## Econ 401A: Microeconomic Theory

## Homework 2 Answers

## 1. Constant returns to scale production function

(a) If $\left(z_{1}, z_{2}, q\right) \in S$ then

$$
\begin{equation*}
16 z_{1}^{3} z_{2}-q^{4} \geq 0 \tag{*}
\end{equation*}
$$

We need to show that $\left(\theta z_{1}, \theta z_{2}, \theta q\right) \in S$

$$
16\left(\theta z_{1}\right)^{3}\left(\theta z_{2}\right)-(\theta q)^{4}=\theta^{4} z_{1}^{3} z_{2}-\theta^{4} q^{4}=\theta^{4}\left[z_{1}^{3} z_{2}-q^{4}\right]
$$

Appealing to ( ${ }^{*}$ ) it follows that $\left(\theta z_{1}, \theta z_{2}, \theta q\right) \in S$
(b) The production function of the firm is $q=2 z_{1}^{3 / 4} z_{2}^{1 / 4}$.

Maximum output is

$$
q(B)=\operatorname{Max}_{z}\left\{2 z_{1}^{3 / 4} z_{2}^{1 / 4} \mid z_{1}+z_{2} \leq B\right\}
$$

We instead maximize the logarithm

$$
\operatorname{Max}_{z}\left\{\left.\ln 2+\frac{3}{4} \ln z_{1}+\frac{1}{4} \ln z_{2} \right\rvert\, r_{1} z_{1}+r_{2} z_{2} \leq B\right\}
$$

FOC

$$
\frac{\frac{3}{4}}{r_{1} z_{1}}=\frac{\frac{1}{4}}{r_{2} z_{2}}=\frac{1}{r_{1} z_{1}+r_{2} z_{2}}=\frac{1}{B}
$$

Therefore $z_{1}=\frac{3 B}{4 r_{1}}$ and $z_{2}=\frac{B}{4 r_{2}}$
and so

$$
q=2\left(z_{1}\right)^{3 / 4}\left(z_{2}\right)^{1 / 2}=\left(\frac{3 B}{4 r_{1}}\right)^{3 / 4}\left(\frac{B}{4 r_{2}}\right)^{1 / 4}=\left(\frac{3}{4 r_{1}}\right)^{3 / 4}\left(\frac{1}{4 r_{2}}\right)^{1 / 4} B .
$$

(c) With a budget of $\hat{B}$ the maximum output is

$$
\begin{equation*}
\hat{q}=\left(\frac{3}{4 r_{1}}\right)^{3 / 4}\left(\frac{1}{4 r_{2}}\right)^{1 / 4} \hat{B} \tag{*}
\end{equation*}
$$

Thus the minimum total cost of producing $\hat{q}$ is less than or equal to

$$
\hat{B}=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4} \hat{q}
$$

But for any budget $B<\hat{B}$ it follows from (*) that it is impossible to produce $\hat{q}$.

So the minimum total cost of producing $\hat{q}$ is $T C(\hat{q})=\hat{B}=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4} \hat{q}$
(d) $A C(q)=M C(q)=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4}$
(e) For a price taking firm, if $p>M C(q)=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4}$ there is no profit maximizing output as it is always more profitable to increases output since $M R=p>M C$. If $p<M C(q)=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4}$ the profit maximizing output is zero. Therefore if the firm's profit-maximizing output $\bar{q}>0$, it must be the case that

$$
p=M C(q)=\left(\frac{4 r_{1}}{3}\right)^{3 / 4}\left(\frac{4 r_{2}}{3}\right)^{1 / 4}
$$

Remark: It is important to understand why this result holds for any constant returns to scale production function.

Observation 1: A CRS production function is homothetic.

To see this, suppose $F\left(z^{0}\right) \geq F\left(z^{1}\right)$. Appealing to $\operatorname{CRS} F\left(\theta z^{0}\right)=\theta F\left(z^{0}\right)$ and $F\left(\theta z^{1}\right)=\theta F\left(z^{1}\right)$. Therefore

$$
F\left(\theta z^{0}\right)=\theta F\left(z^{0}\right) \geq \theta F\left(z^{1}\right)=F\left(\theta z^{0}\right)
$$

Observation 2: Given homotheticity, we showed that if $z^{*}$ solves the budget problem

$$
q^{*}=\operatorname{Max}_{z}\{F(z) \mid p \cdot z \leq B\}
$$

Then $\theta z^{*}$ solves the budget problem $q^{* * *}=\operatorname{Max}_{z}\{F(z) \mid p \cdot z \leq \theta B\}$.

Then

$$
q^{* *}=F\left(\theta z^{*}\right)=\theta F\left(z^{*}\right)=\theta q^{*} .
$$

Thus maximized output rises linearly with the budget. This is depicted below.


Appealing to observation 1 it follows that minimum total cost $C(q, r)$ is proportional to output. Hence MC and AC are constant.

## 2. Three commodity economy

(a) $x_{1}=\frac{64}{3}-z_{1}, x_{2}=32-z_{2}, x_{3}=q=2 z_{1}^{3 / 4} z_{2}^{1 / 4}$

Simplify by maximizing $u=\ln U=\ln x_{1}+\ln x_{2}+4 \ln x_{3}$

$$
\begin{aligned}
& =\ln \left(\frac{64}{3}-z_{1}\right)+\ln \left(32-z_{2}\right)+4\left[\ln 2 z_{1}^{3 / 4} z_{2}^{1 / 4}\right] \\
& =\ln \left(\frac{64}{3}-z_{1}\right)+\ln \left(32-z_{2}\right)+4 \ln 2+3 \ln z_{1}+\ln z_{2} .
\end{aligned}
$$

FOC: $\quad \frac{1}{\frac{64}{3}-z_{1}}=\frac{3}{z_{1}}=\frac{4}{\frac{64}{3}}, \quad \frac{1}{32-z_{2}}=\frac{1}{z_{2}}=\frac{2}{32} \quad$ (Note that I have use the ratio rule twice.)
Therefore

$$
z_{1}^{*}=z_{2}^{*}=16 \text { and so } q^{*}=2(16)^{3 / 4}(16)^{1 / 4}=32
$$

(b) From line 1 in (a), $x^{*}=\left(\omega_{1}-z_{1}^{*}, \omega_{2}-z_{2}^{*}, q^{*}\right)=\left(\frac{16}{3}, 16,32\right)$
(c) This is the same production function as in question 1 so the average cost is

$$
A C(r)=M C(q)=\left(\frac{4 p_{1}}{3}\right)^{3 / 4}\left(\frac{4 p_{2}}{3}\right)^{1 / 4}
$$

As discussed above, for positive production $p_{3}=A C\left(p_{1}, p_{2}\right)$. Therefore

$$
\text { Total Revenue }=p_{3} q=q A C(q)=\text { Total cost }
$$

(d) $\pi=p_{3} q-p_{1} z_{1}-p_{2} z_{2}=p_{3} 2 z_{1}^{3 / 4} z_{2}^{1 / 4}-p_{1} z_{1}-p_{2} z_{2}$

FOC

$$
\begin{equation*}
\frac{\partial \pi}{\partial z_{1}}(z)=p_{3} \frac{\partial F}{\partial z_{1}}(z)-p_{1}=2 p_{3} \frac{3}{4} z_{1}^{-1 / 4} z_{2}^{1 / 4}-p_{1} \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \pi}{\partial z_{2}}(z)=p_{3} \frac{\partial F}{\partial z_{2}}(z)-p_{2}=2 p_{3} \frac{1}{4} z_{1}^{3 / 4} z_{2}^{-3 / 4}-p_{2} \tag{}
\end{equation*}
$$

These must both be zero at $z^{*}=(16,16)$.

Therefore

$$
\frac{\partial \pi}{\partial z_{1}}\left(z^{*}\right)=p_{3} \frac{6}{4}-p_{1}=0 \text { and } \frac{\partial \pi}{\partial z_{2}}\left(z^{*}\right)=\frac{p_{3}}{2}-p_{2}=0
$$

The supporting price vector is therefore

$$
\left(p_{1}, p_{2}, p_{3}\right)=\left(\frac{3}{2}, \frac{1}{2}, 1\right)
$$

(e) Note that $x^{*}=\left(\frac{16}{3}, 16,32\right)$ and the value of the endowment is $p \cdot \omega=48$.

In this exercise maximum profit is $\Pi=p_{3} q^{*}-p_{1} z_{1}^{*}-p_{2} z_{2}^{*}=1(32)-\frac{3}{2}(16)-\frac{1}{2}(16)=0$. However the following remark is completely general.

General Remark: The level set for maximum profit is

$$
p_{3} q-p_{1} z_{1}-p_{2} z_{2}=p_{3} q^{*}-p_{1} z_{1}^{*}-p_{2} z_{2}^{*}=\Pi
$$

The sublevel set for maximum profit is

$$
p_{3} q-p_{1} z_{1}-p_{2} z_{2} \leq p_{3} q^{*}-p_{1} z_{1}^{*}-p_{2} z_{2}^{*}=\Pi
$$

Note that $q=x_{3}, z_{1}=\omega_{1}-x_{1}$ and $z_{2}=\omega_{2}-x_{2}$. Therefore the sublevel set for maximum profit can be rewritten as follows:

$$
p_{3} x_{3}-p_{1}\left(\omega_{1}-x_{1}\right)-p_{2}\left(\omega_{2}-x_{2}\right) \leq \Pi
$$

Equivalently,

$$
p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \leq \Pi+p_{1} \omega_{1}+p_{2} \omega_{2}
$$

Using vector notation

$$
p \cdot x \leq \Pi^{*}+p \cdot \omega
$$

The right hand side is the dividend from the firms and the value of the aggregate endowment. Thus the sublevel set for maximized profit is also the budget set of the representative consumer.

The remaining step is to check that the FOC for the following consumer problem are satisfied at $x^{*} \gg 0$

$$
\operatorname{Max}\{U(x) \mid p \cdot x \leq \Pi+p \cdot \omega\}
$$

FOC: Marginal utility per dollar must be equal

$$
\frac{1}{p_{1}} M U_{1}\left(x^{*}\right)=\frac{1}{p_{2}} M U_{2}\left(x^{*}\right)=\frac{1}{p_{3}} M U_{3}\left(x^{*}\right)
$$

It is readily confirmed that these conditions hold.

## 3. Elasticity of substitution in a two commodity economy

$$
M(p, \bar{u})=\operatorname{Min}_{x}\{p \cdot x \mid U(x) \geq \bar{u}\}
$$

(a) Minimizing $p \cdot x$ is the same as maximizing $-p \cdot x$. So we consider the following problem.

$$
-M(p, \bar{u})=\operatorname{Max}_{x}\{-p \cdot x \mid U(x) \geq \bar{u}\}
$$

Lagrangian

$$
L=-p \cdot x+\lambda(U(x)-\bar{u}) .
$$

To make it clear that we are considering a fixed utility problem (so income is compensated) we write the solution as $x^{c}$. With $x^{c} \gg 0$ the FOC are

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=-p_{1}+\lambda \frac{\partial U}{\partial x_{1}}\left(x^{c}\right)=0 \\
& \frac{\partial L}{\partial x_{2}}=-p_{2}+\lambda \frac{\partial U}{\partial x_{2}}\left(x^{c}\right)=0
\end{aligned}
$$

From these two equations

$$
\operatorname{MRS}\left(x^{*}\right)=\frac{\frac{\partial U}{\partial x_{1}}\left(x^{c}\right)}{\frac{\partial U}{\partial x_{2}}\left(x^{c}\right)}=\frac{p_{1}}{p_{2}}
$$

(b) $U\left(x_{1}, x_{2}\right)=a_{1} x_{1}^{1 / 2}+a_{2} x_{2}^{1 / 2}$. Then

$$
\operatorname{MRS}\left(x^{*}\right)=\frac{\frac{1}{2} a_{1} x_{1}^{-1 / 2}}{\frac{1}{2} a_{2} x_{2}^{-1 / 2}}=\frac{a_{1}}{a_{2}}\left(\frac{x_{2}}{x_{1}}\right)^{1 / 2}=\frac{p_{1}}{p_{2}}
$$

Therefore

$$
\frac{x_{2}^{c}}{x_{1}^{c}}=\left(\frac{a_{2}}{a_{1}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right)^{2}
$$

(c) $\sigma=\mathcal{E}\left(\frac{x_{2}{ }^{c}}{x_{1}{ }^{c}}, p_{1}\right)=p_{1} \frac{\partial}{\partial p_{1}} \ln \frac{x_{2}^{c}}{x_{1}^{c}}=p_{1} \frac{\partial}{\partial p_{1}} \ln \left(\frac{a_{2}}{a_{1}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right)^{2}$

$$
\begin{aligned}
& =p_{1} \frac{\partial}{\partial p_{1}} \ln \left(\frac{a_{2}}{a_{1}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right)^{2} \\
& =p_{1} \frac{\partial}{\partial p_{1}}\left[\ln \left(\frac{a_{2}}{a_{1}}\right)^{2}+2 \ln p_{1}-2 \ln p_{2}\right]=2
\end{aligned}
$$

(d) (i)

$$
\operatorname{MRS}\left(x^{*}\right)=\frac{\frac{1}{3} a_{1} x_{1}^{-2 / 3}}{\frac{1}{3} a_{2} x_{2}^{-2 / 3}}=\frac{a_{1}}{a_{2}}\left(\frac{x_{2}}{x_{1}}\right)^{2 / 3}=\frac{p_{1}}{p_{2}}
$$

Therefore

$$
\frac{x_{2}^{c}}{x_{1}^{c}}=\left(\frac{a_{2}}{a_{1}}\right)^{3 / 2}\left(\frac{p_{1}}{p_{2}}\right)^{3 / 2}
$$

Arguing as in (c) $\sigma=\boldsymbol{E}\left(\frac{x_{2}{ }^{c}}{x_{1}{ }^{c}}, p_{1}\right)=\frac{3}{2}$
(d) (ii) I prefer to simplify by finding a more convenient representation of the consumer's preferences. The inverse of $U(x)$ is $a_{1} x_{1}^{-1}+a_{2} x_{2}^{-1}$. Thus has the same level sets but is a decreasing function. Then I choose the following representation

$$
\begin{aligned}
u(x)= & -a_{1} x_{1}^{-1}-a_{2} x_{2}^{-1} \\
& M R S\left(x^{*}\right)=\frac{a_{1} x_{1}^{-2}}{a_{2} x_{2}^{-2}}=\frac{a_{1}}{a_{2}}\left(\frac{x_{2}}{x_{1}}\right)^{2}=\frac{p_{1}}{p_{2}}
\end{aligned}
$$

Therefore

$$
\frac{x_{2}^{c}}{x_{1}^{c}}=\left(\frac{a_{2}}{a_{1}}\right)^{1 / 2}\left(\frac{p_{1}}{p_{2}}\right)^{1 / 2}
$$

Arguing as in (c) $\sigma=\mathcal{E}\left(\frac{x_{2}^{c}}{x_{1}^{c}}, p_{1}\right)=\frac{1}{2}$.
(e) The three utility functions are all sums of concave functions so are concave. Then the superlevel sets are convex sets.
(i) Level set $U(x)=U(1) . U(x)=a_{1} x_{1}^{1 / 2}+a_{2} x_{2}^{1 / 2}=a_{1}+a_{2}$.

Consider $x_{1}=0$. Then $a_{2} x_{2}^{1 / 2}=a_{1}+a_{2}$ and so $x_{2}=\left(1+\frac{a_{1}}{a_{2}}\right)^{2}$.

Similarly if $x_{2}=0$ then $x_{1}=\left(1+\frac{a_{2}}{a_{1}}\right)^{2}$
(ii) Level set $U(x)=U(1) . \quad U(x)=a_{1} x_{1}^{1 / 3}+a_{2} x_{2}^{1 / 3}=a_{1}+a_{2}$.

Consider $x_{1}=0$. Then $a_{2} x_{2}^{1 / 3}=a_{1}+a_{2}$ and so $x_{2}=\left(1+\frac{a_{1}}{a_{2}}\right)^{3}$.
(iii) Level set $u(x)=u(1) \cdot u(x)=-a_{1} x_{1}^{-1}-a_{2} x_{2}^{-1}=-a_{1}-a_{2}$.

Note that any $x$ in which either $x_{1}$ or $x_{2}$ is very small cannot be on the level set since one of the terms in the utility functions has a limit of $-\infty$.

Suppose $x_{2} \rightarrow \infty$. Then $x_{2}^{-1} \rightarrow 0$ and so

$$
u(x)=-a_{1} x_{1}^{-1}=-a_{1}-a_{2}
$$

Then

$$
x_{1}^{-1}=1+\frac{a_{2}}{a_{1}} \text { and so } x_{1}=\frac{1}{1+\frac{a_{2}}{a_{1}}}
$$

(f) The three level sets are depicted below.



## Technical Remark (not examinable and only for those who like calculus).

For any $z^{0}$ define $z(\theta)=\theta z^{0}=\left(\theta z_{1}^{0}, \theta z_{2}^{0}\right)$

The derivative of $F(z(\theta))$ with respect to $\theta$ is

$$
\frac{\partial F}{\partial z_{1}}(\theta z) z_{1}^{0}+\frac{\partial F}{\partial z_{2}}(\theta z) z_{2}^{0}
$$

Under CRS, $F(z(\theta))=\theta F\left(z^{0}\right)$. Therefore the derivative of $F(z(\theta))$ is $F\left(z^{0}\right)$.

Therefore

$$
F\left(z^{0}\right)=\frac{\partial F}{\partial z_{1}}(\theta z) z_{1}^{0}+\frac{\partial F}{\partial z_{2}}(\theta z) z_{2}^{0} \text { for all } \theta
$$

In particular, setting $\theta=1$,

$$
F\left(z^{0}\right)=\frac{\partial F}{\partial z_{1}}\left(z^{0}\right) z_{1}^{0}+\frac{\partial F}{\partial z_{2}}\left(z^{0}\right) z_{2}^{0} \text { for all } z^{0}
$$

Therefore

$$
\begin{equation*}
p_{3} F(z)=p_{3} \frac{\partial F}{\partial z_{1}}(z) z_{1}+p_{3} \frac{\partial F}{\partial z_{2}}(z) z_{2} \tag{1}
\end{equation*}
$$

From 2(d) the FOC are

$$
\begin{equation*}
\frac{\partial \pi}{\partial z_{1}}(z)=p_{3} \frac{\partial F}{\partial z_{1}}(z)-p_{1}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \pi}{\partial z_{2}}(z)=p_{3} \frac{\partial F}{\partial z_{2}}(z)-p_{2}=0 \tag{3}
\end{equation*}
$$

Substituting (2) and (3) into (1), $p_{3} q^{*}=p_{1} z_{1}^{*}+p_{2} z_{2}^{*}$.

So revenue is equal to cost and so profit is zero.

