Basics of maximization in economics

A. Maximization when the decision vector must be positive (non-negativity constraints) 2
B. Maximization with a linear resource constraint 9
C. Maximization with a non-linear resource constraint 32
D. Maximization with multiple resource constraints (an intuitive approach) 47
E. The constraint qualifications* 65
*Not required reading
77 slides
A. Necessary conditions
$x=\left(x_{1}, \ldots, x_{n}\right)$ a vector of decision variables where each component of x is a real number.
$\left(x_{j} \in \mathbb{R}, j=1, \ldots, n\right.$, equivalently $\left.x \in \mathbb{R}^{n}\right)$
$f(x)$ is a mapping from the set \mathbb{R}^{n} onto the set \mathbb{R}
Assume that all the partial derivatives of $f(x)$ exist
Maximization problem
$\operatorname{Max}_{x}\left\{f(x) \mid x \in \mathbb{R}_{+}^{n}\right\}$

A. Necessary conditions

$x=\left(x_{1}, \ldots, x_{n}\right)$ a vector of decision variables where each component of x is a real number.
$\left(x_{j} \in \mathbb{R}, j=1, \ldots, n\right.$, equivalently $\left.x \in \mathbb{R}^{n}\right)$
$f(x)$ mapping from the set \mathbb{R}^{n} onto the set \mathbb{R}
Assume that all the partial derivatives of $f(x)$ exist
Maximization problem
$\operatorname{Max}_{x}\left\{f(x) \mid x \in \mathbb{R}_{+}^{n}\right\}$

Focus on x_{j}. Write the vector of all other components of x as
$x_{-j}=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)$
Then the function $f(x)$ can be written as follows:
$f(x)=f\left(x_{j}, x_{-j}\right)$

Depict graph of f

Case (i) $x_{j}^{0}>0$
$f\left(x_{j}, x_{-j}^{0}\right)$ is a function of a single variable. Since $x_{j}^{0}>0$ we can consider small neighborhoods of x_{j}^{0} in \mathbb{R}_{+}
Arguing exactly as in the one variable case the necessary condition

$$
\frac{\partial f}{\partial x_{j}}\left(x_{j}^{0}, x_{-j}^{0}\right) \equiv \frac{\partial f}{\partial x_{j}}\left(x^{0}\right)=0
$$

Case (ii) $x_{j}=0$
Graph of f

If the slope of the graph is strictly positive, then for $x_{j}>0$ and sufficiently small,

$$
f\left(x_{j}, x_{-j}^{0}\right)>f\left(x_{j}^{0}, x_{-j}^{0}\right) .
$$

Thus the necessary condition is

$$
\frac{\partial f}{\partial x_{j}}\left(x_{j}^{0}, x_{-j}^{0}\right) \equiv \frac{\partial f}{\partial x_{j}}\left(x^{0}\right) \leq 0
$$

Therefore necessary conditions ("First order conditions") for f to take on its maximum at x^{0} are as follows:

$$
\frac{\partial f}{\partial x_{j}}\left(x^{0}\right) \leq 0, \quad j=1, \ldots, n \text { with equality if } x_{j}^{0}>0
$$

Therefore necessary conditions ("First order conditions") for f to take on its maximum at x^{0} are as follows:

$$
\frac{\partial f}{\partial x_{j}}\left(x^{0}\right) \leq 0, \quad j=1, \ldots, n \text { with equality if } x_{j}^{0}>0
$$

Equivalently,
(i) the "gradient vector" (vector of the n partial derivatives) is negative, i.e.

$$
\frac{\partial f}{\partial x}\left(x^{0}\right) \leq 0
$$

(ii) the inner product of x^{0} and the gradient vector is the zero vector, i.e.

$$
x^{0} \geq 0, \frac{\partial f}{\partial x}\left(x^{0}\right) \leq 0, \quad j=1, \ldots, n \text { and } x^{0} \cdot \frac{\partial f}{\partial x}\left(x^{0}\right)=0
$$

Therefore necessary conditions ("First order conditions") for f to take on its maximum at x^{0} are as follows:

$$
\frac{\partial f}{\partial x_{j}}\left(x^{0}\right) \leq 0, \quad j=1, \ldots, n \text { with equality if } x_{j}^{0}>0
$$

Equivalently,
(iii) the "gradient vector" (vector of the n partial derivatives) is negative, i.e.

$$
\frac{\partial f}{\partial x}\left(x^{0}\right) \leq 0
$$

(iv) the inner product of x^{0} and the gradient vector is the zero vector, i.e.

$$
x^{0} \geq 0, \frac{\partial f}{\partial x}\left(x^{0}\right) \leq 0, \quad j=1, \ldots, n \text { and } x^{0} \cdot \frac{\partial f}{\partial x}\left(x^{0}\right)=0
$$

Since only one of the two inequality conditions above can be strict, these conditions are known as the complementary slackness conditions.

B. Maximization with a linear resource constraint

As a first step in the analysis of maximization with resource constraints we consider the maximization problem of a consumer who chooses among consumption vectors. The set of commodities is $\mathcal{N}=\{1, \ldots, n\}$. Given an income I and a vector of prices $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, the set of feasible consumption vectors is the set

$$
B=\left\{x \geq 0 \mid p_{1} x_{1}+\ldots+p_{n} x_{n}=p \cdot x \leq I\right\}
$$

We assume that the preferences of the consumer can be represented by a continuously differentiable, strictly increasing utility function $U(x)$.

The consumer then chooses \bar{x} that solves the following problem.

$$
\operatorname{Max}_{x \geq 0}\{U(x) \mid p \cdot x \leq I\}
$$

Note that, since $U(x)$ is strictly increasing, $p \cdot \bar{x}=I$

Example with 2 commodities: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Note that utility is zero if consumption of either commodity is zero. Therefore every component of the solution \bar{x} is strictly positive. (We write $\bar{x} \gg 0$).

Example with 2 commodities: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Note that utility is zero if consumption of either commodity is zero. Therefore every component of the solution \bar{x} is strictly positive. (We write $\bar{x} \gg 0$).

Geometry

In the 2 commodity case we can represent
preferences by depicting points for which utility has the same value.

Such a set of points is called a level set. In the figure the level sets are the boundaries of the blue, red and green shaded regions.

Example with 2 commodities: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Note that utility is zero if consumption of either commodity is zero. Therefore every component of the solution \bar{x} is strictly positive. (We write $\bar{x} \gg 0$).

Geometry

In the 2 commodity case we can represent
preferences by depicting points for which utility
has the same value.
Such a set of points is called a level set. In the figure the level sets are the boundaries of the blue, red and green shaded regions.

Three of them are what economists often call indifference curves.

In the figure both components of the solution $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)$ are strictly positive.
(Mathematical shorthand $\bar{x} \gg 0$.)
So the slope of the budget line is equal to the slope of the indifference curve.

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing \bar{x} can increase consumption of commodity j by Δx_{j}, the change in utility is

$$
\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

This is depicted in the figure..
The slope of the tangent line at \bar{x} is

$$
\frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Fig. 2-3: Utility as a function of x_{j}

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing \bar{x} can increase consumption of commodity j by Δx_{j}, the change in utility is

$$
\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

This is depicted in the figure..
The slope of the tangent line at \bar{x} is

$$
\frac{\partial U}{\partial x_{j}}(\bar{x}) .
$$

Fig. 2-3: Utility as a function of x_{j}

If the consumer has an additional ΔE dollars then $\Delta E=p_{j} \Delta x_{j}$ and so $\Delta x_{j}=\frac{\Delta E}{p_{j}}$.

Necessary conditions for a maximum

To a first approximation, if a consumer currently, choosing \bar{x} can increase consumption of commodity j by Δx_{j}, the change in utility is

$$
\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

This is depicted in the figure..
The slope of the tangent line at \bar{x} is

$$
\frac{\partial U}{\partial x_{j}}(\bar{x}) .
$$

Fig. 2-3: Utility as a function of x_{j}

If the consumer has an additional ΔE dollars then $\Delta E=p_{j} \Delta x_{j}$ and so $\Delta x_{j}=\frac{\Delta E}{p_{j}}$.
The increase in utility is therefore $\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}=\frac{\partial U}{\partial x_{j}}(\bar{x}) \frac{\Delta E}{p_{j}}=\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta E$

We have seen that

$$
\Delta U=\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta E
$$

Therefore

$$
\frac{\Delta U}{\Delta E}=\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

In the limit as ΔE approaches zero, this becomes the rate at which utility rises as expenditure on commodity j rises.

$$
\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x}) \text { is the marginal utility per dollar as expenditure on commodity } j \text { rises }
$$

Suppose that the consumer spends 1 dollar less on commodity j. His change in utility is
$-\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})$. He then spends the dollar on commodity i.
The change in utility is $\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x})$. The net change in utility is therefore

$$
\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x})-\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Suppose that the consumer spends 1 dollar less on commodity j. His change in utility is
$-\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})$. He then spends the dollar on commodity i.
The change in utility is $\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x})$. The net change in utility is therefore

$$
\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x})-\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Case (i) $\bar{x}_{i}, \bar{x}_{j}>0$

If the change in utility is strictly positive the current utility can be increased by consuming more of commodity i and less of commodity j. If it is negative, utility can be increased by spending less commodity j and more on commodity i. Thus a necessary condition for \bar{x} to be utility maximizing is that

$$
\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x})=\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Case (ii) $\bar{x}_{j}>\bar{x}_{i}=0$

If the difference in marginal utilities is positive current $U(\bar{x})$ can be increased by spending a positive amount on commodity j. Thus a necessary condition for \bar{x} to be utility maximizing is that

$$
\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x}) \leq \frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Case (ii) $\bar{x}_{j}>\bar{x}_{i}=0$

If the difference in marginal utilities is positive current $U(\bar{x})$ can be increased by spending a positive amount on commodity j. Thus a necessary condition for \bar{x} to be utility maximizing is that

$$
\frac{1}{p_{i}} \frac{\partial U}{\partial x_{i}}(\bar{x}) \leq \frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})
$$

Let λ be the common marginal utility per dollar for all those commodities that are consumed in strictly positive amounts. We can therefore summarize the necessary conditions as follows:

Necessary conditions for a maximum
If $\bar{x}_{j}>0$ then $\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x})=\lambda$
If $\bar{x}_{j}=0$ then $\frac{1}{p_{j}} \frac{\partial U}{\partial x_{j}}(\bar{x}) \leq \lambda$
Note: Since λ is the rate at which utility rises with income it is called the marginal utility of income

An alternative approach

From the argument above, if both commodity i and commodity j are consumed, then the ratio of their marginal utilities must be equal to the price ratio.

To understand this consider a change in x_{i} and x_{j} that leaves the consumer on the same level set. i.e.

$$
U\left(\bar{x}_{1}+\Delta x_{1}, \bar{x}_{2}+\Delta x_{2}\right)=U\left(\bar{x}_{1}, \bar{x}_{2}\right)
$$

An alternative approach

From the argument above, if both commodity i and commodity j are consumed, then the ratio of their marginal utilities must be equal to the price ratio.

To understand this consider a change in x_{i} and x_{j} that leaves the consumer on the same level set. i.e.

$$
U\left(\bar{x}_{1}+\Delta x_{1}, \bar{x}_{2}+\Delta x_{2}\right)=U\left(\bar{x}_{1}, \bar{x}_{2}\right)
$$

Above we showed that, to a first approximation,

$$
\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

If we increase the quantity of commodity j and reduce the quantity of commodity i, then the net change in utility is

$$
\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}-\frac{\partial U}{\partial x_{i}}(\bar{x}) \Delta x_{i}
$$

We have argued that $\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}-\frac{\partial U}{\partial x_{i}}(\bar{x}) \Delta x_{i}$
For this net change to be zero,

$$
\frac{\Delta x_{j}}{\Delta x_{i}}=\frac{\frac{\partial U}{\partial x_{i}}}{\frac{\partial U}{\partial x_{j}}}
$$

We have argued that $\Delta U=\frac{\partial U}{\partial x_{j}}(\bar{x}) \Delta x_{j}-\frac{\partial U}{\partial x_{i}}(\bar{x}) \Delta x_{i}$
For this net change to be zero,

$$
\frac{\Delta x_{j}}{\Delta x_{i}}=\frac{\frac{\partial U}{\partial x_{i}}}{\frac{\partial U}{\partial x_{j}}}
$$

In the figure, $-\frac{\Delta x_{2}}{\Delta x_{1}}$ is the slope of the level set at \bar{x}.
The ratio is the rate at which x_{1} must be substituted into

Hence we call it the marginal rate of substitution of x_{1} for x_{2}.

Definition: Marginal rate of substitution

$$
\operatorname{MRS}\left(x_{i}, x_{j}\right)=\frac{\frac{\partial U}{\partial x_{i}}}{\frac{\partial U}{\partial x_{j}}}
$$

For \bar{x} to be the maximizer the rate at which x_{1} can be substituted into the budget as x_{2} is reduced must leave total expenditure on the two commodities constant, i.e.,

$$
p_{i} \Delta x_{i}+p_{j} \Delta x_{j}=0
$$

Then along the budget line

$$
\frac{\Delta x_{j}}{\Delta x_{i}}=-\frac{p_{i}}{p_{j}}
$$

Graphically, the slope of the budget line
must be equal to the slope of the indifference curve at \bar{x} ie.

$$
\operatorname{MRS}\left(\bar{x}_{i}, \bar{x}_{j}\right)=\frac{\frac{\partial U}{\partial x_{i}}}{\frac{\partial U}{\partial x_{j}}}=\frac{p_{i}}{p_{j}}
$$

The example: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Necessary conditions for a maximum

Method 1: Equalize the marginal utility per dollar

To make differentiation simple, try to find an increasing function of the utility function that is simple.

The example: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Necessary conditions for a maximum

Method 1: Equalize the marginal utility per dollar

To make differentiation simple, try to find an increasing function of the utility function that is simple.
Define the new utility function $u(x)=\ln U(x)$
The new maximization problem is

$$
\operatorname{Max}_{x \geq 0}\left\{u(x)=\ln U(x) \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}
$$

That is

$$
\operatorname{Max}_{x \geq 0}\left\{\alpha_{1} \ln x_{1}+\alpha_{2} \ln x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}
$$

Note that

$$
\frac{\partial u}{\partial x_{j}}=\frac{\alpha_{j}}{x_{j}}
$$

Necessary conditions

$$
\begin{aligned}
& \frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}=\lambda \\
& \frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\lambda
\end{aligned}
$$

Also $p_{1} x_{1}+p_{2} x_{2}=I$.

Technical tip

Ratio Rule:

If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.
Therefore

$$
\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{p_{1} x_{1}+p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{I}
$$

And so

$$
x_{j}=\frac{\alpha_{j}}{\alpha_{1}+\alpha_{2}} \frac{I}{p_{j}} .
$$

Method 2: Equate the MRS and price ratio

$$
\begin{aligned}
& U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \text {. Then } \frac{\partial U}{\partial x_{1}}=\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \text { and } \frac{\partial U}{\partial x_{2}}=\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1} \\
& \operatorname{MRS}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}=\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}} .
\end{aligned}
$$

Then to be the maximizer,

$$
\operatorname{MRS}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}
$$

As we have seen, it is helpful to rewrite this as follows:

$$
\frac{p_{1} x_{1}}{\alpha_{1}}=\frac{p_{2} x_{2}}{\alpha_{2}}
$$

Then proceed as before.

Data Analytics (Taking the model to the data)

$$
x_{1}(p, I)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} \frac{I}{p_{j}}
$$

Take the logarithm

$$
\ln x_{j}=\ln \left(\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right)+\ln I-\ln p_{j}
$$

The model is now linear. We can then use least squares estimation

$$
\ln x_{j}=a_{0}+a_{1}\left(\ln I-\ln p_{j}\right)
$$

or

$$
\ln x_{j}=a_{0}+a_{1} \ln I+a_{2} \ln p_{j}
$$

Exercise: If $U(x)=\left(a_{1}+x_{1}\right)^{\alpha_{1}}\left(a_{2}+x_{2}\right)^{\alpha_{2}}$, solve for the demand function $x_{1}(p, I)$

C. Optimization with a non-linear constraint

Problem

$$
\operatorname{Max}_{x \in \mathbb{R}_{+}^{n}}\{f(x) \mid g(x) \leq b\}
$$

This is illustrated for the two variable case.
As we shall see, the necessary conditions can be derived using a very similar argument To that used in Section B.

Figure C.1: Constrained maximization

In the figure the solution to the maximization problem is the vector \bar{x}

Interpretation:

A firm has a fixed supply of b units of some resource.
If it produces the vector of outputs x its resource use is $g(x)$ and revenue is $R=f(x)$.

Assumption 1: At any point x on the boundary of the feasible set the partial derivatives of $g(x)$ are all non-zero.*

Assumption 2: The solution to the unconstrained maximization problem $\underset{x}{\operatorname{Max}}\{f(x)\}$ violates the resource constraint. Therefore if \bar{x} solves the constrained maximization problem the constraint must be binding, i.e. $g(\bar{x})=b$.
*Or, as a mathematician would say, the components of the gradient vector $\frac{\partial g}{\partial x}(x)$ are all nonzero.

Suppose that the firm chooses \bar{x} where the constraint is binding. The figure below depicts the graph of $g\left(\bar{x}_{1}, \ldots, \bar{x}_{j-1}, x_{j}, \bar{x}_{j+1}, \ldots, \bar{x}_{n}\right)$ and the tangent line at \bar{x}_{j}. The slope of the tangent line at \bar{x} is $\frac{\partial g}{\partial x_{j}}(\bar{x})$

Figure C.2: Resource requirement

To a first approximation, if the firm wishes to increase output of commodity j by Δx_{j} it requires an extra Δb units of the resource where

$$
\Delta b=\frac{\partial g}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

We have argued that the extra resource requirement is

$$
\Delta b=\frac{\partial g}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

Rearranging this expression, if follows that if the firm has Δb extra units of the resource and uses it to increase commodity j, then the increase in x_{j} is

$$
\Delta x_{j}=\frac{\Delta b}{\frac{\partial g}{\partial x_{j}}(\bar{x})}
$$

By the same argument, to a first approximation the increase in revenue is

$$
\Delta R=\frac{\partial f}{\partial x_{j}}(\bar{x}) \Delta x_{j}
$$

This is depicted in the figure below. The slope of the tangent line at \bar{x} is $\frac{\partial f}{\partial x_{j}}(\bar{x})$.

Fig. C-3: Revenue as a function of x_{j}

We have argued that

$$
\Delta R=\frac{\partial f}{\partial x_{j}}(\bar{x}) \Delta x_{j} \text { and } \Delta x_{j}=\frac{\Delta b}{\frac{\partial g}{\partial x_{j}}(\bar{x})}
$$

Combining these results, if the resource increment Δb is used to increase x_{j}, then the increase in revenue is

$$
\Delta R=\frac{\partial f}{\partial x_{j}}(\bar{x}) \Delta x_{j}=\frac{\frac{\partial f}{\partial x_{j}}(\bar{x})}{\frac{\partial g}{\partial x_{j}}(\bar{x})} \Delta b
$$

We have argued that

$$
\Delta R=\frac{\partial f}{\partial x_{j}}(\bar{x}) \Delta x_{j} \text { and } \Delta x_{j}=\frac{\Delta b}{\frac{\partial g}{\partial x_{j}}(\bar{x})}
$$

Combining these results, if the resource increment Δb is used to increase x_{j}, then the increase in revenue is

$$
\Delta R=\frac{\partial f}{\partial x_{j}}(\bar{x}) \Delta x_{j}=\frac{\frac{\partial f}{\partial x_{j}}(\bar{x})}{\frac{\partial g}{\partial x_{j}}(\bar{x})} \Delta b
$$

We divide by Δb to get the marginal revenue product of the resource

$$
M R P_{j} \equiv \frac{\Delta R}{\Delta b}=\frac{\frac{\partial f}{\partial x_{j}}(\bar{x})}{\frac{\partial g}{\partial x_{j}}(\bar{x})}
$$

Case (i) $\bar{x}_{i}, \bar{x}_{j}>0$

Suppose that the marginal revenue product is strictly lower for product j than for product i

$$
M R P_{j}(\bar{x})-M R P_{i}(\bar{x})<0
$$

We can decrease the allocation of the resource to commodity j by Δb and so lower revenue by

$$
\Delta R=M R P_{j}(\bar{x}) \Delta b
$$

Case (i) $\bar{x}_{i}, \bar{x}_{j}>0$

Suppose that the marginal revenue product is strictly lower for product j than for product i

$$
M R P_{i}(\bar{x})-M R P_{j}(\bar{x})>0 .
$$

We can decrease the allocation of the resource to commodity j by Δb and so lower revenue by

$$
\Delta R=M R P_{j}(\bar{x}) \Delta b
$$

We can then use the Δb to increase x_{i}. The net gain is then

$$
\Delta R=M R P_{i}(\bar{x}) \Delta b-M R P_{j}(\bar{x}) \Delta b=\left[M R P_{i}(\bar{x})-M R P_{j}(\bar{x})\right] \Delta b>0 .
$$

It follows that \bar{x} is not profit maximizing. Thus for \bar{x} to solve the maximization problem we have the following necessary condition.

$$
\text { If } \bar{x}_{i}, \bar{x}_{j}>0 \text {, then } M R P_{j}(\bar{x})=M R P_{i}(\bar{x})
$$

Let λ be the equalized marginal revenue product. The necessary conditions can be written as follows:

$$
\text { If } \bar{x}_{i}, \bar{x}_{j}>0 \text { then } M R P_{j}(\bar{x})=\frac{\frac{\partial f}{\partial x_{j}}(\bar{x})}{\frac{\partial g}{\partial x_{j}}(\bar{x})}=\lambda .
$$

Case (ii) $\bar{x}_{i}=0, \bar{x}_{j}>0$.

We can no longer decrease x_{i} and increase x_{j} but we can do the reverse, increasing x_{i} and decreasing x_{j}. Arguing as above, the net gain is

$$
M R P_{i}(\bar{x}) \Delta b-M R P_{j}(\bar{x}) \Delta b=\left[M R P_{i}(\bar{x})-M R P_{j}(\bar{x})\right] \Delta b .
$$

If \bar{x} maximizes revenue then this change cannot increase revenue. Therefore

$$
M R P_{i}(\bar{x})-M R P_{j}(\bar{x}) \leq 0
$$

Case (ii) $\bar{x}_{i}=0, \bar{x}_{j}>0$.

We can no longer decrease x_{i} and increase x_{j} but we can do the reverse, increasing x_{i} and decreasing x_{j}. Arguing as above, the net gain is

$$
M R P_{i}(\bar{x}) \Delta b-M R P_{j}(\bar{x}) \Delta b=\left[M R P_{i}(\bar{x})-M R P_{j}(\bar{x})\right] \Delta b .
$$

If \bar{x} maximizes revenue then this change cannot increase revenue. Therefore

$$
M R P_{i}(\bar{x})-M R P_{j}(\bar{x}) \leq 0
$$

That is

$$
M R P_{i}(\bar{x}) \leq M R P_{j}(\bar{x})=\lambda
$$

Therefore
If $\bar{x}_{i}=0$ and $\bar{x}_{j}>0$, then $\operatorname{MRP}_{i}(\bar{x})=\frac{\frac{\partial f}{\partial x_{i}}(\bar{x})}{\frac{\partial g}{\partial x_{i}}(\bar{x})} \leq \lambda$

Example: $\operatorname{Max}_{x \geq 0}\left\{U(x)=\alpha_{1} \ln x_{1}+\alpha_{2} \ln x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$

$$
\operatorname{MRP}_{1}(\bar{x})=\frac{\frac{\alpha_{1}}{x_{1}}}{p_{1}}=\frac{\alpha_{1}}{p_{1} x_{1}}, \operatorname{MRP}_{2}(\bar{x})=\frac{\frac{\alpha_{2}}{x_{2}}}{p_{2}}=\frac{\alpha_{2}}{p_{2} x_{2}}
$$

Case (i) $x_{1}, x_{2}>0$

$$
\operatorname{MRP} P_{1}(\bar{x})=\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\operatorname{MRP_{2}}(\bar{x})
$$

Example: $\operatorname{Max}_{x \geq 0}\left\{U(x)=\alpha_{1} \ln x_{1}+\alpha_{2} \ln x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$

$$
\operatorname{MRP}_{1}(\bar{x})=\frac{\frac{\alpha_{1}}{x_{1}}}{p_{1}}=\frac{\alpha_{1}}{p_{1} x_{1}}, \operatorname{MRP}_{2}(\bar{x})=\frac{\frac{\alpha_{2}}{x_{2}}}{p_{2}}=\frac{\alpha_{2}}{p_{2} x_{2}}
$$

Case (i) $x_{1}, x_{2}>0$

$$
\operatorname{MRP} P_{1}(\bar{x})=\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\operatorname{MRP_{2}}(\bar{x})
$$

Ratio Rule: If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.
Therefore

$$
\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{p_{1} x_{1}+p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{I}
$$

Example: $\operatorname{Max}_{x \geq 0}\left\{U(x)=\alpha_{1} \ln x_{1}+\alpha_{2} \ln x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$

$$
\operatorname{MRP}_{1}(\bar{x})=\frac{\frac{\alpha_{1}}{x_{1}}}{p_{1}}=\frac{\alpha_{1}}{p_{1} x_{1}}, \operatorname{MRP}_{2}(\bar{x})=\frac{\frac{\alpha_{2}}{x_{2}}}{p_{2}}=\frac{\alpha_{2}}{p_{2} x_{2}}
$$

Case (i) $x_{1}, x_{2}>0$

$$
M R P_{1}(\bar{x})=\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\operatorname{MRP_{2}}(\bar{x})
$$

Ratio Rule: If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.
Therefore

$$
\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{p_{1} x_{1}+p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{I}
$$

Case (ii) $\bar{x}_{i}=0, \bar{x}_{j}>0$.
Exercise: Show that the necessary conditions cannot be satisfied in this case
D. Constrained Optimization with multiple constraints -an intuitive approach
$\underset{x \geq 0}{\operatorname{Max}}\left\{f(x) \mid b_{i}-g_{i}(x) \geq 0, i=1, \ldots, m\right\}$.
Economic Interpretation of maximization problem
profit maximizing multi-product firm with fixed inputs.
$x=$ vector of outputs $\quad x \geq 0$
$f(x)$ revenue
$b=\left(b_{1}, \ldots, b_{m}\right)=$ vector of inputs (fixed in short run)
$g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ inputs needed to produce output vector x
D. Constrained Optimization - an intuitive approach
$\operatorname{Max}_{x \geq 0}\left\{f(x) \mid b_{i}-g_{i}(x) \geq 0, i=1, \ldots, m\right\}$. In vector notation $\operatorname{Max}_{x \geq 0}\{f(x) \mid b-g(x) \geq 0\}$
Economic Interpretation of maximization problem
profit maximizing multi-product firm with fixed inputs.
$x=$ vector of outputs $\quad x \geq 0$
$f(x)$ revenue
$b=$ vector of inputs available (fixed in short run)
$g(x)=$ vector of inputs needed to produce output vector x
constraints: $g(x) \leq b$.

Example: m linear constraints.
Each unit of x_{j} requires $a_{i j}$ units of resource b_{i}.

One constraint:

Suppose that \bar{x} solves the optimization problem.
If the firm increases x_{j}, the direct effect on profit is the marginal revenue $\frac{\partial f}{\partial x_{j}}$.

One constraint:

Suppose that \bar{x} solves the optimization problem.
If the firm increases x_{j}, the direct effect on profit is the marginal revenue $\frac{\partial f}{\partial x_{j}}$.

However, the increase in x_{j} also utilizes additional resources so that there must be offsetting changes in other commodities.

One constraint:

Suppose that \bar{x} solves the optimization problem.
If the firm increases x_{j}, the direct effect on profit is the marginal revenue $\frac{\partial f}{\partial x_{j}}$.

However, the increase in x_{j} also utilizes additional resources so that there must be offsetting changes in other commodities.

We introduce a "shadow price" $\lambda \geq 0$ to reflect the opportunity cost of using the additional resources.

One constraint:

Suppose that \bar{x} solves the optimization problem.
If the firm increases x_{j}, the direct effect on profit is the "marginal revenue", $\frac{\partial f}{\partial x_{j}}$.

However, the increase in x_{j} also utilizes additional resources so that there must be offsetting changes in other commodities.

We introduce a "shadow price" $\lambda \geq 0$ to reflect the opportunity cost of using the additional resources.
The extra resource use is $\frac{\partial g}{\partial x_{j}}$.

Multiplying this by the shadow price of the resource gives the marginal opportunity cost of increasing x_{j}.

One constraint:

Suppose that \bar{x} solves the optimization problem.
If the firm increases x_{j}, the direct effect on profit is the "marginal revenue", $\frac{\partial f}{\partial x_{j}}$.

However, the increase in x_{j} also utilizes additional resources so that there must be offsetting changes in other commodities.

We introduce a "shadow price" $\lambda \geq 0$ to reflect the opportunity cost of using the additional resources.
The extra resource use is $\frac{\partial g}{\partial x_{j}}$.

Multiplying this by the shadow price of the resource gives the marginal opportunity cost of increasing x_{j}.

The net gain to increasing x_{j} is therefore

$$
\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})
$$

If the optimum for commodity j, \bar{x}_{j}, is strictly positive, this marginal net gain must be zero.

That is
$\bar{x}_{j}>0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})=0$

If the optimum for commodity j, \bar{x}_{j}, is strictly positive, this marginal net gain must be zero.

That is

$$
\bar{x}_{j}>0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})=0
$$

If \bar{x}_{j} is zero, the marginal net gain to increasing x_{j} cannot be positive. Hence

$$
\bar{x}_{j}=0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0
$$

If the optimum for commodity j, \bar{x}_{j}, is strictly positive, this marginal net gain must be zero.

That is
$\bar{x}_{j}>0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x})=0$
If \bar{x}_{j} is zero, the marginal net gain to increasing x_{j} cannot be positive. Hence

$$
\bar{x}_{j}=0 \Rightarrow \frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0
$$

Summarizing

$$
\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0, \text { with equality if } \bar{x}_{j}>0
$$

Since \bar{x} must be feasible $b-g(\bar{x}) \geq 0$.

Moreover, we have defined λ to be the opportunity cost of additional resource use.
Then if not all the resource is used, λ must be zero.

Since \bar{x} must be feasible $b-g(\bar{x}) \geq 0$.

Moreover, we have defined λ to be the opportunity cost of additional resource use.
Then if not all the resource is used, λ must be zero.
Summarizing,
$b-g(\bar{x}) \geq 0$, with equality if $\lambda>0$.

Multiple constraints:

Introduce a shadow price for each constraint.

The marginal net gain to increasing x_{j} is then
$\frac{\partial f}{\partial x_{j}}(\bar{x})-\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}(\bar{x})=\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \cdot \frac{\partial g}{\partial x_{j}}(\bar{x})$.

The Intuitive argument then proceeds as in the one constraint case.

There is a convenient way to remember these conditions. First write the i-th constraint in the form $h_{i}(x)-b_{i}-g_{i}(x) \geq 0, i=1, \ldots, m$. In vector notation $h(x) \geq 0$. Thus in our example we write the constraints as $h(x)=b-g(x) \geq 0$.

There is a convenient way to remember these conditions. First write the i-th constraint in the form $h_{i}(x)=b_{i}-g_{i}(x) \geq 0, i=1, \ldots, m$. In vector notation $h(x) \geq 0$. Thus in our example we write the constraints as $h(x)=b-g(x) \geq 0$.

Then introduce a vector of "Lagrange multipliers" or shadow prices λ and define the Lagrangian

$$
\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)
$$

There is a convenient way to remember these conditions. First write the i-th constraint in the form $h_{i}(x) \geq 0, i=1, \ldots, m$. In vector notation $h(x) \geq 0$. Thus in our example we write the constraint as $h(x)=b-g(x) \geq 0$.

Then introduce a vector of "Lagrange multipliers" or shadow prices λ and define the Lagrangian

$$
\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)
$$

The first order conditions are then all restrictions on the partial derivatives of $\mathfrak{L}(x, \lambda)$.
(i) $\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial f}{\partial x_{i}}+\lambda \cdot \frac{\partial h}{\partial x_{j}} \leq 0$, with equality if $\bar{x}_{j} \quad>0, j=1, \ldots, n$.
(ii) $\frac{\partial \mathfrak{L}}{\partial \lambda_{i}}=h_{i}(\bar{x}) \geq 0$, with equality if $\lambda_{i} \quad>0, i=1, \ldots, m$.

There is a convenient way to remember these conditions. First write the i-th constraint in the form $h_{i}(x) \geq 0, i=1, \ldots, m$. In vector notation $h(x) \geq 0$. Thus in our example we write the constraint as $h(x)=b-g(x) \geq 0$.

Then introduce a vector of "Lagrange multipliers" or shadow prices λ and define the Lagrangian

$$
\mathfrak{L}(x, \lambda)=f(x)+\lambda \cdot h(x)
$$

The first order conditions are then all restrictions on the partial derivatives of $\mathfrak{L}(x, \lambda)$.
(i) $\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\partial f}{\partial x_{i}}+\lambda \cdot \frac{\partial h}{\partial x_{j}} \leq 0$, with equality if $\bar{x}_{j} \quad>0, j=1, \ldots, n$.
(ii) $\frac{\partial \mathfrak{L}}{\partial \lambda_{i}}=h_{i}(\bar{x}) \geq 0$, with equality if $\lambda_{i} \quad>0, i=1, \ldots, m$.

Equivalently,
(i) $\frac{\partial \mathfrak{L}}{\partial x}(\bar{x}, \lambda) \leq 0$ and $\bar{x} \cdot \frac{\partial \mathfrak{L}}{\partial x_{j}}(\bar{x}, \lambda)=0$.

$$
\text { (ii) } \frac{\partial \mathfrak{L}}{\partial \lambda}(\bar{x}, \lambda) \geq 0 \text { and } \lambda \cdot \frac{\partial \mathfrak{L}}{\partial \lambda}(\bar{x}, \lambda)=0
$$

Exercise: Solve the following problem. $\operatorname{Max}\left\{U(x)=\ln x_{1}+\ln \left(x_{2}+2 x_{3}\right) \mid p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \leq 60\right\}$ (i) if $p=(1,2,6)$ (ii) $p=(1,2,2)$ (iii) $p=(1,2,4)$

E. The Constraint Qualifications*

Suppose that the constraint $h_{i}(x) \geq 0$ is binding at x^{0}
Then the constraint is satisfied if $x \geq 0$ is in the superlevel set

$$
\left\{x \in \mathbb{R}^{n} \mid h(x) \geq h\left(x^{0}\right)=0\right\}
$$

where x^{0} is a boundary point.

We replace the constraint by its linear approximation.
*Technical section. Not required reading

Linear approximation of a function $h(x)$ in a neighborhood of x^{0}

$$
h_{i}^{L}(x)=h_{i}\left(x^{0}\right)+\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \cdot\left(x-x^{0}\right)=h_{i}\left(x^{0}\right)+\sum_{j=1}^{n} \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right)\left(x_{j}-x_{j}^{0}\right)
$$

Linear approximation of a function $h(x)$

$h_{i}^{L}(x)=h_{i}\left(x^{0}\right)+\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \cdot\left(x-x^{0}\right)=h_{i}\left(x^{0}\right)+\sum_{j=1}^{n} \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right)\left(x_{j}-x_{j}^{0}\right)$
Value and partial derivatives of $h_{i}(x)$ at x^{0} :
$h_{i}\left(x^{0}\right), \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right), j=1, \ldots, n$

Linear approximation of a function at x^{0} (where $h_{i}\left(x^{0}\right)=0$
$h_{i}(x)$
$h_{i}^{L}(x)=h_{i}\left(x^{0}\right)+\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \cdot\left(x-x^{0}\right)=\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \cdot\left(x-x^{0}\right)=\sum_{j=1}^{n} \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right) \cdot\left(x_{j}-x_{j}^{0}\right)$
Value and partial derivatives of $h_{i}(x)$ at x^{0} :
$h_{i}\left(x^{0}\right), \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right), \quad j=1, \ldots, n$

Value and partial derivatives of $h_{i}^{L}(x)$ at x^{0} :
$h_{i}\left(x^{0}\right), \frac{\partial h_{i}}{\partial x_{j}}\left(x^{0}\right), j=1, \ldots, n$

We replace a binding constraint
$h_{i}(x) \geq h_{i}\left(x^{0}\right)=0$
by its linear approximation

Two binding constraints

Suppose that two constraints are both binding at x^{0}. This is depicted below.
Note that locally the linearized feasible set approximates the original feasible set.
(slopes of the original and the linearized feasible sets are the same at x^{0})

Intuitively, replacing binding functions and the maximand by their linearized approximations should yield the necessary conditions.

This is almost true but the argument fails in two cases.
In each case the linearization drastically changes the constraints.

Case 1: Disappearing constraint

Suppose that the gradient vector is zero: $\frac{\partial h}{\partial x}\left(x^{0}\right)=0$
The linearized constraint is

$$
\sum_{j=1}^{n} \frac{\partial h}{\partial x_{j}}\left(x^{0}\right)\left(x_{j}-x_{j}^{0}\right) \geq 0
$$

Thus if the gradient vector is zero the constraint disappears!

Example: Consider the following two optimizations problems
(i) $\operatorname{Max}_{x \in \mathbb{R}_{+}^{2}}\left\{u(x)=x_{1} x_{2} \mid 10-x_{1}-x_{2} \geq 0\right\}$ (ii) $\operatorname{Max}_{x \in \mathbb{R}_{+}^{2}}\left\{u(x)=x_{1} x_{2} \mid\left(10-x_{1}-x_{2}\right)^{3} \geq 0\right\}$

You should convince yourself that the feasible sets are the same and so the solutions are the same. Given the symmetry of the problem consider $x^{0}=(5,5)$.

Write down the derivatives of the Lagrangian in each case. You will find the x^{0} satisfies the intuitively derived necessary conditions in problem (i) but not in problem (ii)

Case 2: Disappearing vertex

Suppose that two constraints are both binding at x^{0}.
If, as depicted, the two constraints have the same slope at x^{0} then there can be a problem.
To illustrate consider the following example with solution $x^{0}=(2,2)$
$\operatorname{Max}\left\{f(x)=x_{2} \mid h_{1}(x)=x_{1}-9 x_{2}+6 x_{2}^{2}-x_{2}^{3} \geq 0, h_{2}(x)=8-x_{1}-3 x_{2} \geq 0\right\}$

The 1 st constraint holds for all x_{1} to the right of the boundary $h_{1}(x)=0$
$\operatorname{Max}\left\{f(x)=x_{2} \mid h_{1}(x)=x_{1}-9 x_{2}+6 x_{2}{ }^{2}-x_{2}^{3} \geq 0, h_{2}(x)=8-x_{1}-3 x_{2} \geq 0\right\}$

We linearize the first constraint

$$
\frac{\partial h_{1}}{\partial x}(x)=\left(1,-9+12 x_{2}-3 x_{2}^{2}\right) \quad \frac{\partial h_{1}}{\partial x}\left(x^{0}\right)=(1,3) \quad \text { Then } \quad \frac{\partial h_{1}}{\partial x}\left(x^{0}\right) \cdot\left(x-x^{0}\right)=1\left(x_{1}-2\right)+3\left(x_{2}-2\right) \geq 0
$$

i.e. $x_{1}+3 x_{2} \geq 8$

The linearized feasible set is the line $x_{1}+3 x_{2}=8$. The vertex disappears.

Constraint Qualifications

Formally, we must check the following "constraint qualifications" If they are satisfied the intuitively derived conditions are indeed necessary conditions.

1. Suppose that constraint i is binding at x^{0} but the gradient vector at $x^{0}, \frac{\partial h_{i}}{\partial x}\left(x^{0}\right)=0$. Then there is no associated linearized constraint.

Thus to apply this approach we require that $\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \neq 0$ for each binding constraint
2. Suppose that the i-th constraint is binding if and only if $i \in I$. Check that the feasible set of binding linearized constraints has a non-empty interior. That is, there exists \hat{x} such that
$\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \cdot\left(\hat{x}-x^{0}\right)>0$ for all $i \in I$.

Constraint Qualifications

Define X to be the set of feasible vectors, that is $X=\left\{x \mid x \geq 0, h_{i}(x) \geq 0, i=1, \ldots, m\right\}$.
The constraint qualifications holds at $x^{0} \in X$ if
(i) for each constraint that is binding at x^{0} the associated gradient vector $\frac{\partial h_{i}}{\partial x}\left(x^{0}\right) \neq 0$.
(ii) \bar{X}, the set of non-negative vectors satisfying the linearized binding constraints has a non-empty interior.

As long as the constraint qualifications hold, the intuitively derived conditions are indeed necessary conditions. This is summarized below.

Proposition: Necessary Conditions for a Constrained Maximum

Suppose x^{0} solves $\operatorname{Max}\{f(x) \mid x \in X\}$. If the constraint qualifications hold at x^{0} then there exists a vector of shadow prices $\lambda \geq 0$ such that

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}\left(x^{0}, \lambda\right) \leq 0, j=1, \ldots, n \text { with equality if } x_{j}^{0}>0
$$

and

$$
\frac{\partial \mathfrak{L}}{\partial \lambda}\left(x^{0}, \lambda\right) \geq 0, i=1, \ldots, m \text { with equality if } \lambda_{i}>0
$$

Since Kuhn and Tucker* were the first to provide a complete set of constraint qualifications, the first order conditions (FOC) are often called the Kuhn-Tucker Conditions.
*These conditions are also called the Karush-Kuhn-Tucker conditions

