## Econ 401A Microeconomic Theory

## Midterm answers

## 1. Multiproduct firm

(a) $p=(14,24)$

$$
\pi(q)=p_{1} q_{1}+p_{2} q_{2}-C\left(q_{1}, q_{2}\right)=14 q_{1}+24 q_{2}-\left(q_{1}+2 q_{2}\right)^{2}-\frac{1}{2} q_{1}^{2}
$$

The first two terms and the $4^{\text {th }}$ term have negative second derivatives so are concave.
$-x^{2}$ is concave and $x=q_{1}+2 q_{2}$ is linear so the third term is concave.
The sum of concave functions is concave so $\pi(q)$ is concave.
(b) FOC
$\frac{\partial \pi}{\partial q_{1}}=14-2\left(q_{1}+2 q_{2}\right)-q_{1}=0$
$\frac{\partial \pi}{\partial q_{2}}=24-4\left(q_{1}+2 q_{2}\right)=0$.
$\bar{q}=(a, a)$ satisfies these conditions if
$\frac{\partial \pi}{\partial q_{1}}=14-2(3 a)-a=0$.
$\frac{\partial \pi}{\partial q_{2}}=24-4(3 a)=0$.
So $a=2$
Given the concavity of the profit fucntion, the FOC are both necessary and sufficient for a maximum.
(c) $p=(10,24)$
$\pi=p_{1} q_{1}+p_{2} q_{2}-C\left(q_{1}, q_{2}\right)=10 q_{1}+24 q_{2}-\left(q_{1}+2 q_{2}\right)^{2}+\frac{1}{2} q_{1}^{2}$
The last term is convex so the FOC may not yield the maximum
FOC

$$
\begin{aligned}
& \frac{\partial \pi}{\partial q_{1}}=10-2\left(q_{1}+2 q_{2}\right)+q_{1}=0 \\
& \frac{\partial \pi}{\partial q_{2}}=24-4\left(q_{1}+2 q_{2}\right)=0
\end{aligned}
$$

Again $\bar{q}=(2,2)$ satisfies these conditions.

$$
\pi(\bar{q})=10(2)+24(2)-(6)^{2}+\frac{1}{2}(2)^{2}=68-36+2=34
$$

But if you set $\overline{\bar{q}}_{1}=0$

$$
\frac{\partial \pi}{\partial q_{2}}=24-4\left(0+2 q_{2}\right)=0 \text { and so } \overline{\bar{q}}_{2}=3
$$

$$
\pi(\overline{\bar{q}})=24(3)-(6)^{2}=36
$$

Profit is higher.

## 3. Two period model

(a) The utility function is homothetic since
$U(\theta c)=\ln \theta c_{1}+\delta \ln \left(\theta c_{2}\right)=2 \ln \theta+\ln c_{1}+\delta \ln c_{2}=2 \ln \theta+U(c)$
Thus we can consider the representative agent.
Her lifetime budget constraint is

$$
c_{1}+\left(\frac{1}{1+r}\right) c_{2} \leq y_{1}+\left(\frac{1}{1+r}\right) y_{2}
$$

FOC

$$
u^{\prime}\left(c_{1}\right)=(1+r) \delta u^{\prime}\left(c_{2}\right)
$$

Market clearing: $\bar{c}=y$
$u^{\prime}(120)=(1+r) \delta u^{\prime}(120)$
Therefore $(1+r) \delta=1$. Since $\delta=\frac{1}{2}$ it fololws that $1+r=2$ and so $r=1$.
(b) in the market place a consumer can save a coconut in period 1 and earn enough interest to buy 2 coconuts in period 2 .

Storing yields only half as much. So storage is not used and the equilibrium outcome is the same.
(c) Now an input of one coconut yields 2 coconuts in period 2 which is the same as saving so adds no gains from trade.
(d) Now an input of one coconut yields 4 coconuts in period 2 which is strictly better.
$c_{1}=100-z_{1}, c_{2}=120+4 z_{1}$
$U=\ln \left(120-z_{1}\right)+\frac{1}{2}\left(120+4 z_{2}\right)$
For a maximum,
$U^{\prime}\left(z_{1}\right)=-\frac{1}{120-z_{1}}+\frac{2}{120+4 z_{1}}=0$. Then $\bar{z}_{1}=20$
$\left(\bar{c}_{1}, \bar{c}_{2}\right)=(100,200)$
$\operatorname{MRS}^{R}(\bar{c})=\frac{u^{\prime}\left(c_{1}\right)}{\delta u^{\prime}\left(c_{2}\right)}=\frac{c_{2}}{\delta c_{1}}=4$.
Thus the WE interest rate satisfies
$1+r=4$

## 3. Production and cost

$$
\operatorname{Max}_{z}\left\{q_{3}^{3}=F(z)=54 z_{1} z_{2}^{2} \mid p_{1} z_{1}+p_{2} z_{2} \leq \bar{B}\right\}
$$

Solution must be interior or $q=0$

$$
\frac{1}{p_{1}} \frac{\partial F}{\partial z_{1}}=\frac{1}{p_{2}} \frac{\partial F}{\partial z_{2}}
$$

$$
\frac{54 z_{2}^{2}}{p_{1}}=\frac{128 z_{1} z_{2}}{p_{2}}
$$

Then $p_{2} z_{2}=2 p_{1} z_{1}$.

$$
p_{1} z_{1}+p_{2} z_{2}=\bar{B}
$$

Then
$p_{1} z_{1}+\left(2 p_{1} z_{1}\right)=\bar{B}$
Thus
$p_{1} z_{1}=\frac{1}{3} \bar{B}$ and so $p_{2} z_{2}=\frac{2}{3} \bar{B}$
$\bar{z}_{1}=\frac{1}{3} \frac{\bar{B}}{p_{1}}$ and $\bar{z}_{2}=\frac{2}{3} \frac{\bar{B}}{p_{2}}$
$q_{3}{ }^{3}=F(z)=54\left(\frac{1}{3} \frac{\bar{B}}{p_{1}}\right)\left(\frac{2}{3} \frac{\bar{B}}{p_{2}}\right)^{2}=8 \frac{\bar{B}^{3}}{p_{1} p_{2}{ }^{2}}$
$q_{3}=2 \frac{\bar{B}}{p_{1}^{1 / 3} p_{2}^{2 / 3}}$.
Inverting, the budget needed to produce $q_{3}$ (i.e. the total cost) is
$T C\left(q_{3}\right)=\bar{B}=\frac{1}{2} p_{1}^{1 / 3} p_{2}^{2 / 3} q_{3}$
Then $M C=\frac{1}{2} p_{1}^{1 / 3} p_{2}^{2 / 3}$.
For a price-taking firm 100 is maximizing if $p_{3}=M C(100)$.
Therefore

$$
p_{3}=\frac{1}{2} p_{1}^{1 / 3} p_{2}^{2 / 3} .
$$

## 4. Envelope Theorem

(a) $F(p)=\operatorname{Max}_{q}\{p \cdot q-C(q)\}$.

Proposition: The rate at which maximized profit rises with the price of output $j$ is $\frac{\partial F}{\partial p_{j}}(\bar{p})=\bar{q}_{j}$
Let $\bar{q}$ be maximizing when the price is $\bar{p}$. Suppose that the manager is naïve and does not change output when the price changes. Then
$F^{N}(p)=p \bar{q}-C(\bar{q})$.
The graph of this function is a line of slope $\bar{q}$. This is depicted below.
The naïve manager does the same as the smart manager when the price is $\bar{p}$ but is not maximizing at other prices. Thus the graph of the maximized profit is the same at $\bar{p}$ and is higher for all other $p$. This is also depicted below.


It follows that the two graphs have the same slope at $p_{j}=\bar{p}_{j}$.
Hence $\frac{\partial F}{\partial p_{j}}(\bar{p})=\bar{q}_{j}$
(b) Suppose that the firm must also satisfy some production constraint of the form $g(q) \leq b$, so that
$\bar{q}$ solves $\operatorname{Max}_{q}\{\bar{p} \cdot q-C(q) \mid g(q) \leq b\}$


The argument is essentially identical.

