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Basics of maximization in economics 

 

A.  Maximization when the decision vector must be positive (non-negativity constraints)        2 

B.  Maximization with a linear resource constraint        9 

C.  Maximization with a non-linear resource constraint       32 

D.  Maximization with multiple resource constraints (an intuitive approach)    47 

E.  The constraint qualifications*             65 

 

*Not required reading 
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A.  Necessary conditions 

1( ,..., )nx x x    a vector of decision variables where each component of x is a real number.  

( jx  , 1,...,j n , equivalently  nx  ) 

( )f x  is a mapping from the set n  onto the set  

Assume that all the partial derivatives of ( )f x  exist 

Maximization problem 

{ ( ) | }n

x
Max f x x     
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A.  Necessary conditions 

1( ,..., )nx x x    a vector of decision variables where each component of x is a real number.  

( jx  , 1,...,j n , equivalently  nx  ) 

( )f x  mapping from the set n  onto the set  

Assume that all the partial derivatives of ( )f x  exist  

Maximization problem 

{ ( ) | }n

x
Max f x x     

 

 Focus on jx  . Write the vector of all other components of x as  

1 1 1( ,..., , ,..., )j j j nx x x x x     

Then the function ( )f x  can be written as follows: 

( ) ( , )j jf x f x x   
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Depict graph of f   

 

 

 

 

 

 

 

Case (i) 
0 0jx    

0( , )j jf x x  is a function of a single variable. Since 
0 0jx   we can consider small neighborhoods of 

0

jx   in 


  

Arguing exactly as in the one variable case the necessary condition 

 
0 0 0( , ) ( ) 0j j

j j

f f
x x x

x x


 
 

 
 

 

 

  

  

  

  

  



Mathematical Foundations 1                                          -5-                                                 Constrained Maximization 

 

© John Riley                                                                                                                                                                     September 30, 2016 

Case (ii) 0jx    

Graph of f  

  

 

 

 

 

 

 

 

 

If the slope of the graph is strictly positive, then for 0jx   and sufficiently small,    

0 0 0( , ) ( , )j j j jf x x f x x  . 

Thus the necessary condition is  

 0 0 0( , ) ( ) 0j j

j j

f f
x x x

x x


 
 

 
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Therefore necessary conditions (“First order conditions”) for f to take on its maximum at 0x  are as 

follows:  

 

  
0( ) 0, 1,...,

j

f
x j n

x


 


 with equality if 0 0jx    

** 
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Therefore necessary conditions (“First order conditions”) for f to take on its maximum at 0x  are as 

follows:  

 

  
0( ) 0, 1,...,

j

f
x j n

x


 


 with equality if 0 0jx    

 

Equivalently,  

(i)  the “gradient vector” (vector of the n  partial derivatives) is negative, i.e. 

0( ) 0
f

x
x





 

(ii) the inner product of  0x  and the gradient vector is the zero vector, i.e. 

 

0 00, ( ) 0, 1,...,
f

x x j n
x


  


 and 0 0( ) 0

f
x x

x


 

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Therefore necessary conditions (“First order conditions”) for f to take on its maximum at 0x  are as 

follows:  

 

  
0( ) 0, 1,...,

j

f
x j n

x


 


 with equality if 0 0jx    

 

Equivalently,  

(iii)  the “gradient vector” (vector of the n  partial derivatives) is negative, i.e. 

0( ) 0
f

x
x





 

(iv) the inner product of  0x  and the gradient vector is the zero vector, i.e. 

 

0 00, ( ) 0, 1,...,
f

x x j n
x


  


 and 0 0( ) 0

f
x x

x


 


  

 

Since only one of the two inequality conditions above can be strict, these conditions are known 

as the complementary slackness conditions. 
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B. Maximization with a linear resource constraint 

As a first step in the analysis of maximization with resource constraints we consider the maximization 

problem of a consumer who chooses among consumption vectors. The set of commodities is 

{1,..., }nN . Given an income I  and a vector of prices 
1 2( , ,..., )np p p p  , the set of feasible 

consumption vectors is the set 

 
1 1{ 0 | ... }n nB x p x p x p x I         

We assume that the preferences of the consumer can be represented by a continuously 

differentiable, strictly increasing utility function ( )U x . 

The consumer then chooses x  that solves the following problem. 
 

 
0

{ ( ) | }
x

Max U x p x I


    

Note that, since ( )U x  is strictly increasing, p x I   
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Example with 2 commodities: 1 2

1 2 1 1 2 2
0

{ ( ) | }
x

Max U x x x p x p x I 


     

Note that utility is zero if consumption of either commodity is zero. Therefore every component of 

the solution  x  is strictly positive. (We write 0x   ) .  
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Example with 2 commodities: 1 2

1 2 1 1 2 2
0

{ ( ) | }
x

Max U x x x p x p x I 


     

Note that utility is zero if consumption of either commodity is zero. Therefore every component of 

the solution  x  is strictly positive. (We write 0x   ) .  

Geometry 

In the 2 commodity case we can represent  

preferences by depicting points for which utility  

has the same value.  

Such a set of points is called a level set.  In the figure  

the level sets are the boundaries of the blue, red and  

green shaded regions.   
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Example with 2 commodities: 1 2

1 2 1 1 2 2
0

{ ( ) | }
x

Max U x x x p x p x I 


     

Note that utility is zero if consumption of either commodity is zero. Therefore every component of 

the solution  x  is strictly positive. (We write 0x   ) .  

Geometry 

In the 2 commodity case we can represent  

preferences by depicting points for which utility  

has the same value.  

Such a set of points is called a level set.  In the figure  

the level sets are the boundaries of the blue, red and  

green shaded regions.   

 

In mathematical notation the 4 level sets are 

{ | ( ) 0}x U x  ,{ | ( ) 1}x U x  , { | ( ) 2}x U x  ,{ | ( ) 3}x U x   . 

 

Three of them are what economists often call indifference curves.  
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In the figure both components of the solution 

1 2( , )x x x  are strictly positive. 

(Mathematical  shorthand 0x  .)  

So the slope of the budget line is 

equal to the slope of the indifference curve. 
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Necessary conditions for a maximum 

To a first approximation, if a consumer currently, choosing x  can increase consumption of 

commodity j   by jx , the change in utility is 

( ) j

j

U
U x x

x


  


 . 

This is depicted in the figure.. 

 The slope of the tangent line at x  is 

 ( )
j

U
x

x




 . 

 

  

 

  

  

  

  

  

  

Fig. 2-3: Utility as a function of   
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Necessary conditions for a maximum 

To a first approximation, if a consumer currently, choosing x  can increase consumption of 

commodity j   by jx , the change in utility is 

( ) j

j

U
U x x

x


  


 . 

This is depicted in the figure.. 

 The slope of the tangent line at x  is 

 ( )
j

U
x

x




 . 

 

If the consumer has an additional E  dollars then j jE p x     and so j

j

E
x

p


   . 

 

 

 

  

  

  

  

  

  

Fig. 2-3: Utility as a function of   
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Necessary conditions for a maximum 

To a first approximation, if a consumer currently, choosing x  can increase consumption of 

commodity j   by jx , the change in utility is 

( ) j

j

U
U x x

x


  


 . 

This is depicted in the figure.. 

 The slope of the tangent line at x  is 

 ( )
j

U
x

x




 . 

 

If the consumer has an additional E  dollars then j jE p x     and so j

j

E
x

p


   . 

The increase in utility is therefore 
1

( ) ( ) ( )j

j j j j j

U U E U
U x x x x E

x x p p x

   
     

  
 

 

  

  

  

  

  

  

Fig. 2-3: Utility as a function of   
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We have seen that 

1
( )

j j

U
U x E

p x


  


 

Therefore  

 
1

( )
j j

U U
x

E p x

 


 
  

In the limit as E  approaches zero, this becomes the rate at which utility rises as expenditure on 

commodity j  rises.  

1
( )

j j

U
x

p x




  is the marginal utility per dollar as expenditure on commodity j  rises 
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Suppose that the consumer spends 1 dollar less on commodity j  .  His change in utility is 

1
( )

j j

U
x

p x





 . He then spends the dollar on commodity i  .  

The change in utility is 
1

( )
i i

U
x

p x




.  The net change in utility is therefore 

 
1 1

( ) ( )
i i j j

U U
x x

p x p x

 


 
 

*  
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Suppose that the consumer spends 1 dollar less on commodity j  .  His change in utility is 

1
( )

j j

U
x

p x





 . He then spends the dollar on commodity i  .  

The change in utility is 
1

( )
i i

U
x

p x




.  The net change in utility is therefore 

 
1 1

( ) ( )
i i j j

U U
x x

p x p x

 


 
 

Case (i) , 0i jx x    

If the change in utility is strictly positive the current utility can be increased by consuming more of 

commodity i  and less of commodity j  . If it is negative, utility can be increased by spending less 

commodity j and more on commodity i  . Thus a necessary condition for x  to be utility maximizing is 

that 

 
1 1

( ) ( )
i i j j

U U
x x

p x p x

 


 
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Case (ii) 0j ix x   

If the difference in marginal utilities is positive current ( )U x  can be increased by spending a positive 

amount on commodity j  .  Thus a necessary condition for x  to be utility maximizing is that 

 
1 1

( ) ( )
i i j j

U U
x x

p x p x

 


 
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Case (ii) 0j ix x   

If the difference in marginal utilities is positive current ( )U x  can be increased by spending a positive 

amount on commodity j  .  Thus a necessary condition for x  to be utility maximizing is that 

 
1 1

( ) ( )
i i j j

U U
x x

p x p x

 


 
  

Let   be the common marginal utility per dollar for all those commodities that are consumed in 

strictly positive amounts.  We can therefore summarize the necessary conditions as follows: 

Necessary conditions for a maximum 

If 0jx   then 
1

( )
j j

U
x

p x






  

If 0jx   then  
1

( )
j j

U
x

p x






  

Note: Since   is the rate at which utility rises with income it is called the marginal utility of income 
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An alternative approach 

 From the argument above, if both commodity i  and commodity j  are consumed, then the ratio 

of their marginal utilities must be equal to the price ratio. 

   

To understand this consider a change in 
ix  and jx  that leaves the consumer on the same level set. i.e. 

1 1 2 2 1 2( , ) ( , )U x x x x U x x     
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An alternative approach 

 From the argument above, if both commodity i  and commodity j  are consumed, then the ratio 

of their marginal utilities must be equal to the price ratio. 

   

To understand this consider a change in 
ix  and jx  that leaves the consumer on the same level set. i.e. 

1 1 2 2 1 2( , ) ( , )U x x x x U x x     

Above we showed that, to a first approximation, 

 ( ) j

j

U
U x x

x


  


 . 

If we increase the quantity of commodity j  and reduce the quantity of commodity i , then the net 

change in utility is 

 ( ) ( )j i

j i

U U
U x x x x

x x

 
    

 
  

  



Mathematical Foundations 1                                          -24-                                                 Constrained Maximization 

 

© John Riley                                                                                                                                                                     September 30, 2016 

We have argued that ( ) ( )j i

j i

U U
U x x x x

x x

 
    

 
 

For this net change to be zero, 

j i

i

j

U

x x

Ux

x



 




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We have argued that ( ) ( )j i

j i

U U
U x x x x

x x

 
    

 
 

For this net change to be zero, 

j i

i

j

U

x x

Ux

x



 





 

In the figure, - 2

1

x

x




 is the slope of the level set at x  . 

The ratio is the rate at which 
1x  must be substituted into 

the consumption bundle to compensate for a reduction in 
2x   

Hence we call it the marginal rate of substitution of 
1x  for 

2x  . 

 

Definition: Marginal rate of substitution 

( , ) i
i j

j

U

x
MRS x x

U

x








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For x  to be the maximizer the rate at which 
1x   

can be substituted into the budget as 
2x  is 

reduced must leave total expenditure  

on the two commodities constant, i.e., 

0i i j jp x p x      

Then along the budget line 

 
j i

i j

x p

x p


 


 

 

Graphically, the slope of the budget line  

must be equal to the slope of the indifference curve at x   ie. 

( , ) i i
i j

j

j

U

x p
MRS x x

U p

x




 



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The example: 1 2

1 2 1 1 2 2
0

{ ( ) | }
x

Max U x x x p x p x I 


    

Necessary conditions for a maximum 

Method 1: Equalize the marginal utility per dollar 

To make differentiation simple, try to find an increasing function of the utility function that is simple. 
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The example: 1 2

1 2 1 1 2 2
0

{ ( ) | }
x

Max U x x x p x p x I 


    

Necessary conditions for a maximum 

Method 1: Equalize the marginal utility per dollar 

To make differentiation simple, try to find an increasing function of the utility function that is simple. 

Define the new utility function ( ) ln ( )u x U x   

The new maximization problem is 

1 1 2 2
0

{ ( ) ln ( ) | }
x

Max u x U x p x p x I


     

That is 

 
1 1 2 2 1 1 2 2

0
{ ln ln | }

x
Max x x p x p x I 


     

Note that 

j

j j

u

x x





 . 
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Necessary conditions 

1 1 2 2

1 1u u

p x p x


 
 

 
   

1 2

1 1 2 2p x p x

 
  . 

Also 
1 1 2 2p x p x I   . 

Technical tip 

Ratio Rule:   

If 1 2

1 2

a a

b b
   and 

1 2 0b b   then 1 2 1 2

1 2 1 2

a a a a

b b b b


 


. 

Therefore  

 1 2 1 2 1 2

1 1 2 2 1 1 2 2p x p x p x p x I

      
  


  

And so 

 
1 2

j

j

j

I
x

p



 



 . 
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Method 2: Equate the MRS and price ratio 

 1 2

1 2( )U x x x
 

  .  Then 1 21

1 1 2

1

U
x x

x

  



 and 1 2 1

2 1 2

2

U
x x

x

  



 

 
1 2

1 2

1

1 1 1 2 1 2
1 2 1

2 1 2 2 1

2

( , )

U

x x x x
MRS x x

U x x x

x

 

 

 

 








  




. 

Then to be the maximizer, 

 1 2 1
1 2

2 1 2

( , )
x p

MRS x x
x p




   

As we have seen, it is helpful to rewrite this as follows: 

 1 1 2 2

1 2

p x p x

 
  . 

Then proceed as before. 
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Data Analytics (Taking the model to the data) 

1
1

1 2

( , )
j

I
x p I

p



 



. 

Take the logarithm 

 1

1 2

ln ln( ) ln lnj jx I p


 
  


  

The model is now linear. We can then use least squares estimation 

 0 1ln (ln ln )j jx a a I p      

or  

 0 1 2ln ln lnj jx a a I a p    

Exercise: If 1 2

1 1 2 2( ) ( ) ( )U x a x a x
 

    , solve for the demand function 
1( , )x p I   
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C. Optimization with a non-linear constraint 

Problem 

{ ( ) | ( ) }
nx

Max f x g x b


  . 

This is illustrated for the two variable case. 

As we shall see, the necessary conditions 

can be derived using a very similar argument 

To that used in Section B. 

 

In the figure the solution to the maximization problem is the vector x   

Interpretation:  

A firm has a fixed supply of b  units of some resource. 

If it produces the vector of outputs x  its resource use is ( )g x  and revenue is ( )R f x .  

 

  

  

  

  

  

  

  
  

  

Directions of increasing   

Figure C.1: Constrained maximization 
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Assumption 1: At any point x  on the boundary of the feasible set the partial derivatives of ( )g x  are 

all non-zero.* 

Assumption 2: The solution to the unconstrained maximization problem { ( )}
x

Max f x  violates the 

resource constraint. Therefore if x  solves the constrained maximization problem the constraint must 

be binding, i.e. ( )g x b  .   

 

 

 

 

 

 

 

__________ 

 *Or, as a mathematician would say, the components of the gradient vector ( )
g

x
x




 are all nonzero. 
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Suppose that the firm chooses x  where the constraint is binding. The figure below depicts the graph 

of 1 1 1( ,...., , , ,..., )j j j ng x x x x x   and the tangent line at jx  .  The slope of the tangent line at x  is ( )
j

g
x

x




 

. 

 

 

 

 

 

 

To a first approximation, if the firm wishes to increase output of commodity j   by jx   it requires an 

extra b  units of the resource where 

( ) j

j

g
b x x

x


  


 . 

 

  

  

  

  

  

  

  

Figure C.2: Resource requirement 
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We have argued that the extra resource requirement is 

( ) j

j

g
b x x

x


  


 

Rearranging this expression, if follows that if the firm has b  extra units of the resource and uses it to 

increase commodity j , then the increase in jx  is 

 

( )
j

j

b
x

g
x

x


 




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By the same argument, to a first approximation the increase in revenue is 

 ( ) j

j

f
R x x

x


  


  

This is depicted in the figure below. The slope of the tangent line at x  is ( )
j

f
x

x




 . 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

Fig. C-3: Revenue as a function of   
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We have argued that  

( ) j

j

f
R x x

x


  


 and 

( )
j

j

b
x

g
x

x


 





 

Combining these results, if the resource increment b  is used to increase jx  , then the increase in 

revenue is  

( )

( )

( )

j

j

j

j

f
x

xf
R x x b

gx
x

x




    





 . 

*  
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We have argued that  

( ) j

j

f
R x x

x


  


 and 

( )
j

j

b
x

g
x

x


 





 

Combining these results, if the resource increment b  is used to increase jx  , then the increase in 

revenue is  

( )

( )

( )

j

j

j

j

f
x

xf
R x x b

gx
x

x




    





 . 

 

We divide by b   to get the marginal revenue product of the resource 

 

( )

( )

j

j

j

f
x

xR
MRP

gb
x

x




 




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Case (i) , 0i jx x    

Suppose that the marginal revenue product is strictly lower for product j  than for product i  

( ) ( ) 0j iMRP x MRP x  .   

We can decrease the allocation of the resource to commodity j  by b  and so lower revenue by  

 ( )jR MRP x b    . 

* 

 

 

 

  



Mathematical Foundations 1                                          -40-                                                 Constrained Maximization 

 

© John Riley                                                                                                                                                                     September 30, 2016 

Case (i) , 0i jx x    

Suppose that the marginal revenue product is strictly lower for product j  than for product i  

( ) ( ) 0i jMRP x MRP x  .   

We can decrease the allocation of the resource to commodity j  by b  and so lower revenue by  

 ( )jR MRP x b    . 

We can then use the b  to increase 
ix .  The net gain is then 

 ( ) ( ) [ ( ) ( )] 0i j i jR MRP x b MRP x b MRP x MRP x b          . 

It follows that x  is not profit maximizing.  Thus for x  to solve the maximization problem we have the 

following necessary condition. 

If  , 0i jx x  , then ( ) ( )j iMRP x MRP x   
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Let   be the equalized marginal revenue product.   The necessary conditions can be written as 

follows: 

 If , 0i jx x   then 

( )

( )

( )

j

j

j

f
x

x
MRP x

g
x

x






 




.   
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Case (ii)  0ix  , 0jx   .  

We can no longer decrease 
ix  and increase 

jx   but we can do the reverse, increasing 
ix  and 

decreasing jx  . Arguing as above, the net gain is  

 ( ) ( ) [ ( ) ( )]i j i jMRP x b MRP x b MRP x MRP x b       . 

If x  maximizes revenue then this change cannot increase revenue. Therefore 

 ( ) ( ) 0i jMRP x MRP x   . 

*  
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Case (ii)  0ix  , 0jx   .  

We can no longer decrease 
ix  and increase 

jx   but we can do the reverse, increasing 
ix  and 

decreasing jx  . Arguing as above, the net gain is  

 ( ) ( ) [ ( ) ( )]i j i jMRP x b MRP x b MRP x MRP x b       . 

If x  maximizes revenue then this change cannot increase revenue. Therefore 

 ( ) ( ) 0i jMRP x MRP x   . 

That is 

 ( ) ( )i jMRP x MRP x     

Therefore  

If 0ix  and 0jx   , then 

( )

( )

( )

i
i

i

f
x

x
MRP x

g
x

x






 



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Example: 
1 1 2 2 1 1 2 2

0
{ ( ) ln ln | }

x
Max U x x x p x p x I 


      

 

1

1 1
1

1 1 1

( )
x

MRP x
p p x




   , 

2

2 2
2

2 2 2

( )
x

MRP x
p p x




   

Case (i) 
1 2, 0x x    

 
1 2

1 2

1 1 2 2

( ) ( )MRP x MRP x
p x p x

 
    . 

**  
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Example: 
1 1 2 2 1 1 2 2

0
{ ( ) ln ln | }

x
Max U x x x p x p x I 


      

 

1

1 1
1

1 1 1

( )
x

MRP x
p p x




   , 

2

2 2
2

2 2 2

( )
x

MRP x
p p x




   

Case (i) 
1 2, 0x x    

 
1 2

1 2

1 1 2 2

( ) ( )MRP x MRP x
p x p x

 
    . 

Ratio Rule: If 1 2

1 2

a a

b b
   and 

1 2 0b b   then 1 2 1 2

1 2 1 2

a a a a

b b b b


 


. 

Therefore  

 1 2 1 2 1 2

1 1 2 2 1 1 2 2p x p x p x p x I

      
  


  

 

* 
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Example: 
1 1 2 2 1 1 2 2

0
{ ( ) ln ln | }

x
Max U x x x p x p x I 


      

 

1

1 1
1

1 1 1

( )
x

MRP x
p p x




   , 

2

2 2
2

2 2 2

( )
x

MRP x
p p x




   

Case (i) 
1 2, 0x x    

 
1 2

1 2

1 1 2 2

( ) ( )MRP x MRP x
p x p x

 
    . 

Ratio Rule: If 1 2

1 2

a a

b b
   and 

1 2 0b b   then 1 2 1 2

1 2 1 2

a a a a

b b b b


 


. 

Therefore  

 1 2 1 2 1 2

1 1 2 2 1 1 2 2p x p x p x p x I

      
  


  

 

Case (ii) 0, 0i jx x   . 

Exercise: Show that the necessary conditions cannot be satisfied in this case 
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D. Constrained Optimization with multiple constraints  –an intuitive approach 

0
{ ( ) | ( ) 0, 1,..., }i i

x
Max f x b g x i m


   . 

Economic Interpretation of maximization problem 

profit maximizing multi-product firm with fixed inputs. 

x = vector of outputs      x 0  

f(x) revenue 

1( ,..., )mb b b  = vector of inputs (fixed in short run) 

1( ) ( ( ),..., ( ))mg x g x g x   inputs needed to produce output vector x 
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D. Constrained Optimization – an intuitive approach 

0
{ ( ) | ( ) 0, 1,..., }i i

x
Max f x b g x i m


   .  In vector notation 

0
{ ( ) | ( ) 0}

x
Max f x b g x


   

Economic Interpretation of maximization problem 

profit maximizing multi-product firm with fixed inputs. 

x = vector of outputs      x 0  

f(x) revenue 

b = vector of inputs available (fixed in short run) 

g(x) = vector of inputs needed to produce output vector x 

constraints:   ( )g x b . 

Example: m linear constraints.   

Each unit of jx  requires ija  units of resource ib  .   
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One constraint: 

Suppose that x  solves the optimization problem.  

If the firm increases jx , the direct effect on profit is the marginal revenue 
j

f

x




. 

 

 

**** 
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One constraint: 

Suppose that x  solves the optimization problem.  

If the firm increases jx , the direct effect on profit is the marginal revenue  
j

f

x




. 

However, the increase in jx also utilizes additional resources so that there must be offsetting changes 

in other commodities.   

 

 

*** 
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One constraint: 

Suppose that x  solves the optimization problem.  

If the firm increases jx , the direct effect on profit is the marginal revenue  
j

f

x




. 

However, the increase in jx also utilizes additional resources so that there must be offsetting changes 

in other commodities.   

We introduce a “shadow price” 0   to reflect the opportunity cost of using the additional resources.  

 

 

** 
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One constraint: 

Suppose that x  solves the optimization problem.  

If the firm increases jx , the direct effect on profit is the “marginal revenue”, 
j

f

x




. 

However, the increase in jx also utilizes additional resources so that there must be offsetting changes 

in other commodities.   

We introduce a “shadow price” 0   to reflect the opportunity cost of using the additional resources. 

The extra resource use is 
j

g

x




.  

Multiplying this by the shadow price of the resource gives the marginal opportunity cost  

of increasing jx .  

 

* 
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One constraint: 

Suppose that x  solves the optimization problem.  

If the firm increases jx , the direct effect on profit is the “marginal revenue”, 
j

f

x




. 

However, the increase in jx also utilizes additional resources so that there must be offsetting changes 

in other commodities.   

We introduce a “shadow price” 0   to reflect the opportunity cost of using the additional resources. 

The extra resource use is 
j

g

x




.  

Multiplying this by the shadow price of the resource gives the marginal opportunity cost  

of increasing jx .  

The net gain to increasing jx is therefore 

            ( ) ( )
j j

f g
x x

x x


 


 
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If the optimum for commodity j, jx , is strictly positive, this marginal net gain must be zero.   

That is 

0 ( )  ( ) 0j

j j

f g
x x x

x x

 


 
     

 

** 



Mathematical Foundations 1                                          -55-                                                 Constrained Maximization 

 

© John Riley                                                                                                                                                                     September 30, 2016 

If the optimum for commodity j, jx , is strictly positive, this marginal net gain must be zero.   

That is 

0 ( )  ( ) 0j

j j

f g
x x x

x x

 


 
     

If  jx  is zero, the marginal net gain to increasing jx  cannot be positive.  Hence 

0 ( ) - ( ) 0j

j j

f g
x x x

x x

 


 
    

 

 

 

* 
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If the optimum for commodity j, jx , is strictly positive, this marginal net gain must be zero.   

That is 

0 ( )  ( ) 0j

j j

f g
x x x

x x

 


 
     

If  jx  is zero, the marginal net gain to increasing jx  cannot be positive.  Hence 

0 ( ) - ( ) 0j

j j

f g
x x x

x x

 


 
    

Summarizing 

( ) - ( ) 0
j j

f g
x x

x x

 


 
 ,   with equality if 0jx  . 
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Since x must be feasible ( ) 0b g x  .   

Moreover, we have defined  to be the opportunity cost of additional resource use.  

Then if not all the resource is used,   must be zero.   

 

* 
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Since x must be feasible ( ) 0b g x  .   

Moreover, we have defined  to be the opportunity cost of additional resource use.  

Then if not all the resource is used,   must be zero.   

Summarizing, 

( ) 0b g x  ,  with equality if   > 0. 
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Multiple constraints: 

Introduce a shadow price for each constraint. 

The marginal net gain to increasing jx  is then 

1

( ) ( ) ( ) ( )
m

i
i

ij j j j

gf f g
x x x x

x x x x
 



  
   

   
 . 

The Intuitive argument then proceeds as in the one constraint case. 
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There is a convenient way to remember these conditions. First write the i-th constraint in the form 

( ) ( ) 0i i ih x b g x   , 1,...,i m . In vector notation ( ) 0h x  . Thus in our example we write the  

constraints as ( ) ( ) 0h x b g x   .  

 

*** 
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There is a convenient way to remember these conditions. First write the i-th constraint in the form 

( ) ( ) 0i i ih x b g x   , 1,...,i m . In vector notation ( ) 0h x  . Thus in our example we write the 

constraints as ( ) ( ) 0h x b g x   .  

Then introduce a vector of “Lagrange multipliers” or shadow prices   and define the Lagrangian 

( , ) ( ) ( )x f x h x   L  

 

** 
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There is a convenient way to remember these conditions. First write the i-th constraint in the form 

( ) 0ih x  , 1,...,i m . In vector notation ( ) 0h x  . Thus in our example we write the constraint as 

( ) ( ) 0h x b g x   .  

Then introduce a vector of “Lagrange multipliers” or shadow prices   and define the Lagrangian 

( , ) ( ) ( )x f x h x   L  

The first order conditions are then all restrictions on the partial derivatives of ( , )x L . 

         (i)     0,
j i j

f h

x x x

  


  
   

L
  with equality if jx  > 0, 1,...,j n . 

         (ii)  ( ) 0,i

i

h x



 
L

 with equality if i  > 0, 1,...,i m . 

 

* 
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There is a convenient way to remember these conditions. First write the i-th constraint in the form 

( ) 0ih x  , 1,...,i m . In vector notation ( ) 0h x  . Thus in our example we write the constraint as 

( ) ( ) 0h x b g x   .  

Then introduce a vector of “Lagrange multipliers” or shadow prices   and define the Lagrangian 

( , ) ( ) ( )x f x h x   L  

The first order conditions are then all restrictions on the partial derivatives of ( , )x L . 

         (i)     0,
j i j

f h

x x x

  


  
   

L
  with equality if jx  > 0, 1,...,j n . 

         (ii)  ( ) 0,i

i

h x



 
L

 with equality if i  > 0, 1,...,i m . 

Equivalently,  

         (i)     ( , ) 0x
x







L
  and  ( , ) 0

j

x x
x





 
L

. 
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         (ii)  ( , ) 0x






L

 and ( , ) 0x


 

 
L

 

Exercise: Solve the following problem. 
1 2 3 1 1 2 2 3 3{ ( ) ln ln( 2 ) | 60}Max U x x x x p x p x p x        

(i) if (1,2,6)p   (ii) (1,2,2)p   (iii) (1,2,4)p   
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E.   The Constraint Qualifications* 

Suppose that the constraint ( ) 0ih x    is binding at 0x   

Then the constraint is satisfied if 0x   is in the superlevel set  

 0{ | ( ) ( ) 0}nx h x h x     

where 0x  is a boundary point. 

 

We replace the constraint by its linear approximation. 

 

 

 

 

*Technical section. Not required reading  
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Linear approximation of a function ( )h x in a neighborhood of 0x   

0 0 0 0 0 0

1

( ) ( ) ( ) ( ) ( ) ( )( )
n

L i i
i i i j j

j j

h h
h x h x x x x h x x x x

x x

 
      

 
   

** 
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Linear approximation of a function ( )h x   

0 0 0 0 0 0

1

( ) ( ) ( ) ( ) ( ) ( )( )
n

L i i
i i i j j

j j

h h
h x h x x x x h x x x x

x x

 
      

 
  

Value and partial derivatives of ( )ih x   at 0x  : 

0 0( ), ( ), 1,...,i
i

j

h
h x x j n

x





  

* 
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Linear approximation of a function at 0x  (where 0( ) 0ih x    

( )ih x   

0 0 0 0 0 0 0

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

L i i i
i i j j

j j

h h h
h x h x x x x x x x x x x

x x x

  
         

  
  

Value and partial derivatives of ( )ih x   at 0x  : 

0 0( ), ( ), 1,...,i
i

j

h
h x x j n

x





  

Value and partial derivatives of ( )L

ih x   at 0x  : 

0 0( ), ( ), 1,...,i
i

j

h
h x x j n

x





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We replace a binding constraint  

0( ) ( ) 0i ih x h x    

by its linear approximation 
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Two binding constraints 

Suppose that two constraints are both binding at 0x  . This is depicted below. 

Note that locally the linearized feasible set approximates the original feasible set. 

(slopes of the original and the linearized feasible sets are the same at 0x  ) 

 

 

 

 

 

 

 

 

 

Intuitively, replacing binding functions and the maximand by their linearized approximations should 

yield the necessary conditions. 
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This is almost true but the argument fails in two cases.  

In each case the linearization drastically changes the constraints. 

 

Case 1: Disappearing constraint 

Suppose that the gradient vector is zero: 0( ) 0
h

x
x





  

The linearized constraint is  

 0 0

1

( )( ) 0
n

j j

j j

h
x x x

x


 


   

Thus if the gradient vector is zero the constraint disappears! 
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Example:  Consider the following two optimizations problems 

(i)  
2 1 2 1 2{ ( ) |10 0}

x
Max u x x x x x


      (ii) 

2

3

1 2 1 2{ ( ) | (10 ) 0}
x
Max u x x x x x


     

You should convince yourself that the feasible sets are the same and so the solutions are the same. 

Given the symmetry of the problem consider 0 (5,5)x   . 

Write down the derivatives of the Lagrangian in each case. You will find the 0x  satisfies the intuitively 

derived necessary conditions in problem (i) but not in problem (ii)  
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Case 2: Disappearing vertex 

Suppose that two constraints are both binding at 0x  .  

If, as depicted, the two constraints have the same slope at 0x  then there can be a problem. 

To illustrate consider the following example with solution 0 (2,2)x    

2 3

2 1 1 2 2 2 2 1 2{ ( ) | ( ) 9 6 0, ( ) 8 3 0}Max f x x h x x x x x h x x x            

  

 

 

 

                                                       The 1st constraint holds for all
1x  to the right of the boundary 

1( ) 0h x    

                                                       The 2nd constraint holds for all 1x  to the left of the boundary 2 ( ) 0h x    

                                                       Thus the feasible set is the shaded area. 
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2 3

2 1 1 2 2 2 2 1 2{ ( ) | ( ) 9 6 0, ( ) 8 3 0}Max f x x h x x x x x h x x x            

We linearize the first constraint 

 21
2 2( ) (1, 9 12 3 )

h
x x x

x


   


   01 ( ) (1,3)

h
x

x





    Then   0 01

1 2( ) ( ) 1( 2) 3( 2) 0
h

x x x x x
x


      


 

                                                                                                                                  i.e.  
1 23 8x x    

 

 

 

 

 

 

 

The linearized feasible set is the line 1 23 8x x  .  The vertex disappears.  
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Constraint Qualifications 

Formally, we must check the following “constraint qualifications” If they are satisfied the intuitively 

derived conditions are indeed necessary conditions.  

1.   Suppose that constraint i is binding at 0x  but the gradient vector at 0x , 0( ) 0ih
x

x





 . Then there is 

no associated linearized constraint. 

Thus to apply this approach we require that 0( ) 0ih
x

x





  for each binding constraint 

2. Suppose that the i -th constraint is binding if and only if i I . Check that the feasible set of binding 

linearized constraints has a non-empty interior. That is, there exists x̂  such that  

0 0ˆ( ) ( ) 0ih
x x x

x


  


 for all i I .  
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Constraint Qualifications 

Define X to be the set of feasible vectors, that is { | 0, ( ) 0, 1,..., }iX x x h x i m    .  

The constraint qualifications holds at 0x X if 

    (i) for each constraint that is binding at 0x  the associated gradient vector 0( ) 0ih
x

x





 . 

    (ii) X , the set of non-negative vectors satisfying the linearized binding constraints has a non-empty 

interior. 
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As long as the constraint qualifications hold, the intuitively derived conditions are indeed necessary 

conditions. This is summarized below. 

Proposition: Necessary Conditions for a Constrained Maximum 

Suppose 0x   solves { ( ) | }
x

Max f x x X . If the constraint qualifications hold at 0x  then there exists a 

vector of shadow prices 0   such that  

0 0

0

( , ) 0, 1,..., with equality if 0

and Kuhn-Tucker conditions

( , ) 0, 1,..., with equality if 0

j

j

i

x j n x
x

x i m



 


 
   





  

 

L

L

  

Since Kuhn and Tucker* were the first to provide a complete set of constraint qualifications, the first 

order conditions (FOC) are often called the Kuhn-Tucker Conditions. 

 

 

*These conditions are also called the Karush-Kuhn-Tucker conditions 


