Econ 401A Microeconomic Theory

Answers

Answer to 1

(a) $\pi=R-C=f(x)-\lambda g(x)$

FOC
Marginal profit is zero at the maximum.
$\frac{\partial \pi}{\partial x_{j}}=\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})=0, \quad j=1, \ldots, n$
(b)
$p_{1}\left(x_{1}\right)=180-x_{1}$ and $p_{2}\left(x_{2}\right)=320-4 x_{2}$.
$R=100 x_{1}-x_{1}^{2}+320 x_{2}-4 x_{2}^{2}$
$\pi(x)=f(x)-\lambda g(x)=R-\lambda\left(2 x_{1}^{2}+\frac{3}{2} x_{2}^{2}\right)$.
$\frac{\partial \pi}{\partial x_{1}}(x)=180-2 x_{1}-4 \lambda x_{1}=0$ for an interior maximum. Then $\bar{x}_{1}=\frac{180}{2+4 \lambda}$
$\frac{\partial \pi}{\partial x_{2}}(x)=320-8 x_{2}-3 \lambda x_{3}=0$ for an interior maximum. Then $\bar{x}_{2}=\frac{320}{8+3 \lambda}$.
(c) Total demand for the input is therefore
$b(\lambda)=g(x(\lambda))=2\left(\frac{180}{2+4 \lambda}\right)^{2}+\frac{3}{2}\left(\frac{320}{8+3 \lambda}\right)^{2}$
$b(4)=2(10)^{2}+\frac{3}{2}(16)^{2}=584$.
(d)

Answer to 2

If the price is 4 the firm will choose $\bar{b}=584$. Thus at this price the firm will not wish to purchases or sell any additional units.

Answer to 3

At this price the firm would choose $\bar{b}=584$ so
if $\lambda=4$,

$$
f(\bar{x})-\lambda g(\bar{x}) \geq f(x)-\lambda g(x) \text { for all } x \neq \bar{x}
$$

Rearranging this inequality

$$
f(\bar{x})-f(x) \geq \lambda(g(\bar{x})-\lambda g(x)) \text { for all } x \neq \bar{x}
$$

It follows that if x must satisfy the constraint

$$
g(x) \leq \bar{b}=g(\bar{x})
$$

Then $g(\bar{x})-g(x)=\bar{b}-g(x) \geq 0$
And so
$f(\bar{x})-f(x) \geq \lambda(g(\bar{x})-\lambda g(x))=\lambda(\bar{b}-g(x)) \geq 0$.
Therefore $f(\bar{x}) \geq f(x)$ for all x satisfying the constraint $g(x) \leq \bar{b}$.

General remark

The above three exercises provide another way of thinking about constrained maximization with a single resource constraint.

$$
\operatorname{Max}_{x \geq 0}\{f(x) \mid \bar{b}-g(x) \geq 0\}
$$

Step 1: Imagine that b is a resource that can be bought and sold at the price λ and write down the First Order Necessary Conditions (FOC) for the "relaxed problem" where b is a variable. Under this interpretation $f(x)-\lambda b=f(x)-\lambda g(x)$ is the profit and so the FOC,

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}} \leq 0 \text { with equality if } \bar{x}_{j}>0, j=1, \ldots, n
$$

are simply the FOC for unconstrained profit-maximization.
Step 2: Do this for different prices and so map out the demand price function $b(\lambda)$. Then choose the shadow price $\bar{\lambda}$ so that $\bar{b}=b(\bar{\lambda})$. Let $\bar{x}(\bar{\lambda})$ be the optimized x.

Step 3: Note that at the price $\bar{\lambda}$, the maximization with no resource constraint solves the optimization problem with the constraint. Therefore $\bar{x}(\bar{\lambda})$ must be the solution of the resource constrained problem

Answer to 4

$$
\begin{aligned}
& R_{1}\left(q_{1}\right)=56 q_{1}-q_{1}^{2}, R_{2}\left(q_{2}\right)=104 q_{2}-2 q_{2}^{2}, C(q)=q_{1}^{2}+4 q_{1} q_{2}+4 q_{2}^{2} . \\
& \pi=R-C=56 q_{1}-q_{1}^{2}+104 q_{2}-2 q_{2}^{2}-q_{1}^{2}-4 q_{1} q_{2}-4 q_{2}^{2} \\
& \frac{\partial \pi}{\partial q_{1}}=M R_{1}-M C_{1}=56-2 q_{1}-2 q_{1}-4 q_{2}=0 \text { if } \bar{q}_{1}>0 \\
& \frac{\partial \pi}{\partial q_{2}}=M R_{2}-M C_{2}=104-4 q_{1}-4 q_{2}-8 q_{2}=0 \text { if } \bar{q}_{1}>0 \\
& q_{1}=m_{1}\left(q_{2}\right)=\left(56-4 q_{2}\right) / 4 \\
& q_{2}=m_{2}\left(q_{1}\right)=\left(104-4 q_{1}\right) / 12
\end{aligned}
$$

Solving these two equations, $\bar{q}=(8,6)$.

The profit-maximizing lines are exactly the same as in question 1. Thus \bar{q} is the solution.

Answer to 5

$\mathfrak{L}=\ln \left(10+x_{1}\right)+2 \ln x_{2}+3 \ln x_{3}+\lambda\left(I-p_{1} x_{1}-x_{2}-x_{3}\right)$

Note that x_{2} and x_{3} must be strictly positive since $\ln x$ decreases without bound as x approaches zero.

If $x_{1}>0$
$\frac{\partial \mathfrak{L}}{\partial x_{1}}=\frac{1}{10+x_{1}}-\lambda p_{1}=0 . \quad$ Hence $\frac{\partial \mathfrak{L}}{\partial x_{1}}=\frac{1}{p_{1}\left(10+x_{1}\right)}=\lambda$.
$\frac{\partial \mathfrak{L}}{\partial x_{2}}=\frac{2}{x_{2}}-\lambda p_{2}=0 . \quad$ Hence $\frac{\partial \mathfrak{L}}{\partial x_{2}}=\frac{2}{p_{2} x_{2}}=\lambda$.
$\frac{\partial \mathfrak{L}}{\partial x_{3}}=\frac{3}{x_{3}}-\lambda p_{3}=0 . \quad$ Hence $\frac{\partial \mathfrak{L}}{\partial x_{3}}=\frac{3}{p_{3} x_{3}}=\lambda$
Appealing to the Ratio Rule
$\frac{1}{p_{1}\left(10+x_{1}\right)}=\frac{2}{p_{2} x_{2}}=\frac{3}{p_{3} x_{3}}=\lambda=\frac{6}{10 p_{1}+p \cdot x}=\frac{6}{10 p_{1}+I}$
$p_{1} x_{1}+10 p_{1}=\frac{1}{6}\left(10 p_{1}+I\right)$
$p_{1} x_{1}=\frac{1}{6}\left(10 p_{1}+I\right)-10 p_{1}=\frac{1}{6}\left(I-50 p_{1}\right)$.
Thus the assumption that $\bar{x}_{1}>0$ is correct if and only if $I>50 p_{1}$.
Suppose that $I<50 p_{1}$.
The solution above is incorrect as it implies that $\bar{x}_{1}<0$.
Thus the solution must be a corner solution.

A neat diagram at this point depicting a corner solution would be enough.
Here is a formal solution. Read it only if you don't like diagrams.
It seems reasonable to assume that since the non-negativity constraint is violated the actual solution must be $\bar{x}_{1}=0$.

FOC
$\frac{\partial \mathfrak{L}}{\partial x_{1}}=\frac{1}{10+x_{1}}-\lambda p_{1}=\frac{1}{10}-\lambda p_{1} \leq 0 . \quad$.
$\frac{\partial \mathfrak{L}}{\partial x_{2}}=\frac{2}{x_{2}}-\lambda p_{2}=0 . \quad$ Hence $\frac{2}{p_{2} x_{2}}=\lambda$.
$\frac{\partial \mathfrak{L}}{\partial x_{3}}=\frac{3}{x_{3}}-\lambda p_{3}=0 . \quad$ Hence $\frac{3}{p_{3} x_{3}}=\lambda$
$\frac{2}{p_{2} x_{2}}=\lambda=\frac{3}{p_{2} x_{2}}$
I use the Ratio Rule as a short-cut.
$\frac{2}{p_{2} x_{2}}=\frac{3}{p_{2} x_{2}}=\frac{5}{p_{2} x_{2}+p_{3} x_{3}}=\frac{5}{I}$
Then
$\lambda=\frac{5}{I}$
(Also $x_{2}=\frac{2}{5} \frac{I}{p_{2}}$ and $x_{3}=\frac{3}{5} \frac{I}{p_{3}}$).
Therefore
$\lambda p_{1}=\frac{5 p_{1}}{I} \geq \frac{1}{10}$ since $I<50 p_{1}$
Thus inequality (1) is satisfied.

Answer to Exercise 6: Numerical analysis of consumer choice

$$
\begin{aligned}
& U(x)=8 x_{1}^{1 / 2}+3 x_{2}^{2 / 3} \quad p=(1,1) . \\
& \frac{\partial U}{\partial x_{1}}=4 x_{1}^{-1 / 2}, \frac{\partial U}{\partial x_{2}}=2 x_{1}^{-1 / 3}
\end{aligned}
$$

$$
M R S=\frac{4 x_{1}^{-1 / 2}}{2 x_{1}^{-1 / 3}}=2\left(\frac{x_{2}}{x_{1}}\right)^{1 / 3} \frac{1}{x_{1}^{1 / 2}} .
$$

Note that along ANY ray the MRS declines as x increases. Thus the consumer becomes less willing to substitute x_{1} for x_{2} in his consumption bundle as his income rises. So he consumes an ever lower ratio x_{1} / x_{1}.

