Answers to Final Practice questions

1 and 7 only

Exercise 1

(a)
(i) $\bar{F}\left(\frac{1}{2}\right)=\frac{1}{2}, \overline{\bar{F}}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{2}=\frac{1}{2}$
(ii) $\bar{F}(\theta)-\overline{\bar{F}}(\theta)=\theta-2 \theta^{2}=2 \theta\left(\frac{1}{2}-\theta\right)>0$ for θ in $\left(0, \frac{1}{2}\right)$.
(iii) $\bar{F}(\theta)-\overline{\bar{F}}(\theta)=(1-\overline{\bar{F}}(\theta))-(1-\bar{F}(\theta))$

$$
\begin{aligned}
& =2(1-\theta)^{2}-(1-\theta)=(1-\theta)[2(1-\theta)-1] \\
& =2(1-\theta)\left(\frac{1}{2}-\theta\right)<0 \text { for } \theta \text { in }\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

(b) Direct method

$$
\bar{U}^{\prime}(\theta)=W(\theta)=F(\theta)=\theta
$$

Therefore

$$
\bar{U}(\theta)=\bar{U}(0)+\int_{0}^{\theta} \theta d \theta=\frac{1}{2} \theta^{2} \text { since } \bar{U}(0)=0
$$

On $\left[0, \frac{1}{2}\right] \overline{\bar{F}}(\theta)=2 \theta^{2}$.
Therefore

$$
\overline{\bar{U}}(\theta)=\overline{\bar{U}}(0)+\int_{0}^{\theta} 2 \theta^{2} d \theta=\frac{2}{3} \theta^{3} \text { since } \overline{\bar{U}}(0)=0
$$

Therefore $\overline{\bar{U}}\left(\frac{1}{2}\right)=\frac{1}{12}$
On $\left[\frac{1}{2}, 1\right] \overline{\bar{F}}(\theta)=1-2(1-\theta)^{2}$.
Therefore

$$
\begin{aligned}
& \left.\overline{\bar{U}}(1)=\overline{\bar{U}}\left(\frac{1}{2}\right)+\int_{\frac{1}{2}}^{1}\left(1-2(1-\theta)^{2}\right) d \theta=\frac{1}{12}+\int_{\frac{1}{2}}^{1} d \theta-2 \int_{\frac{1}{2}}^{1}(1-\theta)^{2}\right) d \theta \\
& \int_{\frac{1}{2}}^{1} d \theta=\left.\theta\right|_{\frac{1}{2}} ^{1}=1-\frac{1}{2}=\frac{1}{2},
\end{aligned}
$$

$$
\int_{\frac{1}{2}}^{1}(1-\theta)^{2} d \theta=-\left.\frac{1}{3}(1-\theta)^{3}\right|_{\frac{1}{2}} ^{1}=-\frac{1}{3}\left(1-\frac{1}{2}\right)^{3}=-\frac{1}{12}
$$

Therefore $\overline{\bar{U}}(1)=\frac{1}{2}$.
(b) General method.

Since the distributions are symmetric the mean for both is $\mu=\frac{1}{2}$.
In class we showed that

$$
\begin{aligned}
& \mu=\beta-\int_{\alpha}^{\beta} F(\theta) d \theta=1-\int_{0}^{1} F(\theta) d \theta . \\
& U^{\prime}(\theta)=W(\theta)=F(\theta)=\theta .
\end{aligned}
$$

Therefore

$$
U(1)=U(0)+\int_{\alpha}^{1} F(\theta) d \theta=1-\mu=\frac{1}{2} .
$$

Thus the equilibrium payoff is the same for a buyer with the maximum value.
(c) $U(\theta)=F(\theta)(\theta-B(\theta))$

Therefore

$$
U(1)=F(1)(1-B(1))=1-B(1)
$$

From (b) it follows that $B(1)=\frac{1}{2}$.
(d)
$\bar{F}(\theta)>\overline{\bar{F}}(\theta)$ for $0<\theta<\frac{1}{2}$. Therefore

$$
\begin{equation*}
\bar{U}^{\prime}(\theta)=\bar{F}(\theta)>\overline{\bar{F}}(\theta)=\overline{\bar{U}}^{\prime}(\theta) \text { for } 0<\theta<\frac{1}{2} \tag{*}
\end{equation*}
$$

$\bar{F}(\theta)<\overline{\bar{F}}(\theta)$ for $\frac{1}{2}<\theta<1$. Therefore

$$
\bar{U}^{\prime}(\theta)=\bar{F}(\theta)<\overline{\bar{F}}(\theta)=\overline{\bar{U}}^{\prime}(\theta) \text { for } \frac{1}{2}<\theta<1
$$

(e) From (${ }^{*}$) $\bar{U}(\theta)$ rises more quickly than $\overline{\bar{U}}(\theta)$ when $0<\theta<\frac{1}{2}$. Since the payoffs are zero for a zero value buyer it follows that

$$
\bar{U}(\theta)>\overline{\bar{U}}(\theta) \text { for } 0<\theta<\frac{1}{2}
$$

Also from (b) $\bar{U}(1)=\overline{\bar{U}}(1)=1-\mu$.
(f) From $\left(^{* *}\right), \bar{U}(\theta)$ rises less quickly than $\overline{\bar{U}}(\theta)$ when $\frac{1}{2}<\theta<1$. Since the payoffs are equal for a buyer with value 1 it follows that

$$
\bar{U}(\theta)>\overline{\bar{U}}(\theta) \text { for } \frac{1}{2}<\theta<1
$$

(g)

From (b)
On $\left[0, \frac{1}{2}\right] \overline{\bar{F}}(\theta)=2 \theta^{2}$.
Therefore

$$
\overline{\bar{U}}(\theta)=\frac{2}{3} \theta^{3}
$$

Also

$$
\overline{\bar{U}}(\theta)=\overline{\bar{F}}(\theta)(\theta-\overline{\bar{B}}(\theta))=2 \theta(\theta-\overline{\bar{B}}(\theta))=2 \theta^{3}-2 \theta^{2} \overline{\bar{B}}(\theta)
$$

Therefore

$$
2 \theta^{2} \overline{\bar{B}}(\theta)=\frac{4}{3} \theta^{3} \text { and so } \overline{\bar{B}}(\theta)=\frac{2}{3} \theta
$$

In the uniform case $\bar{B}(\theta)=\frac{1}{2} \theta$.

7. Two items for sale and three buyers

(a) You win unless your bid is lowest. Assuming that the equilibrium bid function, $B(\theta)$, is strictly increasing, it follows that you lose only if your value is the lowest.

An opposing buyer has a higher value than buyer 1 with value θ_{1} with probability $1-F\left(\theta_{1}\right)$. Thus both have higher values with probability $\left(1-F\left(\theta_{1}\right)\right)$. This is the prbabiolity that youlosae.

Thus the equilibrium win probability is

$$
W\left(\theta_{1}\right)=1-\left(1-F\left(\theta_{1}\right)\right)^{2} .
$$

For the uniform case it follows that

$$
W\left(\theta_{1}\right)=2 \theta_{1}-\theta_{1}^{2} .
$$

(b) You pay your bid $B\left(\theta_{1}\right)$ if you win one of the items. Therefore

$$
U\left(\theta_{1}\right)=W\left(\theta_{1}\right)\left(\theta_{1}-B\left(\theta_{1}\right)\right) .
$$

It follows that if we can solve for the equilibrium payoff we can solve for the equilibrium bid function.
But from the equivalence theorem

$$
U^{\prime}(\theta)=W(\theta)
$$

Also $U(0)=0$.
Thus the solution is obtained in the usual way.

$$
U\left(\theta_{1}\right)=\int_{0}^{\theta_{1}} U^{\prime}(\theta) d \theta=\int_{0}^{\theta_{1}} W(\theta) d \theta=\int_{0}^{\theta_{1}}\left(2 \theta-\theta^{2}\right) d \theta=\theta_{1}^{2}-\frac{1}{3} \theta_{1}^{3}
$$

Finally

$$
U\left(\theta_{1}\right)=W\left(\theta_{1}\right)\left(\theta_{1}-B\left(\theta_{1}\right)\right)=\left(2 \theta_{1}-\theta_{1}^{2}\right)\left(\theta_{1}-B\left(\theta_{1}\right)\right)
$$

Equate these and solve for $B\left(\theta_{1}\right)$.

