New risky alternative: $(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \frac{1}{2} + \alpha, \frac{1}{2} - \alpha).$

Choose lpha so that the consumer is indifferent between gambling and not gambling.

For small x we can use the quadratic approximation of the utility function

Quadratic approximation of his utility

As long as x is small we can approximate his utility as a quadratic. Suppose $u(w+x) = \ln(w+x)$. Define $\overline{u}(x) = \ln(w+x)$.

Then (i)
$$\bar{u}(0) = \ln w$$
 (ii) $\bar{u}'(0) = \frac{1}{w}$ and (iii) $\bar{u}''(0) = -\frac{1}{w^2}$

Consider the quadratic function

$$q(x) = \ln w + (\frac{1}{w})x - \frac{1}{2}(\frac{1}{w^2})x^2 .$$
(3.1)

If you check you will find that $\overline{u}(x)$ and q(x) have the same, value, first derivative and second derivative at x=0. We then use this quadratic approximation to compute the gambler's (approximated) expected gain.

With probability $\frac{1}{2} + \alpha$ his payoff is q(x) and with probability $\frac{1}{2} - \alpha$ his payoff is q(-x). Therefore his expected payoff is

-21-

$$\mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)$$

Substituting from (3.1)

$$\mathbb{E}[q(x)] = (\frac{1}{2} + \alpha) [\ln w + (\frac{1}{w})x - \frac{1}{2}(\frac{1}{w^2})x^2 + (\frac{1}{2} - \alpha) [\ln w + (\frac{1}{w})(-x) - \frac{1}{2}(\frac{1}{w^2})(-x)^2.$$

With probability $\frac{1}{2} + \alpha$ his payoff is q(x) and with probability $\frac{1}{2} - \alpha$ his payoff is q(-x). Therefore his expected payoff is

$$\mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)$$

Substituting from (3.1)

$$\mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)[\ln w + (\frac{1}{w})x - \frac{1}{2}(\frac{1}{w^2})x^2 + (\frac{1}{2} - \alpha)[\ln w + (\frac{1}{w})(-x) - \frac{1}{2}(\frac{1}{w^2})(-x)^2]$$

Collecting terms,

$$\mathbb{E}[q(x)] = \ln w + 2\alpha(\frac{1}{w})x - \frac{1}{2}(\frac{1}{w^2})x^2.$$

If the gambler rejects the opportunity his utility is $\ln w$. Thus his expected gain is

$$\mathbb{E}[q(x)] - \ln w = 2\alpha(\frac{1}{w})x - \frac{1}{2}(\frac{1}{w^2})x^2 = \frac{2x}{w}[\alpha - \frac{1}{4}(\frac{1}{w})x].$$

Thus the gambler should take the small gamble if and only if $\alpha > \frac{1}{4}(\frac{1}{w})x$.

The general case: quadratic approximation of his utility

 $q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^{2}$

Class Exercise: Confirm that the value and the first two derivatives of $\overline{u}(x) \equiv v(\hat{w}+x)$ and q(x) are equal at x=0.

The expected value utility of the risky alternative is

 $\mathbb{E}[u(\hat{w}+x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)$

**

The general case: quadratic approximation of his utility

 $q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^{2}$

Class Exercise: Confirm that the value and the first two derivatives of $v(\hat{w}+x)$ and q(x) are equal at x=0.

The expected value utility of the risky alternative is

$$\mathbb{E}[u(\hat{w}+x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)$$
$$= (\frac{1}{2} + \alpha)[v(\hat{w}) + v'(\hat{w})x - \frac{1}{2}v''(\hat{w})x^{2}$$
$$+ (\frac{1}{2} - \alpha)[v(\hat{w}) + v'(\hat{w})(-x) - \frac{1}{2}v''(\hat{w})(-x)^{2}.$$

Collecting terms,

$$\mathbb{E}[q(x)] = v(\hat{w}) + 2\alpha v'(\hat{w})x - \frac{1}{2}v''(\hat{w})x^2.$$

The general case: quadratic approximation of his utility

 $q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^{2}$

Class Exercise: Confirm that the value and the first two derivatives of $v(\hat{w}+x)$ and q(x) are equal at x=0.

The expected value utility of the risky alternative is

$$\mathbb{E}[u(\hat{w}+x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)$$
$$= (\frac{1}{2} + \alpha)[v(\hat{w}) + v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^{2}$$
$$+ (\frac{1}{2} - \alpha)[v(\hat{w}) + v'(\hat{w})(-x) + \frac{1}{2}v''(\hat{w})(-x)^{2}.$$

Collecting terms,

$$\mathbb{E}[q(x)] = v(\hat{w}) + 2\alpha v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^2.$$

The gain in expected utility is therefore

$$\mathbb{E}[q(x)] - v(\hat{w}) = 2\alpha v'(\hat{w})x + \frac{1}{2}v''(\hat{w})x^2$$
$$= 2v'(\hat{w})x[\alpha - \frac{1}{4}(-\frac{v''(\hat{w})}{v'(\hat{w})})x]$$

Thus the probability of the good outcome must be increased by $\alpha = \frac{1}{4} \left(-\frac{v''(\hat{w})}{v'(\hat{w})}\right)x$.