Econ 401a Final Examination

Sketch of answers

1. Choice over time

(a) $\quad x_{1}=y_{1}-S$,

$$
x_{2}=y_{2}+(1+r) s
$$

Then

$$
\frac{x_{2}}{1+r}=\frac{y_{2}}{1+r}+s
$$

Adding,

$$
x_{1}+\frac{x_{2}}{1+r}=y_{1}+\frac{y_{2}}{1+r}
$$

(b) The slope of the life-time budget line
is $1+r$. The initial optimum is \bar{X}.
When r rises the compensated consumption vector is x^{C}. The saver is

better off with a higher interest rate so the consumer has to be taxed to consume at x^{C}. Give the tax back and the consumer moves from x^{C} to $\overline{\bar{x}}$

Note that the substitution effect and (normal) income effects are reinforcing for commodity 2 but offsetting for commodity 1.
(c) For a borrower the consumer has to be subsidized at x^{C}. Taking the subsidy back reduces demand for both commodities in the normal case. Now the two effects are reinforcing for commodity 1 and offsetting for commodity 2.
$\operatorname{Max}\left\{U(x)=x_{1}^{1 / 2}+x_{2}^{1 / 2} \left\lvert\, x_{1}+\frac{x_{2}}{1+r}=y_{1}+\frac{y_{2}}{1+r}\right.\right\}$.

FOC
$\frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}: \frac{M U_{1}}{1}=\frac{(1+r) M U_{2}}{1} ; \quad \frac{\frac{1}{2}}{x_{1}^{1 / 2}}=\frac{\frac{1}{2}(1+r)}{x_{2}^{1 / 2}}$.
Then
$\frac{1}{x_{1}}=\frac{(1+r)^{2}}{x_{2}}=\frac{1+r}{\frac{x_{2}}{1+r}}=\frac{2+r}{x_{1}+\frac{x_{2}}{1+r}}=\frac{2+r}{W}$
Then $\bar{x}=\left(\frac{W}{2+r}, \frac{(1+r)^{2} W}{2+r}\right)$.
With three periods
FOC
$\frac{\frac{1}{2}}{x_{1}^{1 / 2}}=\frac{\frac{1}{2}(1+r)}{x_{2}^{1 / 2}}=\frac{\frac{1}{2}(1+r)^{2}}{x_{3}^{1 / 2}}$.
$\frac{1}{x_{1}}=\frac{(1+r)^{2}}{x_{2}}=\frac{(1+r)^{4}}{x_{3}}$
$\frac{1}{x_{1}}=\frac{1+r}{\frac{x_{2}}{1+r}}=\frac{(1+r)^{2}}{\frac{x_{3}}{(1+r)^{2}}}=\frac{1+(1+r)+(1+r)^{2}}{W}$
Then solve for \bar{x}.

2. Walrasian Equilibrium with production

(a) $U(x)=3 \ln x_{1}+2 \ln x_{2}+\ln x_{3}$
$U(\theta x)=3 \ln \theta x_{1}+2 \ln \theta x_{2}+\ln \theta x_{3}=6 \ln \theta+3 \ln x_{1}+2 \ln x_{2}+\ln x_{3}=6 \ln \theta+U(x)$.
Thus if $U(y) \geq U(x)$ then $U(\theta y) \geq U(\theta x)$
(b) $x_{1}=\omega_{1}-z_{1}=80-z_{1}, x_{1}=\omega_{2}-z_{2}=6-z_{2} \quad x_{3}=q=z_{1}^{1 / 4} z_{2}^{1 / 2}$

$$
\begin{aligned}
U(x) & =3 \ln \left(80-z_{1}\right)+2 \ln \left(6-z_{2}\right)+\ln z_{1}^{1 / 2} z_{2}^{2 / 3} \\
& =3 \ln \left(80-z_{1}\right)+2 \ln \left(6-z_{2}\right)+\frac{1}{3} \ln z_{1}+\frac{2}{3} \ln z_{2}
\end{aligned}
$$

FOC

$$
\frac{\partial U}{\partial z_{1}}=-\frac{3}{80-z_{1}}+\frac{\frac{1}{3}}{z_{1}}=0 \quad \text { Therefore } \frac{3}{80-z_{1}}=\frac{\frac{1}{3}}{z_{1}}=\frac{\frac{10}{3}}{80}=\frac{\frac{1}{3}}{8} \text { and so } \bar{z}_{1}=8
$$

$$
\frac{\partial U}{\partial z_{2}}=-\frac{1}{4-z_{2}}+\frac{\frac{2}{3}}{z_{2}}=0 . \text { Therefore } \frac{\frac{2}{3}}{z_{2}}=\frac{2}{4-z_{2}}=\frac{\frac{8}{3}}{4}=\frac{\frac{2}{3}}{1} \text { and so } \bar{z}_{2}=1
$$

Then $x_{1}=72, x_{2}=3$. Also $q_{3}=24(2)=48$ so $x_{3}=48$
Profit

$$
\begin{aligned}
& \pi=p_{3} z_{1}^{1 / 3} z_{2}^{2 / 3}-p_{1} z_{1}-p_{2} z_{2} \text { with } p_{3}=1 \\
& \frac{\partial \pi}{\partial z_{1}}=\frac{1}{3} 24 z_{1}^{-2 / 3} z_{2}^{2 / 3}-p_{1}=\frac{1}{3} \frac{24}{4}-p_{1}=0 . \text { so } p_{1}=2 \\
& \frac{\partial \pi}{\partial z_{2}}=\frac{2}{3} 24 z_{1}^{1 / 3} z_{2}^{-1 / 3}-p_{2}=\frac{2}{3} 48-p_{2}=0 . \text { so } p_{2}=32
\end{aligned}
$$

For the consumer

$$
\begin{aligned}
& \frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}=\frac{M U_{3}}{p_{3}} \\
& \frac{3}{p_{1} x_{1}}=\frac{2}{p_{2} x_{2}}=\frac{1}{p_{3} x_{3}}
\end{aligned}
$$

$\bar{x}=(72,3,48)$ so we require that

$$
\frac{3}{(2) 72}=\frac{2}{(32) 3}=\frac{1}{(1) 48}
$$

This is satisfied.

3. State claims equilibrium prices and asset prices

(a) $U(x, \pi)=\frac{1}{3} x_{1}^{1 / 2}+\frac{1}{3} x_{2}^{1 / 2}+\frac{1}{3} x_{3}^{1 / 2}$
$U(\theta x, \pi)=\frac{1}{3}\left(\theta x_{1}\right)^{1 / 2}+\frac{1}{3}\left(\theta x_{2}\right)^{1 / 2}+\frac{1}{3}\left(\theta x_{3}\right)^{1 / 2}=\theta\left(\frac{1}{3} x_{1}^{1 / 2}+\frac{1}{3} x_{2}^{1 / 2}+\frac{1}{3} x_{3}^{1 / 2}\right)=\theta U(x, \pi)$
(b) FOC
$\frac{M U_{1}}{p_{1}}=\frac{M U_{2}}{p_{2}}=\frac{M U_{3}}{p_{3}}$
$\frac{\frac{1}{6} \bar{x}_{1}^{-1 / 2}}{p_{1}}=\frac{\frac{1}{6} \bar{x}_{2}^{-1 / 2}}{p_{2}}=\frac{\frac{1}{6} \bar{x}_{3}^{-1 / 2}}{p_{3}}$,
For the representative consumer $\bar{x}=\omega=(64,25,9)$. Therefore
$\frac{(64)^{-1 / 2}}{p_{1}}=\frac{(25)^{-1 / 2}}{p_{2}}=\frac{(9)^{-1 / 2}}{p_{3}}$ i.e. $8 p_{1}=5 p_{2}=3 p_{3}$
Then $p=\left(1, \frac{8}{5}, \frac{8}{3}\right)$ is a WE price vector
(c) The value of asset a is $p \cdot z^{a}=\left(1, \frac{8}{5}, \frac{8}{3}\right) \cdot(40,10,3)=64$

The value of asset b is $p \cdot z^{b}=\left(1, \frac{8}{5}, \frac{8}{3}\right) \cdot(24,15,6)=64$
(d) If you own all of both assets you own the entire endowment (your optimal consumption)

If you own assets worth 1% of the market portfolio you want to consumer 1%
of ω and you can achieve this by buying 1% of each asset.
(e) From the answer to (d), you simply buy a share of the market portfolio (a mutual fund)

4. Production and Cost

After spending the fixed cost the net budget is $B-18$. Then
$r_{1} z_{1}+r_{2} z_{2}=4 z_{1}+8 z_{2} \leq B-18$
$\operatorname{Max}\left\{q=z_{1}^{1 / 4} z_{2}^{1 / 2} \mid 4 z_{1}+8 z_{2} \leq B-18\right\}$
$\operatorname{Max}\left\{\left.\frac{1}{4} \ln z_{1}+\frac{1}{2} \ln z_{2} \right\rvert\, 4 z_{1}+8 z_{2} \leq B-18\right\}$

$$
\frac{\frac{1}{4}}{4 z_{1}}=\frac{\frac{1}{2}}{8 z_{2}}=\frac{\frac{3}{4}}{4 z_{1}+8 z_{2}}=\frac{\frac{3}{4}}{B-18} .
$$

From the first equation, $z_{1}=z_{2}$.
Therefore $z_{1}=\frac{B-18}{12}$
Therefore
$q(B)=z_{1}^{1 / 4} z_{2}^{1 / 2}=z_{1}^{3 / 4}=\left(\frac{B-18}{12}\right)^{3 / 4}$.
Suppose the firm wants to produce \hat{q}. Choose \hat{B} so that $\hat{q}=q(\hat{B})$. Since $q(B)$ is strictly increasing, with any smaller budget \hat{q} is not feasible. Thus \hat{B} is the smallest budget.

$$
q=\left(\frac{C-64}{12}\right)^{3 / 4}
$$

Therefore
$C=64+12 q^{4 / 3}$
$A C=\frac{64+12 q^{4 / 3}}{q} . M C=16 q^{1 / 3}$.
At the minimum $A C=M C$ and so $4 q^{4 / 3}=64$. Then $\underline{q}=8$ and so $p=M C=32$.

5. Quantity competition

(a) $p_{1}-c=60-2 q_{1}-q_{2}$.

Then profit is

$$
\begin{aligned}
& U_{1}\left(q_{1}, q_{2}\right)=\left(p_{1}-c\right) q_{1}=60 q_{1}-2 q_{1}^{2}-q_{2} q_{1} \\
& \frac{\partial U_{1}}{\partial q_{1}}=60-4 q_{1}-q_{2}=0 \text { and so the best response is } q_{1}^{b}=15-\frac{1}{4} q_{2}
\end{aligned}
$$

By the same argument

$$
q_{2}^{b}=15-\frac{1}{4} q_{1}
$$

Mutual best responses
$q_{1}^{b}=15-\frac{1}{4} q_{2}^{b}$ and $q_{1}^{b}=15-\frac{1}{4} q_{2}^{b}$.
Guess $q_{1}^{b}=q_{2}^{b}$ and solve $\bar{q}=(12,12)$
(c) $\quad p_{1}-c=60-2 q_{1}-q_{2}-q_{3}$.

$$
U_{1}\left(q_{1}, q_{2}\right)=\left(p_{1}-c\right) q_{1}=60 q_{1}-2 q_{1}^{2}-q_{2} q_{1}-q_{3} q_{1}
$$

$\frac{\partial U_{1}}{\partial q_{1}}=60-4 q_{1}-q_{2}-q_{3}=0$ and so the best response is $q_{1}^{b}=15-\frac{1}{4}\left(q_{2}+q_{3}\right)$.
Appealing to symmetry

$$
q_{1}^{b}=15-\frac{1}{4}\left(q_{2}^{b}+q_{3}^{b}\right)=15-\frac{1}{4}\left(q_{1}^{b}+q_{1}^{b}\right)=15-\frac{1}{2} q_{1}^{b} \text {. Then } \bar{q}=(10,10,10) \text {. }
$$

(d) $U_{1}\left(q_{1}, q_{2}^{b}\right)=\left(p_{1}-c\right) q_{1}=60 q_{1}-2 q_{1}{ }^{2}-q_{2}^{b} q_{1}=60 q_{1}-2 q_{1}{ }^{2}-\left(15-\frac{1}{4} q_{1}\right) q_{1}$

$$
\frac{\partial U_{1}}{\partial q_{1}}=60-4 q_{1}-15+\frac{1}{2} q_{1}=45-\frac{7}{2} q_{1}=0 . \text { Then } q_{1}^{*}=12 \frac{6}{7} \text {. }
$$

(e) When firm 1 raises its output it understands that form 2 will respond by lowering its output and that this will raise p_{1}. So the marginal revenue is higher.

6. All pay auction

$F(\theta)=\theta-1$
$U(\theta)=W(\theta) \theta-B(\theta)=F(\theta) \theta-B(\theta)$.

Method presented in course

Consider a deviation from the best response in which a buyer always bids $B(\hat{\theta})$. His payoff is $U_{D}(\theta)=F(\hat{\theta}) \theta-B(\hat{\theta})$

Note that this is linear with slope $F(\hat{\theta})$.
The graphs of the two functions are depicted.

It cannot be better to deviate so the two curves have the same slope at $\hat{\theta}$. So $U^{\prime}(\hat{\theta})=F(\hat{\theta})$.

This argument holds for all $\hat{\theta}$

Alternative method.

Appeal to the Envelope Theorem as follows:
Any bid b can be written as $b=B(x)$ for some x. If the buyer bids $b=B(x)$ her win probability is $W(x)=\operatorname{Pr}\left\{\theta_{2} \leq x\right\}=F(x)$.

Her expected payoff is therefore

$$
u(\theta, x)=W(x)(\theta-B(x))
$$

For $B(\theta)$ to be a best response, this takes on it maximum at $x=\theta$.

$$
U(\theta)=\operatorname{Max}_{x}\{W(x)(\theta-B(x))\}
$$

By the Envelope Theorem it follows that $U^{\prime}(\theta)=\left.\frac{\partial}{\partial \theta} u(\theta, x)\right|_{x=\theta}=W(\theta)$.
Remark: Note that the class method is actually a proof of the Envelope Theorem for the auction case.
(b) Therefore

$$
U^{\prime}(\theta)=F(\theta)=\theta-1
$$

Then

$$
U(\theta)=\frac{1}{2}(\theta-1)^{2}+K
$$

The lowest type has a zero probability of winning so $U(1)=0$. Then $K=0$

$$
U(\underline{\theta})=\frac{1}{2}(\underline{\theta}-1)^{2}+K
$$

Therefore

$$
\begin{aligned}
& (\theta-1) \theta-B(\theta)=\frac{1}{2}(\theta-1)^{2} \\
& B(\theta)=(\theta-1) \theta-\frac{1}{2}(\theta-1)^{2}=(\theta-1)\left(\theta-\frac{1}{2}(\theta-1)\right)=\frac{1}{2}(\theta-1)(1+\theta)
\end{aligned}
$$

(c) $U(\underline{\theta})=(\underline{\theta}-1) \underline{\theta}-B(\underline{\theta})=\left(\frac{3}{2}-1\right) \frac{3}{2}-B(\underline{\theta})=\frac{3}{4}-B(\underline{\theta})=0$.

Therefore $B(\underline{\theta})=\frac{3}{4}$.
(d) $U(\theta)=\frac{1}{2}(\theta-1)^{2}+K$

$$
\begin{aligned}
& U(\underline{\theta})=\frac{1}{2}(\underline{\theta}-1)^{2}+K \text { so } K=-\frac{1}{8} . \\
& U(\theta)=\frac{1}{2}(\theta-1)^{2}-\frac{1}{8} \\
& U(\theta)=W(\theta) \theta-B(\theta)=F(\theta) \theta-B(\theta)=(\theta-1) \theta-B(\theta) .
\end{aligned}
$$

Then

$$
(\theta-1) \theta-B(\theta)=U(\theta)=\frac{1}{2}(\theta-1)^{2}-\frac{1}{8}
$$

7. Auction with multiple units for sale

(a) A bit sketchy but OK answer.

If I win I pay L, the lowest of the other bids. This is independent of my bid. I want to win if my value is higher than L and lose if my value is lower than L.

If I bid my value θ I win if and only if $\theta-L \geq 0$.
A perfect answer
(i) If I bid $b<\theta$ the only time it matters is if the maximum of the other bids, m is between, i.e. $b<m<\theta$. If I had bid θ I would have won and made a profit of $\theta-m$
(ii) If I bid $b>\theta$ the only time it matters is if the maximum of the other bids, m is between, i.e. $\theta<m<b$. If I had bid θ I would have not won. By bidding b my loss is $\theta-m$
(b) The argument above is not based on the strategies of the other players so yes.

$$
\operatorname{Pr}\left\{\theta_{i} \leq \theta\right\}=F(\theta)=\theta
$$

(c) If $B(\theta)$ is strictly increasing I lose to another buyer if his bid is higher than mine i.e. if his value is higher than mine. This probability is $1-\operatorname{Pr}\left\{\theta_{i} \leq \theta\right\}=1-F(\theta)=1-\theta$.

I win an item unless I lose to all three other buyers so my loss probability is $(1-\theta)^{3}$. Then my win probability is

$$
W(\theta)=1-(1-\theta)^{3} .
$$

(d) My expected payoff is

$$
\begin{equation*}
U(\theta)=W(\theta)(\theta-B(\theta)) \tag{*}
\end{equation*}
$$

By the argument in (6)

$$
U^{\prime}(\theta)=W(\theta)
$$

A buyer with value 0 has a zero probability of winning so $U(0)=0$.
Then

$$
U(\theta)=\int_{0}^{\theta} W(x) d x
$$

(e) Solve for $U(\theta)$ and substitute into (*).
(f) In both cases $U(\theta)=\int_{0}^{\theta} W(x) d x$ and the win probability is the same. So the buyers are indifferent.

Then the seller must be as well.

