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Mathematical Foundations 1 -2- Constrained Maximization

A. Necessary conditions

X =(X,,..-,X,) a vector of decision variables where each component of x is a real number.
(x; €R, j=1,..,n, equivalently xeR")

f (x) is a mapping from the set R" onto the set R

Assume that all the partial derivatives of f(X) exist

Maximization problem

Max{ f ()| x < R"}
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Mathematical Foundations 1 -3- Constrained Maximization

A. Necessary conditions

X=(X,...,X,) avector of decision variables where each component of x is a real number.
(x; €R, j=1,..,n, equivalently xeR")

f (X) mapping from the set R" onto the set R

Assume that all the partial derivatives of f(X) exist

Maximization problem

Max{ f ()| x < R"}

Focus on X; . Write the vector of all other components of x as

X_; :(Xl""’xj—l'xj+1""’xn)
Then the function f (X) can be written as follows:

f(x)=f(x;,x)
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Mathematical Foundations 1 Constrained Maximization

Depict graph of f

Case (i) X(j) >0

f(x;, ij) is a function of a single variable. Since X? > 0 we can consider small neighborhoods of X? in R,

Arguing exactly as in the one variable case the necessary condition

af 0 0 81: 0
—(Xx;,x..)=—(x")=0
o (5= 50

]
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Mathematical Foundations 1 -5- Constrained Maximization

Case (ii) x; =0

Graph of f
of 0
y slope —gj(x/j,x_j)>0
//// _ 0
Mﬂ
x? X x; Y

If the slope of the graph is strictly positive, then for x; >0 and sufficiently small,
0 0 0
f(x;,x2;)> £(x5,%5;).
Thus the necessary condition is

af 0 0 af 0 <
= (X0, x%)=——(x") <0
OX. 0655 OX; ()

J J
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Constrained Maximization

Mathematical Foundations 1

Therefore necessary conditions (“First order conditions”) for f to take on its maximum at x° are as

follows:

af 0 - . . . 0
8_)(j(x )<0, j=1,...,n with equality if x; >0

* %
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Constrained Maximization

Mathematical Foundations 1

Therefore necessary conditions (“First order conditions”) for f to take on its maximum at x° are as

follows:

af 0 - . . . 0
a—Xj(X )<0, j=1,...,n with equality if x; >0

Equivalently,

(i) the “gradient vector” (vector of the n partial derivatives) is negative, i.e.
of
—(x)<0
OX

(ii) the inner product of X° and the gradient vector is the zero vector, i.e.

x° >0, ﬂ(xo)sO, j=1...,n and xo-ﬂ(x°)=0
OX OX
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Mathematical Foundations 1 -8- Constrained Maximization

Therefore necessary conditions (“First order conditions”) for f to take on its maximum at x° are as
follows:

af 0 - . . . 0
a—Xj(X )<0, j=1,...,n with equality if x; >0

Equivalently,

(iii) the “gradient vector” (vector of the n partial derivatives) is negative, i.e.
of
—(x)<0
OX

(iv) the inner product of X° and the gradient vector is the zero vector, i.e.

x° >0, ﬂ(xo)sO, j=1...,n and xo-ﬂ(x°)=0
OX OX

Since only one of the two inequality conditions above can be strict, these conditions are known

as the complementary slackness conditions.
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Mathematical Foundations 1 -9- Constrained Maximization

B. Maximization with a linear resource constraint

As a first step in the analysis of maximization with resource constraints we consider the maximization
problem of a consumer who chooses among consumption vectors. The set of commodities is

N ={4,...,n}. Given an income | and a vector of prices p=(p,, p,,.... P,) , the set of feasible

consumption vectors is the set
B={x20| pX, +...+ p,%, = p-x< I}

We assume that the preferences of the consumer can be represented by a continuously

differentiable, strictly increasing utility function U (X).

The consumer then chooses X that solves the following problem.

Max{U (x) [ p-x <1}

Note that, since U (X) is strictly increasing, p-X =1
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Mathematical Foundations 1 -10- Constrained Maximization

Example with 2 commaodities: M%X{U (X) = XX | pX, + P,X, < 1}

Note that utility is zero if consumption of either commodity is zero. Therefore every component of
the solution X is strictly positive. (We write X >>0 ).
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Mathematical Foundations 1 -11- Constrained Maximization

Example with 2 commaodities: M%X{U (X) = XX | pX, + P,X, < 1}

Note that utility is zero if consumption of either commodity is zero. Therefore every component of
the solution X is strictly positive. (We write X >>0 ).

Geometry
In the 2 commodity case we can represent X2
preferences by depicting points for which utility

has the same value.

Such a set of points is called a level set. In the figure
the level sets are the boundaries of the blue, red and

green shaded regions.

@01 @1-2 02-3 @34

Level sets of U(x)=x1%%x20->
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Mathematical Foundations 1 -12- Constrained Maximization

Example with 2 commaodities: M%X{U (X) = XX | pX, + P,X, < 1}

Note that utility is zero if consumption of either commodity is zero. Therefore every component of
the solution X is strictly positive. (We write X >>0 ).

Geometry
In the 2 commodity case we can represent X2
preferences by depicting points for which utility

has the same value.

Such a set of points is called a level set. In the figure
the level sets are the boundaries of the blue, red and

green shaded regions.

@01 @1-2 02-3 @34

. . —x10-45¢20.5
In mathematical notation the 4 level sets are Level sets of Ufx)=x1"-"x2

XU () =0} {x|U(x) =1}, {x|U(x) =2}, {x|U(x) =3} .

Three of them are what economists often call indifference curves.
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Mathematical Foundations 1 -13- Constrained Maximization

In the figure both components of the solution

X = (X, X,) are strictly positive. o
(Mathematical shorthand X >>0.)
So the slope of the budget line is

equal to the slope of the indifference curve.

201 01-2 02-3 @34

Level sets of U(x)=x1%4x20-5
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Mathematical Foundations 1 -14- Constrained Maximization

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing X can increase consumption of

commodity J by AX;, the change in utility is

U

OX j

AU (X)AX; .

This is depicted in the figure..

The slope of the tangent line at X is

oU _
—I(X) .
o

Fig. 2-3: Utility as a function of X,

© John Riley September 30, 2016



Mathematical Foundations 1 -15- Constrained Maximization

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing X can increase consumption of

commodity J by AX;, the change in utility is

U

OX j

AU (X)AX; .

This is depicted in the figure..

The slope of the tangent line at X is

oU _
—I(X) .
o

Fig. 2-3: Utility as a function of X,

AE
If the consumer has an additional AE dollars then AE = p;AX; and so AX; = p_ :
j
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Mathematical Foundations 1 -16- Constrained Maximization

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing X can increase consumption of

commodity J by AX;, the change in utility is

U

OX j

AU (X)AX; .

This is depicted in the figure..

The slope of the tangent line at X is

ou _
a(x) .

Fig. 2-3: Utility as a function of X,

AE
If the consumer has an additional AE dollars then AE = p;AX; and so AX; = p_ :
j
The increase in utility is therefore AU =£(Y)ij _ Y (X) AE_1 AU (X)AE
OX; OX; P, P; X
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Mathematical Foundations 1 -17- Constrained Maximization

We have seen that

AU = ia_U( X)AE
pj i
Therefore
AU 10U, _
= (X)
AE  p; 0X;

In the limit as AE approaches zero, this becomes the rate at which utility rises as expenditure on

commodity ] rises.

1 oU
———(X) is the marginal utility per dollar as expenditure on commodity | rises

P X
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Mathematical Foundations 1 -18- Constrained Maximization

Suppose that the consumer spends 1 dollar less on commodity j . His change in utility is

—ia—u(i) . He then spends the dollar on commodity i .

p; OX;
... 10U, _ .
The change in utility is —a(x). The net change in utility is therefore

18U, . 10U _
——— () -———=(%)
P OX, p; oX;
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Mathematical Foundations 1 -19- Constrained Maximization

Suppose that the consumer spends 1 dollar less on commodity j . His change in utility is

—ia—u(i) . He then spends the dollar on commodity i .

P; X

1
The change in utility is —ZX—U(Y). The net change in utility is therefore

18U, . 10U _
——— () -———=(%)
P 0% p; oX;

Case (i) X;,X; >0

If the change in utility is strictly positive the current utility can be increased by consuming more of
commodity i and less of commodity | . If it is negative, utility can be increased by spending less
commodity j and more on commodity i . Thus a necessary condition for X to be utility maximizing is

that

18U _, 148U, _
——— () =——=(X)
P OX, P; X,
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Mathematical Foundations 1 -20- Constrained Maximization

Case (i) X; >X =0

If the difference in marginal utilities is positive current U (X) can be increased by spending a positive

amount on commodity | . Thus a necessary condition for X to be utility maximizing is that

1 oU 1 oU
——— X)) <——(X)
P, OX; p; OX;
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Mathematical Foundations 1 -21- Constrained Maximization

Case (i) X; >X =0

If the difference in marginal utilities is positive current U (X) can be increased by spending a positive

amount on commodity j . Thus a necessary condition for X to be utility maximizing is that

18U . 148U _
——— () <—=—=(X)
P OX, P; X,

Let A be the common marginal utility per dollar for all those commodities that are consumed in

strictly positive amounts. We can therefore summarize the necessary conditions as follows:

Necessary conditions for a maximum

If X; >0 then i2—U(7) =1

J'XJ

If X; =0 then iZ—U(Y) <A

J'XJ

Note: Since A is the rate at which utility rises with income it is called the marginal utility of income
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Mathematical Foundations 1 -22- Constrained Maximization

An alternative approach

From the argument above, if both commodity i and commodity j are consumed, then the ratio

of their marginal utilities must be equal to the price ratio.

To understand this consider a change in x; and X; that leaves the consumer on the same level set. i.e.

U(K"'Axi'fz +AX2)=U(E’72)
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Mathematical Foundations 1 -23- Constrained Maximization

An alternative approach

From the argument above, if both commodity i and commodity j are consumed, then the ratio

of their marginal utilities must be equal to the price ratio.

To understand this consider a change in x; and X; that leaves the consumer on the same level set. i.e.

U(K"’Axl'fz +AXz) :U(E'Yz)
Above we showed that, to a first approximation,

U

OX J.

AU (X)AX;

If we increase the quantity of commodity ] and reduce the quantity of commodity i, then the net

change in utility is
AU = Y (X)AX; — a—U(Y)Axi
OX; OX.
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Mathematical Foundations 1 -24- Constrained Maximization

We have argued that AU = %(Y)ij —Q(X)AXi 4
an aXi X,
U(x)=U(X)
For this net change to be zero,
au
A o
A~ U
8xj
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Mathematical Foundations 1 -25- Constrained Maximization

We have argued that AU = %(Y)ij —Q(X)Axi 4
an aXi X,
U(x)=U(X)
For this net change to be zero,
au
A o
A~ U
8xj

AX =
In the figure, A—2 is the slope of the level set at X .

The ratio is the rate at which X, must be substituted into

the consumption bundle to compensate for a reduction in X,

Hence we call it the marginal rate of substitution of x, for X, .

Definition: Marginal rate of substitution
au
8Xi
MRS (x;, X;) = @
OX;
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Mathematical Foundations 1 -26- Constrained Maximization

For X to be the maximizer the rate at which X
can be substituted into the budget as X, is U(x)=U(X)

reduced must leave total expenditure
on the two commodities constant, i.e.,

PAX + p;Ax; =0

Then along the budget line

AXJ- B

AP,

Graphically, the slope of the budget line

must be equal to the slope of the indifference curve at X ie.

U

MRS(Z,¥1)=%=%
— i
OX;
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Mathematical Foundations 1 -27- Constrained Maximization

The example: M%X{U (X) = XX | pX, + P,X, < 1}

Necessary conditions for a maximum
Method 1: Equalize the marginal utility per dollar

To make differentiation simple, try to find an increasing function of the utility function that is simple.
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Mathematical Foundations 1 -28- Constrained Maximization

The example: M%X{U (X) = XX | pX, + P,X, < 1}

Necessary conditions for a maximum
Method 1: Equalize the marginal utility per dollar
To make differentiation simple, try to find an increasing function of the utility function that is simple.

Define the new utility function u(x) = InU (x)

The new maximization problem is
Maxqu(x) =InU ()| px, + p,x, <13}
That is

Max{e, Inx + o, InX, | pX, + p,X, < 1}

x>0

Note that
ou _ aj
ij X.

]
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Mathematical Foundations 1 -29- Constrained Maximization

Necessary conditions

lou 1oaou_

= A
P, OX, P, OX,
% _ % _
PX PoX,

Also px + p.X, =1 .

Technical tip
Ratio Rule:
a a + a
f =% gng b +b, #0 then & _% a7
b, b, b b, b+h,
Therefore
aq o, ota, o ta,
PX  PX, Pt PX, l
And so
a. |
X; = .
a+a, P
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Mathematical Foundations 1 -30- Constrained Maximization

Method 2: Equate the MRS and price ratio

-1 ay,—1

oU ouU
U(X)=x"Xx2. Then — =« X,"> and — = a, XX
( ) Xl 2 axl 1X1 axz 2X1 2

U
a, X,

o ooy 0% 0‘1)(1%_1)(20!2 _a X
MRS(R%) = R S

OX,

Then to be the maximizer,

aX_R

MRS (%,,%,) = P
2 2

As we have seen, it is helpful to rewrite this as follows:

Then proceed as before.
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Mathematical Foundations 1 -31- Constrained Maximization

Data Analytics (Taking the model to the data)

o, |

a +a, p;

x(p,1)=

Take the logarithm

a,

Inx; = In( )+Inl—Inp;

a, +a,
The model is now linear. We can then use least squares estimation
Inx; =a,+a,(Inl —Inp;)
or

Inx; =a,+aInl+a,Inp,

Exercise: If U (X) = (a, + X,)“(a, + X,)* , solve for the demand function x (p, 1)
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Mathematical Foundations 1 -32- Constrained Maximization

C. Optimization with a non-linear constraint

Problem 4

T Directions of increasing f(x)
—_—

Max{f (x)| 9(x) <b} .

J ()= f(¥)

This is illustrated for the two variable case.

f(x)=f(x)

As we shall see, the necessary conditions
g(x)<b
can be derived using a very similar argument

To that used in Section B. Figure C.1: Constrained maximization
In the figure the solution to the maximization problem is the vector X

Interpretation:

A firm has a fixed supply of b units of some resource.

If it produces the vector of outputs X its resource use is g(x) and revenue is R = f (X).
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Mathematical Foundations 1 -33- Constrained Maximization

Assumption 1: At any point X on the boundary of the feasible set the partial derivatives of g(x) are

all non-zero.*

Assumption 2: The solution to the unconstrained maximization problem Max{f (x)} violates the
X

resource constraint. Therefore if X solves the constrained maximization problem the constraint must

be binding, i.e. g(X)=b .

- , 0
*Or, as a mathematician would say, the components of the gradient vector 8_9()() are all nonzero.
X
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Mathematical Foundations 1 -34- Constrained Maximization

Suppose that the firm chooses X where the constraint is binding. The figure below depicts the graph

of g(X,... X;.1,-- X;) and the tangent line at X; . The slope of the tangent line at X is —(X)

" J_]_l J 1) J+11

b tangent line

b g('xlﬂ J]yx J+] ‘x )

|
|
|
|
|
|
|
|
|
X

Figure C.2: Resource requirement

To a first approximation, if the firm wishes to increase output of commodity j by AX; itrequiresan

extra Ab units of the resource where

Ab = S—Q(Y)ij |

j
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Mathematical Foundations 1 -35- Constrained Maximization

We have argued that the extra resource requirement is

ab =2 (z)ax,
OX;

Rearranging this expression, if follows that if the firm has Ab extra units of the resource and uses it to

increase commodity |, then the increase in X; is

_Ab
a9,
(X
axj()

AX,
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Mathematical Foundations 1 -36- Constrained Maximization

By the same argument, to a first approximation the increase in revenue is

AR = o (X)AX;
OX;

_ f_
This is depicted in the figure below. The slope of the tangent line at X is éf—(x) .
J

Fig. C-3: Revenue as a function of X;
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Mathematical Foundations 1 -37- Constrained Maximization

We have argued that

Ab

og ,_
—(X
ox, ™

AR =i(i)Axj and AX; =
OX;

Combining these results, if the resource increment ADb is used to increase X; , then the increase in

revenue is
of ,_
—(X)
of OX.
AR = —(X)AX, =———Ab .
% S
OX
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Mathematical Foundations 1 -38- Constrained Maximization

We have argued that

Ab

og ,_
—(X
ox, ™

AR =i(i)Axj and AX; =
OX;

Combining these results, if the resource increment ADb is used to increase X; , then the increase in

revenue is
of _
a(X)
AR = —(X)AX; = % Ab
X, o9,
—(X)
OX

We divide by Ab to get the marginal revenue product of the resource

of
AR ox X
MRP. = 2~ = 7
'"Ab 09 o
v (X)
X .
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Case (i) X;,X; >0

Suppose that the marginal revenue product is strictly lower for product j than for product i
MRP; (X) - MRR (X) < 0.

We can decrease the allocation of the resource to commodity j by Ab and so lower revenue by

AR = MRP, (X)Ab .
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Case (i) X;,X; >0

Suppose that the marginal revenue product is strictly lower for product j than for product i
MRP, (X) — MRP, (X) > 0.

We can decrease the allocation of the resource to commodity j by Ab and so lower revenue by
AR = MRP, (X)ADb .

We can then use the Ab to increase X.. The net gain is then
AR = MRR (X)Ab — MRP; (X)Ab =[MRP, (X) — MRP; (X)]Ab >0 .

It follows that X is not profit maximizing. Thus for X to solve the maximization problem we have the

following necessary condition.

If X,%, >0, then MRP,(X) = MRP,(X)
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Mathematical Foundations 1 -4]- Constrained Maximization

Let A be the equalized marginal revenue product. The necessary conditions can be written as

follows:
af(y)
o —\ OX
If X;,X; >0 then MRP, (X) = =A.
a9(7)
8xj
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Mathematical Foundations 1 -42- Constrained Maximization

Case (ii) x =0, X;>0.

We can no longer decrease x; and increase X; but we can do the reverse, increasing x; and

decreasing X; . Arguing as above, the net gain is
MRP, (X)Ab — MRP, (X)Ab =[MRP, (X) — MRP, (X)]Ab .

If X maximizes revenue then this change cannot increase revenue. Therefore

MRP,(X) - MRP, (X) <0 .
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Mathematical Foundations 1 -43- Constrained Maximization

Case (ii) x =0, X;>0.

We can no longer decrease x; and increase X; but we can do the reverse, increasing x; and

decreasing X; . Arguing as above, the net gain is
MRP, (X)Ab — MRP, (X)Ab =[MRP, (X) — MRP, (X)]Ab .

If X maximizes revenue then this change cannot increase revenue. Therefore
MRP, (X) - MRP, (X) <0 .

That is

MRP,(X) < MRP, (%) = 4

Therefore
of _
8)(()()
If X, =0and X; >0, then MRP,(X) = agi <A
8(7)
Xi

© John Riley September 30, 2016



Mathematical Foundations 1 -44- Constrained Maximization

Example: Max{U (X) =, InX, +a, InX, | p, X, + p,X, <1}

x>0

o L)
MRP,(X) = -% =% | MRP, (X) = -2 = %2
P PX P, D%,

Case (i) X, X, >0

MRR(X)= -2 =% _ MRP,(X) .

PX PX,

* %
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Mathematical Foundations 1 -45- Constrained Maximization

Example: Max{U (X) =, InX, +a, InX, | p, X, + p,X, <1}

x>0

% %
MRP,(X) = -% =% | MRP, (X) = -2 = %2
Pr PX P, PX;
Case (i) x,,x, >0
MRR(X)= -2 =% _ MRP,(X) .
PX PX
Ratio Rule: If =22 and b +b, #0 then 4Q_% 278
b, b b, b+b,
Therefore
o, o  ata, o+a,

DX X PX DX |
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Mathematical Foundations 1 -46- Constrained Maximization

Example: Max{U (X) =, InX, +a, InX, | p, X, + p,X, <1}

x>0

% %
MRP,(X) = -% =% | MRP, (X) = -2 = %2
P P P, PX%
Case (i) X, X, >0
MRR(X)= -2 =% _ MRP,(X) .
PX PX;
Ratio Rule: If =22 and b +b, #0 then 4Q_% 278
b b b b, b+b
Therefore
o, o  ata, o+a,

DX X PX DX |

Case (ii) X, =0, X; >0 .

Exercise: Show that the necessary conditions cannot be satisfied in this case
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Mathematical Foundations 1

D. Constrained Optimization with multiple constraints —an intuitive approach

Max{f (x)|b, —g,() =0, i =1,..., m}.
Economic Interpretation of maximization problem
profit maximizing multi-product firm with fixed inputs.
x = vector of outputs x>0

f(x) revenue

b=(b,...,b,) = vector of inputs (fixed in short run)

g(x) =(9,(x),...,9,,(X)) inputs needed to produce output vector x
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Mathematical Foundations 1 -48- Constrained Maximization

D. Constrained Optimization — an intuitive approach

I\)/(ng{f (X)|b —g.(x) =0, i=1,...,m}. Invector notation I\ﬁlgx{f (X)[b—g(x) >0}
Economic Interpretation of maximization problem

profit maximizing multi-product firm with fixed inputs.

x = vector of outputs x>0

f(x) revenue

b = vector of inputs available (fixed in short run)

g(x) = vector of inputs needed to produce output vector x

constraints: g(X) <b.

Example: m linear constraints.

Each unit of x; requires a; units of resource b, .
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Mathematical Foundations 1 Constrained Maximization

One constraint:
Suppose that X solves the optimization problem.

_ : _ . 0
If the firm increases X;, the direct effect on profit is the marginal revenue PV
X.
J

%k %k k
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Mathematical Foundations 1 -50- Constrained Maximization

One constraint:
Suppose that X solves the optimization problem.

o . . . of
If the firm increases X;, the direct effect on profit is the marginal revenue —.

OX j

However, the increase in X;also utilizes additional resources so that there must be offsetting changes

in other commodities.

%k %k %k
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One constraint:
Suppose that X solves the optimization problem.

_ : . . of
If the firm increases X;, the direct effect on profit is the marginal revenue PV
X.
J

However, the increase in X;also utilizes additional resources so that there must be offsetting changes

in other commodities.

We introduce a “shadow price” 4 >0 to reflect the opportunity cost of using the additional resources.

%k *k
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One constraint:
Suppose that X solves the optimization problem.

_ : _ . of
If the firm increases X;, the direct effect on profit is the “marginal revenue”, PV
X.
J

However, the increase in X;also utilizes additional resources so that there must be offsetting changes

in other commodities.

We introduce a “shadow price” 4 >0 to reflect the opportunity cost of using the additional resources.

9

The extra resource use is ——.

o”xj

Multiplying this by the shadow price of the resource gives the marginal opportunity cost

of increasing X;.
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One constraint:
Suppose that X solves the optimization problem.

. . . I " H ” a
If the firm increases X;, the direct effect on profit is the “marginal revenue”, PV
X.
J

However, the increase in x;also utilizes additional resources so that there must be offsetting changes
in other commodities.

We introduce a “shadow price” 4 >0 to reflect the opportunity cost of using the additional resources.

9

The extra resource use is ——.

o”xj

Multiplying this by the shadow price of the resource gives the marginal opportunity cost

of increasing X;.

The net gain to increasing X;is therefore

of ,_ og ,_
a(x)—ﬁa(x)
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If the optimum for commodity j, X; , is strictly positive, this marginal net gain must be zero.

That is

x.>o:>§—() /1 () 0

J
]

* %k
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If the optimum for commodity j, X; , is strictly positive, this marginal net gain must be zero.

That is
X. >O:>— /1 0
, P J( ) - ( )=

If Yj is zero, the marginal net gain to increasing X; cannot be positive. Hence

X; = —( )- /1 Y (%) <0

J
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Mathematical Foundations 1

If the optimum for commodity j, X; , is strictly positive, this marginal net gain must be zero.
That is

Y.>O:>§—() /1 () 0

J
J
If YJ— is zero, the marginal net gain to increasing X; cannot be positive. Hence

X; = —( )- /1 Y (%) <0

J

Summarizing

—( ) - /1 (x)<0 with equality if X; > 0.

J
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Since X must be feasible b—g(X) >0.
Moreover, we have defined Ato be the opportunity cost of additional resource use.

Then if not all the resource is used, 4 must be zero.
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Since X must be feasible b—g(X) >0.

Moreover, we have defined Ato be the opportunity cost of additional resource use.
Then if not all the resource is used, 4 must be zero.

Summarizing,

b—g(X) >0, with equality if 1 >0.
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Multiple constraints:
Introduce a shadow price for each constraint.

The marginal net gain to increasing X; is then

LI TS .
5 ()2 4G = 2o = 22200,

The Intuitive argument then proceeds as in the one constraint case.
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There is a convenient way to remember these conditions. First write the i-th constraint in the form

h(X)—b —g;(x)=0 i=1..,m.Invector notation h(x) 0. Thus in our example we write the

constraints as h(x) =b—g(x) >0.

%k %k
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There is a convenient way to remember these conditions. First write the i-th constraint in the form

h(x)=b —g;(x)=0 1=1...m.Invector notation h(x) > 0. Thus in our example we write the

constraints as h(x) =b—g(x) >0.

Then introduce a vector of “Lagrange multipliers” or shadow prices A and define the Lagrangian

2(x,2) = f () + A-h(X)

* %k
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There is a convenient way to remember these conditions. First write the i-th constraint in the form

h(x)>0 i=1..,m.Invector notation h(x) > 0. Thus in our example we write the constraint as

h(x)=b—-g(x)>0.

Then introduce a vector of “Lagrange multipliers” or shadow prices A and define the Lagrangian
L(x,A)=f(X)+1-h(x)

The first order conditions are then all restrictions on the partial derivatives of £(X,1).

(i) oL —ﬂ+l-é’—h£0, with equality if X; >0, j=1...,n.

é’—)(j - X, oX,

]

(ii) % =h(X) >0, with equality if & >0, i=1...,m.
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There is a convenient way to remember these conditions. First write the i-th constraint in the form

h(x)>0 i=1..,m.Invector notation h(x) > 0. Thus in our example we write the constraint as

h(x)=b—-g(x)>0.
Then introduce a vector of “Lagrange multipliers” or shadow prices A and define the Lagrangian

L(x,A) =T (X)+1-h(x)
The first order conditions are then all restrictions on the partial derivatives of £(X,1).

(i) oL —ﬂ+/1-é’—h£0, with equality if X; >0, j=1...,n.

é’—)(j - X, oX,

]

(ii) % =h(X) >0, with equality if & >0, i=1...,m.

Equivalently,

i ZEx)<0 and %25 (x,4)=0.
OX OX.

I
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oL oL
i) —(X,4)20and 2-—(X,1)=0
(i) —=(X.2)=0and 4-—=(X,4)

Exercise: Solve the following problem. Max{U (x) = Inx, + In(X, +2X,) | p,X, + P, X, + PsX; < 60}

(i) if p=(12,6) (i) p=(12,2) (i) p=(12,4)
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E. The Constraint Qualifications*

Suppose that the constraint h (X) >0 is binding at X°
Then the constraint is satisfied if X >0 is in the superlevel set

{xeR" [h(x)>h(x’) =0}

where X° is a boundary point.

v

We replace the constraint by its linear approximation.

*Technical section. Not required reading
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Linear approximation of a function h(X)in a neighborhood of X°
100 =10 + Do) (x-x) =)+ (), 1)
OX i OX;

%k
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Linear approximation of a function h(x)

100 =10+ T () (- x) = () + Y DL )(x, 1)
OX 20X

Value and partial derivatives of h (x) at X° :

h (x°), S—Q(x"), j=1..n

J

© John Riley September 30, 2016



Mathematical Foundations 1 -68- Constrained Maximization

Linear approximation of a function at x° (where h (x°) =0
h; (X)

Loy 05‘_hi0._0:3_hi0,_0:na_hi0._0
hi(X)_hi(X)_i'@X(X)(X X") aX(X)(X x)=>. p (x7) - (X; = X;)

= j

Value and partial derivatives of h (x) at x° :
hy (x° ) (X ), 1=1,
Value and partial derivatives of h"(x) at x° :

h(X) (X) 1=1
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We replace a binding constraint 4
h(x)=h (x°)=0

by its linear approximation
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Two binding constraints

Suppose that two constraints are both binding at X° . This is depicted below.

Note that locally the linearized feasible set approximates the original feasible set.

(slopes of the original and the linearized feasible sets are the same at x° )

Intuitively, replacing binding functions and the maximand by their linearized approximations should
yield the necessary conditions.
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This is almost true but the argument fails in two cases.

In each case the linearization drastically changes the constraints.

Case 1: Disappearing constraint

oh
Suppose that the gradient vector is zero: 8_()(0) =0
X

The linearized constraint is

5 oh
E GT(XO)(Xj -X)=0
10X

Thus if the gradient vector is zero the constraint disappears!
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Example: Consider the following two optimizations problems

(i) Mgzx{u(x) = XX, |10—x =X, >0} (ii) Mgzx{u(x) = XX, | (10—x, —X,)° >0}

You should convince yourself that the feasible sets are the same and so the solutions are the same.

Given the symmetry of the problem consider x° = (5,5) .

Write down the derivatives of the Lagrangian in each case. You will find the X° satisfies the intuitively
derived necessary conditions in problem (i) but not in problem (ii)
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Case 2: Disappearing vertex
Suppose that two constraints are both binding at x° .

If, as depicted, the two constraints have the same slope at x° then there can be a problem.

To illustrate consider the following example with solution x° =(2,2)

Max{ f (X) = X, | h (X) = X, —9X, +6X,” —x,° >0, h,(x) =8—x, —3x, >0}

The 1st constraint holds for all X, to the right of the boundary h (x) =0

0 _
X =(22) The 2nd constraint holds for all x; to the left of the boundary h,(x) =0

Thus the feasible set is the shaded area.
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Max{ f (x) = X, | h,(X) = X, —=9X, +6X,” — X,° >0, h,(x) =8—x, —3x, >0}

We linearize the first constraint
Z—h(x) =(1,-9+12x, —3x,%) aa—hl(xo) =(L,3) Then g—m(xo)-(x—xo):l(&—2)+3(x2 -2)>0
X X X

ie. X +3X,=8

(W]
w2

v

The linearized feasible set is the line X, +3X, =8. The vertex disappears.
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Constraint Qualifications

Formally, we must check the following “constraint qualifications” If they are satisfied the intuitively
derived conditions are indeed necessary conditions.
. .. . . 0 . 0 ah| 0 .
1. Suppose that constraint i is binding at X~ but the gradient vector at X, 8_()( ) =0 .Then thereis
X

no associated linearized constraint.
: : oh o . :
Thus to apply this approach we require that 6_()( ) #0 for each binding constraint
X

2. Suppose that the i-th constraint is binding if and only if i € | . Check that the feasible set of binding

linearized constraints has a non-empty interior. That is, there exists X such that

a—h‘(xo)-()A(—XO)>O foralliel.
OX
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Constraint Qualifications

Define X to be the set of feasible vectors, thatis X ={x|x>0, h(x) >0, i=1,...,m}.

The constraint qualifications holds at x° € X if

oh
(i) for each constraint that is binding at x° the associated gradient vector a—'(xo) #0 .
X

(ii) X, the set of non-negative vectors satisfying the linearized binding constraints has a non-empty

interior.
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As long as the constraint qualifications hold, the intuitively derived conditions are indeed necessary

conditions. This is summarized below.
Proposition: Necessary Conditions for a Constrained Maximum

Suppose X’ solves Max{f (x)| x € X}. If the constraint qualifications hold at x° then there exists a

vector of shadow prices A >0 such that

oL : : .
a—Xj(XO,ﬂ) <0, j=1..,n with equality if x°>0
and > Kuhn-Tucker conditions

%(xu) >0, i=1,..,m with equality if 4 >0

Since Kuhn and Tucker™ were the first to provide a complete set of constraint qualifications, the first

order conditions (FOC) are often called the Kuhn-Tucker Conditions.

*These conditions are also called the Karush-Kuhn-Tucker conditions
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