What is a Walrasian Equilibrium (WE)

1. Model of a private ownership economy 2
2. Market demand and equilibrium in an exchange economy 16
3. Model of a private ownership economy

Commodities:

The set of commodities is $\mathcal{N}=\{1, \ldots, n\}$

Endowments:

$\omega_{j} \geq 0$ the initial endowment of commodity j (land, labor, coconuts...)

Consumers:

The set of consumers is $\mathcal{H}=\{1, \ldots, H\}$.

Each consumer's preferences can be represented by a continuously differentiable strictly increasing function $U\left(x^{h}\right), h=1, \ldots, H$ where $x^{h}=\left(x_{1}^{h}, \ldots, x_{n}^{h}\right)$

Notation: If $\bar{x}_{i} \geq x_{i}$ for $i=1, \ldots, n$ and the inequality is strict for some i we write $\bar{x}>x$. If it is strict for all i we write $\bar{x}_{i} \gg x_{i}$.

The function $U^{h}(x)$ is strictly increasing if $\bar{x}>x$ implies that $U^{h}(\bar{x})>U^{h}(x)$.

Firms

The set of firms is $\mathcal{F}=\{1, \ldots, F\}$.

Transformers of inputs into outputs:

Let $z^{f}=\left(z_{1}^{f}, \ldots, z_{n}^{f}\right)$ be a vector of firm f^{\prime} 's inputs.

Each component is a quantity of one of the commodities.

Let q^{f} be a vector of the outputs.

Firms

The set of firms is $\mathcal{F}=\{1, \ldots, F\}$.

Transformers of inputs into outputs:
Let $z^{f}=\left(z_{1}^{f}, \ldots, z_{n}^{f}\right)$ be a vector of firm f^{\prime} 's inputs.

Each component is a quantity of one of the commodities.

Let q^{f} be a vector of the outputs.

Production vector

$y^{f} \equiv\left(z^{f}, q^{f}\right)$ is an ordered list of all the inputs and outputs.

Each firm must choose among the production vectors that are feasible.

We write this set of feasible plans as Y^{f}.

Firms

The set of firms is $F=\{1, \ldots, F\}$.

Transformers of inputs into outputs:
Let $z^{f}=\left(z_{1}^{f}, \ldots, z_{n}^{f}\right)$ be a vector of firm f 's inputs.

Each component is a quantity of one of the commodities.
Let q^{f} be a vector of the outputs.

Production vector
$y^{f} \equiv\left(z^{f}, q^{f}\right)$ is an ordered list of all the inputs and outputs.

Each firm must choose among the production vectors that are feasible.

We write this set of feasible plans as Y^{f}.

Private ownership:

Shareholdings: $k^{h f}$ is the share-holding of consumer h in firm f.

Feasible consumption vectors

Sum over all the consumers
$\sum_{h=1}^{h} x_{j}^{h} \leq \sum_{h=1}^{h} \omega_{j}^{h}-\sum_{f=1}^{F} z_{j}^{f}+\sum_{f=1}^{F} q_{j}^{f}, \quad$ where $\left(z^{f}, q^{f}\right) \in Y^{f} \quad$ (production plans are feasible)
total consumption \leq total endowment - total inputs + total outputs

Feasible consumption vectors

Sum over all the consumers

$\sum_{h=1}^{h} x_{j}^{h} \leq \sum_{h=1}^{h} \omega_{j}^{h}-\sum_{f=1}^{F} z_{j}^{f}+\sum_{f=1}^{F} q_{j}^{f}, \quad$ where $\left(z^{f}, q^{f}\right) \in Y^{f} \quad$ (production plans are feasible)
total consumption \leq total endowment - total inputs + total outputs

Price taking equilibrium allocation

An allocation to consumers, $\left\{\bar{x}^{h}\right\}_{h=1}^{H}$, feasible production plans $\left\{\bar{y}^{f}\right\}_{f=1}^{F}$ and a price vector $p \geq 0$

Such that
(i) No consumer has a strictly preferred point in his/her budget set.
(ii) There is no strictly more profitable feasible plan for any firm.
(iii) All markets clear.

$$
\sum_{h=1}^{h} \bar{x}_{j}^{h} \leq \sum_{h=1}^{h} \omega_{j}^{h}-\sum_{f=1}^{F} \bar{z}_{j}^{f}+\sum_{f=1}^{F} \bar{q}_{j}^{f} \text { and } p_{j}=0 \text { if the inequality is strict. }
$$

We will look at simple economies to gain insights into how commodities are allocated via markets.
Example 1:
Alex and Bev only like bananas.

Alex has an endowment of 4 bananas and 6 coconuts $\omega^{A}=(4,6)$.

Bev has an endowment of 10 bananas and 7 coconuts $\omega^{A}=(10,7)$.

Class question: What vectors of prices $\left(p_{b}, p_{c}\right)$ are equilibrium prices?

Example 2:

Alex likes only bananas. Bev likes only coconuts.

Alex has an endowment of 4 bananas and 6 coconuts $\omega^{A}=(4,6)$.

Bev has an endowment of 10 bananas and 7 coconuts $\omega^{A}=(10,7)$.

Group exercise:

Right-side groups: Study supply and demand in the market for coconuts.

Left-side groups: Study supply and demand in the market for coconuts.

Let the prices be $p=\left(p_{b}, p_{c}\right)$

Example 3: Cobb-Douglas utility function: $\operatorname{Max}_{x \geq 0}\left\{U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}$
Necessary conditions for a maximum

Method 1: Equalize the marginal utility per dollar

To make differentiation simple, try to find an increasing function of the utility function that is simple.
Define the new utility function $u(x)=\ln U(x)$
The new maximization problem is

$$
\operatorname{Max}_{x \geq 0}\left\{u(x)=\ln U(x) \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}
$$

That is

$$
\operatorname{Max}_{x \geq 0}\left\{\alpha_{1} \ln x_{1}+\alpha_{2} \ln x_{2} \mid p_{1} x_{1}+p_{2} x_{2} \leq I\right\}
$$

Note that

$$
\frac{\partial u}{\partial x_{j}}=\frac{\alpha_{j}}{x_{j}} .
$$

Necessary conditions

$$
\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}=\lambda . \text { For the example it follows that } \frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\lambda .
$$

Also $p_{1} x_{1}+p_{2} x_{2}=I$.

Technical tip

Ratio Rule:

If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.

Necessary conditions

$$
\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}=\lambda . \text { For the example it follows that } \frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\lambda .
$$

Also $p_{1} x_{1}+p_{2} x_{2}=I$.

Technical tip

Ratio Rule:

If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.
Therefore

$$
\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{p_{1} x_{1}+p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{I}
$$

Necessary conditions

$$
\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}=\lambda . \text { For the example it follows that } \frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\lambda
$$

Also $p_{1} x_{1}+p_{2} x_{2}=I$.

Technical tip

Ratio Rule:

If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ and $b_{1}+b_{2} \neq 0$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$.
Therefore

$$
\frac{\alpha_{1}}{p_{1} x_{1}}=\frac{\alpha_{2}}{p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{p_{1} x_{1}+p_{2} x_{2}}=\frac{\alpha_{1}+\alpha_{2}}{I}
$$

We can then solve for x_{1} and x_{2}

Cobb-Douglas demands

$$
x_{j}=\frac{\alpha_{j}}{\alpha_{1}+\alpha_{2}} \frac{I}{p_{j}},
$$

Method 2: Equate the MRS and price ratio

$$
\begin{aligned}
& U(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \text {. Then } \frac{\partial U}{\partial x_{1}}=\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \text { and } \frac{\partial U}{\partial x_{2}}=\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1} \\
& \operatorname{MRS}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}=\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}} .
\end{aligned}
$$

Then to be the maximizer,

$$
\operatorname{MRS}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{\alpha_{1}}{\alpha_{2}} \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}
$$

As we have seen, it is helpful to rewrite this as follows:

$$
\frac{p_{1} x_{1}}{\alpha_{1}}=\frac{p_{2} x_{2}}{\alpha_{2}}
$$

Then proceed as before.

Data Analytics (Taking the model to the data)

$$
x_{1}(p, I)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}} \frac{I}{p_{j}}
$$

Take the logarithm

$$
\ln x_{j}=\ln \left(\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right)+\ln I-\ln p_{j}
$$

The model is now linear. We can then use least squares estimation

$$
\ln x_{j}=a_{0}+a_{1}\left(\ln I-\ln p_{j}\right)
$$

or

$$
\ln x_{j}=a_{0}+a_{1} \ln I+a_{2} \ln p_{j}
$$

Exercise: If $U(x)=\left(a_{1}+x_{1}\right)^{\alpha_{1}}\left(a_{2}+x_{2}\right)^{\alpha_{2}}$, solve for the demand function $x_{1}(p, I)$

Market demand in a Cobb-Douglas economy with no production

Consumer $h \in \mathcal{H}$ has some initial endowment $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$. With a price vector p, the market value of this endowment is $I^{h}=p \cdot \omega^{h}$. If the consumer sells his entire endowment he can then purchase any consumption bundle x^{h} satisfying

$$
p \cdot x^{h} \leq I^{h}=p \cdot \omega^{h} .
$$

Cobb-Douglas demands

$$
\begin{aligned}
x_{1}^{h} & =\frac{\alpha_{1}^{h}}{\alpha_{1}^{h}+\alpha_{2}^{h}} I^{h}=\gamma^{h} I^{h} \text { where } \gamma^{h}=\frac{\alpha_{1}^{h}}{\alpha_{1}^{h}+\alpha_{2}^{h}} \\
& =\gamma^{h}\left(p_{1} \omega_{1}^{h}+p_{2} \omega_{2}^{h}\right)
\end{aligned}
$$

Therefore

$$
x_{1}^{h}-\omega_{1}^{h}=\gamma^{h}\left(p_{1} \omega_{1}^{h}+p_{2} \omega_{2}^{h}\right)-\omega_{1}^{h}=\gamma^{h} p_{2} \omega_{2}^{h}-\left(1-\gamma^{h}\right) p_{1} \omega_{1}^{h}
$$

Consider the two consumer case (Alex and Bev)

$$
\begin{aligned}
& x_{1}^{A}-\omega_{1}^{A}=\gamma^{A} p_{2} \omega_{2}^{A}-\left(1-\gamma^{A}\right) p_{1} \omega_{1}^{A} \\
& x_{1}^{B}-\omega_{1}^{B}=\gamma^{B} p_{2} \omega_{2}^{B}-\left(1-\gamma^{B}\right) p_{1} \omega_{1}^{B}
\end{aligned}
$$

Summing over consumers

$$
\sum x_{1}^{h}-\sum \omega_{1}^{h}=p_{2} \sum \gamma^{h} \omega_{2}^{h}-p_{1} \sum\left(1-\gamma^{h}\right) \omega_{1}^{h}
$$

Market clears if

$$
0=\sum x_{1}^{h}-\sum \omega_{1}^{h}=p_{2} \sum \gamma^{h} \omega_{2}^{h}-p_{1} \sum\left(1-\gamma^{h}\right) \omega_{1}^{h}
$$

Hence the WE price ratio is

$$
\frac{p_{1}}{p_{2}}=\frac{\sum \gamma^{h} \omega_{2}^{h}}{\sum\left(1-\gamma^{h}\right) \omega_{1}^{h}} .
$$

