Answers to Final Practice questions

1 and 7 only

Exercise 1

(a)

(i)
$$\overline{F}(\frac{1}{2}) = \frac{1}{2}$$
, $\overline{\overline{F}}(\frac{1}{2}) = 2(\frac{1}{2})^2 = \frac{1}{2}$
(ii) $\overline{F}(\theta) - \overline{\overline{F}}(\theta) = \theta - 2\theta^2 = 2\theta(\frac{1}{2} - \theta) > 0$ for θ in $(0, \frac{1}{2})$.
(iii) $\overline{F}(\theta) - \overline{\overline{F}}(\theta) = (1 - \overline{\overline{F}}(\theta)) - (1 - \overline{F}(\theta))$
 $= 2(1 - \theta)^2 - (1 - \theta) = (1 - \theta)[2(1 - \theta) - 1]$
 $= 2(1 - \theta)(\frac{1}{2} - \theta) < 0$ for θ in $(\frac{1}{2}, 1)$.

(b) Direct method

$$\overline{U}'(\theta) = W(\theta) = F(\theta) = \theta$$
.

Therefore

$$\overline{U}(\theta) = \overline{U}(0) + \int_{0}^{\theta} \theta d\theta = \frac{1}{2}\theta^{2}$$
 since $\overline{U}(0) = 0$.

On $[0,\frac{1}{2}]$ $\overline{\overline{F}}(\theta) = 2\theta^2$.

Therefore

$$\overline{\overline{U}}(\theta) = \overline{\overline{U}}(0) + \int_{0}^{\theta} 2\theta^{2} d\theta = \frac{2}{3}\theta^{3} \text{ since } \overline{\overline{U}}(0) = 0.$$

Therefore $\bar{\overline{U}}(\frac{1}{2}) = \frac{1}{12}$

On
$$[\frac{1}{2}, 1] \ \overline{\bar{F}}(\theta) = 1 - 2(1 - \theta)^2$$
.

Therefore

$$\overline{\overline{U}}(1) = \overline{\overline{U}}(\frac{1}{2}) + \int_{\frac{1}{2}}^{1} (1 - 2(1 - \theta)^2) d\theta = \frac{1}{12} + \int_{\frac{1}{2}}^{1} d\theta - 2\int_{\frac{1}{2}}^{1} (1 - \theta)^2 d\theta$$
$$\int_{\frac{1}{2}}^{1} d\theta = \theta |_{\frac{1}{2}}^{1} = 1 - \frac{1}{2} = \frac{1}{2},$$

$$\int_{\frac{1}{2}}^{1} (1-\theta)^2 d\theta = -\frac{1}{3}(1-\theta)^3 \Big|_{\frac{1}{2}}^{1} = -\frac{1}{3}(1-\frac{1}{2})^3 = -\frac{1}{12}$$

Therefore $\overline{\overline{U}}(1) = \frac{1}{2}$.

(b) General method.

Since the distributions are symmetric the mean for both is $\ \mu=rac{1}{2}$.

In class we showed that

$$\mu = \beta - \int_{\alpha}^{\beta} F(\theta) d\theta = 1 - \int_{0}^{1} F(\theta) d\theta .$$
$$U'(\theta) = W(\theta) = F(\theta) = \theta .$$

Therefore

$$U(1) = U(0) + \int_{\alpha}^{1} F(\theta) d\theta = 1 - \mu = \frac{1}{2} .$$

Thus the equilibrium payoff is the same for a buyer with the maximum value.

(c)
$$U(\theta) = F(\theta)(\theta - B(\theta))$$

Therefore

$$U(1) = F(1)(1 - B(1)) = 1 - B(1)$$

From (b) it follows that $B(1) = \frac{1}{2}$.

(d)

 $\overline{F}(\theta)\!>\!\overline{\overline{F}}(\theta)$ for $0\!<\!\theta\!<\!\frac{1}{2}$. Therefore

$$\overline{U}'(\theta) = \overline{F}(\theta) > \overline{\overline{F}}(\theta) = \overline{\overline{U}}'(\theta) \text{ for } 0 < \theta < \frac{1}{2} . \quad (*)$$

 $\overline{F}(\theta)\!<\!\overline{\overline{F}}(\theta)$ for $\frac{1}{2}\!<\!\theta\!<\!1$. Therefore

$$\overline{U}'(\theta) = \overline{F}(\theta) < \overline{\overline{F}}(\theta) = \overline{\overline{U}}'(\theta) \text{ for } \frac{1}{2} < \theta < 1.$$

(e) From (*) $\overline{U}(\theta)$ rises more quickly than $\overline{\overline{U}}(\theta)$ when $0 < \theta < \frac{1}{2}$. Since the payoffs are zero for a zero value buyer it follows that

Also from (b) $\bar{U}(1)\!=\!\bar{\bar{U}}(1)\!=\!1\!-\mu$.

(f) From (**), $\overline{U}(\theta)$ rises less quickly than $\overline{\overline{U}}(\theta)$ when $\frac{1}{2} < \theta < 1$. Since the payoffs are equal for a buyer with value 1 it follows that

$$\overline{U}(\theta) > \overline{\overline{U}}(\theta)$$
 for $\frac{1}{2} < \theta < 1$.

(g)

From (b)

On
$$[0, \frac{1}{2}] \ \overline{\overline{F}}(\theta) = 2\theta^2$$
.

Therefore

$$\overline{\overline{U}}(\theta) = \frac{2}{3}\theta^3$$

Also

$$\overline{\overline{U}}(\theta) = \overline{\overline{F}}(\theta)(\theta - \overline{\overline{B}}(\theta)) = 2\theta(\theta - \overline{\overline{B}}(\theta)) = 2\theta^3 - 2\theta^2 \overline{\overline{B}}(\theta)$$

Therefore

$$2\theta^2 \overline{\overline{B}}(\theta) = \frac{4}{3}\theta^3$$
 and so $\overline{\overline{B}}(\theta) = \frac{2}{3}\theta$

In the uniform case $\overline{B}(\theta) = \frac{1}{2}\theta$.

7. Two items for sale and three buyers

(a) You win unless your bid is lowest. Assuming that the equilibrium bid function, $B(\theta)$, is strictly increasing, it follows that you lose only if your value is the lowest.

An opposing buyer has a higher value than buyer 1 with value θ_1 with probability $1 - F(\theta_1)$. Thus both have higher values with probability $(1 - F(\theta_1))$. This is the prbabiolity that youlosae.

Thus the equilibrium win probability is

$$W(\theta_1) = 1 - (1 - F(\theta_1))^2$$
.

For the uniform case it follows that

$$W(\theta_1) = 2\theta_1 - \theta_1^2$$
.

(b) You pay your bid $B(\theta_1)$ if you win one of the items. Therefore

$$U(\theta_1) = W(\theta_1)(\theta_1 - B(\theta_1))$$
.

It follows that if we can solve for the equilibrium payoff we can solve for the equilibrium bid function.

But from the equivalence theorem

$$U'(\theta) = W(\theta)$$

Also U(0) = 0.

Thus the solution is obtained in the usual way.

$$U(\theta_1) = \int_0^{\theta_1} U'(\theta) d\theta = \int_0^{\theta_1} W(\theta) d\theta = \int_0^{\theta_1} (2\theta - \theta^2) d\theta = \theta_1^2 - \frac{1}{3}\theta_1^3$$

Finally

$$U(\theta_1) = W(\theta_1)(\theta_1 - B(\theta_1)) = (2\theta_1 - \theta_1^2)(\theta_1 - B(\theta_1))$$

Equate these and solve for $B(heta_1)$.