Due next Thursday before class.

Based on questions today I have made some minor changes. These are marked in red. Do not submit your spread-sheet. I have added a question that can be quickly answered using Solver. Just submit the results of the numerical maximization.

Note that question 3 is very similar to the question you considered in the TA session. I have tried to organize the question so that the method of approach is clear.

1. Profit maximization

A firm has a cost function $C(q)=40 q_{1}+60 q_{2}+\left(2 q_{1}+5 q_{2}\right)^{2}-q_{2}{ }^{2}$.

The firm is a price take in output markets. The price vector is $p=(168,372)$.
(a) Solve for the unique critical point $\bar{q} \gg 0$ of the profit function.
(b) Explain why this is not the profit-maximizing output vector.
(c) Is \bar{q} a local maximum?
(d) What output vector does maximize the profit of the firm.
(e) Use Solver in Excel to solve the maximization problem numerically. Then choose some number b between 2 and 10 (not necessarily an integer and solve numerically if the cost function is

$$
C(q)=40 q_{1}+60 q_{2}+\left(2 q_{1}+5 q_{2}\right)^{2}+b q_{2}^{2}
$$

How does your numerical answer change when b rises?
Note: You are not expected to do part (e) analytically. Simply submit two values of b and the associated outputs.

2. Output maximization

A firm has production function $q=F(z)=\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right)^{-1}$.
(a) Show that if inputs are scaled up by θ, then output is also scaled up by θ, i.e. $F(\theta z)=\theta F(z)$.
(b) The input price vector is $p \gg 0$. The manager is asked to maximize output given a budget of B dollars. Explain why the solution to this maximization problem is also the solution to the following simpler maximization problem

$$
\operatorname{Max}_{z \geq 0}\left\{\left.-\frac{1}{z_{1}}-\frac{1}{z_{2}} \right\rvert\, B-p \cdot z \geq 0\right\}
$$

(c) Use the Lagrange method for the simpler problem and show that $p_{1} z_{1}=\frac{p_{1}^{1 / 2}}{\lambda^{1 / 2}}$. (By an identical argument it follows that $p_{2} z_{2}=\frac{p_{2}^{1 / 2}}{\lambda^{1 / 2}}$.)
(d) Solve for $\lambda^{1 / 2}$ and hence show that $\frac{1}{z_{1}}=\frac{p_{1}^{1 / 2}\left(p_{1}^{1 / 2}+p_{2}^{1 / 2}\right)}{B}$
(e) Solve also for $\frac{1}{z_{2}}$. Hence obtain an expression for maximized output

3. Walrasian equilibrium

Alex has an endowment $\omega^{A}=(8,8)$ and Bev has an endowment of $\omega^{B}=(7,12)$. Alex likes each unit of commodity 1 twice as much as each unit of commodity 2 . Bev likes each unit of commodity 1 four times as much as each unit of commodity 2.
(a) Explain why the optimal choice for each consumer is not affected if the price vector changes from $p=\left(p_{1}, p_{2}\right)$ to $\theta p=\left(\theta p_{1}, \theta p_{2}\right)$ for any $\theta>0$. Thus we can always "normalize" by choosing $\theta=\frac{1}{p_{j}}$ so that the price of commodity j is equal to 1 .
(b) Suppose that $p_{2}=1$. Explain why the market supply of commodity $1, S_{1}\left(p_{1}, 1\right)$ is as depicted below.

(c) For what price of commodity 1 will (i) neither (ii) one (iii) two consumers have a strictly positive demand for commodity 1.
(d) Fully determine the market demand, $D_{1}\left(p_{1}, 1\right)$ for every price p_{1} and depict it in a separate figure. Explain any horizontal segments.
(e) What is the equilibrium price of commodity 1.
(f) Let $x_{j}(p)=x_{j}^{A}(p)+x_{j}^{B}(p)$ be total demand for commodity j given price vector p and let $\omega=\omega^{A}+\omega^{B}$ be the total endowment vector. Write down the budget constraints and hence show that

$$
p_{1}\left(x_{1}(p)-\omega_{1}\right)+p_{2}\left(x_{2}(p)-\omega_{2}\right)=0
$$

Use this result to show that if supply equals demand in the market for commodity 1 , then supply must also equal demand in the market for commodity 2.

4. Equilibrium trades in an exchange economy

Alex has a utility function $U^{A}\left(x^{a}\right)=x_{1}^{a} x_{2}^{a}$ and Bev has a utility function $U^{B}\left(x^{b}\right)=-\frac{1}{x_{1}^{b}}-\frac{1}{x_{2}^{b}}$.
(a) Explain why the slope of a level set at x is $-\frac{\partial U^{h}}{\partial x_{1}}(x) / \frac{\partial U^{h}}{\partial x_{2}}(x)$. Why is $\frac{\partial U^{h}}{\partial x_{1}}(x) / \frac{\partial U^{h}}{\partial x_{2}}(x)$ called the consumer's marginal rate of substitution?
(b) Suppose both consumers have the same consumption bundle \bar{x}.

Show that $\operatorname{MRS}^{a}(\bar{x})=\operatorname{MRS}^{b}(\bar{x})$ if $\bar{x}_{2}=\bar{x}_{1}$. i.e. the consumption bundle is on the 45° line.
Who has the higher MRS at if (i) $\bar{x}_{2}>\bar{x}_{1}$ (ii) $\bar{x}_{2}<\bar{x}_{1}$?
You might try drawing the level sets of Alex and Bev through $\bar{x}=(2,1)$ in a single diagram.
(c) Suppose $\omega^{a}=\omega^{b}=(\alpha, \alpha)$ so that the endowment is on the 45° line.

Explain why demand cannot be equal to supply if $p_{1} \neq p_{2}$. What if $p_{1}=p_{2}$?
(d) Suppose $\omega^{a}=\omega^{b}$ and the endowment is above the 45° line (more endowment of commodity 2.)

In the Walrasian Equilibrium, which consumer will sell commodity 1?
(e) Suppose $\omega_{2}^{a} / \omega_{1}^{a}>\omega_{2}^{b} / \omega_{1}^{b}$. In the Walrasian Equilibrium, is it clear which consumer will sell commodity 1 ?

Remark: In parts (d) and (e) you are not expected to solve for the WE price vector.

