Econ 401A: Microeconomic Theory ${ }^{1}$

Homework set 2

Due date: Tuesday October 18. I will have extra office hours on Monday October 17 (1:00 PM to 3:00PM) in case you need some tips on how to proceed.

1. Constant returns to scale production function

The production set of a firm is

$$
S=\left\{\left(z_{1}, z_{2}, q\right) \mid 16 z_{1}^{3} z_{2}-q^{4} \geq 0\right\} .
$$

where $z=\left(z_{1}, z_{2}\right)$ is the input vector and q is the output of the firm.
(a) Show that if $\left(z_{1}, z_{2}, q\right) \in S$ then $\left(\theta z_{1}, \theta z_{2}, \theta q\right) \in S$ for all $\theta>0$.
(b) If the input prices are $r=\left(r_{1}, r_{2}\right)$ and the manager has a budget of B solve for the maximum output
as a function of the budget and the input prices.
(c) Hence solve for the minimum cost of producing q units.
(d) What is the average and marginal cost of the firm?
(e) What must the output price $p=p\left(r_{1}, r_{2}\right)$ be in an economy in which this firm is producing?

2. Three commodity economy

Commodities 1 and 2 are used as input in the production of commodity 3. The aggregate production function is

$$
q=2 z_{1}^{3 / 4} z_{2}^{1 / 4}
$$

The endowment is $\omega=\left(\frac{64}{3}, 32,0\right)$. Consumer $h, h=1, \ldots, H$ has a Cobb-Douglas utility function

$$
U\left(x^{h}\right)=\left(x_{1}^{h}\right)\left(x_{2}^{h}\right)\left(x_{3}^{h}\right)^{4}
$$

(a) Solve for the input vector z^{*} that maximizes the utility of the representative consumer.

HINT: Transform the utility function into something easier.

[^0](b) Hence solve for the consumption of the representative consumer $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)$
(c) Use your answer to question 1 to explain why, if firms are price-takers, the equilibrium profit in this three commodity economy must be zero.
(d) Let the price vector be $p=\left(p_{1}, p_{2}, p_{3}\right)$. Suppose that the price of commodity 3 is 1 . Consider the maximization problem of the firm. Use the FOC to determine the input prices $\left(p_{1}, p_{2}\right)$ if $\left(z_{1}^{*}, z_{2}^{*}, q^{*}\right)$ is profit-maximizing.
(e) At these prices will the representative consumer choose the consumption vector x^{*} ? Explain briefly.

3. Elasticity of substitution in a two commodity economy

A consumer has a utility function $U\left(x_{1}, x_{2}\right)$. Let $M(p, \bar{U})$ be the smallest income for which the consumer's utility is at least \bar{U}.
(a) Assuming that the solution, $x^{c}(p, \bar{U}) \gg 0$, explain why $\operatorname{MRS}\left(x^{c}\right)=\frac{p_{1}}{p_{2}}$.
(b) Show that if $U\left(x_{1}, x_{2}\right)=a_{1} x_{1}^{1 / 2}+a_{2} x_{2}^{1 / 2}$, then

$$
\frac{x_{2}^{c}}{x_{1}^{c}}=\left(\frac{a_{2}}{a_{1}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right)^{2}
$$

(c) Hence show that $\sigma=\boldsymbol{E}\left(\frac{x_{2}}{x_{1}}, p_{1}\right)=2$
(d) Solve for $\frac{x_{2}^{c}}{x_{1}^{c}}$ if (i) $U\left(x_{1}, x_{2}\right)=a_{1} x_{1}^{1 / 3}+a_{2} x_{2}^{1 / 3}$ (ii). $U\left(x_{1}, x_{2}\right)=\left(a_{1} x_{1}^{-1}+a_{2} x_{2}^{-1}\right)^{-1}$. In each case solve for $\sigma=\boldsymbol{E}\left(\frac{x_{2}}{x_{1}}, p_{1}\right)$
(e) In each of the cases in (d) depict the level set $U(x)=U(1,1)$.

[^0]: ${ }^{1}$ My thanks to Allen for pointing out an error in question 3. I hope he will let me know if I am still wrong.

