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Introduction

The Economics of Uncertainty and Information

All human endeavors are constrained by our limited and uncertain
knowledge — about external events past, present, and future; about the
laws of nature, God, and man; about our own productive and exchange
opportunities; about how other people and even we ourselves are likely

_ to behave. Economists have, of course, always recognized the all-pervasive
influence of inadequate information, and its correlate of risk, on human
affairs. But only in the period after the Second World War did an accepted
theory of uncertainty and information begin to evolve. This theory provides
a rigorous foundation for the analysis of individual decision making and of
market equilibrium, under conditions where economic agents are unsure
about their own situations and/or about the opportunities offered them by
market dealings.

With recent explosive progress in the analysis of uncertainty, the topic can
no longer be described as neglected. Nor have the advances been “merely
academic.” The economic theory of uncertainty and information now flour-
ishes not only in departments of economics but also in professional schools
and programs oriented toward business, government and administration,
and public policy. In the world of commerce, stock market analysts now
regularly report measures of share-price uncertainty devised by economic
theorists. Even in government and the law, formal analysis of uncertainty
plays a role in dealing with issues like safety and health, allowable return on
investment, and income distribution.

Unfortunately, these new advances have not always taken a form compre-
hensible to the general economic reader. Brilliant intellectual progress often
appears in erratic and idiosyncratic guise; novel terminologies, approaches,
and modes of thought can easily hamper understanding. That has certainly
been the case here. Even specialists in some areas of the economics of uncer-
tainty and information often find it hard to grasp the import of closely
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2 The Analytics of Uncertainty and Information

related research originating from a slightly different angle. As a related
point, early explorers may have mistaken the part for the whole - a foothill
for the mountain, an outlying peninsula for the mainland. Specifically, some
scientific contributions that have appeared under ambitious titles like “the
economics of information” or the “economics of uncertainty” actually deal
only with tiny portions of those large subjects. -

We view our task mainly as one of integration: unifying these important
though partial new results and concepts into a satisfying single picture. We
would not want to claim that our own view of the whole is the only one
logically possible or useful. But we believe that it is an outlook with many
appealing and satisfying features: (1) it goes far in de-mystifying the topic;
(2) with certain significant exceptions, it provides a natural taxonomy for
most of the major problems that have been studied; and (3) most important
of all, our approach makes it clear that the economics of uncertainty and
information is not a totally new field utterly disconnected from previous
economic reasoning, but is rather a natural generalization and extension of
standard economic analysis.

A fundamental distinction is between the economics of uncertainty and
‘the economics of information. In the economics of uncertainty, each person
adapts to his or her given state of limited information by choosing the best
“terminal” action available. In the economics of information, in contrast,
individuals can attempt to overcome their ignorance by “informational”
actions designed to generate or otherwise acquire new knowledge before a
final decision is made. Put another way, in the economics of uncertainty
the individual is presumed to act on the basis of current fixed beliefs (e.g.,
deciding whether or not to carry an umbrella in accordance with one’s
present estimate of the chance of rain). In the economics of information,
a person typically is trying to arrive at improved beliefs — for example, by
studying a weather report or by looking at a barometer before deciding to
take the umbrella. .

Another crucial element is strategic uncertainty. If there are a large num-
ber of individuals, then each acts as price-taker. In contrast, in economic
interactions between only a few individuals, each individual may have an
appreciable impact on the terms of trade through his or her actions. There
are gains from behaving strategically. Consequently, in addition to possi-
bly limited knowledge about preferences and endowments of others, each
individual cares about, and is uncertain about, actions other individuals
may take. There is strategic uncertainty. The best course of action available
to individual A depends on what individual B might do, and vice versa.
Game-theoretic reasoning cuts through this morass.
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The sequence of topics in this book is guided by the pedagogical principle
of advancing from the easy to the difficult, from the familiar to the more
strange and exotic. Part I deals with terminal actions only — the economics
of uncertainty. The first three chapters analyze the optimal risk-involved
decisions of the individual. Chapter 4 moves on to the market as a whole,
showing how the overall equilibrium that determines the prices of risky
assets also distributes social risks among all individuals in the economy.

Part IT turns to the economics of information and to strategic uncertainty.
Starting with a discussion of the value of better information in Chapter 5,
we then explore the effect of autonomously emergent information upon the
market equilibrium solution (Chapter 6). The issue of information leakage
via changes in asset prices is also considered.

In preparation for analyzing strategic uncertainty, Chapter 7 provides
an introduction to game theory. The standard Nash equilibrium concept
often produces multiple equilibria, some of which seem intuitively implau-
sible. Chapter 7 reviews various efforts to refine the notion of equilibrium.
‘Chapter 8 then analyzes contracting between two agents, one of whom has
only imperfect information about the other’s preferences (hidden knowl-
edge) or is unable to observe the other’s behavior (hidden actions). The
former condition leads to adverse selection in markets while the latter results
in moral hazard. Chapter 9 examines market equilibrium under adverse
selection. .

In Chapter 10 we analyze auctions and other market mechanisms. Issues
that arise when interactions among agents are repeated over long or indefi-
nite time periods are considered in Chapter 11. We end with an analysis of
information transmission, acquisition, and aggregation in Chapter 12.

Our mode of exposition is highly eclectic. “Literary” reasoning, geomet-
rical demonstration, and analytical proofs are all employed from time to
time — as called for by the nature of the topic, by the psychological need
for variety, and by our desire to illustrate all the major forms of economic
argument arising in these contexts. In addition, certain more advanced top-
ics are separated from the main text in specially marked starred sections
that can be omitted with minimal loss of continuity. Finally, mixed with the
more purely formal portions of our analysis will be applications to impor-
tant real-world phenomena such as insurance, securities markets, corporate
financial structures, the use of experts and agents, group decisions where
returns and risks are shared, and the value of education.

Over the last 20 years, game-theoretic reasoning has become widespread
in economics. Therefore, in this second edition, we have placed greater
emphasis on game theory. Consequently, most of the changes are in part IT of
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the book (although every chapter has at least some modifications to improve
the logical flow of material). The chapter on game theory (Chapter 7) has
been rewritten and appears earlier. New topics in Part II include posted-
price markets, mechanism design, common-value auctions, and the one-
shot deviation principle for repeated games. Chapter 12 is entirely new; the
results on information aggregation and acquisition that are described here
were published after the first edition.
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PART I



Elements of Decision under Uncertainty

We introduce a model for decision making under uncertainty that will be
our workhorse throughout the book. Uncertainty is modeled with a set of
states of nature, one of which will occur. The decision maker or individual
has a probability distribution over the states of nature that represents his (or
her) subjective beliefs about the likelihood of different states of nature. This
individual chooses actions and actions have consequences. The consequence
for the individual depends on the state of nature and his choice of action.
The states of nature are represented in a way that the probabilities of states
are unaffected by the individual’s actions. The individual’s preferences over
consequences are captured bya utility function. The probability distribution
over states of nature and the utility function over consequences, both of
which are subjective,! are combined by the expected-utility rule to induce
an expected utility over actions. ‘

An individual must choose among acts — or synonymously, he or she
must make decisions, or select among actions, options, or moves, And, where
there is uncertainty, nature may be said to “choose” the state of the world
(or state, for short). You decide whether or not to carry an umbrella; nature
“decides” on rain or sunshine. Table 1.1 pictures an especially simple 2 x 2
situation. Your alternative acts x = (1, 2) are shown along the left margin,
and nature’s alternative states s = (1, 2) across the top. The body of the
table shows the consequences c,, resulting from your choice of act x and
nature’s choice of state s.

1 Subjective in the sense that another individual, faced with the same decision problem, may
have a different probability distribution and a different utility function: beliefs and tastes
may differ from person to person.



8 Elements of Decision under Uncertainty

Table 1.1. Consegitences of alternative acts and states

States

Acts o G
x=2 o 7

More generally, the individual under uncertainty will, according to this
analysis, specify the following elements of his decision problem:

(1) asetofacts(1,...,%..., X) available to him;

(2) asetofstates(l,...,s,..., S) available to nature;

(3) a consequence function c,, showing outcomes under all combinations
of acts and states.

And, in addition:

(4) a probability function 7t (s) expressing his beliefs (as to the likelihood
of nature choosing each and every state);

(5) an elementary-utility function v(c) measuring the desirability of the
different possible consequences to him.

.

We will explain below how the “expected-utility rule” integrates all these
elements so as to enable the individual to decide upon the most advanta-
geous action. Put another way, we will show how the economic agent can
derive a personal preference ordering of his possible acts from his given
preference scaling over consequences.

comMMENT: The approach here does not allow for the psychological sensa-
tions of vagueness or confusion that people often suffer in facing situations
with uncertain (risky) outcomes. In our model, the individual is neither
vague nor confused. While recognizing that his knowledge is imperfect, so
that he cannot be sure which state of the world will occur, he nevertheless can
assign exact numerical probabilities representing his degree of belief as to
the likelihood of each possible state. Our excuse for not picturing vagueness
or confusion is that we are trying to model economics, not psychology. Even
the very simplest models in economic textbooks, for example, indifference-
curve diagrams, implicitly postulate a degree of precise self-knowledge that
is descriptively unrealistic. The ultimate justification, for indifference-curve
diagrams or for theories of decision under uncertainty, is the ability of such
models to help us understand and predict behavior.
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1.1 The Menu of Acts

There are two main classes of individual actions: ferminal moves versus
informational moves. Here, in Part I of the book, we consider a simplified
world where only terminal acts are available, so that the individual is limited
to making the best of his or her existing combination of knowledge and
ignorance. An example of terminal action under uncertainty is the statistical
problem of coming to a decision on the basis of sample evidence now in
hand: for instance, when a regulatory agency has to decide whether or not
to approve a new drug on the basis of experimental test results. We will be
considering terminal actions of this type, and especially the risk-involved
decisions of individuals in markets: whether or not to purchase insurance, to
buy or sell stocks and bonds, to participate in a partnership, etc. Anticipating
a bit, a key theme of our analysis will be that markets allow decision makers
to share risks and returns in ways that accord with the particular preferences
and opportunities of the different transactors.

Part II of the book will be covering informational actions — decisions
concerning whether and how to improve upon one’s state of knowledge
before making a terminal move. In the class of informational actions would
fall statistical choices such as how much additional evidence to collect before
coming to a terminal decision, what sampling technique to employ, etc. Once
again, our emphasis will be on ways of acquiring new information through
markets. Knowledge can be acquired by direct market purchase — by buying
newspapers for weather and stock market reports, by undergoing a course
of training to gain “know how” in a trade, or by employing an expert for
private advice. Rather less obviously, markets open up an indirect means
of acquiring information: for example, a person can observe the market
choices of better-informed traders, or might draw inferences from people’s
reputations acquired in the course of their previous market dealings. Or,
a producing firm might imitate other commercially successful firms. But
these interesting phenomena involving information-involved actions will
have to be set aside until Part II.

1.2 The Probability Distribution

We assume that each person is able to represent his beliefs as to the likelihood
of the different states of the world (e.g., as to whether nature will choose
rain or shine) by a “subjective” probability distribution (Savage, 1954).
Assuming discrete states of the world, the individual is supposed to be able
to assign to each state s a degree of belief, in the form of numerical weights
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7 ; lying between zero and one inclusive, and summing to unity: 2, 7, = 1.
In the extreme case, if the person were certain that some particular state s
would be occurring, the full probabilistic weight of unity would be assigned
to that state. Then 7, = 1, so that zero probability is attached to every other
state in the set 1,..., s,..., S. More generally, a high degree of subjective
assurance will be reflected by a relatively “tight” probability distribution
over the range of possible states; a high degree of doubt would be reflected
by a wide dispersion.

At times, we shall find it will be more convenient to assume that the
variable or variables defining the state of the world vary continuously (rather
than discretely) so that the number of distinct states is uncountably infinite.
Here the probability of any exact single state coming about is regarded as
zero (“infinitesimal”), although the event is not impossible. Making use of a
continuous state-defining variable s, where scan be any real number between
0 and S, the individual’s subjective probability beliefs would be represented
by a probability density function 7 (s) such that [ 7 (s) ds = 1.

1.2.1 Risk versus Uncertainty

A number of economists have attempted to distinguish between risk and
uncertainty, as originally proposed by Frank H. Knight (1921, pp. 20, 226).
(1) “Risk,” Knight said, refers to situations where an individual is able to
calculate probabilities on the basis of an objective classification of instances.
For example, in tossing a fair die the chance of any single one of the six
faces showing is exactly one-sixth. (2) “Uncertainty,” he contended, refers
to situations where no objective classification is possible, for example, in
estimating whether or not a cure for cancer will be discovered in the next
decade. .

In this book, we disregard Knight’s distinction. For our purposes, riskand
uncertainty mean the same thing. It does not matter, we contend, whether
an “objective” classification is or is not possible. For we will be dealing
throughout with a “subjective” probability concept (as developed especially
by Savage, 1954): probability is simply degree of belief. In fact, even in
cases like the toss of a die where assigning “objective” probabilities appears
possible, such an appearance is really illusory. That the chance of any single
face turning up is one-sixth is a valid inference only if the die is a fair one—a
condition about which no one could ever be “objectively” certain. Decision
makers are therefore never in Knight’s world of risk but instead always in
his world of uncertainty. That this approach, assigning probabilities on the
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basis of subjective degree of belief, is a workable and fruitful procedure will
be shown constructively throughout the book.”

1.2.2 “Hard” versus “Soft” Probabilities

While we do not distinguish between what Knight called risk and uncer-
tainty, he was getting at — though imperfectly expressing — an important
and valid point. In his discussion, Knight suggested that a person’s actions
may well depend upon his “estimate of the chance that his estimates are
correct,” or, we shall say, upon his confidence in his beliefs. This brings us to
a distinction between “hard” versus “soft” probability estimates.

Suppose that for purposes of an immediate bet you had to estimate the
probability of heads coming up on the next toss of coin A — the coin having
been previously tested many times by you and found to have historically
come up heads and tails with just about equal frequency. If you are a reason-
able person, you would assign a degree of belief (subjective probability) of
about 0.5 to heads, and you would be rather confident about that number.
In contrast, imagine instead that you are dealing with coin B, about which
you know absolutely nothing. You have not even been able to inspect it to
verify whether it is possibly two tailed or two headed. Nevertheless, if you
had to pick some single number you would be compelled again to assign
0.5 probability to heads coming up on the next toss, since as a reasonable
person you lack any basis for a greater or lesser degree of belief in heads
than tails. But, your confidence in the 0.5 figure for coin B would surely be
much less.

It is not the psychological sensation of confidence or doubt that inter-
ests us, but the possible implications for decisions. If the same probability
assignment of 0.5 will be made either way, as has just been argued, is there
any action-relevant difference between the two cases? For our purpose, the
answer is No, if you are committed to ferminal action.® If you must bet
now on the basis of your current information, 0.5 is the relevant probability
for guiding your choice of heads or tails. In either situation, you have no
grounds for thinking heads more likely or tails more likely. But the answer
is YES, there is indeed a difference between the two situations if you have the

2 See Schmeidler (1989) for the foundations of an alternative approach that explicitly models
Knightian uncertainty and individuals’ attitudes to it.

3 Later in this chapter, we describe the Ellsberg paradox, which is an experiment indicating
that individuals may react differently to hard and soft probabilities in a setting with
terminal actions.
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option of informational action. When this option is available, you should
be more willing to invest money or effort to obtain additional information
about coin B than about coin A. In short, greater prior doubt (lesser degree
of confidence) makes it more important to acquire additional evidence
before making a terminal move. So, we see that a person’s informational
actions, though not his terminal actions, do depend upon his confidence
in his beliefs — in Knight’s language, upon his “estimate of the chance that
his estimates are correct.” Confidence will be an important topic in Part I
of the book, where we cover the economics of information, but will not be
involved in our more elementary treatment of the economics of uncertainty
in Part I,

Exercises and Excursions 1.2

1 Consistency of Probability Beliefs

An individual believes that credible information will soon arrive in the form
of news about the probability of rain. He believes there is a 50% chance that
the news will be “rain certain,” a 30% chance that the news will be “no
rain,” and a 20% chance that the news will be “rain with probability 0.5.”
Is this consistent with his currently believing that the odds in favor of rain
are 2:1¢

2 Information and Confidence ,
In terms of the chances of a coin coming up heads, suppose there are three
states of the world regarded as possible:

State 1: chance of heads is 100% [coin is two headed]
State 2: chance of heads is 50% [coin is fait]
State 3: chance of heads is 0% [coin is two tailed].

An individual initially assigns equal probabilities (77, 7,, 7;) = va W, ,Wv
to all three states.

(A) For an immediate bet (terminal action), what is his best estimate for
the probability p of heads on the next toss?

(B) Suppose new information were now to change his probability vector
to (my, 4, 3) = (0, 1, 0). What can you now say about his best
estimate for p? What has happened to his confidencein that estimate?

(C) Same question if, instead, the new information changed his proba-
bility vector to (4, 0, 1).
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1.3 The Utility Function

As shown in Table 1.1, each consequence is the outcome of an economic
agent’s choice of action combined with nature’s “choice” of the state of the
world. In principle, the consequence is a full description of all aspects of the
individual’s environment resulting from such an interaction. For example,
if someone decides not to carry an umbrella and nature chooses rain, the
consequences might include getting wet, being late for work, and a variety
of other discomforts. But we shall mainly be concerned with consequences
describable in terms of alternative baskets of consumption goods that enter
into individuals’ utility functions. Very frequently we shall deal with an even
simpler picture in which consequences take the form of entitlements to a
single summary variable like monetary incotne.

Consequences might be quantities that are certain, or might themselves
be probabilistic — depending upon how states of the world are described.
If the states are defined deterministically, as in “Coin shows heads,” and
supposing the action chosen was “Bet $1 at even money on heads,” then
the consequence would be “Win one dollar.” But states of the world can
sometimes be defined as probabilistic processes. The relevant states might
be “Coin has 50% chance of coming up heads” versus “Coin is biased to
have 75% chance of coming up heads.” Here the act “Bet on heads” will be
reflected, in either state of the world, by an uncertain consequence taking
the form of a specified chance of winning the dollar.

We shall use the notation v(c) to represent a person’s utility function (or
elementary-utility function) over the consequences c.

1.4 The Expected-Utility Rule

Utility attaches directly to consequences, and only derivatively to actions.
To emphasize this distinction, we shall use the notation U(x) for a person’s
derived preference ordering over actions x. The expected-utility rule is used
to derive U(x) from the utility function v(c), as explained below.

A CRUCIAL DISTINCTION
v(c) is a utility function defined over consequences
Ul(x) is the expected-utility function defined over actions

The analytical problem is to explain and justify this derivation, that is, to
show how, given his direct preferences over consequences, the individual can
order the desirability of the actions available to him.
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To choose an act is to choose one of the rows of a consequence matrix like
Table 1.1. As the individual is also supposed to have attached a probability
(degree of belief) to the occurrence of every state, each such row can be
regarded as a probability distribution. We may therefore think of a person
as choosing among probability distributions or “prospects.” A convenient
notation for the “prospect” associated with an act x, whose uncertain con-
sequences ¢, = (Cyp> Cpps- -5 Cyg) are to be received with respective state
probabilities 7 = (7, ,, ..., 7g) — the probabilities summing, of course,
to unity — is:

X == (Cyps o vy Cogs 13 Tpy v e vy )

The crucial step is to connect the v(c) function for consequences with
the utility ordering U(x) of acts. We can take this step using the famous
“expected-utility rule” of John von Neumann and Oskar Morgenstern (1944,
pp. 15-31):

EXPECTED-UTILITY RULE ‘

U(x) = myv(cy) + myv(cy) + -+ msv ()

S
= M 7 v(c,,) (1.4.1)
s=1

This says that the expected utility U(x) of act x is calculable in an espe-
cially simple way: to wit, as the mathematical expectation (the probability-
weighted average) of the elementary utilities v(c,,) of the associated con-
sequences. Note that Equation (1.4.1) is simply additive over states of the
world, which means that the consequence c,, realized in any state s in no
way affects the preference scaling v(c,) of consequences in any other state
s0. Equation (1.4.1) is also linear in the probabilities, another very specific
and special functional form. As the von Neumann-Morgenstern expected-
utility rule is absolutely crucial for our theory of decision under uncertainty,
we shall be devoting considerable space to it. ‘

It turns out that the expected-utility rule is applicable if and only if the
v(c) function has been determined in a particular way that has been termed
the assignment of “cardinal” utilities to consequences. More specifically, the
proposition that we will attempt to explain and justify (though not rigor-
ously prove) can be stated as follows:

Given certain “postulates of rational choice,” there is a way of assigning a cardinal
utility function v(c) over consequences such that the expected-utility rule determines
the individual’s preference ranking U(x) over actions.
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A “cardinal” variable is one that can be measured quantitatively, like
altitude, time, or temperature. While different measuring scales might be
employed, such scales can diverge only in zero-point and unit-interval.
Temperature, for example, can be measured according to the Celsius or
the Fahrenheit scales; 32° Fahrenheit is 0° Celsius, and each degree up
or down of Celsius is 1.8° up or down of Fahrenheit. Similarly, altitude
could be measured from sea level or from the center of the Earth (shift of
zero-point) and in feet or meters (shift of unit-interval). Cardinal variables
have the following property: regardless of shift of zero-point and unit-
interval, the relative magnitudes of differences remains unchanged. The
altitude difference between the base and crest of Mount Everest exceeds the
difference between the foundation and roof of even the tallest man-made
building — whether we measure in feet above sea level or in meters from
the center of the Earth.

In dealing with certainty choices, standard economic theory treats utility
(intensity of preference) as an ordinal rather than a cardinal variable. The
individual, it is postulated, can say “I prefer basket A to basket B.” He is not
required to quantify how muchhe prefers A to B. Put another way, if any given
utility function in the form of an assignment of cardinal numbers to conse-
quences (consumption baskets) correctly describes choices under certainty,
so will any ordinal (positive monotonic) transformation of that function.
Suppose that, for choices not involving risks, some scale u of cardinal num-
bers was attached as preference labels to consequences — where, of course,
higher uindicates greater level of satisfaction. Then any positive monotonic
transformation of those numbers would lead to the same decisions. For
example, suppose an individual always prefers more consumption income ¢
to less. Then we might say, “He is trying to maximize the function u = ¢.”
But the income level that maximizes u also maximizes log u or e”, both of
which are positive monotonic transformations of #. So u = e or u = log
c could equally well have served to indicate the preference scaling. More
formally, if u is a satisfactory function for choices under certainty, then so
is &t = F(u), provided only that the first derivative is positive: F'(u) > 0.

In contrast, when it comes to choices under uncertainty, the expected-
utility rule is applicable only if the utility function ¥(c) has been constructed
in a particular way that provides fewer degrees of freedom. In fact, as will
shortly be seen, given any initially satisfactory ¥(c) function, only the car-
dinal (positive linear, rather than positive monotonic) transformations of
v(c) will leave preference rankings unchanged. Formally, if v(c) satisfacto-
rily describes the individual’s choices under uncertainty, then so does § =
« + Bv, where & is any constant and § is any positive constant.
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Why are all the positive monotonic transformations of the utility function
permissible in the riskless case, while only the positive lineartransformations
are allowed when it comes to risky choices? In the absence of uncertainty,
deciding upon an action is immediately equivalent to selecting a single defi-
nite consequence. It follows that if someone can rank consequences in terms
of preferences he has already determined the preference ordering of his
actions —which is all that is needed for purposes of decision. But in dealing
with risky choices it is not immediately evident how a ranking of conse-
quences leads to an ordering of actions, since each action will in general
imply a probabilistic mix of possible consequences. The great contribu-
tion of von Neumann and Morgenstern was to show that, given plausible
assumptions about individual preferences, it is possible to construct a #(c)
function — “cardinal” in that only positive linear transformations thereof
are permissible — whose joint use with the expected-utility rule (1.4.1) will
lead to the correct ordering of actions.

1.4.1 An Informal Presentation

To formally justify the joint use of a cardinal utility function and the
expected-utility rule, for dealing with choices among risky prospects,
involves a somewhat higher order of technical difficulty. What follows here
is an informal presentation (based mainly upon Schlaifer, 1959) illustrat-
ing, by direct construction, how the required type of utility function can be
developed.

For the purpose of this discussion, assume that the consequences c are
simply amounts of income a person might receive. Let m represent the
worst possible consequence (the smallest amount of income) that can occur
with positive probability, and M the best possible consequence (the largest
amount of income). More income is preferred to less — so the individual
already has, to begin with, an ordinal utility scale, The problem is to “cardi-
nalize” this scale, that is, to show that there is a way of assigning numerical
values (arbitrary only with respect to zero-point and unit-interval) to the
degrees of preference associated with all levels of income. These values must
be rising with income, else they would not be consistent with the given ordi-
nal preference (“more is preferred to less™). But the chosen scale must also
lead to correct answers when used in conjunction with the expected-utility
rule. The method we shall employ to establish such a cardinal scale is called
“the reference-lottery technique.”

Consider any level of income c¢* between m and M. Imagine that the
individual is faced with the choice between c* and some “reference lottery”
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having the form (M, m; 7, 1 — 7) in prospect notation. That is, he has
a choice between ¢* for certain versus a gamble yielding the best possible
outcome M with probability = and the worst possible outcome m with
probability 1 — 7. We shall suppose that the individual can say to himself:
“When 7 becomes very close to unity, I surely will prefer the gamble;
for lotteries with 7 very close to zero, I surely prefer the certainty of c*.
Consequently, in between there must be some intermediate probability 7z *
of success in the reference lottery, such that I am exactly indifferent between
the certain income ¢* and the prospect (M, m; n*, 1 — n*).” After due
introspection, we assume, the individual can in fact specify this 7*. We may
set v(m) = 0 and v(M) = 1. Then the 7* so derived is a cardinal measure
of the utility of income level ¢* for him. That is: ¥(c*) = 7*.* Or, more
elaborately:

() =UWM,mna*,1—n")=n" (1.4.2)

An individual proceeding to assign cardinal preference values to income in
this way will generate a v(c) function over the range m < ¢ < M, which
can be employed with the expected-utility rule (1.4.1) to order his choices
among actions.

Figure 1.1 illustrates a hypothetical individual situation. Let m = 0 and
M = 1,000 (in dollars, we can suppose) be the extremes of income that
need be considered. For the specific income ¢* = 250, the person’s success-
in-equivalent-reference-lottery probability is assumed to be 7* = 0.5 -
meaning that he finds himself indifferent between a sure income of $250 and
a 50% chance of winning in an income lottery whose alternative outcomes
are $1,000 or nothing. Then the utility assigned to the sure consequence
$250 is just 1 — that is, ¥(250) = 0.5, determining the location of point Q
on the ¥(c) curve. Repeating this process, the reference-lottery technique
generates the entire v(¢) curve between m = 0 and M = 1,000.

A full justification, showing why this particular procedure works to derive
a suitable cardinal scale, requires a more formal analysis (to be touched on
in Section 1.4.2). But we can give a geometric intuition here. The essential
point is that the v(c) measure obtained via the reference-lottery technique is
in the form of a probability, so that the expected-utility rule (1.4.1) becomes
equivalent to the standard formula for compounding probabilities.

4 Because shifts of zero-point and unit-interval are permissible for cardinal scaling, more
generally we can write ¥(c*) = o + fx*, for arbitrary « and § > 0. This is equivalent
to assuming v(m) = « and v(M) = « + . We will henceforth ignore this uninteresting
generalization. )
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Figure 1.1. Utility function.

A Geometric Interpretation

The expected-utility rule is equivalent to the assumption that indifference
curves over lotteries are parallel straight lines. To see this, consider lotteries
over three possible consequences m, ¢*, and M. Any lottery

x=(m, ", M; 72, 7y, i) = (m, ¢*, My iy, 1 — 7| — 7y, 75)

may be represented as a point in (7, 77;) space; see Figure 1.2. The triangle
ABC is the set of all possible lotteries with outcomes m, ¢*, and M. Point
A corresponds to getting c* for sure, point B is M for sure, and point C
is m for sure. In the lottery x, the probabilities 7, and 75 (of outcomes m
and M, respectively) are the coordinates of the point x. The probability of
outcome c* in this lottery, 7,, is the horizontal (or equivalently vertical)
distance from point x in Figure 1.2 to the hypotenuse BC of the triangle.
The expected utility of x is:

U(x)

Il

aw(m) + (1 — 7y — 7)v(c") + A3v(M)
= v(c*) — 7 v(c") + 75 (1 — v(c¥))

where we substitute ¥(m) = 0 and (M) = 1.
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Figure 1.2. Indifference curves under expected-utility rule.

Let y = (m, ¢*, M; m;, | — m; — 73, 73) be any other lottery. A similar
calculation shows that U (y) = v(c*) — mv(c*) — m5(1 — v(c*)). If lottery
y yields the same expected utility as lottery x, then:

U(y) = v(c*) — mv(c*) + 73 (1 — v(c*))
= (") — Aw(c®) + A3 (1 — v(c")) = U(x)

Re-arranging this we have:

= U(x) = v(c") n v(c*) T
71— v(c*) 1 —v(c*) !

This is the equation of the (straight line) indifference curve through x.
Observe that the slope of the indifference curve, ¥(c*)/(1 — v(c*)), does not
depend on the lottery x. Thus, all indifference curves are parallel straight
lines (shown as broken lines in the Figure 1.2). The indifference lines have
positive slope because (i) any rightward movement from x leads to a less
desirable lottery as it corresponds to increasing 7, at the expense 7, and
(ii) any upward movement from x leads to a more desirable lottery as it
corresponds to increasing 75 at the expense 77,. The direction of increasing
preference is northwest, as indicated by the arrow in Figure 1.2.
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Point D on the line segment BC in Figure 1.2 corresponds to the lottery
(m, ¢*, M; 1 —n*, 0, w*). This lottery has expected utility w*, As v(c*) =
7*, point D is on the same indifference line as point A.

Example 1.1: Imagine that an individual finds that his reference-lottery
utilities over the range 0 < ¢ < 1,000 satisfy the specific utility func-
tion v (¢) = (¢/1,000)"%. (This formula is consistent with the previously
obtained point 1(250) = 0.5 in Figure 1.1.) Suppose he is now offered a
choice between option A, representing $250 for certain once again, and
option E taking the form of a three-way prospect: E = (810, 360, 160; 0.1,
0.5, 0.4). Which should he choose?®

We already know that #(250) = 0.5: option A is equivalent to a reference
lottery with 50% chance of success. For the elements of option E, we can
readily compute: ¥(810) = 0.9, ¥(360) = 0.6, and ¥(160) = 0.4. That is,
in option E the high possible payoff of $810 is equivalent in preference to
a reference lottery with 90% chance of success, the middling payoff $360
is equivalent to a 60% chance of success, and the poor payoff $160 to a
40% chance of success. Now we ask ourselves: What is the overall equivalent
probability of success associated with option E? We can simply compute it
by using the rule for compounding probabilities: ,

0.1(0.9) + 0.5(0.6) + 0.4(0.4) = 0.55

So prospect E offers, overall, the equivalent of a 0.55 chance of success in
the reference lottery whereas option A was equivalent only to a 0.5 chance
of success. Evidently, option E is better. The key point is that the equation
leading to the 0.55 number, which we presented as the familiar formula for
compounding probabilities, is also an instance of applying the expected-
utility rule (1.4.1). , O

In short, the prescribed way of determining a cardinal v(c) function for use
with the expected-utility rule makes it possible to interpret each v(c) value as
a probability — to wit, the equivalent chance of success in a standardized ref-
erence lottery —and therefore to use the laws of compounding probabilities
for determining the desirability of more complicated prospects.

A few additional comments:

1. We have been assuming here that consequences take the form of simple
quantities of income. More generally, each consequence ¢ might be a

> The prospect E cannot be represented in Figure 1.2, Only prospects that yield $0, $250, or
$1000 are depicted in Figure 1.2.
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basket (vector) of consumption goods. The same technique can be
employed so long as the individual has an ordinal preference scaling of
baskets (an indifference map) to begin with.

We have also assumed that the same ¥(c) scale is applicable in each
and every state of the world. But, if the states are defined as “rain
versus shine,” or “healthy versus sick,” it might appear that attitudes
toward income and income risks, as reflected in the v(c¢) function,
could differ from state to state. We shall see in Chapter 2, under
the heading of “state-dependent utilities,” how this difficulty can be
handled.

. Some people find it disturbing that the additive form of the expected-

utility rule (1.4.1) excludes any “complementarities,” positive or neg-
ative, between consequences in different states. For example, if conse-
quences are simple incomes, a higher or lower income in any state s°
is supposed in no way to affect the ¥(c) number assigned to income
received in any other state s*. The reason is simple: incomes in the
distinct states s> and s* can never be received in combination but only
as mutually exclusive alternatives. There can be no complementarity
where no possibility of jointness exists.

. There can be confusion over whether or not the von Neumann—

5.

Morgenstern analysis proves that utility is “really” cardinal rather than
ordinal. Some of the difficulty stems from a mix-up between the v(c)
and the U(x) functions. The cardinality restriction applies to the ¥(c)
function — the preference scaling over consequences. But we are ulti-
mately interested in the utility rankings of alternative actions, and when
it comes to actions any ordinal transformation of an acceptable utility
measure will always serve equally well. Suppose, for example, that use
of the reference-lottery technique provides the needed utility function
v(c) such that an individual’s actions (prospects) are correctly ordered
by the expected-utility formula U(x)= X 7 g ¥(cs). Then any posi-
tive monotonic transformation of U(x), such as U (x) = eV®, would
provide an equally correct ordering of the actions. Observe that if
U(x) > U(y) then U(x) = V@ > U0 = U(y).

We have emphasized that the von Neumann—Morgenstern analysis
justifies this particular method of constructing a cardinal v(c) scale only
when jointly used with the expected-utility rule. Correspondingly, the
expected-utility rule has not been “proved” to be true. All that has been
shown is that there exists a way of constructing a v(¢) function that
makes the expected-utility rule valid as a way of deriving preferences
as to actions from given preferences as to consequences.
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1.4.2 The Independence Axiom

We are not providing here a formal proof of the expected-utility rule.
Instead, our objective is to clarify the crucial element in the proof, the prin-
ciple of non-complementarity of incomes in different states (see Comment
3 above). The formal postulate expressing this principle, the Independence
Axiom, is also known as the substitution axiom or the axiom of complex
gambles.

Independence Axiom: Suppose an individual is indifferent between two
actions or prospects x and y. Then, for any other prospect z and any fixed
probability p, he will be indifferent between a first complex lottery in which
he receives x with probability p and z otherwise, versus a second com-
plex lottery yielding y with probability p and z otherwise. Moreover, if he
strictly prefers x over y, he will strictly prefer the first complex lottery. Thus,
using the symbol ~ to indicate indifference and the symbol > for strict
preference:

Ifx~ythen(zp1—p)~zpl—Dp)
Ifx>ythen(xzp1—p) > (,zp 1—)p)

This axiom would be violated if, in a complex prospect, the presence of z
differentially affected the attractiveness of x relative to y — i.e., if there were
any complementarity effect. It might seem this could happen if, say, x and
y were amounts of ordinary commodities like bread and margarine and z
were a commodity like butter (since butter is a consumption complement
for bread but a substitute for margarine). However, in the complex prospects
or lotteries dealt with here, positive or negative complementarity has no role.
The rationale behind this is that the occurrence of x in the one case or of y
in the other rules out z. An individual can never simultaneously enjoy both
x and z together, or both y and z.

An immediate implication of this axiom is that, for two lotteries x and
y such that x ~ y, we can substitute one for the other in any prospect in
which either appears, without changing the relative preference ordering of
prospects.

In the reference-lottery process, the ¥(c) associated with any income level
¢ was determined by finding the probability of success in the reference
lottery equally preferred to that income, i.e.:

Ifc~ (M, m;mw, 1 — ), then, because v(m) = 0 and v(M) = 1, we have
) =m
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Figure 1.3. Tree diagram of compound lottery.

In what follows, it will be helpful to introduce the notation [*(7) to
represent a reference lottery in which M is the outcome with probability 7
and m is the outcome with probability 1 — m:

Fa)=WM,mm,1—m)

Thus, if ¢ ~ I*(7r) then v(¢) = 7.

Consider now two levels of income ¢; and ¢, and their equivalent reference
lotteries /*(rr;) and I*(7,). Then v(¢;) = my and v(¢,) = 7,. Suppose we
wanted to find the preference equivalent of a lottery (¢, ¢; p, 1 — p)
involving consequences ¢; and ¢, with respective probabilities pand 1 — p.
Using the ability to substitute preference-equivalent prospects:

hH ~ N*Q.:v = Ahr va Nu.‘ H - muv ~ Q*Au.:v, @, .qu H - ﬁv
Moreover:
hN ~ N*Auﬂwv ﬁ AN*AB‘JV, QNM @« u. - mwv ~ AN*ANﬁva N*Qﬂwvw Nvu “_. - @v
Combining these implications:

(¢ &3 o L= p) ~ (I (), I*(mmy); p 1= p) (1.4.3)

The lottery on the right-hand side of (1.4.3) is depicted as a “tree diagram”
in Figure 1.3. Each box or “node” represents a point at which nature makes
a move. Outcomes are indicated at the end of each branch of the tree.

At the initial node, nature “chooses” probabilistically between the two
reference lotteries. Then, depending on this choice, one of the reference
lotteries is played. Note that there are only two outcomes of this compound
lottery, M and m. Adding probabilities, outcome M is reached with proba-
bility prr; + (1 — p)7,. Then the compound lottery is itself equivalent to a
reference lottery:

(e, F )i pol = p) = P (pmy + (L= ) (1.4.4)
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Combining (1.4.3) and (1.4.4) it follows that the individual is indifferent
between (¢;, ¢;; p, 1 — p) and a reference lottery in which the probability of
success is prr; + (1 — p)mw,. As; = v(¢;) and 7w, = ¥(c,), it follows that:

Ule, 0 p 1= p) = pry + (1 — p)m,
= pv(c) + (1 - p)v(c)

Thus, the independence axiom, which formalizes the principle of non-
complementarity of income over states of the world, leads directly to the
von Neumann—Morgenstern expected-utility rule.

Exercises and Excursions 1.4

1 Transformation of Preferences
An individual claims to be maximizing:

U=Q4+)"(1+¢)"

where (¢, ¢; 1, ,) is a two-state prospect (which means that | + 7, =
1). Is he a von Neumann-Morgenstern expected-utility (EU) maximizer?
Would all his decisions be consistent with those of an EU maximizer?

2 Indifference Curves in Consequence Space
1
(A) If the utility function is v (¢c) = c2, where c is income, suppose a

person’s preference ordering over actions or prospects in a two-state
world is given by:

1 1
Uleps 65 1y, 05) = m1(¢))2 +m,(cy)2

Depict the indifference curves in a diagram with ¢, on the horizontal
axisand ¢, on the vertical axis (probabilities held constant). Show that
each indifference curve touches the axes and is everywhere bowed
toward the origin.

(B) If U = Muw m,v(c,) and ¥(.) is a strictly concave function, show that if
theindividual is indifferent between (¢;, ¢,) and (¢], &) hewillstrictly
prefer the convex combination (Ac; + (1 — A}, Ac,+ (1 —A)d).
Hence draw a conclusion about the shape of the indifference curves
in the (¢, ¢,) plane.
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3 The Expected-Utility Rule
Let v(c) be the utility functions for certain outcomes. Then, for lotteries of
the form (¢, ¢,; 74, 7,), we have seen that:

2
Ule, gy my, 7)) = Mﬁiﬁv

s=1

In this exercise, you are asked to generalize this result to lotteries with three
outcomes. An inductive argument can then be used to show that for any
lottery (¢, Gy v v s Ca T, Mgy v o vy T

s
U(es o, Cimyy e, o) = Muﬁi@
s=1
(A) Consider the lottery:

A T i
NNA&,@W L 2 v
o+, T+,

Explain why I ~ I* (V) where:

- Ty ; 4
V= ——y(g) + ———v
7wy + 1y (&) T+ 7, (c)

(B) Appeal to the independence axiom to establish that:
Am,q C3; 1— T3, ﬁ.wv ~ AN*AAMV“ hm“ 1- H\‘wq uﬂwv
and
(" (v, Gy 1 — 13, 3) ~ rm, N*Anmv“ 1 —my, m;3)

(C) Depictthe two lotteries Q>, ¢ 1 —my, ) and (I (9), I*(v(c)); 1 —
T4, ;) in tree diagrams.

(D) Confirm that the first is equivalent to the lottery (¢, ¢, &5 7y,
T,, ;). Confirm that the second is equivalent to the reference lottery
with success probability -2_, 7.v(c,).

(E) Suppose the expected-utility rule is true for prospects with S out-
comes. (We have seen that it is true for S = 2 and 3.) Show that
the above argument can, with only slight modifications, be used to
establish that the expected-utility rule must be true for prospects
with S+ 1 outcomes.
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1.5 Risk Aversion

In Figure 1.1 the individual pictured was indifferent between a certainty
income of $250 and a prospect yielding equal chances of $1,000 or nothing.
Such a person is termed risk averse. More generally:

DEFINITION: A person is risk averse (displays risk aversion) if he strictly prefers a
certainty consequence to any risky prospect whose mathematical expectation of
consequences equals that certainty. If his preferences go the other way he is a risk
preferrer or loving (displays risk preference); if he is indifferent between the certainty
consequence and such a risky prospect he is risk neutral (displays risk neutrality).

The risky prospect described above, equal chances of $1,000 or nothing,
has a mathematical expectation of $500 of income. Since our individual
was indifferent between the prospect and a mere $250 certain, for him
$500 certain is surely preferable to the risky prospect, which verifies that he
is indeed risk averse.

The term “fair gamble” is used to describe an uncertain prospect whose
mathematical expectation is zero. (A gamble with negative expectation is
called “unfavorable”; one with positive expectation is called “favorable.”)
For example, odds of 5:1 on a roll of a fair die represent a fair gamble: since
you lose (say) a dollar if the face you name does not come :wv and win five
dollars if it does come up, the expectation of gain is (— C +5 A v 0.
Then a risk-averse person would refuse a fair gamble; a risk Emwmﬁﬁ, would
accept a fair gamble; and a risk-neutral person would be indifferent.®

Figure 1.4 displays three possible utility functions: v, (c) would apply to
a risk-averse individual, v,(c) to someone who is risk neutral, and v;(c) to
a risk preferrer. Consider the fair prospect or gamble G = (750, 250; wv J
whose mathematical expectation is $500. For the first or risk-averse S&S&-
ual the utility of $500 certain, v; (500), is indicated by the height of point T
along the v, (c) curve. The utility he attaches to the risky prospect, choosing
the gamble G, is indicated by point L — whose height is the probability-
weighted average of the heights of points ] and K. This is, of course,
the geometrical equivalent of the expected-utility rule, which tells us that
U, (G) = W v, (750) + W v1(250). Evidently, whenever the utility function
has the “concave” shape of v, (c), points associated with a certainty income
(like T in the diagram) will be higher than points (like L) representing a fair
gamble with the same expectation of income. By an analogous argument,

S However, as we shall see below, a risk-averse individual would accept a fair gamble if it
offset other risks to which he was exposed. To purchase insurance, for example, is to accept
an offsetting (risk-reducing) gamble.
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Figure 1.4. Attitudes toward risk.

for the risk-preferring individual, v;(500) at point Y will be less than at
point W; such a person would choose the gamble G rather than receive its
mathematical expectation of income, $500, as a certainty. Finally, the v,(c)
curve indicates that the risk-neutral person would be indifferent between
the gamble G and the certainty of $500.

We will often have occasion to make use of Jensen’s inequality: If C is a
random variable (taking on at least two values with non-zero probability)
and v(c) is a twice-differentiable function:

If v'(c) < 0, then E[v(c)] < Y[E(c)]
If v/(c) = 0, then E[v(c)] = v[E(0)]
Ifv'(c) > 0, then E[v(c)] > V[E(c)]

Evidently, these conditions correspond immediately to the risk-averse, risk-
neutral, and risk-preferring cases of Figure 1.4.

It is useful to consider how attitude toward risk is reflected in the triangle
diagram introduced in Section 1.4.1. Figure 1.5 below shows the set of
lotteries over three income levels, $0, $500, $1,000. Thus, 7, is the probability
of getting $0 and 7, is the probability of $1,000. The origin corresponds to
getting $500 for sure.

Point L in Figure 1.5 is the lottery that gives either $1,000 or nothing
with equal probability. A risk-neutral individual is indifferent between this
prospect and $500 for sure. Hence, the solid line joining L to the origin is
the indifference line through L for a risk-neutral person. As indifference
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] > 7

Figure 1.5. Risk-averse and risk-neutral indifference lines.

lines under the expected-utility rule are parallel straight lines, the solid lines
inside the triangle are indifference lines under risk neutrality. That is, all
lotteries on a solid line have the same expected value and the same expected
utility for a risk-neutral person.

Any risk-averse individual strictly prefers $500 for sure to the prospect
L. Thus, since the direction of increasing preference is to the northwest,
any risk-averse indifference line through the origin must intersect the
hypotenuse of the triangle at a point D to the northwest of L (z* > 0.5).
Hence, indifference lines for a risk-averse person (the broken lines in the
triangle) are steeper than the indifference lines for a risk-neutral person (the
solid lines in the triangle). Similarly, the indifference lines for a risk-neutral
person are steeper than indifference lines for a risk-preferring person.

We now consider what observation of the world tells us about the actual
v(c) curves entering into people’s decisions. First of all, we have already
postulated that more income is preferred to less, justified by the observation
that only rarely do people throw away income. This implies a rising ¥(c)
function, with positive first derivative v'(c), that is, positive marginal utility
of income. The question of risk aversion versus risk preference concerns the
second derivative v(c) — whether marginal utility of income falls or rises
with income.

Risk aversion — “concave” curves like v,(c) displaying diminishing
marginal utility — is considered to be the normal case, based upon the
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observation that individuals typically hold diversified portfolios. Suppose
someone were merely risk neutral, so that for him v"(¢) = 0. Then he
would ignore the riskiness or variance of different investment options or
assets (gambles), and take account only of the mathematical expectation
of income associated with each. Such a person would plunge all his wealth
into that single asset that, regardless of its riskiness, offered the highest
mathematical expectation of income. But we scarcely ever see this behavior
pattern, and more commonly observe individuals holding a variety of assets.
Since the risks associated with different assets are generally partially offset-
ting, diversification reduces the chance of ending up with an extremely low
level of income. This safety feature is achieved, however, only by accepting a
lower overall mathematical expectation of income; some expected income
has been sacrificed in order to reduce risk.”

What of the seemingly contrary evidence that “unfavorable” (negative
mathematical expectation) gambles are cheerfully accepted by bettors at Las
Vegas and elsewhere? Even more puzzling, why is it that the same person
might behave quite conservatively (insure his house, diversify his asset
holdings) in some circumstances, and in other circumstances accept fair
or even unfavorable gambles? There have been attempts to construct utility
functions v(c) that would be consistent with avoiding gambles (insuring)
over certain ranges of income and with seeking gambles over other ranges
(Friedman and Savage, 1948; Markowitz, 1952). We will briefly discuss the
Friedman-Savage version.

Consider the doubly inflected -utility function in Figure 1.6. The v(c)
curve is concave, reflecting normal risk aversion, in the region OK and once
again in the region LN. But it is convex, reflecting risk preference, in the
middle region KL. With this sort of +(¢) function, risk-taking behavior will
vary with wealth. For those whose endowments fall in the first concave
segment, the tendency is to insure against relatively small risks but to accept
fair (or even mildly adverse) long-shot big-payoff gambles, offering a chance
of landing somewhere toward the upper end of the curve. It can be verified
that this pattern will particularly apply for those with incomes toward the
upper edge of the bottom segment ~ the less indigent poor, and perhaps the
lower-middle class. The very poor, in contrast, would be much less inclined
to gamble. Looking now toward the top of the scale, those with incomes near
the lower edge of the upper concave segment — the rich but not super-rich,

7 An individual characterized by risk-preference might also plunge all of his wealth into
a single asset, but this need not be the asset with the highest mathematical expectation
of income. He might choose an asset with greater riskiness over the asset with high-
est income yield (that is, he would sacrifice some expected income in order to enlarge
his risk).
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Figure 1.6. Gambling and insuring — doubly inflected utility function.

and perhaps the upper middle class — would seem to have a taste for risks
likely to have a favorable payoff but offering a long-shot chance of a really
large loss. (But the super-rich, like the super-poor, are very disinclined to
gamble at all.) The central group, finally, would be happy to accept almost
any fair or not-too-unfavorable gamble.

The doubly inflected utility function of Figure 1.6 does then explain
why a person might gamble in some circumstances and insure in others, or
accept some fair gambles while rejecting other ones. But it also implies other
behavior that is quite inconsistent with common observation. It is hard to
believe that people of middling incomes are always great gamblers. If the
picture in Figure 1.6 were correct, the middle group in the convex KL seg-
ment would be so anxious to gamble as to seek out enormous riches-or-ruin
bets. These middle ranges of income would then rapidly be depopulated,
which is surely not what is observed. And that the really solid risk avoiders
in our society are only the very poor and the super-rich is equally difficult
to credit.

- Amoreacceptable explanation, of why people simultaneously gamble and
insure, is that most of us engage in gambling as a recreational rather than
an income-determining activity. Put another way, gambling is normally
more like a consumption good than an investment good. As it happens,
it is quite possible operationally to distinguish recreational or pleasure-
oriented from serious wealth-oriented gambling. The latter, if efficiently
conducted, would take the form of once-and-for-all wagers at enormous
stakes. Pleasure-oriented gambling, in contrast, being designed to yield
enjoyment over some period of time, will be characterized by repetitive
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minuscule bets practically guaranteed not to change one’s wealth status
in any drastic way. What is observed at Las Vegas is very much more the
repetitive small-stake than the riches-or-ruin huge-stake betting pattern.

Nevertheless, in exceptional situations, risk-preferring behavior does
indeed surely occur. Consider the following. As bank cashier you have
dipped into the till to the extent of $30,000. The bank examiners are arriv-
ing tomorrow, so you have time to replace the missing funds, but you have
only $10,000 left on hand. Suppose you value the consumption benefit of
spending the remaining $10,000 today far less than you value avoiding the
shame and pain of exposure as an embezzler. Then you surely would be
willing to risk the $10,000 on a fair gamble today — say, with a .W, chance
of winning $20,000. You would probably even take quite an adverse bet if
necessary, so long as the possible payoff sufficed to cover the $20,000 of
additional funds you need.

What is involved here is a “threshold” phenomenon, a critical level of
income where a little bit more can make a big difference. Put another
way, there is a range of increasing marginal utility — in the extreme, a
single discrete step to a higher utility level. Threshold phenomena are quite
common in nature. In many species, animals must take risks in accumulating
resources or engaging in combat in order to achieve nutritional viability or
win the privilege of mating. These phenomena have evident analogs for
humans living in primitive societies. To what extent they may explain risk-
taking behavior under modern conditions may be left an open question.?

This discussion may possibly suggest, contrary to a point made earlier,
that it is after all true that utility must “really” be cardinal. A viability
threshold, for example, might seem to be a cardinal feature of preference that
would apply to riskless as well as to risky decision making. Nevertheless, our
original point remains valid. For certainty choices, only ordinal comparisons
of consequences are needed. For decisions under uncertainty we can derive,
by the reference-lottery technique, a ¥(c) function that may have convex
or concave or mixed curvature, as the case may be. But the shape of this
function for any individual is an inseparable blend of two elements: (i) the
individual’s valuations of the consequences, and (ii) his attitudes toward

8 See Rubin and Paul (1979). These authors suggest that the propensity of young males to
engage in highly risky activities — as evidenced, for example, by their high automobile
accident rates — may be the result of natural selection for risk-taking. The evolutionary
history of the human species may have instilled risk-preferring attitudes among individuals
in age and sex groups liable to encounter viability or mating thresholds. (Note that the
threshold argument is also consistent with the observation that risk-taking behavior will
be observed predominantly among the poor.)
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risk. We may therefore interpret a concave ¥(c) function as reflecting either
risk aversion (attitude toward risk) or diminishing marginal utility (attitude
toward income); similarly, a convex (c) function can be said to reflect
either risk preference or increasing marginal utility. Both terminologies are
somewhat misleading, since what the curvature of v(c) really represents is
the interaction of the two factors working together.

Finally, another category of seeming risk-taking behavior may be explain-
able in terms of state-dependent utility functions. An example: Suppose it is
very important to me, as the psychological equivalent of having a large sum
of money, that the home team wins the big game. Then I might plausibly
bet against the home team, at fair or even adverse odds! (How this works
out in detail will be left for the chapter following.) ,

Exercises and Excursions 1.5

1 Risk Aversion, Risk Preference, Risk Neutrality
(A) Identify each of the following “cardinal” utility functions with risk-
averse, risk-preferring, or risk-neutral behavior:

)v=Inc (ii) v = ac—bc? (a, b positive constants)
1

(iii) v = c? (iv) v = c2

(V)v=100+6¢c (vijv=1-¢"¢

(B) The quadratic form (ii) above has an unsatisfactory feature for
¢ > a/2b. Explain.

2 Diversification

Three individuals have respective utility functions v, = c (risk neutral),
v, = ¢%5 (risk averse), and v, = c? (risk preferrer). They each have the
option of investing in any one of the three following prospects or gambles,
with mathematical expectations of income as shown:

G1 = (480, 480; 0.5,0.5)  E[G1] = 480
G2 = (850, 200; 0.5,0.5)  E[G2] = 525
G3 = (1,000,0;0.5,0.5)  E[G3] =500

Notice that, comparing the first two gambles, higher risk is associated with
greater mathematical expectation of income. The third gamble has highest
risk of all, but intermediate mathematical expectation.

(A) Show that risk-neutral individual 1 will prefer gamble G2 with the
highest expectation, while risk-averse individual 2 will prefer gamble
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G1 with the lowest risk. Show that the risk-preferring individual 3 is
willing to sacrifice some expectation to increase his risk, by choosing
G3. ,

(B) If the individuals could “diversify” by choosing any desired mixture
of these gambles, which of them would diversify? (Assume that the
payoffs of gambles G2 and G3 are perfectly correlated.)

3 Doubly Inflected Utility Function
In the doubly inflected v(c) curve shown in Figure 1.6, suppose that the
borders of the segments (inflection points) occur at ¢ = 250 and at ¢ = 750.

(A) Illustrate geometrically that an individual with initial income of
$240 would be likely to accept a (fair) gamble offering a one-sixth
chance of a $600 gain and a five-sixth chance of a $120 loss. Show
that someone with initial income of $120 would be much less likely
to accept the same gamble.

(B) Show that someone with initial endowed income of $760 would be
likely to accept a fair gamble which is the reverse of the above: a five-
sixth chance of a $120 gain and a one-sixth chance of a $600 loss.
What about a person with initial wealth of $880?

(C) Show that someone with endowed wealth of exactly $500 would
surely accept anyfair gamble with 50: 50 odds — at least up to a scale
of $250 gain and $250 loss. He might even accept much larger fair
gambles of this type; indicate geometrically the limits of what he
would accept.

4 Linear Risk Tolerance

Risk aversion is characterized by the condition v”(c) < 0. For some pur-
poses, as we shall see below, the ratio —v”/v' is a useful measure of risk
aversion. The reciprocal of this ratio, —v//v/', is known as the risk tolerance.
An interesting class of v(c) functions is defined by the condition of linear
risk tolerance: —vV /' = a + Be.

(A) Show that, for arbitrary constants M, N with N > 0:
(i) B =0 implies v= M — Ne~
(ii) o =0, B # 1 implies v= M+ Nc'~7/0=¥)) where y = 1/8
(iii) « =0, 8 = 1 impliesv= M+ Nln ¢
(iv) @ > 0, B = —1 implies v= M — N (a-c)*
(B) Some of the above functions are valid only in restricted ranges of c.
Indicate the restrictions, if any, that apply in each case. Also explain
why N must be positive if v is to be a well-behaved utility function.
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5 The Bank Examiner Is Coming

You have stolen $30,000 from the bank but have the opportunity to replace
it by winning a fair gamble. You have at your disposal just $10,000. Your
utility function is such that v(c) = — B, where B s a very big number, when
¢ < 0 (i.e., should you not replace all the missing funds), and otherwise
v(c) = c?. Assuming fair gambles are available at any terms you desire,
solve geometrically for your optimal fair gamble. Will you surely stake all
your $10,000? Will you look only for a $20,000 payoff, or would you prefer
a bet with a smaller chance of a bigger payoff?

6 Utility Functions with Multiple Goods

The argument in the text above, developing a cardinal utility function +(c)
for use with the expected-utility rule, ran in terms of a single desired good
or commodity ¢. Extend the argument to cardinal utility functions of two
goods, in the form v(a, b). Show that, starting with an ordinal preference
function defined over combinations of a and b (that is, starting with an
ordinary indifference map on g, b axes), the reference-lottery technique can
be used to generate a cardinal scaling that amounts to giving a numerical
utility value to each indifference curve.

7 Risk Aversion with Multiple Goods -
An individual has a utility functionv (a, b) = a2 b4. He has income I avail-
able for spending on a and b, and faces fixed prices P, = P, = 1.

(A) Show that he would strictly prefer the certain income of 50 to an
equal chance of his income rising or falling by 49 before he makes
his consumption choices.

(B) Obtain an expression for the individual’s “indirect” utility function.
(That is, the maximized level of v given income I and prices P, and
P,.) Hence show that this individual exhibits aversion to income
risks.

(C) Suppose I = 50 and P, = 16. Would the individual prefer to face a
certain P, = 64 or a stochastically varying P, that might equal 1 or
81 with equal chances? Does your answer cast doubt upon whether
the individual is really risk averse? Explain.

8 Jensen’s Inequality (I)
(A) If the utility function v(c) is twice continuously differentiable with
v'(¢) < 0, show that for any random variable ¢:

E[v(©)] = v(E[c])
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(B) If v'(c) < 0 and Pr[¢ # E[¢]] > O show that:

E[v(2)] < v(E[c])

9 Jensen’s Inequality (II)
Suppose v(c) is a concave function (not necessarily differentiable), that is,
for any ¢, ¢

V(1 =2 +216) = (1= Mv(e) +Av(g), 0= A <1

(A) Prove by induction that, for any ¢;,..., ¢,»

n n n
v Mut&b. Z MU.SNQA@Y foru; > 0, MHEN. =1
i=1 i=1

i=1

(B) Hence derive Jensen’s inequality once again.

1.6 Utility Paradoxes and Wmmos,m.:Q

A very considerable literature arguing against expected utility as a good
descriptive theory has appeared in the last 30 years. Its main thrust has
been that actual decision makers do not behave rationally in the face of
uncertainty, or at any rate do not consistently follow the expected-utility
rule.” To some extent, these complaints have been supported by experimen-
tal evidence.!® We provide four illustrations of which the first two are the
following.

1.6.1 Probability Matching

You are paid $1 each time you guess correctly whether a red or a white light
will flash. The lights flash randomly, but the red is set to turn on twice as
often as the white.

It has been found that subjects tend to guess red about two-thirds of the
time and white one-third. Yet, obviously, it would be more profitable always
to guess red.

° Machina (1987) provides a very helpful and clear survey to this literature. A more recent
survey is Starmer (2000).

10 See, for example, Slovic and Lichtenstein (1983), Tversky and Kahneman (1981), and
Schoemaker (1982).
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1.6.2 Framing the Question

Imagine that you have been given $200 and are asked to choose between
(i) $50 additional or (ii) a 25% chance of winning $200 additional (or else,
gaining nothing). Alternatively, imagine that you have been given $400, but
you must now choose between (i) giving up $150 or (i) a 75% chance of
- losing $200 (or else, losing nothing).

Most experimental subjects choose option (i) in the first version of the
question, but option (ii) in the second. Yet, obviously, option (i) gener-
ates the same income prospect whichever way the question is framed, and
similarly for option (ii).

This literature on non-expected utility theory claims that the discrepan-
cies revealed by these results refute the economist’s standard assumption of
rationality, or at least the expected-utility rule as a specific implication of
that assumption. We do not accept this interpretation. A much more parsi-
monious explanation, in our opinion, is that this evidence merely illustrates
certain limitations of the human mind as a computer. It is possible to fool the
brain by the way a question is posed, just as optical illusions may be arranged
to fool the eye. Discovering and classifying such mental illusions are fruitful
activities for psychologists, but these paradoxes have less significance for
€CONOMIcs. .

We would not go so far as to insist that rationality failures have no
economic implications. If these shortcomings do indeed represent ways in
which people could systematically be fooled, economists would predict that
tricksters, confidence men, and assorted rogues would enter the “industry”
offering such gambles to naive subjects. For example:

PROBABILITY MATCHING: The trickster could challenge the subject along the fol-
lowing line: “I have a secret method of guessing which light will flash. (His secret
method, of course, is always to bet on red.) I will write my guess down on paper
each time, and you will write yours down. At the end we will total up our successes.
For each time I am right and you are wrong, you will pay me $1; in the reverse case,
I will pay you $1.50.”!" If the subject really believes that his is the right method, he
should surely accept so generous an offer.

And similarly, clever tricksters could win sure-thing income from the incon-
sistent answers offered by naive individuals in our other illustration. The
confidence-man profession does obviously exist, and is unlikely (given the

' The maximum or breakeven payment that the trickster could offer is $2 exactly. Clearly,
there will be no payment either way in the two-thirds of the cases where the naive subject
bets on red. And when he bets on white, he will be wrong twice as often as he is right.
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limitations of the human mind) ever to disappear.'? But the more impor-
tant the decision, the more it is worth people’s while to learn how not to be
fooled.

It will be of interest to analyze some of the parallels and differences
among these various rationality failures, and in particular to attempt to
identify more precisely the source of the slippage in each case.

If the subjects in PROBABILITY MATCHING did mentally compare the
matching rule with “Always bet on red” and chose the former, they com-
mitted a straightforward logical error.”> We know that people do often
commit such errors, even in contexts where no uncertainty is involved.
Consider the following example from a psychological experiment (adapted
from Cosmides, 1989):

You are faced with a card-sorting task, in which each card has a number on one
side and a letter on the other. There is only one rule: “Every card marked with
an ‘X’ on one side should have a ‘1’ on the other.” Indicate whether you need to
inspect the reverse side of the following cards to detect violation of the rule: (a) a
card showing an ‘X’; (b) a card showing a Y’; (c) a card showing a ‘1’; (d) a card
showing a 2"

In a large preponderance of cases, while the subjects correctly realized the
need to inspect the reverse of card (a), they failed to notice that they should
do the same for card (d).

What is instructive for our purposes, however, is that the experimenter
went on to investigate a logically identical choice, presented to the subjects
more or less as follows:

" You are the bouncer in a Boston bar, assigned to enforce the following rule: “Anyone
who consumes alcohol on the premises must be at least twenty years old.” To detect
violation of the rule, indicate whether you need more information about any of the
following individuals: (a) someone drinking whisky; (b) someone drinking soda;
(c) an individual aged twenty-five; (d) an individual aged sixteen.

Here almost everyone perceived the need for more information about indi-
vidual (d) as well as individual (a). Evidently, humans have trouble with
purely abstract problems, but do a lot better when the logically equiva-
lent choices are offered in a realistic context — particularly where possi-
ble cheating or violations of social norms may be involved. Returning to

12" Ananalogous example is the racetrack tout who offers to predict the winning horse for $20,
telling you that he will refund your money unless his prediction is correct. His intention,
of course, is to tout customers onto all the horses in the race.

13 Another possibility is that the correct rule never came to mind at all — in effect, the subjects
did not think very hard about what was going on. This would not be too surprising if the
stakes were trivial in magnitude.
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PROBABILITY MATCHING, in our opinion few individuals would be more
than momentarily fooled by the trickster described above if some serious
issue or some substantial amount of money were at stake. :

The second example, FRAMING THE QUESTION, is rather like an optical
illusion involving perspective, a nearby small object being made to seem
larger than a far-off large object. In the first choice offered the subjects,
the risk — the chance of losing $50 — is placed in the foreground, so to
speak. From this viewpoint, the 25% chance of gaining an extra $200 does
not seem enough recompense. In the second version what is placed in the
foreground is the unpleasant option of a $150 loss. Here the risk of losing
an additional $50 fades into comparative insignificance, as compared with
the 25% hope of recouping the $150 and suffering no loss at all. Notice that
these experimental subjects proved to be highly risk averse; they were fooled
by a shift in the setting, the same risk being highlighted in the one choice
and left in the shadows in the other case.

1.6.3 Allais Paradox

We will provide a more extended discussion of a third example, the ALLATS
PARADOX, which illustrates the powerful effect of just how the choices are
framed (Allais (1953)):

You are offered the choice between prospects A and B:

A: with certainty, receive $1,000,000

B: with probability 0.10, receive $5,000,000
with probability 0.89, receive $1,000,000
with probability 0.01, receive zero.

Alternatively, you are offered the choice between C and D:

C: with probability 0.11, receive $1,000,000
with probability 0.89, receive zero

D: with probability 0.10, receive $5,000,000
with probability 0.90, receive zero.

It has been found that most people prefer A to B, but D to C. But it is
easy to show that choosing A over B but D over C is inconsistent with the
expected-utility rule. According to that theorem:

If A > B, then ¥($1,000,000) > 0.10 ¥($5,000, 000) + 0.89 +($1,000,000)
-+ 0.01 v»($0)
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Then, by elementary algebra:
0.11v($1,000,000) + 0.89v($0) > 0.10v($5,000,000) + 0.90v($0)

But the latter inequality is equivalent, according to the expected-utility rule,
to C > D. ,

The explanation, in perceptual terms, appears to be that the A versus B
framing makes the 0.01 chance of receiving zero stand out as a very adverse
feature in making option B undesired — but exactly the same chance fades
into comparative insignificance, psychologically speaking, as an adverse
feature of D in comparison with C.

The question is, does the observed failure of subjects to follow the dictates
of the expected-utility rule represent only a logical lapse, akin to an optical
illusion? Or is it perhaps that the rule is an incorrect, or at least an excessively
narrow, specification of rational behavior? The latter was the position taken
by Allais.

Individuals who choose in accordance with the Allais Paradox example
are violating the independence axiom: that any complex lottery can be
reduced to its elements. The following thought experiment reveals how the
choices described by Allais violate this axiom. Consider the prospect X and
sure thing Y:

X: with probability 10/11, receive $5,000,000
with probability 1/11, receive zero.
Y: receive $1,000,000 with probability 1.

Then, the prospects A, B, C, and D may be written as the following
complex gambles:

Thus, A is decomposed into a gamble which yields Y with probabil-
ity 0.11 and $1,000,000 with probability 0.89, B is the complex gamble
which leads to X with probability 0.11 and $1,000,000 with probability 0.89,
and so on.

According to the independence axiom, the choice between A and B, and
between C and D should be determined by choice between Y and X. Thus:

IfY>XthenA>BandC>D
IfY <XthenA <Band C < D.

However, as noted above, for most subjects A > B and C < D. Thus, the
attractiveness of Y relative to X depends on the lower branches of the com-
plex gambles A, B, C, and D in Figure 1.7, i.e., on what might happen in the
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0.11 0.1
Y X
A B
0.89 0.89
$1,000,000 $1,000,000
0.1 v 011  x
c D
0.89 $0 0.89  $0

Figure 1.7. Allais Paradox lotteries.

event one does not have to make a choice between Y and X. This comple-
mentarity between the lower and upper branches of the complex gambles
depicted in Figure 1.7 represents a violation of the independence axiom. As
Machina (1987) points out, in comparing A and B, subjects judge the relative
attractiveness of Y and X in the event of an opportunity loss of $1,000,000
(i.e., in the event that a 0.89 chance of winning $1,000,000 does not occur);
this opportunity loss makes them very risk averse and they prefer Y > X.In
comparing C and D, on the other hand, there is no opportunity loss when
faced with a choice between Y and X; subjects are less risk averse and prefer
X > Y. This in turn implies that the indifference curves for Allais Paradox
preferences, when depicted as solid straight lines in Figure 1.8, cannot be
parallel straight lines. The indifference curves, instead of being parallel, fan
out as shown in Figure 1.8.

The triangle diagram represents prospects with outcomes $0, $1,000,000,
and $5,000,000. The origin represents getting $1,000,000 with certainty. The
right-hand corner (7, = 1, ; = 0) represents $0 for sure and the third
corner of the triangle, (7, = 0, 75 = 1), is $5,000,000 for sure. Thus, the
gamble X is on the hypotenuse of the triangle, as shown, and the sure thing
Y is at the origin.

Complex gambles A and C are obtained by combining (in proportion
0.11 to 0.89) Y with the origin and with the right-hand corner, respectively.
Similarly, B and D are obtained by combining X with the origin and with
the right-hand corner, respectively. The solid lines in the triangle are indif-
ference lines consistent with Allais Paradox preferences. The prospect C lies
below the indifference line through D and A lies above the indifference line
through B. By simple geometry, the line segments AB and CD are parallel.
Thus, indifference lines must fan out as shown. At the lower right-hand side
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Increasing preference

)

Figure 1.8. Allais Paradox indifference lines.

of the triangle, indifference lines are less steep (less risk averse), and to the
upper left-hand side they are steeper (more risk averse).
In order to explain the Allais Paradox and other experimental evidence,
various generalizations of the expected-utility rule have been proposed.

One generalization, due to Machina (1982), is to allow the utility function
for consequences to depend on the prospect being evaluated. Thus, the
(1.6.1)

“expected utility” of x is
U(x) = E[v(c,, )]

The preceding discussion implies that v(c,,, x) is less risk averse for x in

the lower right-hand side of the triangle and more risk averse for x in the

upper left-hand side of the triangle.
However, even this generalization of the expected-utility rule cannot

explain the next example.
1.6.4 Ellsberg Paradox
of

Urn I has 50 red balls and 50 black balls. Urn II also has 100 red and black

balls, but in unknown proportions. You are invited to bet on the color
a ball that will be drawn randomly from one of the two urns. You will win

$100 in the event of a correct choice.
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(A) Of the two red bets R; or Ry; (a bet on red if the drawing is made
from the first, or alternatively from the second urn), which do you
prefer?

(B) Same question, for the two black bets B; and By;.

It has been found that most subjects prefer R; over Ry;, and also prefer B,
over By;. To say that you prefer R; over Ry, is to say that you believe that the
probability of a red ball from urn I is less than 0.5. But this implies that the
probability of a black ball from urn II is more than 0.5 and hence subjects
should prefer By over B;. Thus, preferences reported by most subjects are
inconsistent with the idea that subjects’ beliefs about uncertainty can be
expressed as probabilities. In particular, the expected-utility rule or even a
generalization such as the formula (1.6.1) cannot be used to express these
preferences (see Ellsberg 1961).

The ELLSBERG PARADOX plays on the subjects’ aversion to ambiguity
and vagueness. Recalling the discussion of “hard” versus “soft” probability
estimates earlier in the chapter, the subjects have a preference for acting
on the basis of a hard probability (the urn known to have 50 black and 50
red balls) than acting on the basis of a soft probability (the urn with an
unknown mixture). But if only an immediate terminal action is called for,
as postulated here, it makes no difference whether the probability is hard
or soft. In the absence of any basis for one color being more likely than
the other, the subjective probability of success has to be the same for the
second as for the first urn — whether betting on black or on red. The subjects
seem to associate higher confidence (which indeed holds with regard to the
probability of success using the first urn) with lesser risk. A generalization
of the expected-utility rule that is consistent with the Ellsberg Paradox
has been proposed by Schmeidler (1989).™ Soft and hard probabilities are
processed differently in this generalization so as to allow for aversion to
ambiguity.

We do not want to be dismissive of what is, on a number of grounds, an
intellectually significant literature. But we do note that most of the evidence
of violations to the expected-utility rule has been experimental evidence
gathered in an economics laboratory. Subjects are asked to make certain

1 There is also an alternative explanation, entirely consistent with expected-utility behavior.
In an actual experiment the first urn would presumably be transparent, to allow everyone
to see that half the balls are red and half black. But, of course, the second urn could
not be transparent, which makes trickery more possible. A subject attaching even a small
likelihood to being cheated (by the experimenter shifting the proportions in the second
urn after the bet is down) would definitely and quite rationally prefer drawing from the
first urn,
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choices. In a real setting where individuals make choices repeatedly, there
is a greater opportunity and incentive to learn and reconsider the kinds of
choices made by subjects in the four examples presented here.

As an empirical matter, such important phenomena as advertising and
political persuasion depend very importantly upon clever use of fallacious
analogy, irrelevant associations, and other confidence-man tricks. But the
analysis of error is only a footnote to the analysis of valid inference. It is only
because people have a well-justified confidence in reason that deception,
whether artful or unintended, can sometimes occur. Especially when it
comes to subtle matters and small differences, it is easy for people to fool
themselves, or to be fooled. But less so when the issues are really important,
for the economically sound reason that correct analysis is more profitable
than error.

Exercises and Excursions 1.6

1 Framing the Question
Could a confidence-man or trickster exploit individuals whose choices are
as described in the framing the question example above?

2 A Second Ellsberg Paradox
An urn contains 30 red balls and 60 other balls, some yellow and some black.
One ball is to be drawn at random from the urn.

(A) You are offered the opportunity to choose either red or black. If you
pick the color of the ball drawn, you win $100. Which color do you
choose?

(B) Alternatively, suppose you are offered once again the opportunity to
choose either red or black. However, now you win $100 as long as
the ball drawn is not the color picked. Which color do you choose?

(C) Show that only two of the four possible combinations of choices (for
questions A and B, respectively) — red-red, red-black, black-red, and
black-black — are consistent with the independence axiom.

(D) If your choices were inconsistent with the axiom, do you wish to
change either of them?

3 The Allais Paradox
(A) Does Allais Paradox violate the independence axiom? If so, how?
(B) As a confidence-man, how would you exploit an individual whose
choices were consistent with Allais Paradox?
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4 Risk Aversion — Price or Quantity?

This exercise illustrates a different kind of utility “paradox.” Suppose an
individual with given wealth W can purchase commodities x and . Let his
utility function be:

vix,y) =x+oalny

Note that, in terms of our definitions above, for variations in x alone the
individual is risk neutral (3*v/dx*> = 0), while for variations in y alone he
is risk averse (32v/0y* < 0).

(A) Let the price of x be fixed at unity, and let p be the price of y. Show
that his “indirect” utility, that is, elementary utility as a function of
p, is given by:

P(p) = Max {v(x, )lx+ py = W} = Max(W +alny - py)
(B) Letting y* denote his optimal consumption of good y, show that:

Yy (p) =afp
Wp=W-—a+alha—alnp

(C) Show that #(p) is a convex function of p, that is, d*9/dp* > 0.

(D) Explain the paradox that, while the v(x, y) function displays risk
aversion with respect to quantities of y, the ¥ A p) function seems to
display risk preference with respect to the price of y.

SUGGESTIONS FOR FURTHER READING: The expected-utility rule for
objective probabilities was derived from a set of axioms on individual behav-
ior by von Neumann and Morgenstern (1944). For a proof of the expected-
utility rule, see Kreps (1988). Savage (1954) increased the domain of appli-
cability of the expected-utility rule by allowing probabilities to be subjective.
In Savage’s world, both the utility over consequences and probabilities over
uncertain events are personalized and may differ among individuals; in
this setting Savage derives the expected-utility rule from a set of axioms.
Kreps (1988) provides a relatively reader-friendly development of Savage’s
theory of expected utility with subjective probability. The literature on non-
expected utility theory has burgeoned over the last twenty years. In addition
to surveys by Machina (1987) and Starmer (2000) mentioned in the chapter,
see the books by Schmidt (1998) and Gilboa (2009) for more on this subject.
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Risk Bearing

The Optimum of the Individual

In this chapter, we address a basic problem in decision making under uncer-
tainty: how should an individual select consumption across different states
of nature so as to maximize his expected utility? The trick is to view con-
sumption in one state of nature as a separate good from consumption
in another state of nature. We then apply an indispensable technique in
microeconomics — indifference curve analysis — to the problem to obtain
the Fundamental Theorem of Risk Bearing. This theorem is directly appli-
cable only when all state claims are available, i.e., for each state there is a
good that pays if and only if that state obtains. However, trading in state
claims is usually not a feasible option. Therefore, we generalize to a model
with assets, where each asset is viewed as a vector of payoffs, one for each
state of nature. This leads to the Risk-Bearing Theorem for Assets Markets.
Next, we investigate risky choices made by an individual who cares only
about the mean and standard deviation of his consumption. We end the
chapter with a model of state-dependent utility.

The individual’s best action under uncertainty — the “risk-bearing
optimum” — involves choosing among prospects x = (¢; ) = (¢, - -+, Cs}
7Ty, ..., g) where the ¢ are the state-distributed consequences and 7, are
the state probabilities. In the realm of the economics of uncertainty proper,
before turning to the economics of information, the individual’s probability
beliefs 7z remain constant and so ¢, . . - , ¢g are the only decision variables.
In general, each cg represents the multi-good basket that the individual is
entitled to consume if state s occurs. For simplicity, however, we will often
think in terms of a single generalized consumption good (“corn”). Then
¢, would simply be the individual’s state-s entitlement to corn if state s
occurs, and the risk-bearing problem is how to choose among alternative
vectors (c;,. .., ¢,) of “corn incomes” distributed over states of the world.
Unless otherwise indicated, when the symbol ¢, is described as representing
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v Certainty line
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Figure 2.1. Individual optimum.
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income” the implication is that we are using the simplified model of a
single consumption good.!

2.1 The Risk-Bearing Optimum: Basic Analysis

Suppose there are only two states of the world s = 1, 2. The two states
might represent war versus peace, or prosperity versus depression. In the
state-claim space of Figure 2.1 the axes indicate amounts of the contingent
income claims ¢; and c,.

To represent preferences in this space, we can start with Equation (1.4.1),
the expected-utility rule. In a simplified two-state world, this reduces to:

U = myv(¢) + mv(cy), wherem; +m, =1 (2.1.1)

For a given level of U, Equation (2.1.1) describes an entire set of ¢;, ¢, com-
binations that are equally preferred, so this is the equation of an indifference

! With multiple consumption goods, only if the price ratios among them were independent of
state could there be an unambiguous interpretation of “income.” Consider an individual
whose multi-commodity physical endowment is distributed over two states s° and s*.
When price ratios vary over states it might be that, valued in terms of good gas numeraire,
his endowed “income” is higher in state s”—while in terms of good h as numeraire instead,

«r

the value of endowed “income” in state s* is higher.
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curve. As U varies, the whole family of indifference curves implied by the
individual’s utility function v(c) and probability beliefs 7 |, 7, is traced
out—as indicated by the various curves U', U, ..., shown in the diagram.

It is elementary to verify that the absolute indifference-curve slope
M(¢,, ;) in Figure 2.1, the Marginal Rate of Substitution in Consump-
tion, is related to the marginal utilities v/(¢,) and v/ (c,) via:?

/
M, ¢) = —42 _mvia)

=1 (2.1.2)
&S U=constant §N< Ahwv

The 45° “certainty line” in the diagram connects all the points such that
¢, = ¢,. Note that any indifference curve, as it crosses the certainty line, has
absolute slope equal simply to 7, /7, — the ratio of the state probabilities.

Intuitively, risk aversion in state-claim space corresponds to convex
(“bowed toward the origin”) indifference curves as shown in Figure 2.1.
Risk aversion, we know, leads to diversification. Non-convex indifference
curves, when juxtaposed against the individual’s opportunity set, would lead
to a corner optimum — to choice of an all ¢; or an all ¢, state-claim holding,
a non-diversified portfolio. More specifically, a risk-averse utility function
v(c), one with positive first derivative v/(c) and negative second derivative
v"(c), does indeed imply that indifference curves in state-claim space will be
bowed toward the origin. Thatis, v/(c) > 0, v"(c) < 0 imply that along any
indifference curve, the absolute indifference curve slope diminishes moving
to the right: dM(c;, ¢,)/dc, will be negative.®

Itwillalso be of interest to translate into state-claim space the proposition
that a risk-averse individual would never accept a fair gamble in “corn”
income (would always prefer a sure consequence to any probabilistic mixture
of consequences having the same mathematical expectation). In Figure
2.1, the dashed line LL' through the point C = (,, &,) shows all the ¢;, ¢,

2 Along an iso-utility curve, 0 = dU = 7 ,v/(¢)) de, + m,v'(c,) dc,, Then, —dc,/de, =
[, V' (e))/[7 v ()]
3 The sign of dM(c,, ¢,)/dc, will be the same as that of dIn M(c,, c,)/ dc; where:
Im-_n M(c, ¢) = xm;:bd +Inv(¢c) —Innm, —Inv(c,)]
&hu 1’ &ﬁ 1 1 2 2
v(¢)  V'(c,) dg
Vi) v(g) dg
Ay + V'(g) m V(c)
v'(c,) V(¢ m, v'(c,)
Since the first derivatives are both positive, +"(c;) and v/(c,) both negative imply a
diminishing Marginal Rate of Substitution.
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combinations having the same mathematical expectation of income E[¢] =
¢ as the combination (¢, ¢, ). The equation for LL’ is:

6+ Ty6 = w6 + W6 = ¢ (2.1.3)

Along LL’ the most preferred point must be where the line is just tangent
to an indifference curve of expected utility. The slope of LL' is dc,/dc, =
—7 /75, which (we know from 2.1.2) is the same as the slope along any
indifference curve where it crosses the 45° line. Hence the tangency must
be on the 45° line, to wit, at point C where ¢ = ¢, = & Thus, the certainty
of having income ¢ is preferred to any other ¢;, ¢, combination whose
mathematical expectation is &

2.1.1 Contingent-Claims Markets

As discussed in Chapter 1, Section 1.1, we are particularly interested in
the risk-involved actions that economic agents can take through market
dealings. Suppose the individual is a price taker in a market where contingent
income claims ¢; and ¢, — each of which offers a unit of “corn income” if and
only if the corresponding state obtains — can be exchanged in accordance
with the price ratio P, /P,. This is indicated in Figure 2.1 by the budget line
NN’ through the point C = (¢,, &,), now interpreted as the individual’s
endowment position. (The overbar will be used henceforth to represent
endowed quantities.) The equation for the budget line NN is:

P +Bg=PRg+ B (2.1.4)

Maximizing expected utility from (2.1.1), subject to the budget constraint
(2.1.4), leads (assuming an interior solution) to the indifference-curve

tangency* condition:
mvia) B (2.1.5)
mv(e) B

* The necessary conditions for maximizing expected utility are obtained from the usual
Lagrangian expression:

LG 0 2) = U6y, &) = MBi6; + B6, = B — BE)

Using the expected-utility formula (2.1.1), setting the partial derivatives equal to zero
implies:

7V (¢)) = AP and m,V(c,) = AP,

Dividing the first equality by the second, we obtain (2.1.5). Conceivably, however, the
tangency conditions cannot be met in the interior (i.e., for non-negative ¢;5 ¢,) in which
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Thus, at the individual’s risk-bearing optimum, shown as point C* in Figure
2.1 along indifference curve U", the quantities of state claims held are such
that the ratio of the Eovmgrsréﬁmgmm marginal utilities equals the ratio
of the state-claim prices.

Making the obvious mgﬁm:.amﬁo: to S states, we arrive at an equation
that will be used repeatedly throughout the book:

FUNDAMENTAL THEOREM OF RISK BEARING

v (¢) _ T,V (¢,) L v (c,)
B ) P

s

(2.1.6)

In words: Assuming an interior solution, at the individual’s risk-bearing
optimum the expected (probability-weighted) marginal utility per dollar
of income will be equal in each and every state. (The interior-solution
condition will henceforth be implicitly assumed, except where the contrary
is indicated.)

In terms of the simplified two-state optimum condition (2.1.5), we can
reconsider once again the acceptance or rejection of fair gambles. If a gamble
is fair, then 7, Ac; + m,Ac, = 0 — the mathematical expectation of the
contingent net gains must be zero. But in market transactions P, Ac, +
P,Ac, = 0 — the exchange value of what you give up equals the value of
what you receive. So if the price ratio P,/P, equals the probability ratio
71/, the market is offering an opportunity to transact fair gambles.
Geometrically, the line NN” would coincide with LL' in Figure 2.1. It follows
immediately from Equation (2.1.5) that the tangency optimum would be
the certainty combination where ¢, = ¢, = &

Thus, confirming our earlier result, starting from a certainty position a
risk-averse individual would never accept any gamble at fair odds. But, if his
initial endowment were not a certainty position (if ¢, # ¢,), when offered
the opportunity to transact at a price ratio corresponding to fair odds he
would want to “insure” by moving to a certainty position — as indicated
by the solution C along the fair market line LL'. Thus, an individual with
an uncertain endowment might accept a “gamble” in the form of a risky
contract offering contingent income in one state in exchange for income in
another. But he would accept only very particular risky contracts, those that
offset the riskiness of his endowed gamble. (Notice that mere acceptance

case the optimum would be at an intersection of the budget line with one of the axes. If
such holds at the ¢, -axis, (2.1.5) would be translated to an inequality:

mvl@ R

mvic) B

where ¢, = 0, ¢, = (P, + B(,)/P,.
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of a risky contract therefore does not tell us whether the individual is
augmenting or offsetting his endowed risk.) Finally, if the market price
ratio did not represent fair odds, as in the case of market line NN’ in Figure
2.1, whether or not he starts from a certainty endowment the individual
would accept some risk; his tangency optimum would lie off the 45° line at
a point like C* in the direction of the favorable odds.

2.1.2 Regimes of Asset Markets — Complete and Incomplete

In their risk-bearing decisions, individuals do not typically deal directly
with elementary state claims — entitlements to consumption income under
different states of the world like war versus peace, prosperity versus depres-
sion, etc. Rather, a person is generally endowed with, and may be in a
position to trade, assets like stocks, bonds, and real estate. An asset is a more
or less complicated bundle of underlying pure state claims. A share of stock
in some corporation is desired by an individual because it promises to yield
him a particular amount of income if state 1 occurs, perhaps a different
amount under state 2, and so on through the entire list of states of the world
that he perceives. There must then be a relationship between the price of
any such marketable asset and the underlying values that individuals place
upon the contingent-claim elements of the bundle. This is the relationship
we now proceed to analyze.

The income yielded by asset a in state s will be denoted z,.. Suppose there
are only two states of the world s = 1, 2 and just two assets a = 1, 2 with
prices P4 and P> Then the budget constraint can be written:

Plq +P'g, = P'q + B =W (2.1.7)
Here, g, and g, represent the numbers of units held of each asset, and as
usual the overbar indicates endowed quantities. The individual’s endowed
wealth, W, is defined as the market value of his asset endowment.
Someone might possibly hold an asset as a “non-diversified” (single-
asset) portfolio, in which case g, = W /P2 for the single asset held (while
g, = 0 for any other asset a° # a). The vector of state-contingent incomes
generated by such a single-asset portfolio would be:

aY_[(®a\n
Q- o

More generally, a person in a two-asset world will hold some frac-
tion K; of his wealth in asset 1 and K, = 1 — K; in asset 2, so that

5 Asset prices will be written P, P!, etc. to distinguish them from state-claim prices which
have numerical subscripts only (P, P, etc.) Throughout this discussion we continue to
assume that individuals are price-takers in all markets.
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Figure 2.2. Trading in asset markets.

4 = K, W/PA and q, = K, W/PA. Then the contingent incomes from
the portfolio will be:

ay)_ 411 21\ _ A 21 7 21
A&V — ANBVQ..S Amﬁv & AS\\E\,V ANBV 4 AS\.\@J Agv
(2.1.9)

Equation (2.1.9) expresses the vector of state-contingent portfolio incomes
as the share-weighted average of the incomes generated by the two single-
asset portfolios.

For concreteness, define a unit of a certainty asset (asset 1) so that the
contingent returns are unity for each state: (z,;, z;,) = (1, 1). Let its price be
P = 1. Suppose there is also an asset 2 that pays off relatively more heavily
in state 1 than in state 2 — specifically, (z,;, z),) = (4, 1) — and that its price
is P* = 2. But imagine that the individual is initially endowed with nothing
but 100 units of asset 1(g; = 100, g, = 0). Then point N, in Figure 2.2
pictures the implied endowed contingent incomes (¢, &,) = (100, 100).
Since the value of the individual’s endowment is W= 100, he could trade
away his entire endowment of asset 1 for 50 units of asset 2 and attain the
final consumptions (¢;, ¢,) = (200, 50) — point N, in the diagram. More
generally, from Equation (2.1.9) we see that the final consumption vector
(¢1> ) will lie along the line joining N, and N, at distances toward N, and
N, in proportion to the relative wealth shares K, and K,.

Iftheindividual were constrained to hold non-negative amounts of assets,
the opportunity boundary would be only the line segment between N, and
N, in the diagram. However, it is entirely permissible to let either ¢, or g, go
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negative. A negative g; (which implies, of course, a negative K; = PAq, /W)
means that the individual holds liabilities rather than assets of type 1; he is,
in effect, committed to deliver the amount |g, z,,| if state 1 occurs and the
amount |q; z;,| if state 2 occurs. (This is sometimes described as being in
a “short” position with regard to asset 1.) We will, however, be imposing a
non-negativity constraint upon the ultimate c,, ¢, combinations arrived at; the
individual cannot end up consuming negative income in either state of the
world. He cannot therefore go short on any asset to the extent of violating any
ofhis delivery commitments —in effect, he is not permitted to “go bankrupt”
in any state of the world. (And, a fortiori, he cannot go short on all assets
simultaneously!) This means that, while the trading possible along the line
MM’ in Figure 2.2 may extend beyond points N; and N,, the attainable
combinations remain bounded by the vertical and horizontal axes.

Having described the feasible alternatives, we now consider the indi-
vidual’s actual portfolio-choice decision. Since the consumption vector
(¢1> ¢,) is generated by his asset holdings as shown in (2.1.9), the indi-
vidual can be regarded as choosing his portfolio asset shares (K, K,) =
(@ PA/W, g,PA/W) so as to maximize expected utility subject to his asset-
holding constraint, that is:

AW\HWV CHat\?i.si&vmsg.mn:oﬁ_+~mH~

From (2.1.9) we know that:
de, W de, W

_ Q. = —
@NA.M .NUH\V Nwm an @NNN .@} NNm

Then the endowed wealth cancels out of the first-order condition for an
interior optimum, which can be written:®

2 2
Mwﬁ.ma\ﬁhmvN: M:)mﬁ.ﬁ\ﬁnmv‘wmm
5= =

B!

E.»
6 The Lagrangian expression is:
L(K, K, &) = mv(e) +m,v(c) — MK + K, — 1)
Setting the partial derivatives equal to zero leads to:
7V () (W/BY) 2y + myV () (W/PY) 2, = A
mv(e) me\@»v 2y + 71,7 (¢y) A&\\&J Zp =2

(Henceforth, the maximization calculus will not be spelled out in detail except where
points of special interest or difficulty arise.)
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This says that, at his risk-bearing optimum, the individual will have adjusted
his holdings of the two assets until their given prices become proportional to
the expected marginal utilities he derives from the contingent consumptions
they generate. Or, we can say: at the optimum, he will derive the same
expected marginal utility per dollar held in each asset.

An obvious generalization to any number A of assets and S of states leads
to an adaptation of (2.1.6), The Fundamental Theorem of Risk Bearing, for
a regime of asset markets:

RISK-BEARING THEOREM FOR ASSET MARKETS
MuﬂmQ\AnmvNﬁ M.UuﬂmQ\AnmvNNm Muﬂma\A@vN\ﬁ
s s s

= == ———— (2.1.10
B A ( )

NVH»

We have now described the individual’s optimal risk-bearing decision
(i) in a market of elementary state claims and (ii) in a market of more
generally defined assets. It is natural to ask if trading in asset markets
can replicate the results of a regime in which all state claims are explicitly
traded. The answer turns out to depend upon whether the set of tradable
assets constitutes a regime of complete or incomplete markets. Intuitively,
markets are complete if a rich enough class of assets is traded so that the
equilibrium consumption of the state-claim regime is attained. That is,
the consumption vector ¢, ¢,, . .., ¢ that satisfies equilibrium condition
(2.1.10) also satisfies the equilibrium condition (2.1.6).

Complete Markets

Returning to the numerical example depicted in Figure 2.2, where A (the
number of distinct assets) and S (the number of states) both equal 2, if
the individual has endowment N; and can trade elementary state claims
at prices P; and P, his budget constraint (line MM’ in the diagram)
would be:

Pi¢; + P, = P (100) + B(100) = W

A market regime allowing trading in all the elementary state claims is obvi-
ously complete. We will call it a regime of Complete Contingent Markets
(CCM). The CCM regime provides a benchmark for measuring the com-
pleteness of alternative asset-market regimes.

In any asset-trading regime, the prices of assets can be directly computed
if the state-claim prices are known. Specifically in our example, since any
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asset g has state-contingent yields z,,, z,,, the market values of assets 1 and
2 are:

P! =z,P + 2, =P +P
B! =2, P +2,P, =4P + P,

In order to establish whether an asset-market regime is or is not complete,
we must invert this analysis. That is, for given asset prices P4 (a=1,..., A),
the question is whether or not it is possible to extract the implicit state-claim
prices. In our example, knowing that (z;;, z;,) = (1, 1) and (2, Zy,) = (4,
1), we can rewrite the above equations in matrix form:

p_[ 1"

P~ e 1)l
As the two rows are not proportional, we can invert the matrix and obtain:
- 0 3
B] 14 1] |p|T -1 LB
So in this case it is possible to compute “implicit” state-claim prices
from given asset prices. In our example, if (say) PA = 1 and P = 2, then

P, = 1/3 and P, = 2/3. So the implicit budget constraint in state-claim units
would be:

W W=

Hﬁ + 2 ;Ss + N:os 100
—_ —C, = — — =
3173273 3

Thus, on the assumption (as already discussed) that traders are allowed
to “go short” on either asset so long as they can guarantee delivery, the
asset-market equilibrium is the same as would be attained under CCM. We
will call a set of asset markets meeting this condition a regime of Complete
Asset Markets (CAM).

Generalizing this example, suppose there are S states and A assets, and
exactly S of the assets have linearly independent yield vectors. That is,
suppose it is impossible to express any one of these Syield vectors as a linear
sum of the other S — 1 asset yields. In economic terms this means that it is
not possible to duplicate any of these S assets by buying a combination of
the other S — 1 assets —i.e., all of the Sassets are economically distinct.” (Of

7 In our simple example with A = § = 2, the two yield vectors (z,,, 2z,,) and (z,;, z,,) were
linearly independent since otherwise one vector would have been a scalar multiple of the
other. That is, the two rows of the z-matrix were not proportional, which is what permitted
inverting the matrix.
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course, this case can only come about if A > §, although A greater than or
equal to S does not guarantee the existence of Slinearly independent assets.)
So, a CAM regime exists, in a world of S states, if among the A assets there
are S with linearly independent yield vectors.

Summarizing in compact and general form, given a state-claim price
vector (P, ..., P) the market value of asset a is:

Pl=>"2P (2.1.11)

Or, in matrix notation for the entire set of assets:
P*=Plz, ] =PZ (2.1.12)

This permits us always to generate asset prices from a known state-claim
price vector. But the reverse can be done only under linear independence
(so that the matrix Z = [z,,] can be inverted). If so, the asset-market regime
is complete (CAM holds): for any prices P, ..., P{ of the A assets there
will be a unique implicit state-claim price vector (P,,. .., P,). It follows that
under CAM, the Fundamental Theorem of Risk Bearing (2.1.6) also holds,
in addition to the weaker Risk-Bearing Theorem for Asset Markets (2.1.10).

Incomplete Markets .

Consider now a three-state world with asset trading. For this trading regime
to be complete, there would have to be three assets with linearly independent
return vectors. In Figure 2.3 the points N, N, N; represent an individual’s
three attainable single-asset portfolios, for assets 1, 2, 3, respectively, while E
indicates his endowed mixed portfolio of these three assets. The interior of
the shaded triangle N; N, N, represents the state-contingent consumption
combinationsattainable by holding non-negative amounts of all three assets.
As in the previous two-asset case, however, there is no reason to exclude
“going short” on any asset — so long as the individual ends up with non-
negative consumption entitlements in all three states, i.e., in the positive
orthant. If going short to this extent is allowed, any point in the larger
triangle MM'M” is an income combination attainable by holding some
diversified portfolio. The equation of the “budget plane” through MM'M"”
is:

mm_.:wm...wwmwH@.H%&+@>m~+~w§w

It will be evident that, if the asset-market budget constraint corresponds to
the full triangle MM'M”, we have a CAM regime: the choice of an optimal
asset portfolio at given asset prices (P4, P{, P{) is equivalent to choosing
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Figure 2.3. Alternative patterns of incomplete markets.

an optimal state-claim consumption vector given some endowment point
and a full set of implicit state-claim prices (P,, P,, P;).

Markets in such a three-state world can be incomplete in several distinct
ways. First, there might simply be fewer than three assets available. In
Figure 2.3, if only assets 1 and 2 exist the individual’s market opportunities
consist only of the state-claim combinations shown by a “degenerate”
budget constraint — the market line KK’ through points N, and N,. In this
,. case, the endowment F’ is a mixed portfolio of the two assets. Second, it
might be that there is a third asset, in addition to asset 1 and 2, but this
third asset is linearly dependent® upon 1 and 2 — indicated geometrically
by the collinearity of points N, N,, and Nj. The line KK’ through these
three points remains degenerate; once again, not all the ¢;, ¢,, ¢, state-claim

, 8 That is, it is possible to find an  and B such that (231 259> Z33) = (25 2155 743) + B (255
; Zyps y3)-
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Figure 2.4. Risk-bearing with production.

combinations are attainable by market trading. Third, it might be that
the third asset, while present in an individual’s endowment and linearly
independent of the other two, is non-tradable. (An example of such a non-
tradable asset might be one’s “human capital.”) Suppose now that point E
in Figure 2.3 represents an endowment containing positive amounts of a
non-tradable asset 3 as well as of marketable assets 1 and 2. Here the dotted
line LL’ is the “degenerate” budget constraint for the individual. Note that
LL' is parallel to the KK’ line that applied when there was no third asset at all.

In each of these cases there is no longer equivalence between trading in
asset markets and trading in CCM. It follows, and this is the crucial point,
that, while the Risk-Bearing Theorem for Asset Markets (2.1.10) will always
hold, the Fundamental Theorem of Risk Bearing (2.1.6) does not.

When and why it is that incomplete trading regimes exist, despite the
disadvantages just described, is a question we must leave to Chapter 4.

2.1.3 Productive Opportunities

So far in this section we have considered only the risk-bearing decisions of
individuals in markets. But it is also possible to respond to risk by productive
adjustments.

A Robinson Crusoe isolated from trading can adapt to risk solely by pro-
ductive transformation. Before he takes productive action, suppose Robin-
son’s corn crop is sure to be good if the weather is moist (state 1) but will fail
entirely if the weather is dry (state 2). Thus, Robinson’s endowment position
C is along the ¢;-axis of Figure 2.4. However, by installing irrigation systems
of greater or lesser extent, Robinson can improve his state-2 crop y,. On
the other hand, the effort required to do so will divert him from ordinary
cultivation, and hence reduce his state-1 crop y,. Then Robinson’s feasible
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Figure 2.5. Productive and consumptive risk bearing.

state-contingent outputs (y,, y,) might lie in the convex set bounded by the
axes and the curve YY". This curve is “bowed away from the origin” reflecting
the operation of diminishing returns. Robinson’s productive-consumptive
risk-bearing optimum will evidently be at point C* (notin general on the 45°
certainty line) where the production frontier YY’ is tangent to his highest
attainable indifference curve.

Writing Robinson’s productive opportunity constraint as E(y,, 3,) =0,
his optimum (tangency) condition can be expressed as:

OF/oy, _  dy __do| _my(g)
a rode

0F/dy, — dy, v M)

Byan obvious modification of our earlier argument, Robinson’s optimum
will lie on the 45° line only in the exceptional case where his Marginal Rate
of Technical Substitution (the absolute slope — dy, / dy, along YY’) happens
to be exactly equal to the probability ratio 7,/ 7, at the point where YY’
cuts the certainty line. So, in his productive decisions, Robinson will not in
general want to avoid all risk, even though it may be possible for him to
do so. Some risks are profitable enough to be worth taking, i.e., they may
represent sufficiently favorable productive gambles.

Now consider individuals who can combine both market opportunities
and physical productive opportunities. In general, any such individual will
have a productive optimum (indicated by Y* in Figure 2.5) distinct from
his consumptive optimum (indicated by C*). The availability of markets
for trading contingent claims makes it possible to separate productive risk
bearing from consumptive risk bearing. An example in everyday terms: a
corporation may engage in risky productive activities, yet the shareholders
maybe able to largely eliminate personal risks by diversifying their individual
portfolios.

(2.1.13)
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Without going through the straightforward derivation, we will state the
conditions for the individual’s productive and consumptive optimum posi-
tions — assuming a regime of CCM with explicit state-claim prices P, and
P, (or an equivalent CAM regime for which the corresponding prices are
implicitly calculable):

PRODUCTIVE ~ CONSUMPTIVE
OPTIMUM OPTIMUM

B @N oozwlwaHoz WM oozwlmdoz _ m.@. (2.1.14)

dy | B da |y

The price ratio here may be said to mediate between the individual’s
productive optimum and consumptive optimum. Whereas the Crusoe con-
dition (2.1.13) required a direct equality of the YY’ slope with an indif-
ference curve at a single common productive-consumptive optimum, the
availability of markets makes it possible for a person to separate his Y*
and C* positions and thereby attain improved combinations of contingent
consumptions.

As no essentially new ideas depend thereon, the generalized productive
solutions for any number S of states of the world and the complexities
introduced by regimes of incomplete markets will not be detailed here.

Exercises and Excursions 2.1

1 Linear Independence
(A) With state yields expressed in the form (z,;, z,,, 2,3 ), the rows below
indicate four different three-asset combinations, labeled (i) through
(iv). Verify that only asset combinations (i) and (ii) are linearly

independent.
a=1 a=2 a=3
(1) (1,0,0) (0,1,0) (0,0,1)
(ii) (1,1, (1,4,0) (0,7,1)
(iii) (0,2,3) (1,0,1) (0,4,6)
(iv) (1,3,2) (4,0,5) (2,2,3)

(B) For each of the combinations above, if it is possible to have PA =
P{ = P{# = 1 what can you say about the implied state-claim prices
P,, P,, P;? For given asset endowment holdings ¢, = g, = ¢; = 1
solve for and picture the market plane MM'M” in state-claim space,
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wherever it is possible to do so. (Where it is not possible to do so,
picture the relevant trading opportunity constraint.)

(C) For cases (i) and (ii) only of (A) above, assume instead that the
endowment is given in state-claim units as (¢, G, &) = (1,1, 1),
and that P! = P# = 1 while no trading is possible in asset 1. Picture
the trading opportunity constraint in state-claim space.

2 Non-negativity

(A) For each of the combinations in 1(A) above, would the asset-holding
portfolio g, = —1, g, = g; = 1 violate the non-negativity constraint
on state incomes?

(B) Suppose case (i) above were modified by replacing a = 1 with a
new a = 1’ whose returns are (—1, 2, 3). Would the combination
¢, = g, = g5 = 1 be feasible? What if this new asset were instead to
replace the first asset in case (ii) above?

3 Risk-Bearing Optimum
(A) In cases (i) and (ii) under 1(A), if explicit trading in state claims is
ruled out, find the individual’s risk-bearing optimum expressed as
(4}, 95, g5) in asset units and as (cf, ¢, ¢f) in state-claim units — if;
m=m=m=1/3, PA=R=p=1, G =q =4q;=1,and
v(c)=Inc
(B) What can you say about cases (iii) and (iv)?

4 Consumer Choice

An individual with utility function v(c) = In ¢ must choose a state-
contingent consumption bundle (c;, ..., cg). The price of a state-s claim
is P, and the consumer’s initial endowment has a value of W.

(A) Solve for the individual’s optimum in each state.
(B) Hence show that for any pair of states s and s':

o TP

S
Cy Ty .mu.m

(C) What condition defines the state in which consumption is greatest?
Least?
(D) Is the rule derived in (C) true for any concave utility function v(c)?
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5 Portfolio Choice

Asset 1 and asset 2 both cost $150. Yields on asset 1 in states 1 and 2 are
(211> 215) = (100,200) and on asset 2 are (2, 2,,) = (200, 100). An individual
with an initial wealth of $150 has a utility function:

v(c) = —e ¢

(A) Show that the state-contingent budget constraint can be expressed
as:

¢ + ¢ =300

(B) If the individual believes that state 1 will occur with probability 7,
show that his optimal consumption in state 1 is:

1
¢ =150 + 3 In(z/(1 - m))
(C) If q, is the number of units of asset 1 purchased show that:

¢f = 200 — 100g}

and hence obtain an expression for g; in terms of 7, the probability
of state 1.

(D) What values do ¢} and gf approach as the probability of state 1
becomes very small?

2.2 Choosing Combinations of Mean and Standard
Deviation of Income

2.2.1 u, o, Preferences

We have described decision making under uncertainty as choice among
actions or prospects x = (c;,..., € 7Ty, . . ., Tg) — probability distributions
that associate an amount of contingent consumption in each state of the
world with the degree of belief attaching to that state. There is another
approach to the risk-bearing decision that has proved to be very useful
in modern finance theory and its applications. This alternative approach
postulates that, for any individual, the probability distribution associated
with any prospect is effectively represented by just two summary statistical
measures: the mean and the standard deviation of income. Specifically, the
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Figure 2.6. Portfolio choice with one riskless and one risky asset.

individual is supposed always to prefer higher average income (measured
by the expectation or miean 1(c) of the probability distribution achieved by
holding any particular portfolio of assets) and lower variability of income
(measured by the standard deviation o (¢)). His preferences can therefore
be represented by the indifference curves pictured on u(c) and o (c) axes as
in Figure 2.6.

The approach in terms of preference for high 14(c) andlow o (¢) is broadly
consistent with the previous analysis. In maximizing expected utility E[v(c)]
under uncertainty, other things equal, a higher average level of income is
surely to be preferred. And, given risk aversion, the theorem that fair gambles
would not be accepted implies that distributions with low o (¢) tend to be
more desirable. Nevertheless, in moving from a probability distribution that
was fully defined in terms of consequences in each and every state of the
world to a mere statistical summary of that distribution — one that makes
use only of the two parameters (c) and o (c) — some information has been
lost, The question addressed here is: when, if ever, is such a reduction valid,

9 Some analysts prefer to think in terms of the variance of income o2(c). But for purposes
of economic interpretation the standard deviation is more convenient, since o (c) has the
same dimensionality as p¢(c) and citself.
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exactly or at least approximately? That is, when can we justifiably convert
U= E[v(c)] into a function only of u(c) and o (¢)?

To indicate the nature of the approximation involved, v(c) can be
expanded in a Taylor’s series about its expected value E[¢] = pu:!°

g\\ 7
iE? w)+ AE@ E+< cé: s

v(©=vu+

Taking expectations, remembering that U = E[v(¢)] while noticing that
the expectation of (¢ — w) is zero and that the expectation of (¢ — u)? is
the variance o%(¢), we have:

4 \\
T o C0p o) 4 220)
The omitted terms suggested by the dots are functions of the fourth or
higher powers of (¢ — ) — higher moments about the mean, in statistical
terminology.

Possible justifications for treating U as a function only of the mean and
standard deviation of income may be found (i) in the properties we are
willing to assume for the utility function v(c) or (ii) in the properties of the
probability distribution of .

U=v(u+

(i) First of all, suppose that the v(c) function is quadratic, so that it can
be written (with K, K|, and K, as constapts):
v(c) = Ky + K¢ — 5K & (2.2.2)

where K, K, > 0. Then the third mm&,\maé v""(c) is always zero, as
areall higher derivatives. So (2.2.1) can be expressed more specifically
as:

1
U=K,+Ku-— mﬁcm +a?)

With Uas parameter, this equation represents a family of indifference
curves on U, o, axes in Figure 2.6. By completing the square it may
be verified that the curves constitute a set of concentric circles, the
center being 4 = K, /K,, o = 0.

However, the utility function v(c) given by (2.2.2) has an econom-
ically unacceptable implication ~ that the marginal utility of income,
v'(c) = K; — K, ¢ eventually becomes negative. A quadratic v(c)
function thus leads to a highly special indifference-curve map, with
acceptable properties only over a limited range.

10 A tilde overlying any symbol indicates a random variable, We will use this notation only
when it is desired to emphasize that feature.
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(ii) Turningnow to possible justifications that run in terms of probability
distributions for ¢, the Central Limit Theorem of probability theory
offers a lead. While a full discussion would be out of place here, the
Central Limit Theorem essentially says that the distribution of the
sum of any large number N of random variables approaches the nor-
mal distribution as N increases — provided only that the variables are
not too correlated. The point is that the overall or portfolio income
¢ yielded by an individual’s holdings of assets can be regarded as the -
sum of underlying random variables, each summand representing
the income generated by one of the assets entering into his portfolio.
The normal distribution is fully specified by just two parameters,
its mean and standard deviation. Then, in Equation (2.2.1), while
the terms involving higher moments do not all disappear,'! the
higher moments remaining are functions of the mean and standard
deviation.'? It therefore follows that indifference curves for alterna-
tive normal distributions of consumption income ¢ can be drawn on
(), o (c) axes.'®

The tendency toward normality under the Central Limit Theorem is the
stronger, roughly speaking, the closer to normal are the underlying random
variables, the more equal are their weights in the summation, and the less
correlated they are with one another. Looking at portfolio income as the
summation variable, income yields of the assets that comprise portfolios
will rarely if ever have normal distributions themselves. In particular, the
normal distribution extends out to negative infinity, whereas any “lim-
ited liability” asset cannot generate unlimited negative income. (And even
without limited liability, personal bankruptcy establishes a lower limit on
how large a negative yield the individual need consider.) Furthermore, asset
weights in portfolios tend to be highly unequal: a person will likely have
more than half his income associated with his wage earnings — the income
generated by his single “human capital” asset. And, finally, there typically is

11 Since the normal distribution is symmetrical about its mean, all the higher odd moments

are zero, but the even moments do not disappear.

There are other families of statistical distributions, besides the normal, that are fully

specified by the mean and standard deviation. However, as we have seen, the Central Limit

Theorem leads specifically to the normal as the approximating distribution of portfolio

income.

13 We have not, however, justified the standard shape of the preference map pictured in Figure
2.9. A proof that normally distributed returns imply positive indifference-curve slope
and curvature, as shown in the diagram, is provided in Copeland, Weston, and Shastri
(2004).

12
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considerable correlation among returns on the different assets making up
any portfolio. Portfolios for which the Central Limit Theorem justifies use
of the normal distribution as approximation are called “well-diversified”;
unfortunately, we have no handy rule for deciding when a portfolio may be
considered well-diversified. For all the reasons given above, use of the normal
distribution as approximation remains subject to considerable questions.

It is of interest to consider the effect upon utility of the third moment
E[(Z — )]~ entering into the leading term dropped from (2.2.1) if the
normal approximation is adopted. The third moment is a measure of skew-
ness: skewness is zero if the two tails of a distribution are symmetrical,
positive if the probability mass humps toward the left (so that the right
tail is long and thin), and negative in the opposite case. To see the effect
of skewness, consider an investor choosing between two gambles with the
same means and standard deviations. Specifically, suppose gamble | offers
0.999 probability of losing $1 and 0.001 probability of gaining $999, while
gamble K offers 0.999 probability of gaining $1 and 0.001 probability of
losing $999. J and K have the same mean (zero) and the same standard
deviation, but ] is positively skewed while K is negatively skewed. Almost all
commercial lotteries and games of chance are of form J, thus suggesting that
individuals tend to prefer positive skewness. While the primary purpose
of diversification is to reduce the standard deviation of income, diversi-
fication also tends to eliminate skewness — since the normal distribution
that is approached has zero skewness. We would expect to see, therefore,
lesser desire to diversify where skewness of the portfolio held is positive,
greater desire to diversify where skewness is negative. But the main point is
that the survival of preference for positive skewness suggests that individual
real-world portfolios are typically not so well-diversified.

The upshot, then, is that the attempt to reduce preferences for income
prospects to preferences in terms of u(c) and o (¢) falls short of being fully
satisfying. But the approach remains an eminently manageable approxima-
tion, expressed as it is in terms of potentially measurable characteristics of
individual portfolios and (as we shall see shortly) of the assets that comprise
portfolios. The ultimate test of any such approximation is, of course, its
value as a guide to understanding and prediction.

2.2.2 Opportunity Set and Risk-Bearing Optimum

In examining the individual’s opportunities for achieving combinations of
mean and standard deviation of portfolio income — w(c) and o(c) — in
his risk-bearing decisions, we need to show how these statistical properties
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of consumption income emerge from the yields generated by the separate
assets held.

For any asset a, let u, represent the mean of the income yield Z, per
unit of a held. Let o, represent the standard deviation of Z,, and o, the
covariance of z, and z,. Then, following the usual statistical definitions:

m, = E(z,)
O‘n = ~MAMQ - \bﬂvmww
O = E@a - Fav@w - tw:

And, of course, o, = (0,,) 3,

If the individual holds a portfolio consisting of g, units each of assets
a=1,..., A his portfolio income statistics are related to the asset return
parameters above via:

O ==,

L
2

L ,
o(c)=0 = MU MU 4%y | = MU MU 9a9aPab %%
a b a b

Here p,, is the simple correlation coefficient between the distributions of
z, and z,, using the identity o, = o,p,,0,, that relates covariance and the
correlation coefficient.

The individual’s budget constraint can be written in terms of his asset
holdings (compare Equation (2.1.7)) as:

D Plg, =) Pl =W

Drawn on u(c), o (c) axes, this budget constraint bounds an opportunity
set of feasible combinations of mean and standard deviation of portfolio
income. We now need to determine the characteristic shape of this oppor-
tunity set. (But notice that, since the individual desires high u and low o,
he will be interested only in the northwest boundary.)

To start with the simplest case, suppose there are just two assets, and that
asset 1 is riskless (o = 0) while asset 2 is risky (o, > 0). For this to be at all an
interesting situation, it must, of course, also be true that u,/ @» > i,/ $>!
i.e., the risky asset has a higher mean yield per dollar. The portfolio income
yield is a random variable given by:

C=aqz + g% (2.2.3)
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In this simplest case, with g, units of asset 2 purchased at a cost of P},
the individual has W — Pfg, dollars to invest in the riskless asset 1. For any
security a, we can define its rate of return R, in:

z
Mm_l_..mg

<Y

Then R, = z,/P# — 1is the rate of return on the riskless asset.'* Expression
(2.2.3) can then be rewritten as:

E=(W-PB'g)1+R)+ a5
And the parameters of the income distribution become:

() =W(QA+R)+[p, — A+ R)E g

o(c) = 0,4,

It then follows that the budget constraint on u, o, axes is a straight line,
shownas N'N" in Figure 2.6. (The opportunity set consists of the line and the
area lying below it in the diagram.) Point N’ is the w, o, combination u/, o’
attainable by holding a single-asset portfolio consisting of the riskless asset
(asset 1) exclusively. For this portfolio, u' (%) = A%\NJNH =W(QA+R,)
while 0/(¢) = 0. Point N” is the u, o, combination ", o”, generated by
the single-asset portfolio consisting of the risky asset (asset 2). Here ' (¢) =
(W /P, while o (8) = (W/PMo,.

What about portfolios containing mixtures of the two assets? If the
fractional shares of wealth devoted to the riskless and the risky assets are
o = q,P*/W and k = ¢,P*/W, respectively, where & + « = 1, the port-
folio statistics  and o can each be written in two useful ways:

p=ap +ip’ =W(QA+R)+[u, — 1+ R)B]q

o=ko" =0,q,

M This terminology would be appropriate if, as is usually assumed in the finance literature,
the assets are purchased (the prices P are paid out) one time period earlier than the date of
the income yields Z,. Strictly speaking, such a convention implies an intertemporal choice
situation, where earlier consumption should be balanced against later consumption, over
and above the atemporal risk-bearing choices we have dealt with so far. However, we will
follow the finance tradition in using “rate of interest” terminology without necessarily
addressing the problem of intertemporal choice.
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It follows that the budget constraint can also be written in two ways:

.:\\.lt\
p=——m—ot+u

pw=W(QA+R)+[u,— 0+R)B o /o

It is evident that all the u, o combinations satisfying these conditions
(meeting the budget constraint) fall along the straight line N'N” in the
diagram. The constant slope du/do of this budget constraint line is known
as the price of risk reduction, also known as the Sharpe ratio, which we will
symbolize as ©:

THE PRICE OF RISK REDUCTION OR THE SHARPE RATIO

_dp W —w oy~ 1+ R)B
Tdo T o' o,

(2.2.4)

Note that the steepness of the opportunity line reflects only the market or
“objective” data.!®

To find the individual optimum, the budget constraint must be juxta-
posed against the “subjective” data of the individual’s preference function.
This solution is, of course, a familiar type of tangency: in Figure 2.6, the
point H* is the individual’s risk-bearing optimum on y, o axes.

Could a portfolio be represented by a u, o combination along the
(dashed) extension of N'N” lying to the northeast of point N”, which
would correspond to holding negative amounts of the riskless security? This
is sometimes referred to as “selling short” the riskless security, which means
incurring a liability requiring delivery of the promised amount of income
certain. Incurring such a debt can also be thought of as “issuing” units of
the riskless security. As explained earlier, doing so would be perfectly rea-
sonable provided that the issuer can really satisfy such an obligation with
certainty. Clearly, the opportunity line N'N” cannot be extended to the
northeast without limit: someone with risky assets and riskless liabilities
faces some likelihood of bankruptcy, owing to states of the world in which

15 The parameters involved in the expression for du/do are “objective” in that they reflect
the individual’s market opportunities independent of what his personal preferences might
be. However, a “subjective” element may still enter if beliefs about market parameters vary
from person to person. While asset prices P# can usually be taken as interpersonally agreed
data, there might well be disagreement about some or all of the security yield parameters
{4, 0. If there were such disagreement, the implicit “price of risk reduction” would vary
from person to person.
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Figure 2.7. Portfolio choice with two risky assets.

the risky earnings fail to cover the fixed obligation of repaying the debt.'
In the literature of finance theory it is usually assumed that tangencies in
the “short sales” region are possible, at least within the range of practical
interest. In our diagram, the termination of the dashed extension of N’ N
at point R indicates the limit to which riskless debt can be issued by the
investor in order to achieve a larger holding of risky assets.

What about “selling short” the risky security instead —i.e., incurring an
obligation to meet varying payments over states of the world, while enlarging
one’s holding of riskless claims? By an analogous argument, this may also be
feasible up to a point. It is not difficult to show that such portfolios lead to
w, o combinations along a line like N'K in Figure 2.6, which clearly cannot
be a portion of the efficient opportunity boundary.

Figure 2.7 illustrates the efficient boundary for proper portfolio com-
binations of two risky securities. (We will not consider “short selling” in
this discussion.) If asset 2, let us say, has a higher mean return per dol-
lar than asset 3 (i,/B > ps/Py), then for the situation to be interesting
once again it must also be that asset 2 involves a greater risk per dollar
as well (0,/PA > 05/P{) In the diagram, points N and N represent the

16 If risky portfolio income were normally distributed, there would always be some non-zero
probability of negative returns exceeding any preassigned limit. No holder of such a risky
distribution could ever issue even the tiniest riskless security obligation, since he could
not guarantee to repay a debt with certainty.
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single-asset portfolios for securities 2 and 3, respectively, where " > p”
ando” > 0.

The diagram illustrates how diversification, holding a mixture of assets,
tends to reduce portfolio standard deviation ¢. The power of diversification
isa function of the size and sign of the correlation coefficient p,; = 0,5/0,0;3
(henceforth, p for short) between the asset return distributions z, and z,.

Consider first the limiting case of perfect positive correlation (p = 1). Here
the u, o combinations associated with mixtures of assets 2 and 3 would lie
along the straight line N'N” in Figure 2.7, at distances proportionate to
the relative budget shares.!” If instead the yields on the two assets were
uncorrelated (p = 0), the attainable 1, o combinations would fall on a
boundary represented by the middle curve connecting N” and N’ in the
diagram. It is important to notice that in the region of point N"’ the slope
du/do of this curve becomes actually negative, the implication being that
the efficient opportunity boundary no longer includes point N itself.!8
Thus, for any portfolio of two uncorrelated risky assets, the single-asset
portfolio consisting of the lower-, lower-o (per dollar of cost) security
is driven out of the efficient set. More generally, the slope du/do will be
negative if " > po”.1 So, for any number of risky assets, if all yields are
uncorrelated then only one single-asset portfolio would be located on the
efficient boundary, to wit, the portfolio consisting of that asset a* that offers
highest yield per dollar (u /P4 > w,/PA for any a# a*). But, if asset yields
are correlated, any asset with sufficiently high positive correlation with a*
might also be an efficient single-asset portfolio.

Finally, in the limiting case of perfect negative correlation (p = — 1), the
o -reducing effect of diversification is so great that the curve NN"” breaks

17 1f the budget shares are k = ¢,2A/W and 1 — k = g, P!/ W then p = rep” + (1 — k),
where 1" = Wy, /B and u” = W, /P; are the mean yields on the respective single-
asset portfolios. And o is:

o= :RQ\JN +2px(1 IKvQ\\QS +( |Rvo.3vﬁw

If p=1,theno = xo" + (1 — k)o". So i and o both increase linearly with K, proving
the assertion in the text.
18 As k increases, the slope along any of the curves connecting N’ and N/ can be written:
du B &F\&R F:l?i

do do /dk k(@2 + (1 = 2c)a"po’ — (1 — k) (o) /o

If p < 0, at point N"’ where « = 0 the denominator will be negative, hence du/do will be
negative. So there will exist a portfolio with « > 0 having lower o and higher 4 than the
asset-3 single-asset portfolio.

19 From the preceding footnote, the sign of dju/do when « = 0 will be the same as the sign
ombq\\q\: _ AQ‘SVN or \QQ: — o,
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Figure 2.8. Mutual-Fund Theorem.

into two lines meeting at the vertical axis (at point D). Thus, with p = —1, it
is possible to achieve a riskless combination of two risky assets.2’ Of course,
here again point N"” can no longer be in the efficient set.

Generalizing the previous diagram to any number of assets, Figure 2.8 is
intended to suggest the nature of the opportunity set and efficient (north-
west) boundary. If there are only risky securities available, the opportunity
set will be the shaded area whose northwest (efficient) boundaryis the curve
DE. Here points N and N'” represent single-asset portfolios that are not
efficient, whereas point N'V represents an efficient single-asset portfolio.
Owing to the power of diversification, almost all of the boundary DE would
likely represent multiasset portfolio mixtures.

The introduction of a riskless asset, whose single-asset portfolio is rep-
resented by point N', enlarges the opportunity set by the dotted area in
the diagram. The efficient boundary now becomes the line from N’ drawn
tangent to the DE curve (at point F). In general, as just argued, F would
represent a particular mixed portfolio of assets.

In the absence of the riskless asset, the individual’s risk-bearing optimum
(indifference-curve tangency) would be at point G along the curve DE. But
for the opportunity set enlarged by the presence of the riskless asset, the

D Ifp=—1,theno = k0" ~ (1 — K)o Setting k = ¢”/(c” + o), we have o = 0.
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optimum is at point H* along the line N'F. As discussed earlier, we also admit
the possibility that H* might fall in the dashed extension to the northeast of
F along this line, representing an individual who issues riskless obligations
in order to hold more than 100% of his endowed wealth in the form of the
risky combination F.

The Mutual-Fund Theorem
An important result follows from our previous discussion:

If individuals’ preferences are summarized by desire for large u and small o, and if
there exists a single riskless asset and a number of risky assets, in equilibrium the
asset prices will be such that everyone will wish to purchase the risky assets in the
same proportions.

Thus, if one individual holds risky assets 2 and 3 in the quantities g, =
10 and g; = 9, someone who is richer (or less risk averse) might hold larger
amounts of each risky asset — but still in the ratio 10:9! This remarkable
“Mutual-Fund Theorem” underlies all the main properties of the Capital
Asset Pricing Model (CAPM), which constitutes the centerpiece of modern
finance theory. (CAPM will be discussed further in Chapter 4.)

Justification of the theorem requires no complicated analytical apparatus.
All we need do is to re-interpret the opportunity set of Figure 2.8 in per-
dollar-of-wealth terms. Thus, for any individual the vertical axis would
now be scaled in units of /W and the horizontal axis in units of o /W
Since both axes are being divided by the same constant, the opportunity set
would change only by a scale factor. For example, the single-asset portfolio
corresponding to any asset a that formerly was represented by the vector
(u?, o?), where u? = A%\w%vta and 0% = Ag\ﬂ»vqs would now have
the coordinates u®/W = u,/P* and o%/W = o,/PA. And, in particular,
points N’ and F would similarly maintain their positions, so that the efficient
boundary N'F would have the same slope as before.

The significance of this conversion to per-dollar dimensions is that, in
these per-dollar units, every individual in the economy, regardless of wealth,
faces exactly the same opportunities! If asset a offers a mean yield per dollar
1,/ P2 to one individual, it offers the same per-dollar mean yield to every-
one. And similarly for the standard deviation per dollar o,/P# of asset a,
and for all combinations of assets as well. Thus, every individual will hold,
in whatever fraction of his wealth is devoted to risky securities, the same
proportionate mixture of assets represented by point F in the diagram. So,
we can say, a “mutual fund” of risky securities set up to meet the needs of



74 Risk Bearing

any single investor will meet the needs of all.*! What still does vary among
individuals is the fraction of wealth held in riskless versus risky form, a deci-
sion that will depend upon individuals’ varying personal preferences as to
risk bearing (the shapes of their indifference curves in the original diagram
of Figure 2.8).

In the economy as a whole, there is exactly one unit of this mutual fund F,
corresponding to the economy-wide amounts g2, . . ., g} of the risky assets
a=2,..., A (So the typical individual will be holding a fractional unit of
E.) Then the price P4 of a unit of the fund is:

A
=Y qp

a=2

Writing the mean return and standard deviation of return for a unit of
portfolio F as u; and op, we can obtain an expression for © = du/do —
the price of risk reduction — in terms of the slope of the line N'F in Figure
2.8. For any individual, point N’ (the riskless single-asset portfolio) has
p~coordinate u’ = Ag\mﬁt_ =W(Qa+ R,) and p-coordinate ¢’ = 0.
Point F (the portfolio held entirely in the mutual fund) has p-coordinate
uf = (W/P#)up and o ~oordinate of = (W /P4)orp. So the steepness of
the line is:

dp _p —w _ (W/B)pr = W(A+R)  pp/P = (1+R)

do  of —o (W/P2) op o /Pt

Note that, consistent with our previous discussion, the individual wealth
parameter W has cancelled out. Thus, a corollary of the Mutual-Fund
Theorem is that the price of risk reduction is the same for every individual.

Exercises and Excursions 2.2

1 Ranking of Alternative Wealth Prospects

An individual with utility function v(c) = & has an initial wealth of zero.
He must choose one of two jobs. In the first there is an equal probability of
earning 1 or 3. In the second there is a probability of 1/9 that he will earn
zero, a probability of 7/9 that he will earn 2, and a probability of 1/9 that he
will earn 4.

?! If, however, individuals differed in their personal estimates of the asset characteristics ¢,
and o, their perceived opportunity sets would not be identical in per-dollar units and the
Mutual-Fund Theorem would not be valid.
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(A) Show thatboth jobs have the same mean income u, that the standard
deviation of income o is lower in the second job, and that despite
this the individual will choose the first job.

(B) Can you explain this result in terms of preferences for skewness? If
not, what is the explanation?

2 Constant Absolute Risk Aversion and Normally Distributed Asset Returns
(A) Show that: ,

1/c—u\> 1[c—(u—Acd)\* 1,
Ac+ = = () A p— A
€+ 3 A - v 2 A s ) TAET
where A = —v"(c)/v/(c) is known as the measure of “absolute risk

aversion.” Hence, or otherwise, show that if ¢is distributed normally
with mean u and variance o2 and if v(¢) = — e~4¢ then:

8 IN
Ei&?\ w%f% LAn xv %né;%,tqa
—00 ANuﬂvm 2 e

(B) Under the above assumption, it follows that preference can be rep-
resented by the indirect utility function:

1
U, o) =p— M%N

Suppose an individual with such preferences must choose between
a riskless asset and a normally distributed risky asset. Show that
the amount of the risky asset purchased is independent of initial
wealth and decreasing in the degree of absolute risk aversion A.
What happens if the indicated expenditure on the risky asset exceeds
the individual’s endowed wealth W?

3 Theu, o Opportunity Locus

An individual spends a fraction « of his wealth W on asset aand the remain-
der on asset b. Each asset has a price of unity and the yields (Z,, z,)have
means (4, and u;, and covariance matrix [0, ].

(A) Obtain expressions for the mean p and standard deviation o of the
portfolio as functions of «.
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(B) Hence show that the standard deviation can be expressed as:

o ={[(n— W) o, —2(n — W) (1t — Wiy)oy,
+ (n — gtwvawL\Ata - t@v&w

(C) Suppose i, > u, and o,, > o, > 0 > 0,,. Obtain an expression
for the rate of change of o with respect to . Hence establish that if
the individual begins with all his wealth in asset b, he can increase
the mean yield and simultaneously reduce the standard deviation by
trading some of asset b for asset a. Illustrate the locus of feasible w,
o combinations in a diagram.

(D) Assuming the individual’s utility is a function only of the mean
and standard deviation, can you draw any conclusions as to the
composition of his optimal portfolio?

4 Investor’s Portfolio Optimum in a u, ¢ Model

In a competitive economy there are I investors, all having the same utility
function U = pu'% 7. Bach individual is endowed with exactly one unit
each of assets 1, 2, and 3 with payoff statistics as shown in the table below,
all the payoff distributions being uncorrelated (o' ;, = 0, for all a # b). Given
asset prices are also shown:

e a, 7
Asset 1 1 0 1.0
Asset 2 1 3 0.46
Asset 3 1 4 0.04

(A) Sketch the indifference curves on w(c), o(c) axes. Locate, for any
single individual, the three single-asset portfolios he might hold.

(B) Under the assumptions here, each individual’s optimum portfolio
H* must evidently be the same as his endowed portfolio. Locate this
portfolio, and also the mutual fund portfolio F. What fraction of his
wealth does the individual hold in the mutual fund?

(C) Verify that the price of risk reduction is ® = 2. What is the equa-
tion of the individual’s budget line? What is his Marginal Rate of
Substitution (the slope of the indifference curve) at H*?
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Figure 2.9. State-dependent utility — complementary preferences.

2.3 State-Dependent Utility

In risk-bearing decisions it sometimes appears that the individual’s utility
function v(c) might itself depend upon the state of the world, contrary to
our assumption in Section 1.4 in Chapter 1. To take an extreme case, if the
states under consideration were “being alive” versus “being dead”, a typical
individual would likely value rights to income in the former state more
heavily! (Yet he might attach some “bequest utility” to income contingent
upon his own death.) Similar considerations could apply if states of the
world were defined in terms of one’s sickness versus health, or life versus
death of one’s child, or success versus failure at love, or retention versus loss
of a unique heirloom.?

For concreteness, think in terms of two states s = £, d corresponding
to life versus death of one’s child. Then we can imagine a pair of utility
functions for consumption income, v, (c)and vy(c) as in Figure 2.9. For
any given amount of income ¢, the former curve would definitely be the
higher (an ordinal comparison). But the question is whether our analysis in
Section 1.4 can be extended so that, despite what appear to be two distinct
v(c) functions, a single cardinal scaling can be arrived at permitting use of
the expected-utility rule.

2 Qur discussion here follows Cook and Graham (1977) and Marshall (1984).
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This seemingly difficult problem resolves itself immediately, once it is
realized that we are still really dealing with a singleunderlying utility function
v. The only change is that vis now to be regarded asa function of two “goods”:
v = (¢, h). The first argument cstill represents amounts of the consumption
commodity, just as before. The second argument h represents the amount
of the state-determining or “heirloom” good; in our example, if the child
lives (state £) then h= 1, if she dies (state d) then h=0.The curves v;(c) and
v4(c) can therefore be more explicitly labeled (¢, 1) and v(¢, 0); these two
curves are not two separate utility functions for the parent, but two sections
of his single overall (¢, h) function. We already know, of course, that there
is no difficulty deriving a cardinal utility function, where vis a function of
two or more goods (see Exercises and Excursions 1.5.6).

We now turn to the risk-bearing decision under state-dependent utility.
Suppose a risk-averse person is endowed with a given quantity ¢ of income
certain, but faces a gamble involving the heirloom commodity — his child
might live or might die. Is it rational to insure one’s child’s life, at actuarial
(“fair”) odds? (Doing so means that the parent will end up with higher
income if the child dies.) Or, should the parent do the opposite and buy
an annuity upon his child’s life, a contractual arrangement that provides
more income so long as the child lives, but less if the child dies? Here isa
less agitating example: if our college team is playing its traditional rivals in
a crucial match, is it rational for us as loyal yet risk-averse fans to bet at fair
odds against our team (equivalent to insuring our child’s life), or to bet the
other way (buy the annuity instead)?

Since, as argued above, there is no difficulty in developing a cardinal
(¢, h) scale for use with the expected-utility rule, then (given Complete
Contingent Markets [CCM]) the Fundamental Theorem of Risk Bearing
continues to apply. In terms of the states s = £ and s = d, we can rewrite
(2.1.6) in the form:

m () mavy(cy)
14 B

(2.3.1)

Here v}(c,), the state-£ marginal utility — which could also be written
3v(c, 1)/dc— corresponds to the slope along the upper v(¢) curve in Figure
2.9 and is a partial derivative of the underlying v(c, h) function. Similarly,
vy(cq) = 0v(c, 0)/dc corresponds to the slope along the lower v(c) curve
in the diagram.

Suppose that the parent is offered a contract of insurance or annuity on
his child’s life, at fair odds in either case. Imagine that his optimizing choice
is to accept neither, but remain at his endowed certainty-income position.
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Then, in Equation (2.3.1) it must be that v;(¢,) = v;(¢g) when ¢, = ¢; = ¢.
Geometrically, for this to occur the two curves in Figure 2.9 would have to
be vertically parallel at the endowment level of income. In economic terms
we would say that the two goods are “independent in preference”: varying
the amount of # by having the child live or die does not affect the marginal
utility of the ¢ commodity (although it certainly affects the parent’s total
utility).

Suppose instead that the two goods are “complements in preference”
an increase in h raises v/(c). Then at the endowment level of income the
upper curve has steeper slope: v, (¢) > v}(¢); this is the situation pictured
in Figure 2.9. Because the slope along either curve diminishes as income
increases (diminishing marginal utility, reflecting the risk-aversion prop-
erty), it follows that the optimality Equation (2.3.1) can be satisfied only
by having ¢, > ¢;. (And specifically, if the probabilities are 7, = 7y = wu as
in the diagram, then ¢, — ¢ = ¢ — ¢;.) To achieve this position, the parent
would purchase an annuity on his child’s life. The economic interpretation
is this: if having your child alive raises the marginal utility of income to
you (perhaps because you mainly desire income only in order to meet her
needs), then at fair odds you would not insure your child’s life but would
buy the annuity to generate more income while she lives.

Finally, if cand hare “substitutes in preference,” i.e., if v, (c) < v}(c), you
would insure your child’s life. This might correspond to a situation where
your child, if she lives, would support you in your old age; not having that
source of future support raises your marginal utility of income, since should
the child die you will have to provide for your declining years yourself.

What about a parent insuring his own life on behalf of a child? Here
the child’s survival is not in question, so now we must let the states s = £
versus s = d refer to the parent’s life as the “heirloom” commodity. In
such a situation the upper curve v,(c) = v(¢, 1) in Figure 2.9 pictures
the parent’s “living utility” of consumption income while the lower curve
v4(¢) = v(c, 0) shows the “bequest utility” he attaches to the child’s income
after his own death. There appears to be a puzzle here. It is reasonable to
assume that # and care complements in preference —in state £ there are two
persons, parent and child, who need income for purpose of consumption
while in state d only the latter requires income. But whereas in our previous
discussion complementary preferences led to purchase of an annuity rather
than insuring, we know that parents do typically insure their lives on behalf
of their children.

The puzzle is resolved when we realize that death of a parent will typically
mean not only loss of the heirloom commodity (life), but also loss of
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Figure 2.10. Value of a life.

income earnings that the parent would have generated. Consequently, the
typical endowment position is not a life risk plus a quantity of income
certain (¢, = ¢y), but rather involves a life risk plus a correlated income
risk (¢, > ¢4). In buying life insurance a risk-averse parent is purchasing
an offsetting gamble, tending to reduce the overall riskiness of a situation in
which both cand & take on low values should the state d occur.

2.3.1 An Application: The “Value of Life”

Figure 2.10 illustrates the situation of an individual choosing between higher
income and higher survival probability, for example, working at a risky
high-income profession versus a lower-paying but safer occupation.

As an analytical simplification, suppose that the individual has no depen-
dents, so that his “bequest utility” function v;(c) can be assumed to be
everywhere zero. Thus, the lower curve of our previous diagram now runs
along the horizontal axis.*® Let us suppose that he finds himself initially in
the risky situation, with income c° if he survives. (His non-survival income,
ifany, is irrelevant since v, (c) = 0 everywhere.) Denote the death probability

 The v,(c) curve is shown as intersecting the vertical axis, which represents an arguable
assumption that life (even at zero income) is preferable to death. However, only the local
shape of v, (¢) in the neighborhood of the endowment income plays any role in the analysis,
so there is no need to insist upon this assumption.
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as 7, so the probability of survival is 1 — 7. Then the expected utility U of
this risky prospect is:

U= (1-m)v(c)

The expected utility of the endowed gamble is indicated in the diagram by
the vertical height of point K, which is the probability-weighted average of
point L where (¢, h) = (¢, 1) and the origin 0 where (¢, h) = (0, 0). (Here
as before, life is the “heirloom” commodity h.)

The utility loss due to the existence of the hazard (that is, in comparison
with a situation with the same ¢® but where the death probability is 7 = 0)
can be expressed as:

AU =v(¢°) = U = 7v,(c°)

This corresponds to the vertical distance between v,(¢°) and U as marked
off on the vertical axis of the diagram — the vertical distance between points
Fand G. Along the v, function, point G has the same utility as the endowed
gamble (point K). So AI, the income equivalent of the utility loss, is the hor-
izontal difference between points G and L. AI may be termed the income-
compensation differential: the remuneration reduction (viewed from point
L) that this individual would be just willing to accept to be free of his
endowed death risk.

We now seek a more general analytical expression for AI. The line tangent
to the v,(c) curve at L has slope v, (c°). Then the vertical distance between
points F and H equals Alv,(c°). As long as the death probability is fairly
small, this distance is approximately equal to the vertical distance between
the points F and G, which we have already seen is the utility loss v, (c°).
So, to a first approximation:

AIvy(c®) = vy (c®)

or:

Al = v, (c?) _ e
vy (c) e

where:

_dujdl _ v(e)

TTUN T ey
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Here e signifies the income elasticity of utility, evaluated at the income level
¢®. Since 7 is the probability of loss, the other factor v,(c°)/v,(c°) = ¢°/e
then represents the value of life** implied by this analysis.

We must be careful not to misinterpret this value, however. It does not
represent the amount that an individual would pay to “buy his life,” for
example, if he were being held for ransom. It represents the exchange rate at
which he would be willing to give up a small amount of income for a small
reduction in the probability of death 7 (when 7 is close to zero). This can
be shown more explicitly as follows. Since U= (1 — 7)v,(c°), the Marginal
Rate of Substitution M{(c, 77 ) between income c and death probability 7 is:

dc —oU/om v ()
Mem = 2|, = aujac T U=m)v, ()

For 7 close to zero the denominator is approximately v,(c°). Thus
v, (¢°)/v,(c®) = ¢°/e does not represent the purchase price of a whole life,
but the Marginal Rate of Substitution between small increments of income
and survival probability.

Nevertheless, the interpretation in terms of “value of life” is not wholly
unwarranted when we think in terms of society as a whole. Suppose that
each member of a large population voluntarily accepts a 0.001 decrease in
survival probability in order to earn $500 more income, implying a figure
of $500,000 for the “value of life.” Again, this does not mean that any single
individual would trade his whole life for $500,000; indeed, there might be
no one willing to make such a trade, for any amount of income whatsoever.
But if everyone in a population of 1,000,000 accepts such a small per-
capita hazard, there will be about $500,000,000 more of income and about
1,000 additional deaths. So, in a sense, $500,000 is indeed the “value of a
life”!

Exercises and Excursions 2.3

1 Betting for or against the Home Team?

Your endowed income is ¢ = 100. There is a 50:50 nrm:nm that the home
team will win the big game. You can bet at fair odds, picking either side to
win and for any amount of money. Each of the utility functions (i) through

# Of course, since death is ultimately certain, any increased chance of life can only be
temporary. If we are dealing with annual death probability, we should really speak of the
value of an incremental year of life expectation. But the dramatic, if misleading, term “value
of life” is too firmly established to be displaced.
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(iv) below consists of a pair of utility functions, which differ depending
upon whether the home team wins (W) or loses (L):

1) v,(0=28 and v (c) =P

(i) v,(0=2—exp(—c) and v()=1—exp(—0)
(iii) v,()=1—exp(—2¢) and w(c)=1—exp(~¢)
(iv) v,(00=In(50+¢) and v (¢c)=1In (¢

For each utility function:

(A) Verify that, at any level of income ¢, you prefer the home team to
win.

(B) Find the optimal b, the amount of money bet on the home team (so
that b is negative if you bet against the home team).

(C) Having made the optimal bet, do you still want the home team to
win? Explain the differences among the four cases.

2 Risk Preference under State-Dependent Utility?

An individual can choose between two suburbs in which to live. The homes
in the first suburb are small, while in the second they are large. Utility in
the first suburb is:

v(c, hy) = 8c:

where c is spending on goods other than housing (i.e., on “corn,” whose
price is unity). Utility in the second suburb is:

Wi

v(c, hy) = 5¢
Housing in the first suburb costs $20 per year and in the second costs $56.

(A) Sketch the two utility functions. Verify that the utility functions cross
at ¢ = 120, and explain what this signifies.

(B) Suppose that before having invested in housing, the individual’s
endowed income was $120. Consider the gamble corresponding to
the prospect (181, 56; 0.5, 0.5). Note that this is an adverse gamble; in
comparison with the endowment income, the payoff is $61 and the
possibleloss is $64. Compute the individual’s utility for each outcome
and hence confirm that taking the gamble does raise expected utility.

(C) Indicate, geometrically, the optimal gamble for this individual.
Explain why the individual wants to undertake such a gamble.

[HINT: Are cand h complements here?]
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(D) Can this kind of argument explain why some people gamble regu-

larly?

3 “Superstars” and the Value of Life

Anindividual with endowed income ¢ hasa concave utility function v(c). He
has contracted a disease which, if not treated, will be fatal with probability
1 — p, and will spontaneously cure itself with probability p,. His “bequest
utility” in the event of death is zero everywhere.

(A)

(B)

(©

(D)

(E)

Suppose that, when treated by a physician who charges z, his prob-
ability of survival rises to p. If zis his maximum willingness to pay
for that treatment, show that:

pv(c — z) = p,v(c)
Hence show that:
dp _ py@V(E-2)
dz ~ v(i—2)?

Depict the relationship between p and z in a figure. Interpret its
shape.

Suppose a “superstar” physician can increase the individual’s prob-
ability of survival by 1 — p,, so that he is sure to live, while another
physician can increase this probability by only (1 — p,)/2. Indicate
in the figure the maximum amounts X and Y that the two physicians
could charge.

It has been asserted that “superstars” tend to receive dispropor-
tionally high incomes. In this context, this means that the ratio of
physicians’ fees would exceed the ratio of the survival rate incre-
ments that they provide. Assuming that both physicians can charge
the maximum, is the assertion X/Y > 2 valid here?

The maximum that the individual would be willing to pay a physi-
cian, who (in effect) provides him with “a fraction p — p, of his life,”
is z(p) where this function is defined implicitly in part (A). Then it
can be argued that his implied valuation of his own life is z(p)/(p —
p,)- For example, if p, = p — p, = 0.5 and X = $100,000, the value
of his life would be $200,000. Carry this argument to the limit in
which pis small and show that, at this limit, the value he places upon
his life is v(¢)/p°v/'(¢). Compare this conclusion with that reached
at the end of the discussion in the text.
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SUGGESTIONS FOR FURTHER READING: The state-contingent claims
model was introduced by Arrow (1953, reprinted 1964). See also Debreu
(1959). A classical treatment of asset-pricing and the CAPM model is pro-
vided in Ingersoll (1987). Some recent work in finance extends beyond the
traditional u, o preferences of Section 2.2; see Leland (1999). An important
issue in state-dependent utility is that the subjective probability distribution
over states is not unique. For more on this, see Karni (1993).
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Comparative Statics of the Risk-Bearing
Optimum

The elements of the decision problem under uncertainty — the individual’s
preferences, opportunities, and beliefs — were surveyed in Chapter 1. We
distinguished between terminal choices, actions undertaken on the basis of
given probability beliefs (covered in Part I of this volume), and informational
choices, actions designed to improve one’s knowledge of the world before a
terminal decision has to be made (to be covered in Part IT). Chapter 2 ana-
lyzed the individual’s risk-bearing optimum, the best terminal action to take
in the face of uncertainty.

We now want to explore how these optimizing decisions change in
response to variations in the person’s character or situation (his or her
wealth, tastes for risk, the endowment of goods, the market prices faced,
and so forth). Modeling the before-and-after effects of such “parametric”
changes, without attending to the dynamics of the actual transition path
from one solution to another, is called the method of comparative statics. This
chapter is devoted to the comparative statics of the individual’s risk-bearing
optimum,

3.1 Measures of Risk Aversion

The individual’s risk-bearing optimum depends critically upon his attitudes
toward risk. And, since parametric changes generally involve positive or
negative wealth effects, it will often be crucial to take into account how
attitudes toward risk vary as a function of wealth.

As discussed in Chapter 2, in a regime of Complete Contingent Markets
with two states of the world, the individual’s wealth constraint is:

Pog+PRog=P;+B5=W (3.1.1)

86
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Figure 3.1. Wealth effects.

Endowed wealth, W, represents the market value of the endowment vector
C = (&, ). As shown in Figure 3.1, expected utility is maximized at the
indifference-curve tangency C* along the original budget line LL' (assuming
an interior solution). As endowed wealth increases, the optimum position
moves outward from C* along some wealth expansion path like C*B or C*D
in the diagram.

Suppose that, after an increase in endowed wealth, the individual’s new
optimum lies northeast of the old optimum C* but below the line C*B (i.e.,
in region E,). Since C*B is drawn parallel to the 45° line, all the points
in E, lie closer to the 45° line than does C*. Thus, an individual whose
wealth expansion path lies in this region reduces his absolute consumption
risk (gap between ¢, and ¢,) as his wealth increases. If instead (as shown in
the diagram) his new optimum lies above the line C*B (in regions E; or E,)
his “tolerance” for absolute risk must be increasing with wealth. A solution
along the dividing line C*B would represent constant tolerance for absolute
risk. Or, putting it the other way, we can speak of increasing, decreasing, or
constant absolute risk aversion as wealth increases.

These alternative responses to changes in wealth imply restrictions
upon the shape of the individual’s utility function v(c). We can use these
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restrictions to construct a measure of the individual’s absolute risk aversion.
Consider a change in the absolute steepness of the indifference curve — the
Marginal Rate of Substitution M(c;, ¢,) - in moving from some arbitrary
point (¢;, ;) to a nearby point (¢; + dc;, ¢, + dc,). From Equation (2.1.2)
the Marginal Rate of Substitution can be expressed as:

mv'(¢))
M(c, ) = = —12 (3.1.2)
e 7,V ()
Taking the logarithm of both sides:
InM =1Inm +1nv(¢) —Inm, — Inv'(g)
The total differential of the expression is then:
aM  V'(¢) V'(c,)
dinM = — = de, — dc (3.1.3)
M Vi) vie)

If ¢; and ¢, increase by the same absolute amount (dc; = dc, = dx), the (¢,
&) vector moves outward parallel to the 45° line. Then the proportionate
change in M(c,, ¢,) is:

M [ v(g) V(o)

Suppose that, as depicted in Figure 3.1, an increase in wealth leads to a

new optimum C** that lies in region E, and therefore is further from the

45° line. Since the Marginal Rate of Substitution is the same at C* and C**,

it follows that M(c;, ¢,) is necessarily lower where the new budget line NN’

intersects the line C*B parallel to the 45° line. If this holds everywhere, then,
from (3.1.4):

aM _ TE Eog dx (3.1.4)

vie)  v(g)

dM V() v'(g)
M

@&RAO

Rearranging we obtain:

..L\\Anwv |<\\A@v
6 <¢=> >
TG T Vi
Of course, the condition is reversed below the 45° line where ¢; > c,.
Thus, an individual displays decreasing aversion to absolute wealth risks

if and only if A(c) is a decreasing function, where:

vl\—\\\ Aﬁv
v (c)

A(c) = (3.1.5)
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The function A(c), which is evidently a property of the individual’s utility
function v(c), measures the individual’s absolute risk aversion.

Since the individual depicted in Figure 3.1 moves farther from the 45°
line as his wealth grows, he exhibits Decreasing Absolute Risk Aversion
(DARA). If instead he had Constant Absolute Risk Aversion (CARA), A(c)
would remain unchanged as wealth rises. In that case the wealth expansion
path would be parallel to the 45° line (line C*B). Finally, if A(c) rises with
wealth, the individual exhibits Increasing Absolute Risk Aversion (IARA);
the wealth expansion path would then converge toward the 45° line, and
the new optimum would lie in region E,.

A second useful measure of attitude toward risk is obtained by considering
proportional rather than absolute changes in an individual’s consumption
levels. If ¢, and ¢, increase proportionately, the consumption vector moves
outward along a ray out of the origin. Along such a ray:

¢, = ke; and dc, = kdc;
Eliminating k we obtain:
dg _dg

%) G

Rearranging terms in (3.1.3) and substituting, we can see that along the ray
C*D in Figure 3.1 the Marginal Rate of Substitution changes in accordance
with:

a _ _H%\\Sv - @%SJ dey (3.1.6)

M v (¢) V' (cy) ol

As depicted, C**, the optimum at the higher wealth level, lies in region E,
and so is closer to the 45° line than the ray C*D. To be the same at C*
and C*™*, the absolute indifference-curve slope M(c,, ¢,) must be increasing
along the ray C*D. That is, from (3.1.6):

(oo M _[aV@) avi@]da
M t\Aﬁwv Q\Ahwv q

Rearranging, we obtain:

—qv'(c))  —6v'(g)
G < = <
1= v (c;) V(c,)
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Let us define as measure of relative risk aversion:

—cv’(c)
v'(c)
Then an individual like the one depicted, who displays increasing aversion
to proportional (or relative) risk as wealth grows, must be characterized by
an R(c) that is an increasing function. We say he displays Increasing Relative

Risk Aversion (IRRA).

[fthe wealth expansion path isa ray out of the origin, so that the individual
prefers to accept risks that are exactly proportionally larger as his wealth
rises, his R(c) is constant — he displays Constant Relative Risk Aversion
(CRRA). Finally, if his tolerance for risk rises more than proportionally
with wealth, then R(c) declines with ¢ and the individual is said to exhibit
decreasing relative risk aversion (DRRA).

Both A(c) and R(¢) are local measures. That is, they are defined in terms
of small changes in wealth and consumption. In general, there is no reason
why an individual should not exhibit increasing absolute or relative risk
aversion over some consumption levels and decreasing risk aversion over
others. However, in theoretical investigations it is common to make global
assumptions about both measures of risk aversion.

Pratt (1964) has argued, as an empirical generalization, that individuals
will be willing to bear greater absolute risk as wealth rises. This is very
plausible. Every unit purchased of a risky asset buys a given absolute risk.
Assuming that the state-1 yield of asset a is greater than its state-2 yield, the
absolute risk per unit of a held is Z,; —Z,. A rich individual, other things
equal, should be willing to hold more of every kind of asset; acquiring
more units of risky assets, he would inevitably accumulate a larger absolute
consumption risk. Empirically less obvious is the contention by Arrow
(1965) that individuals, as they become richer, will buy relatively more safety
s0 as to reduce their proportionate risk. If both arguments are accepted, the
typical wealth expansion path will lie in the region E, as depicted in Figure
3.1, rather than in E, or E;. Individuals will be characterized by DARA and
IRRA.

We now compare the preference maps of two individuals, one of whom is
everywhere more risk averse. In Figure 3.2 the solid curve is an indifference
curve for individual K. As depicted, this individual is indifferent between a
certainty endowment point C = (¢, ¢) along the 45° line and the gamble B.
Moving away from the certainty line to the northwest, i.e., to consumption
vectors with ¢, > ¢, his Marginal Rate of Substitution (steepness of the
indifference curve) must evidently increase. Since the Marginal Rate of

R(c) = (3.1.7)
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Figure 3.2. Acceptable gambles.

Substitution M(c;, ¢,) is the same everywhere along the certainty line, the
change M(c;, ¢,) in moving from C to B can be expressed logarithmically
as

In My — In Mz = In My — In M},

hw <\\A®v
= ——24
\ﬁo Vi) 2

%
= \ Ag(cy)de,
D

The proportional decline in M(¢;, ¢,) around the indifference curve there-
fore varies with the degree of absolute risk aversion. It follows immediately
that if individual J has an everywhere greater degree of absolute risk aver-
sion than individual K, so that A;(c) > Ai(c), the proportional decline in
I’s M(cy, ¢,) is greater. Yet, if both have the same beliefs, we know from
Section 2.1 and Equation (2.1.2) that along the 45° line the Marginal Rates
of Substitution are equal to one another. Therefore, at any point B above the
45° line, the more risk-averse individual has a steeper indifference curve.
Exactly the same logic reveals that below the 45° line the more risk-averse
individual has a flatter indifference curve.

It follows that individual J’s indifference curves must be “curvier” than
K’s (compare the dotted and the solid indifference curves in Figure 3.2).
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So, starting from the same endowment, the set of gambles acceptable to J is
strictly smaller than the acceptable set for K.

We have shown that greater A(c) implies a smaller set of acceptable
gambles. It is easy to verify that the converse is also true. That is, if ] has an
everywhere smaller acceptance set, his degree of absolute risk aversion A;(o)
is greater.

Exercises and Excursions 3.1

1 Well-Behaved Preferences
(A) Does the quadratic utility function exhibit either DARA or IRRA?
(B) An individual with a utility function v(c) such that —v'(c)/v" (¢c) =
o + Bc is said to exhibit linear risk tolerance. For what parameter
values does such an individual exhibit DARA and IRRA?

2 CARA and CRRA Preferences
(A) Show that the utility function v(c) = —e ¢ exhibits CARA with
coefficient of absolute risk aversion A. Show that it is the unique
such function. That is, any other CARA utility function with constant
coefficient of absolute risk aversion equal to A must be of the form
v(c) = —ae™*° + bwhere a > 0 and b are constants.

[HINT: To show uniqueness, integrate the function — M\L\% = Al]

(B) Show that the utility function (i) v(c) = ¢!%, 0 < R < 1 exhibits
CRRA with coefficient of relative risk aversion equal to R and (ii)
v(c) = In ¢ exhibits CRRA with coefficient of relative risk aversion
equal to 1.

3 Preference for Positive Skewness
Suppose two prospects ¢; and ¢, have the same mean and variance but ¢,
has negative and &, positive skewness, that is:

B[(& — )] <0 < E[(G — u)’]

(A) Does the typical lottery, offering just a few large prizes with a high
probability of a small loss, exhibit positive skewness? Demonstrate.

(B) Ignoring moments higher than the third, use Taylor’s expansion
to show that, if v"/(¢) is positive, then positive skewness is indeed
preferred.



3.1 Measures of Risk Aversion 93

(C) Show that decreasing absolute risk aversion is a sufficient condition
for v’ (¢) to be positive.

4 Absolute Risk Aversion and Concavity of the Utility Function
Let A(c) be the degree of absolute risk aversion corresponding to the twice-
differentiable increasing functions vi(c),i=],K.

(A) If individual J’s utility function ¥;(c) can be written as an increasing
twice-differentiable concave function of individual K’s v (c), that
is:

)= flx(), f()>0, f'()<0
show that Ay(e) > Ag(o).
(B) Since v(c) is an increasing function, there is a one-to-one mapping

& v — vsuchthat g(v(c)) = v;(¢). Differentiate twice and rearrange
to establish that:

() , —(©)
ol =2 and ¢ @) = 755 (4(0) = 4]

Hence, establish the converse of (A).

5 Small and Large Gambles

An individual exhibits constant absolute risk aversion of degree A. This
individual will not take the 50-50 gamble that gives a gain of $110 and loss
of $100 (with equal probability).

(A) Whatis smallest value of A (to three decimal places) that is consistent
with this behavior?

Now suppose that this individual is offered another 50~50 gamble with a
gain of $G (greater than $1,100) and a loss of $1,000.

(B) Is there any value G that would make this individual accept this
second gamble?

6 The Risk Premium

Formally, the “risk premium” associated with a risky prospect ¢ is the
amount of income b that an individual is willing to give up in order to
receive the expected value of & with certainty. That is:

Elv(©)] =w(c—b), whereé= E[€]
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(A) If the risk is small so that third and higher-order terms can be
neglected, apply Taylor’s expansion to show that the risk premium
is proportional to the degree of absolute risk aversion.

(B) Let b, be the initial risk premium and let b, be the risk premium
when the individual’s wealth rises by w. That is:

(i) Elv(O)] = v(¢c - by)

(ii) Elv(w+ O] = v(w+ ¢ — by)
If the risk is small, appeal to (A) to establish that, if absolute risk
aversion is decreasing with wealth, then b, > b,.

(C) *Show that this result holds for all risks as long as the degree of
absolute risk aversion is decreasing with wealth.

[aiNT: Define the new utility function #(c) = v(w + ¢). That is, we
can think of the wealth effect as changing the utility function. Given
the assumptions, explain why the utility function #(c) exhibits a lower
degree of risk aversion than v(¢). Then appeal to Exercise 4 to establish that
v(w+ ¢) = f(v (C)), where fis a convex function.]

7 Effect of an Uncertain Increase in Wealth on the Risk Premium

Extending the analysis of Exercise 6, suppose two individuals face the same
income risk ¢ but one has an additional uncertain endowment . Let b, be
the amount the first individual is willing to pay to replace the income risk
with its expected value ¢. Then b, satisfies (i) above. Similarly, let b, be the
amount the second individual is willing to pay to replace the income risk
with its expected value. That is:

(iii) E[v(Ww 4+ ©)] = E[v(# + ¢ — b,)]
Arguing by analogy with Exercise 6, it is tempting to think that, with
decreasing absolute risk aversion, b, > b,. However, consider the following

example. There are three states and each is equally likely. The two risky
prospects are:

w=(w,0,0) and = (;,c+e c—e)

where w > Oand ¢ > e.

(A) Write out Equations (i) and (iii) for this example and hence show
that b, must satisfy:

[v(c+w) —v(c+w—by)] — [v(0) — v(c — by)]
=3[v(c—b)] —v(c— by)]

* Starred questions or portions of questions may be somewhat more difficult.
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(B) Explain why the left-hand side of this expression is negative and
hence why b, > b,. That is, the risk premium may rise as wealth
increases stochastically regardless of whether or not absolute risk
aversion is decreasing (see Machina, 1982).

(C) What is the intuition behind this result?

[1NT: You can also show that b, is a strictly increasing function of w. Then
compare the effect of paying a risk premium on state-1 utility (i) when
w=0and (ii) when wis large.]

3.2 Endowment and Price Effects

This section analyzes the effects of parametric changes in endowments and
in prices upon the individual’s risk-bearing optimum. We first take up the
case where Complete Contingent Markets (CCM) are provided by a full set
of tradable state claims (Section 3.2.1). Equivalent results can, of course, be
obtained under Complete Asset Markets (CAM) —i.e., where the number of
tradable assets with linearly independent return vectors equals the number
of states. Section 3.2.2 then covers incomplete market regimes.

~ 3.2.1 Complete Markets

In accordance with the analysis in Chapter 2, Section 1, under Complete
Contingent Markets the individual chooses among state-claim bundles
(¢ps. .. Cg) 5O as to maximize expected utility U = ) 7 v(c,) subject to
the budget constraint:

s s
D= > pe =W (3.2.1)
s=1 s=1

Ignoring for expositional ease the possibility of a corner solution, the
preferred position C* is the one satisfying the budget constraint and the
Fundamental Theorem of Risk Bearing:

mv'(q)  mv(g) ()
R B R

s

A (3.2.2)

where A can be interpreted as the expected marginal utility of income. This
condition can only be an optimum, of course, if risk aversion (V' (¢) < 0) is
postulated — else a corner solution would always be preferred.

In the two-state diagram of Figure 3.1, consider exogenous shifts in the
individual’s endowment vector, state-claim prices being held constant. The
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effect upon the risk-bearing optimum depends only upon whether or not the
change in endowment alters endowed wealth W in (3.2.1). An endowment
variation leaving W unchanged is illustrated in Figure 3.1 by a shift from
C to C along the same market line LL'. Such a change in the composition
of the endowment does not in any way affect the position of the optimum
vector C*. (On the other hand, this change will of necessity affect the scope
of the transactions undertaken by the individual in order to attain the C*
optimum.) The more interesting class of endowment shifts will be those
in which W does change, so that the individual’s optimum position must
also be revised. (But, it is at least possible that the transactions he must
undertake to attain his new optimum from his new endowment might
remain unchanged.) For concreteness, we will speak in terms of increases
inW.

An increase in wealth at given prices must raise the optimum amount
of contingent consumption claims held in at least one state ¢. Assuming
risk aversion, A must fall in (3.2.2). And, given the separable form of the
expected-utility function, as in Equation (1.4.1), when any ¢, rises in (3.2.2)
then ¢, must increase in each and every other state as well. Thus, in risk-
bearing theory under the von Neumann-Morgenstern postulates, there are
no “inferior-good” state claims; all wealth effects are necessarily “normal.”
Then the analysis of wealth expansion paths in the previous section can
be applied directly. For any pair of states s and ¢ the impact of an increase
in wealth can be depicted essentially as in Figure 3.1. We need only let the
axes be ¢, and c,, and interpret the budget lines LL’ and NN’ as indicating
those combinations of state claims costing the same as the optimal purchase
of state claims at the two wealth levels. It follows directly that under the
assumption of decreasing (increasing) absolute risk aversion, the absolute
difference between any pair of state claim holdings, |¢f — ¢/|, rises (falls)
with wealth. Similarly, under the assumption of decreasing (increasing)
relative risk aversion, if ¢, > c, then the ratio of expenditures P,c, /P, rises
(falls) with wealth.

We next consider the “pure substitution effect,” the impact upon ¢, of a
compensated increase in the price P, of one of the state claims. That is, we
postulate an exogenous increase in P, together with a simultaneous change
in endowment such that expected utility (after the individual revises his
state-claim holdings in accordance with the new price vector) is the same
as before.

Suppose for concreteness that it is Py, the price of claims to consumption
in state 1, that rises. Under our standard assumption of state independence
(so that v'(c,) is independent of consumption in any state ¢ s), and, since
P,,..., P; are all unchanged, the Fundamental Theorem of Risk Bearing
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indicates that if A rises c,, ..., ¢, must fall and vice versa. That is, claims in
all states other than state 1 move together. Since expected utility is required
to remain constant, either ¢; falls and ¢,,. . ., c, all rise or the reverse. But,
if ¢; and P; both were to rise, the marginal utility of income A in Equation
(3.2.3) would fall. Then, to maintain the equality, holdings of all other state
claims would also rise. But this is inconsistent with constant utility. We have
therefore established that the “pure substitution effect” of a price increase is
negative and that all cross-effects are positive. In the language of traditional
theory, state claims must be net substitutes in demand.

To determine the uncompensated effect of an increase in P, on demand,
note that, if ¢, is the individual’s state-s endowment, the Slutsky equation
is:

7 w»nw
dP, ~ 9P,

_. Oc
—(¢,—¢

comp A ’ mv @S\
Since it has been shown that all wealth effects are normal, the two terms
on the right-hand side of this expression are reinforcing as long as the
individual is a net buyer of state-s claims. Informally, the increase in P,
makes a net buyer poorer, and so the income effect is negative. However,
when we consider the effect of a rise in P, upon the demand for state-s claims
¢,» the substitution effect tending to increase ¢, must be weighed against the
income effect that tends to reduce c,. So, state claims may be either gross

substitutes or gross complements in demand.

Exercises and Excursions 3.2.1

1 The Law of Demand for State Claims
(A) Suppose an individual is a net buyer of consumption claims in state
1,ie., ¢f > ¢. If the price of state-1 claims rises, show directly that
the quantity of state-1 claims demanded must fall.

[HINT: Suppose the proposition is false. Then ¢} does not fall and spend-
ing on state-1 claims must rise. Apply the Fundamental Theorem of Risk
Bearing to show that ¢}, . .., ¢! mustalso rise. Hence obtain a contradic-
tion.]

(B) What if the individual is a net seller of state-1 claims?

2 Elastic Own-Demand Curves and Gross m:wmmw:m& in Demand
An individual begins with a fixed nominal wealth W,

(A) Show that if, for each state s, the own-price elasticity of demand
exceeds unity so that total spending on state-s claims falls with a rise
in P,, then all state claims are gross substitutes in demand.
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[HiNT: Use the Fundamental Theorem of Risk Bearing, and the fact that
P; ¢, declines as P, rises, to establish that A must decline.]

(B) If an individual is highly risk averse (so that indifference curves are
essentially L-shaped) explain graphically why consumption in each
state declines as P rises. In this case, does the own-price elasticity of
demand exceed unity?

(C) Show that the own-price elasticity of demand exceeds unity if and
only if relative risk aversion is less than unity.

[FNT: Show that consumption in state s and state 1 must satisfy:
weV (c,) = (Pe)mv' () /P,

Use (A) to establish that, as P, rises, the right-hand side of this equation
declines if and only if own-price elasticity exceeds unity. What happens
to the left-hand side as ¢, declines?]

3.2.2 Incomplete Markets

To illustrate trading in a regime of incomplete markets, in a world of
S > 2 states consider an individual who must balance his portfolio between a
riskless asset and a single risky asset. As before, we want to examine the effect
of changes in endowments or in prices upon the individual’s risk-bearing
optimum.

Let the first asset, with price m\f have the certain return z, while the
second asset, with price P}, pays off z,, dollars in state s (s = 1, 2,..., S).
Equivalently, the return on asset 2 is a random variable Z, with realizations
Z)1> - -+ > Zs. Then, if an individual with utility function v(+) holds g, units
of asset 1 and g, units of asset 2, and if he has no source of income in any
state other than returns from asset holdings, his expected utility is:

Uqy, @) = Ev(qiz + $5)] = Y 7v(qz + g2, (3.2.3)

As long as the individual is risk averse so that v(c) is a concave function,
it can be shown that his derived preferences over assets must be convex
(“bowed toward the origin”) as depicted in Figure 3.3.!

Asset demands must satisfy the budget constraint:

m>§ + ®>§ = %@ + w%mm =W (3.2.4)

! See the first exercise at the end of this section.
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Figure 3.3. Optimal portfolio selection.

Using the budget constraint, we can substitute for g, in (3.2.3) so as to
express expected utility as a function U (g,) of g, only:

_ w pA .

U(g)=E|v wlwlwlws 7 + 4%

%NH A z 2
(e (e w o

For the analysis that follows, it is more convenient to work with net asset
yields per dollar invested (or, for short, simply the yields) rather than with
the asset payoffs or returns.

For any asset a, the yield distribution is definitionally related to the payoff
distribution by:

1+R a (3.2.6)
a

Il

sl

Substituting into (3.2.5) we obtain:
U(qy) = E[v((1 + RO)W + (&, — R)F'q)]

where R; (like z;) is non-stochastic. The marginal increase in expected
utility associated with an increased demand for the risky asset is then:

U'(g,) = B*E[(R, — RV (8)] (3.2.7)
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The random variable ¢ represents contingent consumption over states:
&= (1+R)W + (R, — R))Pq, (3.2.8)
In particular, at g, = 0 we have:
U'(0) = B ((1 + R)W)E[R, — R/]

This is positive if and only if the expected yield on the risky asset exceeds
the yield on the riskless asset.

Thus, no matter how risk averse an individual is, he will always want to
hold some amount of the risky asset ifits expected yield is even slightly higher
than the riskless yield. While this may at first seem puzzling, the explanation
is simple. As long as the risk holding is sufficiently small, the individual’s
final consumption distribution is nearly riskless, and so marginal utilities
are almost the same across states. His behavior toward a very small favorable
gamble is therefore essentially that of a risk-neutral agent.

We now suppose that E[R,] > R, so that the optimal asset holding,
g5, is strictly positive. From (3.2.7) and (3.2.8), q5 satisfies the first-order
condition:

U’ (g3) = BPEL(R, — R)V ()] = 0 (3.2.9)

What happens to demand for the risky asset as wealth increases? From the
previous section, we would anticipate that an individual characterized by
decreasing absolute risk aversion (DARA) should want to hold more of the
risky asset. We now show that this intuition is correct.

The analysis proceeds by asking what happens to the marginal utility
of g, as W increases. At the asset-holding optimum for the initial wealth
level, we have seen, U’ (45) = 0. If the effect of an increase in wealth is to
raise this marginal utility, the new optimum will have to be at a higher level
of g,.

Differentiating (3.2.9) by W and making use of (3.2.8) we obtain:

& ) 1 e
mqu (9,) = BM(1 + R)E[(R, — R)V' (8%)]
= —P(1 + R)E[(R, — ROV (F)A()] (3.2.10)
where A(C) = —v"(£)/v/(€) is the degree of absolute risk aversion.
If A(c)= A is constant, this can be rewritten as:

d - i o /(¢
U (@) = —B'(1+ R)AE[(R, — R)¥ ()]
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From (3.2.9) the expectation is zero. Therefore, under Constant Absolute
Risk Aversion (CARA), demand for the risky asset is independent of wealth.

Under the normal assumption of decreasing A(c), the analysis is only a
bit more complicated. If R, = R, then, from (3.2.8), c = (1 + ?v&\&& SO
A(c) = A((1 + Pv&\.v. IfR, > Ry, cislargerandso A(c) < A((1 + ROW).
Then:

(R, = RDA(c) < (Ry — RDA((1 + R)OW)
If R, < Ry, cis smaller and so A(c) > A((1 + wyvgv. Then again:
(R, — RDA(c) < (R, — R)DA((1 + R)W)

Since this is true for all ¢, it follows from (3.2.10) that:

d . . ) _
N&q\ (¢) > =B*1 + R)E[(R, — RV (EDA((L + R)W)]

= —BM1+ R)A((1 + R)OW)E[(R, — RV (8")]

Again, from (3.2.9), the right-hand side of this inequality is zero. Therefore,
at the initial optimum, an increase in wealth raises the expected marginal
utility of investing in the risky asset and so raises demand for the asset.

Returning to Figure 3.3, it follows that the wealth expansion path in asset
space is upward sloping.? As depicted, it bends forward so that, as wealth
increases, there is a less-than-proportional increase in demand for the risky
asset. You are asked to confirm in an exercise at the end of this section that
this will be the case under Increasing Relative Risk Aversion (IARA).

In conclusion, in a regime of incomplete markets with a single risky
asset, the wealth effect upon the demand for that asset will be positive, zero,
or negative according as absolute risk aversion A(c) is decreasing (DARA),
constant (CARA), or increasing (IARA). So the uncompensated demand
for the risky asset, in the region where the individual is a net buyer, will
surely have negative slope under DARA or CARA but not necessarily so
under TARA. As for the riskless asset, its demand (once again, in the region
where the individual is a net buyer) must always have negative slope — since
the wealth effect is surely positive. (A richer individual will always want to
increase his contingent consumption in each and every state of the world.)

2 It is tempting to generalize from this and conjecture that, with one riskless asset and
several risky assets, total spending on the latter would rise with wealth. However, as Hart
(1975) has shown, special cases can be constructed for which this is not the case. Despite
this, there remains the presumption that wealth and total spending on risky assets will be
positively related.
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Exercises and Excursions 3.2.2

1 Concavity of the Derived Utility Function

Let g = (gy,..., q4) be an individual’s holdings of A assets. In state s the
return on each of these assets is z, = (2. .., z,5) so that the total state-s
income is:

A
q-z,= MU GaZas
a=1

Expected utility is then;

S
Ulg) =) nv(q-z)

s=1

where v is an increasing strictly concave function.

(A) Show that U(q) is also strictly concave, that is, for any pair of vectors
7, q":
UG + (1 =2)g") > Ud) + 1 -MU@G), 0<r<1

(B) Hence confirm that preferences are convex, as depicted in Figure 3.3.

2 Asset Demand with Constant Absolute Risk Aversion
Suppose v(c) = k; — ke 4, iy, ki, > 0. There are M assets, all of which
are risky except asset 1.

(A) Write down the individual’s optimization problem and then sub-
stitute for gq;, the demand for the riskless asset, using the wealth
constraint.

(B) Write down the necessary conditions for an optimal portfolio and
confirm that demands for risky assets are independent of initial
wealth W.

3 Demand for a Risky Asset under Increasing Relative Risk Aversion
Let «, be the proportion of initial wealth invested in the risky asset in the
portfolio problem described in this section.

(A) Obtain an expression for U(xk,), expected utility as a function
of «,, and hence show that under constant relative risk aver-
sion (CRRA) the optimal proportion «; is independent of wealth
(BU(k3)/0W = 0).
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(B) Apply methods similar to those used in Section 3.2 to establish
that, under increasing relative risk aversion (IRRA), k5 declines with
wealth.

(C) What occurs under DRRA?

4 Demand for a Risky Asset with Different Attitudes towards, Risk

(Pratt 1964)
Suppose that individual J is everywhere more risk averse than K, so that (in
accordance with an earlier exercise) Js utility function v;(c) is an increasing
concave transformation of v (¢):

vi(©) = f(()), f()>0, f()<0

(A) Show that, if both individuals face the portfolio-choice problem
described in this section, and the prices of the riskless and risky
assets are both unity, the optimal holding of the risky asset for J,
q), satisfies:

U/(4)) = BEI(R, — R) f' (v (@), (D] =0

where € = (1 +R,)W + (R, — R))Pq).
(B) Confirm that for each possible realization R,:

(R, — R)) f' (% (©)) < (R, — WH:QASAA%VV
Hence show that Qmswv > 0 and therefore that:

D <d

3.3 Changes in the Distribution of Asset Payoffs

The previous section examined the effects of parametric changes in wealth,
or in the prices of state claims or of assets, upon the risk-bearing optimum
of the individual. For example, we showed that, under a regime of Complete
Contingent Markets (CCM), if the individual was previously at an interior
optimum, then an increase in wealth would increase his holdings of each and
every state claim. Owing to this positive wealth effect, the uncompensated
demand curve for any contingent claim is negatively sloped in the region
where the individual is a net buyer. An analogous conclusion evidently
holds for Complete Asset Markets (CAM). But, with incomplete markets,
the uncompensated demand for an asset on the part of a net buyer is
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unambiguously negatively sloped only if the individual is characterized by
decreasing or constant absolute risk aversion (DARA or CARA).

This section represents a shift in point of view. Here the parametric
changes impacting upon the individual take the form of shifts in the distri-
bution of the contingent returns or payoffs z,, of some particular asset a. Let
us reconsider the example of the previous section, in which an individual
chooses to hold g, units of the riskless asset with payoff z, and g, units of the
risky asset with state sreturn z, for s=1, ..., S. For simplicity, assume that
the endowment is entirely in units of the riskless asset. Then, with endowed
wealth W = P, the utility-maximizing portfolio choice (g, and g,) is the
solution to:

S
Mex {U(q, ) = ) 7v(@7 + 420 [Plat+ Ba = W
12

s=1

For simplicity, let P* = P = 1 so that the budget constraint becomes
¢ + g, = W. Then if the individual purchases g, units of the risky asset,
his final state-s consumption is:

6= Q\M\ — Bz + gz = <.<NH + (2, — 7) (3.3.1)

As a first illustration of a parametric change, suppose the return to the
risky asset 2 declines in one state of the world but is otherwise unaltered. (In
the market as a whole, such a shift would tend to change &ﬁ or more gen-
erally, the entire pattern of asset prices — a topic to be covered in Chapter 4.
But in this chapter we are continuing to focus upon a single individual so
that asset prices are assumed constant.) It is tempting to conclude that the
individual would then respond by investing less in the risky asset. However,
this intuitively appealing argument is not in general true!

Continuing to assume a single riskless and a single risky asset, suppose
there are only two states (S = 2) as depicted in Figure 3.4. (This is therefore
a situation of CAM.) Since the individual’s endowment holding consists
only of the riskless asset 1, in state-claim space the endowment point is
C = (Wz,, Wz,) on the 45° certainty line. If the individual invests every-
thing in the risky asset instead (so that g, = W), his income claims are
represented by the point R = (Wz,;, Wz,,). Before the postulated para-
metric change occurs, then, the set of feasible contingent incomes consists
of all the weighted averages of C and R yielding non-negative consumptions
in both states. Geometrically, this is the line LL’ through C and R, extending
to the axes (since short sales are allowed within the first quadrant). Along
this line the optimum position is the tangency at C*.
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Figure 3.4. Demand for a risky asset.

As depicted, z,, > z,;. That is, the risky asset yields more in state 2 than
in state 1. Now suppose that the state-2 yield of the risky asset declines,
from z), to z,. This is equivalent, from the individual’s point of view,
to a rise in the effective price P, of state-2 claims. On the basis of the
discussion in the preceding Section 3.2.1, we know that for a net buyer of the
risky asset there will be a substitution effect away from state-2 consumption
and toward state-1 consumption, together with an income effect tending to
reduce consumption in both states. So the result is unambiguous that at
the new risk-bearing optimum there will be a reduction of consumption
in state 2, i.e, that ¢, < ¢. Nevertheless, it does not necessarily follow that
there will be a reduction in purchases of the risky asset. Since each unit of
asset 2 now yields fewer units of state-2 return (2,, < z,,) than before, it
may be the case that the individual would have to buy more units of asset 2
even to generate the reduced quantity of ¢, that he wants to consume.

In Figure 3.4, note that the postulated shift in the risky asset’s payoff
does not affect the endowment position C (which consists of holdings of
the riskless asset only). So the feasible consumption vectors in Figure 3.4 are
now the points on the flatter market line NN’ through C and R. Also, it
follows from (3.3.1) that, for any given portfolio (g,, g,), the shift in z,,
leaves income in state 1 unchanged. Geometrically, the new income vector
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generated by any portfolio lies vertically below the old. In particular, R lies
vertically below R and the state-income yield vector C* corresponding to
the original asset-holding optimum becomes D.

Whether the individual buys more or less of the risky asset then hinges
upon whether his indifference-curve tangency lies to the northwest or south-
east of D along the line NN'. Specifically, if (as shown in the diagram) the
new risk-bearing optimum C lies northwest of D, there will be increased
purchases of asset 2(g, > g3) even though there is decreased contingent con-
sumptionin the event of state 2 occurring (&, < ¢). As an obvious corollary,
whenever this occurs there will also be a reduction in state-1 consumption.
Thus, the reduced state-2 yield of the risky asset “spills over” into reduced
consumption in both states. On the other hand, should the new optimum
C lie southeast of C*, there will be reduced purchases of asset 2 (as well as
reduced consumption of state 2), hence increased holdings of asset 1 and
increased consumption in state 1.

The more rapidly the slope of the indifference curve changes, the smaller
is the substitution effect away from c,-consumption. Hence the more likely
it is that the wealth effect of the implicit increase in P, dominates, so that the
individual’s purchase of the risky asset increases. Referring back to Section
3.1 we see that the curvature of the indifference curve is greater the larger
is the individual’s aversion to risk. So the seemingly paradoxical result, that
demand for the risky asset (after a decline of z,, to 2,,) can increase, is more
likely if an individual exhibits a high degree of risk aversion. (From another
point of view, however, this is not paradoxical at all. The shift from z,, to
%), has made the risky asset “less risky” — has reduced the gap between z,,
and z,; —which has to some extent increased its attractiveness for highly
risk-averse individuals.)

In conclusion, in a simplified regime of two tradable assets (one risky,
the other riskless) and two states of the world, a reduction in one of the
contingent payoffs z,, for the risky asset is equivalent, from the individual’s
point of view, to an increase in the price P, of the corresponding state claim.
It follows that at the new optimum the individual will reduce his contingent
consumption ¢, in that state of the world. But he will not necessarily reduce
his portfolio holding of the risky asset. And, in particular, if z,, declines for
the higher-yielding state, a highly risk-averse individual’s optimal holding
of the risky asset may actually increase — since that asset has in effect become
“less risky.”

Exercise 1 below proves a related proposition, that if z,, falls then the
demand for the risky asset will decline if the degree of relative risk aversion,
R, is not greater than unity.
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Exercises and Excursions 3.3

1 State Returns and Relative Risk Aversion

Choosing units so that m> = ®> = 1, a risk-averse individual is endowed
with W units of a riskless asset 1 returning z, in each state. He can also
make purchases of a risky asset 2 whose payoff is z,, in state s. Initially his
optimum holding of the risky asset is positive. Show that if the return z,; on
asset 2 rises in some state s, and if the individual’s constant relative aversion
to risk CRRA is no greater than unity, then his optimal holding of this asset
will rise.

2 Parametric Change Lowering Mean and Raising Variance of Asset Payoff
An individual with an initial wealth of $50 must choose a portfolio of two
assets, both of which have a price of $50. The first asset is riskless and pays
off $50 in each of the two possible states. The second returns z,, in state s,
for s = 1, 2. The probability of state 1 is 7.

(A) If the individual splits his wealth equally between the two assets,
confirm the correctness of the following table, where the risky asset
returns may have the form of , 8, or y.

(B) Suppose the individual has a utility function:

where A = _fw% (and hence ¢°4 = 4). Confirm that the individual’s
preference ranking of the three risky assets is y > o > B.

Risky asset Final

returns Probability consumption

(25 %) of state 1 (¢ ) E(o) o*(c)
p (20,80) 1/5 (35,65) 59 144
B (38,98) 1/2 (44,74) 59 225
y (30,90) 1/3 (40,70) 60 200

(C) With preferences as given in (B) show that in each case the individ-
ual’s optimal decision is to spend an equal amount on each of the
two assets.
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3.4 Stochastic Dominance

From the exercises at the end of Section 3.3 it is clear that, to derive strong
qualitative predictions as to asset holdings in response to parametric changes
in payoff distributions, we must introduce additional restrictions — either
upon probability distributions or upon preferences. In the following section
we describe some restrictions that do have general implications.

3.4.1 Comparison of Different Consumption Prospects

This section adopts a somewhat different approach to the risk-bearing deci-
sion. Instead of considering the specific effects of changes in wealth, in state-
claim prices, in asset payoffs, etc., we ask under what general conditions it is
possible to assert that one prospect or state-distributed consumption vec-
tor is preferred over another. We want to be able to answer this question
by comparing the probability distributions of consumption alone, while
calling only upon standard properties of individuals’ preferences — to wit,
positive marginal utility of income (v/(c) > 0) and risk aversion (+”(c) < 0).
In this section it will be more convenient to deal with continuous distribu-
tions, equivalent to assuming a continuum rather than a finite or countably
infinite number of states of the world. ,

Let ¢, and ¢, be two consumption prospects and suppose that an indi-
vidual with utility function v(c) prefers the former. That is:

Elv(c)] > E[v(5)] (3.4.1)
We can write the two cumulative distribution functions as:

F(c) = Prob[¢ < ]

G(c) = Prob[¢, < ¢]

Let us assume that both ¢; and ¢, lie between the limits « and 8 and that both
Fand Gare continuously differentiable. Then for the two distributions thete
are associated density functions, F'(c) and G'(c). We can rewrite (3.4.1) as:

B B
mTAm: M\, i&wg&&nv\ v(c)G (c)dc MWT\Q: (3.4.2)

o

In general, two individuals with different preferences will have different
rankings of these two consumption prospects. However, in some cases it
is possible to obtain an ordering that holds for all individuals regardless
of their preferences (subject only to the standard properties of positive
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Figure 3.5. First- and second-order stochastic dominance.

marginal utility and risk aversion). In other words, we want to see how
far we can get looking only at the probability distributions. When a choice
between two prospects can be made using this information alone, it will be
said that one distribution stochastically dominates the other.

Definition 3.1: First-order stochastic dominance

If, for all ¢, F(¢) < G(¢) and the inequality is strict over some interval, the
distribution F exhibits first-order stochastic dominance over G.
This definition leads immediately to:

Ranking Theorem I
For all increasing, piecewise differentiable functions ¥(c), if F exhibits
first-order stochastic dominance over G, then:

m?az > m?@_

Consequently, if the prospect or distribution F is first-order stochastically
dominant over G, then any individual with positive marginal utility of
income will prefer Fto G.

The property of the distribution functions leading to first-order dom-
inance is evident from inspection of Figure 3.5. Here F and H are both
first-order stochastically dominant over G but neither Fnor H is first-order
dominant over the other. Diagrammatically, the F and H curves both lie
always below (and so also to the right of) G, but the Fand H curves cross.

Following our usual practice, we will emphasize the intuitive meaning
of this condition. (More rigorous statements are left as exercises.) First,
compare the Fand G curves. F being always below G means that, for each
and every income level ¢°® between « and B, the cumulative probability that
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cis smaller than that income, that ¢ < ¢, is greater for G than for F. Thus, no
matter what level of income we Jook at between these limits, G always has a
greater probability mass in the lower tail than does F. Alternatively, we could
express this in terms of the income associated with any given probability
level. For example, a lower-tail cumulative probability of, say, 0.5 occurs
at a higher income for F than for G. In other words, the distribution F
has a higher median (50th percentile) income than G. And, similarly, each
and every percentile of the F distribution is at a greater income than the
corresponding percentile of the G distribution. So we can confidently say
(provided only that the marginal utility of income v/(c) is always positive)
that F will surely be preferred. We cannot make a similar comparison of F
and H, however. Since F and H cross, comparisons of probability masses
in the lower tail (or of income levels associated with any percentile of
probability) will not always point the same way.

Only under quite stringent conditions will one distribution ever exhibit
first-order stochastic dominance over another. So Ranking Theorem I is
not very far reaching. This is not surprising, because only the first stan-
dard property of the utility function, that v/(¢) > 0, has been exploited. A
more powerful theorem, involving the concept of second-order stochastic
dominance, also makes use of the risk-aversion property — v (c) < 0.

Definition 3.2: Second-order stochastic dominance
Ifforall ¢

\.n F(r)dr M\n H(r)dr (3.4.3)

with the inequality holding strictly over some part of the range, then the
distribution F exhibits second-order stochastic dominance over H.

Geometrically, Fis second-order dominant over H if, over every interval
[, c], the area under F(c) is never greater (and sometimes smaller) than
the corresponding area under H(c). This is equivalent, of course, to the
diagonally shaded area in Figure 3.5 being greater than the vertically shaded
region.

Definition 3.2 leads directly to:

Ranking Theorem IT

For all increasing concave twice-piecewise-differentiable functions #(c),

the concavity being strict somewhere, if Fexhibits second-order stochastic
dominance over H, then:

Elv(c)] > E[v(c)]
F H
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Figure 3.6. Cumulative distribution and expected value.

The intuitive interpretation of second-order stochastic dominance paral-
lels the interpretation of first-order stochastic dominance. As a first step, it
is useful to define F (v) to be the cumulative distribution function for final
utility v, when c has the distribution F(c). Note then that:

m?@é = Prob [# < v(c)] = Prob [v(¢) < v(c)] = Prob[¢ < ¢] = F(c)

Thatis, at the specific value c® located at any given percentile of the distribu-
tion of Z, the corresponding v(c°) is at the same percentile of the distribution
of v. Similarly, we define H(¥) to be the cumulative distribution function
for v when chas the distribution H(c).

The key point to appreciate is that, as pictured by the dotted region in
Figure 3.6, the area lying to the left of the cumulative distribution Ew)
represents the expected value of v — that is, expected utility U= E[v(¢)] -
under the distribution F. To see this, define p = F(v) to be the cumulative
probability, so that:

dp=F'(v)dv
The mean of F is, of course, defined by:
e 1 L,
mgu\ EHAS%\H\ f:un\ FY(p)dp
v(a) 0 0

Geometrically, this corresponds to finding the dotted area by integrating
along the vertical rather than the horizontal axis in Figure 3.6. Equivalently,
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the expected value of v is the area of the rectangle less the area under F).
That is:

v(B)
W =v@) - [y
v(e)
Then, to compare two distributions F and H we note that;
i wp) .
E@ - Eb@) =~ [ 1F0) - Aw)ldy
F H v(e)

That is, the difference in the expected utilities of distributions Fand His just
the difference in areas under the implied cumulative distribution functions
Fand H.

Finally, we can rewrite this integral as:

N A
BIv®] - Blv@] = - [ (Fv(e - Ficvien Grae

[

B
I\ [F(c) — H(c)]V (c)dc

Returning now to Figure 3.5 and looking at the F(c) and H(c) probabil-
ity distributions, remember that the condition for second-order stochastic
dominance requires that the diagonally shaded area (representing the supe-
riority of F over H at low values of ¢) exceed the vertically shaded area
(representing the superiority of H over Fat high values of ¢). But, as we have
seen:

c

E[W(®)] - E[v()] = \ [H(0) - POV (O)de
F H

: B
I\H [F(c) — H(c)]V (c)dc

~

As long as v(c) is concave so that v'(c) is declining, v/(c) > v/(¢) forc < ¢
and v'(¢) < v/(¢) for ¢ > ¢. It follows that:

EV@®] - Ev@] > [ 1HEO - FOI @de
8
I\,. [F(c) — H()] (&)dc

B
— V@ \ [H(c) — F(o)lde
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Figure 3.7. Multiple crossings.

From the definition of second-order stochastic dominance, the last integral
is positive, and so expected utility is indeed higher under F.

With multiple crossings of F and H the argument is only slightly more
complicated. Consider the case of three crossings as in Figure 3.7. Arguing
exactly as above, the concavity of ¥(c) implies that:

\m (H = F)Y(c)dc > V() \m (H — F)dc (3.4.4)
and |

B B
\ (H - F)Y(¢)dc > i?t\ (H — F)dc (3.4.5)

Second-order stochastic dominance implies that the integral on the right-
hand side of (3.4.4) is positive. Therefore, from the concavity of v(c):

5 B
\ (H — F)V (c)dc > tﬁv\ (H — F)dc (3.4.6)
o o
Adding (3.4.5) and (3.4.6) we have, at last:

B B
mT\Am: IMTAmz = \ (H - F)V(c)dc > iﬁv\Q (H — F)dc

o
Again, given second-order stochastic dominance, the last integral is positive
and so Fis the preferred distribution.

The limiting case where the two distributions have the same mean, but F
exhibits second-order stochastic dominance over H, represents a formaliza-
tion of the idea that one random variable can be more risky than another.
This is illustrated in Figure 3.5 where the diagonally shaded region has the
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Figure 3.8. Density functions and spread.

same area as the vertically shaded region. Note that the slope of H is greater
than the slope of F at both tails of the distribution, while F has a greater
slope toward the middle.

From Figure 3.5 we can map the density functions F’(c) and H'(c). These
are depicted in Figure 3.8. As already noted, H'(c) > F’(c) toward the ends
of the income distribution while F'(¢) > H’(c) toward the middle. Then
H must have more probability weight in both tails than F. This case, in
which probability weight is shifted toward the tails but in such a way that
the old and new distributions cross only once, is often referred to as a simple
mean-preserving spread (Rothschild and Stiglitz, 1971).

As is intuitively clear from Figure 3.8, in the special case where the
distribution H represents a simple mean-preserving spread of F it must be
that H has higher variance. However, a more powerful result (which is not
limited to the single-crossing case) also holds: if Fand Hhave the same mean
but F exhibits second-order stochastic dominance over H, then H must have
higher variance. This is a direct implication of the following proposition,
which follows directly from Ranking Theorem II:

Ranking Theorem IIT

For all concave functions v(c), the concavity being strict somewhere,
if F and H have the same mean and F exhibits second-order stochastic
dominance over H then:

E[v(c)] > E[v(O)]
F H

Notice that we need not necessarily interpret v(c) as a utility function here
(or, for that matter, in the preceding Ranking Theorems). Specifically, we
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can choose here to let v(¢) = — (¢ — w)?, which is, of course, concave in the
sense required. Then:

~E[@E-w] > —E[@E-w]

That is:
2 2

—07 > —0p
So if F and H have the same mean u and F is second-order stochastically
dominant, then F has smaller variance.

Thinking now of v(c) as a utility function, we have seen that (i) if F is
second-order stochastically dominant over H, then F is strictly preferred,
and (ii) if in addition F and H have the same mean, then F has smaller
variance. But it does not in general follow that, if two distributions ¢, and
&, have the same mean and ¢, has smaller variance, then ¢; is prefetred, for
¢, might not be stochastically dominant.

Example:

~ 0.4, with probability 1/2
T.H with probability 1/2
0.25, with probability 1/9
¢, =11,  with probability 7/9
14,  with probability 1/9

It is readily confirmed that E[,] = E[¢,] and var[¢,] < var[¢,]. However,
with ¥(c) = In ¢, expected utility is negative in the first case and zero in the
second, thatis, E[v(G,)] > E[v(¢,)] so that the second prospect is preferred.
It is left to the reader to graph the cumulative distribution functions for
¢, and ¢, and hence to confirm that neither stochastically dominates the
other. O

Exercises and Excursions 3.4.1

1 First-Order Stochastic Dominance
For any pair of distributions F and H and differentiable function v(c),

integrate by parts to establish that:
B
.m?@:lm:@u\%:Ea:mézﬁ

o

B
- \ V(OLH () - F(0))de

Hence establish Ranking Theorem I.
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2 Second-Order Stochastic Dominance
Appealing to Exercise 1, and integrating by parts a second time, establish
Ranking Theorem II.

3 Mean-Preserving Spreads
Use your answer to Question 2 to establish Ranking Theorem III.

4 Stochastic Dominance as a Necessary Condition
(A) In the text it was shown that, if G(c) = F(c), then for any non-
decreasing function v(c):

E[v(©] > E[¥(@)]
F G
By considering the example:

-1, c<r
0, c¢>r

v(c) = ”

establish that, if the condition for first-order stochastic dominance
does not hold, there are some non-decreasing utility functions for
which the ranking is reversed. That is, for the entire class of non-
decreasing utility functions to rank F over G (at least weakly), first-
order stochastic dominance is a necessary condition.

(B) By considering the example:

c—t, ¢c<r
0, c>r

v(c) = *

establish the necessity of the second-order stochastic dominance
condition (3.4.3) for Ranking Theorem III to hold for all concave
functions.

3.4.2 Responding to Increased Risk*

We conclude this chapter by asking how a change in the probability dis-
tribution of income that satisfies the conditions of second-order stochastic
dominance affects decisions.

Let ¢ = c(x, 6) be the consequence of taking action x when some exoge-
nous variable takes on the value 6. Moreover, suppose that this exogenous

* Starred sections represent more difficult or specialized materials that can be omitted
without significant loss of continuity.
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variable is state dependent. Then, given the underlying beliefs about the
likelihood of different states and the way 6 varies across states, there is some
derived distribution function for 8, F, (). For expositional convenience let
0 be distributed continuously. Then, one can write the expected utility of
taking action x as:

OO
SG&H \ in?mvvm\ﬁmv%
-0
A simple illustration is provided by the portfolio choice problem analyzed
in Section 3.2. Suppose an individual invests x in a risky asset with gross
yield of 1 + 6 per dollar and his remaining wealth W — x in a riskless asset
returning 1 per dollar. His final income is:

c(x,0)=W—-x)1+x(1+6)=W +x0 (3.4.7)

The question we wish to address is how the individual’s portfolio decision
is affected by a change in the distribution of the random variable 6.

Returning to the general formulation, suppose that, with distribution
function F,, expected utility is maximized by taking action x{. That is, the
rate at which expected utility changes with x:

\ OO ®< \
E@u\l:?@m@%
|8mx
is zero at x = x{.

Suppose next that there is a change in the way 6 varies with the underlying
state of nature. In particular, suppose that the old and new distribution
functions for 6, F, and F,, have the same mean and that F; exhibits second-
order stochastic dominance over F,.

From Ranking Theorem III it follows immediately that, if dv/9x is a
strictly concave function of 6, then:

\Iﬁ wm |\
Ux) = m Tx?? mi > m _”mxﬁx, SL = U (%)

In particular, this inequality holds at x}'. Therefore:
0= U/(x}) > Uy (xf)

It follows that the individual can increase his expected utility by choosing
an action x, < x}. Thus, assuming U, (x) has a unique turning point under
the new (second-order dominated) probability distribution of returns on
the risky asset, the individual will reduce his risky investment.
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Note that the requirement that v/dx should be concave introduces a
restriction on the third derivative of the utility function v. As we shall see in
the exercises, this may be satisfied by imposing plausible restrictions on the
way absolute and relative risk aversion vary with wealth.

Developing the arguments above only a little bit more yields the following
result:

Optimal Response Theorem I (Rothschild and Stiglitz 1971):

Suppose that the distribution functions F, (¢) and F, () have the same
mean and F; exhibits second-order stochastic dominance over F,. Let
x; be the solution to:
[o/e]
Max Uj(x) = \ v(c(x, O)E(0)d0, i=1,2
-0
Suppose further that x¥ is the unique turning point of U,(x). Then if

dv/0dx is a concave (convex) function of 9, x} is greater than (less than)
*

x5

While this proposition has been widely used in attempts to analyze the
effects of mean-preserving increases in risk, results have been somewhat
limited. The analysis of Section 3.3 suggests the reason. Mean-preserving
increases in risk have both income and substitution effects, and these are
often offsetting.

In an effort to overcome this problem, Diamond and Stiglitz suggested
considering the effect of a change to a more risky distribution of returns
that keeps expected utility constant. To be precise, suppose that the new
distribution leaves expected utility constant at the old optimum x* but
the new distribution of wutility is more risky in the sense of second-order
stochastic dominance. The following theorem provides conditions to sign
the effect of such a mean-preserving increase in risk.

Optimal Response Theorem II (Diamond and Stiglitz, 1974)

Suppose that ¢ € [«, B] has a continuously differentiable distribution
function F(c). Suppose, furthermore, that the solution x* of the fol-
lowing problem is the unique turning point of Ug(x):

p 9
Max Up (x) = \ v(x, 0)F'(c)dc, where oo
x p dc
Then if the distribution shifts from Fto G in such a way that, at x =

x*, expected utility is unchanged but the new distribution of utility is
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more risky (in the sense of second-order stochastic dominance), the
new optimum x** is less than x* if:

Moreover, if the last inequality is reversed, x** exceeds x*.

The derivation of this result is only a bit more complicated than that of
Optimal Response Theorem I. The interested reader will find a sketch of the
proof in the exercises at the end of this section. From these exercises it will
become clear that significantly stronger results are possible using Optimal
Response Theorem II.

Exercises and Excursions 3.4.2

1 Optimal Responses to a Change in Risk
(A) InOptimal Response TheoremI, suppose that the assumption that F;
and F, have the same mean is replaced by the assumption that 9v/9x
is an increasing function of 6. Show that the theorem continues to
hold.
(B) What conclusions can be drawn if dv/dx is a convex function of 62

2 Life-Cycle Saving with Future Income Uncertainty (Leland, 1968)
(A) Show that a sufficient condition for v'”(c) > 0 is that absolute risk
aversion, A(c) = —v"(c)/v' (), is decreasing with wealth.
(B) An individual with current income I, and uncertain future income
I, can earn 1 + r dollars on each dollar saved. His life-cycle utility is
given by the intertemporally additive utility function:

v(co, €1) = V(o) + v (cp)

where ¢, is current consumption and ¢, is future consumption. Show
that, if the distribution of future income becomes less favorable in
%mmgmmOmmono:m-oaﬂ,mﬁo%mmanaoBEw:nmmsmm&:SvVov

the optimal level of savings increases.

3 Portfolio Choice
(A) Show that:

V(A +ux)
V(A4 px)
where A(c) = —v"(c)/v(c) and R(c) = —cvV"(c)/V ().

hx —R(O + ux) +AA + px)
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(B)

(©
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An individual with wealth W invests x in a risky asset with a return
of z, and the rest of his wealth in a riskless asset with yield z, = 1.

If A(c) is decreasing and R(c) is less than unity and non-decreasing,
apply Optimal Response Theorem I to establish the impact on x
of a change in the distribution of risky returns that is strictly less
favorable in the sense of second-order stochastic dominance.

Analyze also the effect of a mean-utility-preserving increase in risk
under the assumptions of decreasing absolute and increasing relative
risk aversion.

4 Mean-Utility-Preserving Increase in Risk

(A)

(B)

(©

(D)

(E)

Under the hypothesis of Optimal Response Theorem II, let ¢ =
@ (x, v) be the inverse of the mapping V = v(x, ¢), thatis, ¢ (x, v) =
v~ (x, V). Furthermore, let F (V) be the implied distribution of V.
Confirm that;

Ve 9y ~
Up(x) = \ —(x, ¢ (x, V)F'(V)dV
v, ax
Let x* be the optimum under the distribution F. Write the corre-
sponding expression for a new distribution G that has the property
that, at x = x*, G(V) isa mean-preserving spread of E(V).
Let x* be the optimum under the new distribution G. Appeal
to Ranking Theorem II to show that x** is less than x* if
av(x*, ¢p(x*, V))/0xis a concave function of V.
Define y(V)) = ov(x, ¢(x, V))/0x, L.e.:

v
y(v(x, ) = .mumcp c)

Differentiate by ¢ and hence show that y'(V) can be expressed as
follows:

ov
3.0

Differentiate this expression again and hence establish Optimal
Response Theorem II.

, _ av
y(v(ix, ¢)) = P In

5 Owner-Operated Firms Facing Demand Uncertainty (Sandmo, 1971)

Each firm in an industry is owned and operated by a single agent whose best
alternative is working elsewhere at wage w. In the production of q units of
output, the cost to firm i of all other inputs, C(q), is an increasing convex
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function, with C(0) = 0. Each owner must choose his output level g* before
knowing the final product price p. There is free entry into, and exit from,
the industry.

(A) If owners are risk neutral, show that the equilibrium expected price
denoted as p, must satisfy:

i) p,=C(q" () p,g" —C(g")—w=0

(B) If owners are risk averse show, that the equilibrium expected price
p, exceeds p,.

(C) Suppose that initially there is no uncertainty so that the equilibrium
priceis p, and output per firmis g*. If prices become uncertain, apply
Optimal Response Theorem II to establish that the output of firms
remaining in the industry will decline if the following expression is
a decreasing function of p:

Vi(pg —~ C(@)
v'(pq — C(q))
(D) Show that, for all g > 0, gC’'(g) > C'(q). Hence establish that, under

the assumptions of decreasing absolute and non-decreasing relative
risk aversion, the equilibrium output per firm declines.

¢ (4, p) = [pq— qC (9)]

[HINT: Appeal to Optimal Response Theorem II and (A) of Exercise 3.]**

SUGGESTIONS FOR FURTHER READING: For an in-depth exposition of
risk-aversion, including an extension to inter-temporal models, see Gollier
(2001).
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Market Equilibrium under Uncertainty

We have so far considered only the decisions of the individual. In this
chapter the level of analysis shifts to market interactions and the conditions
of equilibrium. The firm will be introduced as an agency of individuals
engaged in the process of production. We continue to deal only with event
uncertainty under “perfect markets” — ruling out market uncertainty with
its characteristic attendant phenomena of search and of trading at non-
clearing prices. But account will be taken of possibly incomplete regimes
of markets; i.e., we will not always assume that each distinct state claim is,
directly or indirectly, tradable. In Section 4.3, we build on Section 2.2 to
flesh out the capital asset pricing model, which is the cornerstone of asset
pricing in financial economics.

4.1 Market Equilibrium in Pure Exchange

In the regime of Complete Contingent Markets (CCM), where claims to a

generalized consumption good Cunder each and every state contingency are

separately tradable, as shown in Chapter 2, Equation (2.1.6), the individual’s

optimum position can be expressed as the Fundamental Theorem of Risk
Bearing:

v (¢p) _ 7,V (&) - v (¢,) (4.1.1)

P B P

s

(This form of the theorem is valid only for interior solutions.') At this
point, we call attention to the fact that, in principle at least, all of the
following elements may differ among the various individuals j=1,..., J:

1 Unless otherwise indicated, it will be assumed throughout that interior (and not corner)
solutions apply for all economic agents.

123
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the probability beliefs 77/, the consumption quantities ¢/, and the utility
functions v;(c/). However, the prices P, will be the same for all market
participants.

In moving from individual optimization to market equilibrium under
CCM, Equation (4.1.1) must hold for each and every market participant.
It follows immediately that, for any two individuals j and k, and comparing
state 1 with any other state s:

a:\w?\v 1 m kv (ck)

—_—— = S S (4.1.2)
k k

w&&?& B mivi(e)

Thus, for each and every individual (at an interior solution), the price

ratio between any two state claims will equal the ratio of expected marginal

utility of incomes in the two states. As an evident corollary, if in addition

individuals jand k have the same beliefs, then for all s:

%(d)

vi(et)

In words: for any individuals j and k, the ratio of j’s marginal utility of
contingent income to K’s corresponding marginal utility is the same over all
states.

The other conditions required for equilibrium represent market clearing.
In equilibrium under pure exchange, for each and every traded state claim
the sum of the desired holdings (demand quantities) must equal the sum of
the endowment amounts (supply quantities):

=& (aconstant)

Example 4.1: In a world of two equally probable states (7, = 7, = 1/2),
suppose there are two equally numerous types of individuals: j and k. The
j types have endowment C/ = Am\ , mm. ) = (40, 40) while the k types have
endowment Ck= (20, 140). The respective utility functions are v;=1In ¢
and v, = (%), Find the equilibrium price ratio and the optimum risky

consumption vectors C/ and C,

Answer: One way of solving the system is to consider the respective
demands for ¢, claims as a function of the unknown P,. For the type j
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individuals, the Fundamental Theorem of Risk Bearing can be expressed
as:

0.5(1/¢))  0.5(1/d)

) )
or:

Pl = B
And the budget equation is:

Pl + B = 40P, + 40P,
Setting P, = 1 as numeraire, the type j demand for state 2 claims becomes:
¢/ = 40(1 + B)/2P,
An analogous development for the type k individuals leads to:
¢ = (20 + 140P)/ (B + B)

Making use of the clearing condition that &. + k= 40 + 140 = 180, it may
be verified that the equilibrium price is P, = 1/2. The associated optimal
consumption vectors are C/ = (30, 60) and C* = (30, 120). O

Instead of contingent-claims trading, more generally there might be trading
of assets (a = 1,..., A) at prices P?, where a unit of each asset represents
a fixed bundle of state-claim payoffs z,,. The corresponding Risk-Bearing
Theorem for Asset Markets is the individual optimum condition for hold-
ings of assets q,, applicable under regimes of Complete Asset Markets

(CAM) and even for incomplete asset-market regimes:
Mﬁ.ma\AhmvNﬁ Mu.nﬁ\Ahmvam M.d‘mﬁ\ﬁhmvam
s s s
.@M} = ‘®> ”._..”.I!n"|'.o.|«|l|~U\\w y ﬁm"MQﬂN&m

2 Asindicated in Chapter 2, an asset-market regime is “complete” if the set of available assets
a=1,..., A allows each individual to achieve the same contingent consumption vector
as under CCM. A necessary, though not sufficient, condition for complete asset markets
iSA=S.
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Atan interior optimum, this equation will hold in asset-market equilibrium
for each and every economic agent. The equilibrium price ratio between
asset 1 and asset a will be such that, for any pair of individuals j and k:
Jo (o kot ( ok
Mﬁ.m &.A@vNﬁ ~u> Muﬂm &%ﬁmvNﬁ
s s

a

Muﬁm.&.?bwr B w]_\, B Miﬂ&%&ﬂv?
s s

Notice once again that not only the asset prices P* are taken as given and
thus the same for all individuals, but also the asset state payoffs z,.. That
is, there is no disagreement among individuals about what each asset will
return in each and every state. So, the only possible disagreement allowed
for in this simple model concerns the probabilities of the different states.?

Finally, of course, in asset-market equilibrium there must also be market
clearing:

] ]
MQMHM&, fora=1,...,A
j=1 j=1

Example 4.2: Under the conditions of the previous example, imagine now
that the same endowments are expressed as asset holdings g,.. Thus, suppose
the type jendowment consists of 40 units of asset 1 with state-return vector
(211> 213) = (1, 1) while K's endowment consists of 20 units of asset 2 with
return vector (2, zy,) = (1, 7). Find the equilibrium asset price ratio PA/ P}
and the associated optimum asset holdings 4.

Answer: This is evidently a CAM regime. Using the Risk-Bearing Theorem
for Asset Markets from Section 2.1.2 of Chapter 2, and since ¢, = % _q,z,,
following the method of the previous example we could develop the parties’
demands for one of the assets as a function of its unknown price. An
easier analysis suffices here, however, since we know that under the CAM
condition the same consumption vectors can be attained as under the CCM
assumption of the previous example. We also know from the development
in Chapter 2 that the asset prices P* are related to the contingent-claim

prices P, by:
B =) aPb
s

* This is, of course, a very drastic idealization of individuals’ portfolio-holding choice
situations in the real world.
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Figure 4.1. Risk sharing via state-claim trading.

Letting the state-claim price P; = 1 be the numeraire as before, it follows
immediately that P* = 1(1) + 1(0.5) = 1.5, while B* = 1(1) + 7(0.5) =
4.5. And knowing the optimal ¢, for each type of individual, the equations
¢, =%,4,7,, can be inverted, leading to the optimum asset holdings Q=
@, 3) = (25, 5) while Q% = (&, §5) = (15, 15). 0

4.1.1 Application to Share Cropping

In an agricultural situation, assume there are two decision makers: landlord
[ owns land but no labor, while worker w owns labor but no land. There
are two states of the world: s = 1 (loss state, or “bad weather”) versus s = 2
(non-loss state, or “good weather”). The respective agreed probabilities are
mandm, =1 — 7. For the sake of the argument, assume that all productive
decisions have been made so that the only choices remaining are how to
share the contingent outputs and the associated risks.

Figure 4.1 is an Edgeworth box, on axes representing ¢, (income in the
loss state) and ¢, (income in the non-loss state). Because of the difference in
the social totals, the box is vertically elongated. The two parties’ 45° certainty
lines cannot coincide; it is impossible for both individuals to attain certainty
positions, though either one could do so if the other were to bear all the
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risk. For individual # (where h = I, w), the absolute indifference-curve slope
(the Marginal Rate of Substitution M") at any point in the Edgeworth box is
given by 7, v, (cI) /7, (cf). Along the worker’s 45° line, M" = 1t | / 77, since
¢ = ¢f’.Butatany such point thelandlord’s ¢ < ¢, hence v}(c}) > v/(c}),
so the landlord’s indifference curves must all be steeper than the worker’s
along the latter’s 45° line. Reasoning similarly for the landlord’s 45° line, we
see that the indifference curves must be shaped as shown in the diagram.
It follows that the Contract Curve TT, connecting all the mutual-tangency
points where the two parties’ indifference-curve slopes are equal, must lie
between the two 45° lines. This means that in equilibrium the parties will
share the risk.

Assuming price-taking behavior — which would be applicable if there
were a large number of competing individuals on both sides of the market —
the equilibrium point would depend upon the endowment position. In the
diagram, suppose this endowment is C: the worker is initially receiving a
fixed wage while the landlord is bearing all the risk. Under CCM there will
then be trading in state claims ¢; and ¢,, leading to the CCM equilibrium
price ratio P, / P,. Specifically (4.1.2) takes the form:

!
Y, ?3 _ m _ TV ?v
- P = I
v (3) B mv(q)
The solution point is, of course, on the Contract Curve, as indicated by

point C in the diagram. Note the following properties of the equilibrium
position:

1 The parties have shared the risk, and will in fact do so regardless of the
endowment position.

2 Since ¢ < ¢, for each party at equilibrium, it follows that v/(c;) >
V' (¢,) for both I and w, and hence that P, /P, >, /m,. That is, the
price of contingent income in the loss state is high relative to the
corresponding probability. This is, of course, what we would expect:
apart from the probability weighting factor, claims to income in an
affluent state of the world should be cheap in comparison with claims
to income in an impoverished state.

We digress now to make some remarks on contract structures. If the
worker initially receives a contractually fixed wage placing him on his 45°
line, we have seen that a certain amount of trading of contingent claims is
necessary to achieve an efficient distribution of risk. The same holds if the
landlord initially receives a fixed contractual rent placing her on her 45°
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line. Since such trading is costly, we would expect to observe a tendency to
avoid these extreme contractual forms. And, in fact, the worker and land-
lord functions are very commonly combined in owner-operated farms. An
important element affecting the cost of trading is the problem of enforce-
ment of contract. For instance, the landlord may find it difficult to control
shirking by workers or the two parties might not be able to unambigu-
ously identify which state of the world has occurred in order to distribute
the contingent payoffs. The potential for trouble and disagreement on that
score is all the greater since in practical situations the number of states S is
large. (Consider how many states would have to be distinguished within the
general category of “good weather.”) One way of reducing the difficulty is a
share-cropping arrangement in which the parties need only decide in what
fixed proportions to divide the crop, whatever its size.

In Figure 4.1, the possible proportional divisions of the product would be
represented by points along the main diagonal of the Edgeworth box (dashed
line). In general, no such division could exactly reproduce the CCM solution
along the Contract Curve TT in the diagram. Thus, Equation (4.1.2) would
not be satisfied. But a point like D, on the main diagonal of Figure 4.1, may
be a reasonably good approximation of the CCM solution at point C. (It
would be possible to reproduce the exact state-claim solution by combining
share cropping with side-payments; for example, if there are only two states
as in the diagram, the landlord might receive x% of the crop less a side-
payment of $y in each state. However, with more than two states, it would
in general be necessary to have a different side-payment for each of § — 1
distinct states, which would involve essentially the same high transaction
costs as full state-claim trading.)

Alternatively, consider a CAM regime. In Figure 4.2, the endowment
point C could be regarded as representing (i) the worker’s initial holding
g of a certainty asset g, i.e., an asset with payoffs (Z,,, Z,,) = (1,1), which
is reflected by the 45° slope of the line from 0,, to C or (ii) the landlord’s
initial holding g, of a risky asset b, the ratio of whose returns (Z,;, Zy,) is
reflected in the steeper slope of the line from 0; to C. We are free to choose
units for each asset, so suppose that a unit of asset a is represented by the
unit vector parallel to 0,,C while a unit of asset b is represented by the unit
vector parallel to 0, C. Then the length of the line 0, C is the number of units
of asset b initially held by the landlord.

Any exchange of assets by the landlord is a move back along the line 0,C
and out along a line parallel to 0,,C. By exchanging assets in such quantities
as to move to a point on the contract curve such as C*, each party is
satisfying the Risk-Bearing Theorem for Asset Markets, plus, of course, the
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Figure 4.2, Risk sharing via asset trading,

market clearing guaranteed by the fixed size of the Edgeworth box. Once
again, however, for S > 2 the ideal CCM solution at C* cannot in general
be attained by trading in only two assets a and b.

As an interesting interpretation, we can think of this type of risk-sharing
as the exchange of “equity shares” in the two parties’ endowments. This
interpretation will be developed further later in the chapter.

4.1.2 Application to Insurance

The Edgeworth box of Figure 4.1 can be given another interpretation: the
risk-sharing that takes place there can be regarded as “mutual insurance.”
Indeed, all insurance is best thought of as mutual. Insurance companies,
since they do not dispose of any resources other than those possessed by
their owners, creditors, and policy holders, are only intermediaries in the
risk-sharing process.

Once again, imagine “loss” and “non-loss” states of the world. For exam-
ple, an earthquake might or might not occur. The Edgeworth box will
again be vertically elongated, the social total of income being smaller in
the loss state (state 1). From any endowment point like C in Figure 4.1,
price-taking traders under CCM would arrive at a risk-sharing equilibrium
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like C* on the Contract Curve TT. As before, the absolute slope P, / P, of the
equilibrium market line QR exceeds the absolute slope of the dashed line
representing the “fair” price ratio (equal to the probability ratio m,/m,).
That is, claims to income in the less affluent state of the world command a
relatively high price. This “social risk” helps explain why insurance is not
offered at strictly fair (or “actuarial”) terms.* But the influence of social risk
depends upon a number of factors, as will be worked out in detail in what
follows.

As an instructive special case, imagine there are two individuals j and
k with equal initial gross incomes ¢, each being subject to a fixed loss
hazard L with the same probability p. Thus, each person faces the prospect
(¢, ¢ — L; 1 — p, p). Here, pis the probability of an independent private event.
Four possible social states can be defined, according as loss is suffered by (1)
neither party; (2) j only; (3) k only; or (4) both parties. The corresponding
state probabilities are:

ﬁ_ﬂc.lﬁvm
my, = p(l—p)=m;

5“%

It is evident that, even under CCM, there is no possibility of risk-sharing
in states 1 and 4. So the only trading that can take place will be exchanging
state-2 for state-3 claims. From the symmetry of the situation, such exchange
will occur in a 1:1 ratio, so that the equilibrium condition (4.1.1) takes the
form, for each individual:

v () my'(c—L/2) my'(c—L1/2) my(c=1)
R B m &

where, of course, P,/n, > P,/ny = B,/m, > P, /7.

The equilibrium condition would not take quite so simple a form if
inter-individual differences were permitted — as between the losses L/ and
¥, the loss probabilities p; and py, initial incomes ¢/ and &, and the utility
functions v/(¢/) and v*(c%). But it nevertheless remains true that, after
trading, ¢; > ¢, ¢ > ¢, for each individual and that in equilibrium:

B _B B B

—~ > —=and = > —
Ty T T, m

4 Inactual insurance practice, transaction costs place a “loading” upon the premiums offered
purchasers of policies. In accordance with our assumption of perfect markets, transaction
costs will be set aside here.
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Any actual system of contractual insurance arrangements will only
approximate the ideal results under CCM. One possible arrangement might
be a mutual-insurance system with no stated premiums. Instead, policy
holders would be proportionately assessed for the amounts required to
match the aggregate of losses experienced. In our fully symmetrical exam-
ple above, in state 1 there would be no loss and no assessment; in state
2 the assessment would be L/2 to each party, summing to the full L required
to indemnify individual f similarly in state 3, except that the indemnity
would go to individual k; and in state 4, each party would be assessed L and
indemnified L, so that no actual transfer of funds would take place. Thus,
the assessment system would replicate the results of CCM. More generally,
however — allowing for inter-individual differences in loss magnitudes L,
loss probabilities p, endowments, etc. — such an assessment arrangement
would diverge from results under CCM. But, if only the loss magnitudes var-
ied among individuals, proportionate assessment would be similar to share
cropping. An individual whose risk is x% of the total would be assessed x%
of the loss ex post, so that the outcome would lie along the main diagonal
of an Edgeworth box in four-dimensional space.

Coming closer to conventional insurance arrangements, standard prac-
tice would be to quote (say, for individual j) a fixed premium H/ to be
paid into the pool regardless of which state obtains, while a fixed indemnity
I will be receivable from the pool in either state 2 or state 4. Inability
to provide for differential net payments in these two states, together with
the corresponding failure in the case of individual k to distinguish state
3 from state 4, represents a serious incomplete-markets problem. Indeed,
under mutual insurance the problem is an impossible one, since owing to
social risk the totals of premiums paid in could not always match the totals
of indemnities payable. For example, if any premiums at all are collected,
should state 1 occur, there would be no losses to absorb them. But a zero
premium would be absurd, providing no funds for the indemnity payments
required in all other states of the world. In practice, this difficulty is avoided
by having mutual-insurance pools take on a legal personality, e.g., via the
corporate form. Then, premium levels H/ and H* might be set, for exam-
ple, to cover indemnities in state 4, the most adverse possibility. Should
any other state actually come about, the corporation will show a “profit”
that can be rebated back to its owners, the policy holders. (Alternatively,
the corporation might engage in time averaging, reinvesting profits in good
years to accumulate “reserves” to help cover losses in bad years and thus
permit a lower level of premiums.) It will be evident that such a system is
essentially equivalent to assessable premiums.
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Social risk comes about whenever private risks are not perfectly offsetting.
It is sometimes thought that the variability of the per-capita social risk is
only a result of small numbers. If so, for pools with a sufficiently large
membership N, mean income could be regarded as effectively constant. It
follows that, for large N, insurance premiums would become practically
actuarial (fair) — apart from transaction costs, of course.

Instead of a fixed loss L/, assume more generally now that each individual
faces a loss-probability distribution f7(L/), and for simplicity suppose all
the distributions are identical. Then the question is whether the per-capita
loss A = (1/N VMW ﬂ@. becomes approximately constant over states as N
grows large. In accordance with the Law of Large Numbers, as N increases,
the variance of A does decline, hence the error committed by ignoring social
risk does diminish. Nevertheless, this error does not tend toward zero as N
increases, unless indeed the separate risks are on average uncorrelated.’

Suppose that the individual L/ distributions all have the same mean
and variance o2, and suppose, also, that the correlations between all pairs
of risks equal some common r (which, of course, can be possible only for
r > 0). That is, for any pair L, Lk

E[(L7 — u)(L* — w)] = ro?

The mean average loss E[1] is then just 1. The variance of the average loss
is:

of = E[(. — u)’]
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In the limit as N increases, the variance of per-capita loss approaches ro?,
and thus always remains positive unless r = 0.

5 See Markowitz (1959), p. 111.
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We see, therefore, that social risk is not exclusively due to small numbers; it
persists even with large numbers if risks are positively correlated. Somewhat
offsetting this consideration is the possibility of time averaging via the
accumulation of reserves. Doing so is to employ the Law of Large Numbers
in a different dimension: the law tends to operate over time as well as over
risks at any moment in time. If risks that are correlated at any point in
time are serially uncorrelated over time, aggregated over a number of time
periods, the variance of per-capita losses will diminish. (The power of the
Law of Large Numbers over time will be weakened to the extent that positive
serial correlation exists, that is, if high-social-loss states tend to be followed
by similar high-loss states.)

Interpreting the main result of this section in terms of the language of
portfolio theory, risks have a “diversifiable” element that can be eliminated
by purchasing shares in many separate securities (equivalent to mutual
insurance among large numbers of individuals), and an “undiversifiable”
element due to the average correlation among risks. It follows then that
a particular asset will be more valuable the smaller is the correlation of
its returns over states of the world with the aggregate returns of all assets
together — the variability of which is the source of undiversifiable risk.®

Social risk, therefore, provides two reasons why insurance prices may
not be fair or actuarial: (i) if the number of risks in the insurance pool is
small, the Law of Large Numbers cannot work very fully; (ii) if the separate
risks are on average positively correlated, then even with large numbers
the variance of the per-capita return does tend to diminish but does not
approach zero. In either case there will still be relatively poor social states for
which claims to income will command prices that are disproportionately
high relative to the corresponding probabilities (with the reverse holding
for relatively affluent social states).

In addition, other factors may help bring about non-actuarial terms of
insurance: (1) as mentioned in footnote 4, insurance premiums are “loaded”
in order to cover transaction costs, and (2) adverse selection and moral
hazard, phenomena essentially due to information asymmetries between
buyers and sellers, may tend to affect the terms of insurance transactions.

® In modern investment theory, the correlation of a particular security’s return with that
of the market as a whole — which represents the returns on all securities together — is
measured by a “beta” parameter. Securities with low or, even better, negative betas tend to
trade at relatively high prices. That is, investors are satisfied with relatively low expected
rates of return on these assets, since they tend to provide generous returns in just those
states of the world where aggregate incomes are low (and, therefore, marginal utilities are
high). We analyze this topic in detail in Section 4.3.
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Exercises and Excursions 4.1

1 Complete versus Incomplete Asset-Market Equilibria

(A) In a world of three equally probable states, with equally numerous
individuals of types j and k, the endowments are Cl= (45, 45, 45)
and C* = (15, 67.5, 315). The utility functions are v/ =1n ¢/ and
vk = (c!)V2, Verify that under CCM the equilibrium price ratios are
P,:P,:P; = 3:2:1. Find the individual optimum positions.

(B) Suppose the same endowment positions are expressed in terms of
asset holdings. Thus, j holds 45 units of asset a4 with state returns (1,
1, 1) while k holds 1 unit of asset b with state returns (15, 67.5, 315).
Verify that the CCM equilibrium cannot be attained if the parties
can exchange only assets a and b.

2 Efficiency of Proportional Sharing

In the landlord-worker problem, show that, if the two parties have common
probability beliefs and identical utility functions v(c¢¥) and v(c) charac-
terized by constant relative risk aversion R, then — for any finite number
of states S — the CCM solution will lie along the main diagonal of the
S-dimensional Edgeworth box. (Hence simple proportional sharing of the
crop will be efficient.)

3 Risk Sharing with |1, o Preferences
Suppose preferences are given by:

Ul = p() —alo?(d), i=w,l

The aggregate output in state sis y,. The worker, individual w, is to be paid
a fixed “wage” w plus a share y of the residual y, — w.

(A) Obtain expressions for w(c’) and o?(¢') in terms of w, y, and the
mean and variance of .

(B) Write down a first-order condition for the Pareto-efficient choice of
. Hence show that along the Pareto frontier dU"/dU" = —1.

(C) Hence, or otherwise, establish that the worker’s efficient share of

aggregate risk is:

YT e

(D) Is it surprising that this share is constant along the Pareto frontier?
(E) Would a similar result hold if there were M workers and N landlords?
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4 Insurance with Transaction Costs
Suppose each individual faces the risk of a loss L, the different risks being
independent (uncorrelated). Also, there are sufficiently large numbers that
the per-capita risk is negligible and so insurance is offered on actuarily fair
(i.e., zero profit) terms.

What would be the equilibrium insurance policy if, whenever a loss takes
place, the insurance company incurs a transaction cost c?

5 Complete Contingent Markets (CCM) with Constant Absolute

Risk Aversion
Suppose each of N individuals exhibits constant absolute risk aversion. All
have the same probability beliefs. Under a CCM regime, let P, denote the
equilibrium price in state s (s=1,..., S).

(A) If individual 7s degree of absolute risk aversion is A; show that his
optimum claims in states s and ¢ must satisfy:

A=) =In(z,/n,) —In (B/P,)

(B) Hence obtain an expression for the logarithm of relative prices in
terms of the average endowments in states sand ¢, ¢, and ¢,.

(C) Let A* be the harmonic mean of the degrees of absolute risk aversion,
that is:

N ~1

A*=N MUW

i=1 "t

Show that the difference between the price ratio P,/ P, and the ratio
of probabilities 7, /7, is positive if and only if ¢, > ¢..

(D) Discuss also the effect of changes in the distribution of endowments,
and of an increase in A*, upon P,/P,.

6 Insurance Premiums with State-Dependent Utility

Suppose that health risks are independently distributed for all individuals.
Suppose, furthermore, that numbers are sufficiently large so that insurance
against a deterioration in health is offered on actuarially fair terms.

(A) Suppose an individual has a utility function v(c, h) = (ch)3, his
health level h being either h;, or h, (where h, < h). Would this
individual wish to buy insurance against bad health?
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(B) Suppose bad health also reduces income by 50%. Would the indi-
vidual now wish to buy insurance? If not necessarily, under what
conditions would this be the case? Would the individual ever buy
enough insurance to completely offset his income loss?

(C) Another individual has a utility function ¥(c, h) = In (ch). Confirm
that there is a function u(-) such that:

v(c, h) = u(v(c, h))
Hence draw a conclusion as to which individual is more risk averse.

(D) Repeat (A) and (B) with the new utility function.
(E) What can you say about an individual who is more risk averse than
both these individuals but again has the same indifference map?

[HINT: You might refer back to Section 2.3 in Chapter 2 before attempting
to answer this question.]

4.2 Production and Exchange

in a pure-exchange economy with a single generalized consumption good
C. We showed that the analysis of market equilibrium can be interpreted
in terms of an S-dimensional Edgeworth box diagram with one axis for
each state claim c,. Just as goods are allocated efficiently in the traditional
commodity-market equilibrium under certainty so, under uncertainty, a
complete-market equilibrium (i.e., the CCM case where there are markets
in all S states, or else the CAM case where an equivalent regime of asset
markets exists) distributes social risk efficiently.

We will now generalize this conclusion. In Section 4.2.1 we show that, even
in a world of production, and allowing for many commodities G as well as
any number of states S, a complete-market equilibrium allocation is Pareto
efficient. Of course, the assumption of complete markets is a strong one.
Section 4.2.2 takes up production decisions in a special regime of incomplete
markets called a “stock market economy.” Conditions are derived under
which shareholders unanimously agree upon value maximization as the
objective of the firm.

4.2.1 Equilibrium with Production: Complete Markets

Suppose there is a single commodity (corn), a single firm, and two states
of the world (rain or no rain). By varying the production process the firm

The previous section examined regimes of complete and incomplete markets
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Y
(production
set)

P Py=T*

Figure 4.3. Equilibrium and efficiency.

chooses a state-distributed vector of production levels y = (y,, y,). The
set of possible production vectors or “production set” Y is illustrated in
Figure 4.3.” We assume that this set is convex.

To illustrate, suppose that when rows of corn are planted close together
there will be an especially big harvest if the weather is hot. However, if the
weather is cool, a better yield is obtained by planting at lower densities. As
a special case, let:

y(x) = 20x,  y,(x) = 100x — 10x*

be the state-dependent outputs associated with a crop density of x. Elimi-
nating x yields the production frontier:

V\N

-5 L —
Y2 S._‘&o

The production set Y consists of the production vectors y = (y,, y,) on or
inside the production possibility frontier.

Given state-claim prices P, and P,, the profit of the firm (since there are
no purchased factors of production) is the revenue P, y, + P, y,. Writing the
price vector as P= (P,, P,), a profit-maximizing price-taking firm chooses
y* and hence profit level IT to satisfy:

M"=P.-y*>P.y, forallyey

7 In a more complete model, inputs would be purchased at #= 1 and output produced at
t=2, as in Exercise 3 at the end of this section.
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(Here and henceforth, we will assume a unique solution exists.) The isoprofit
line P- y=TI1 * isalso depicted in Figure 4.3 along with the profit-maximizing
production vector y*.

We now examine the consumer-shareholders’ demands for state-
contingent corn. With just two individuals j and k, we can illustrate via
the Edgeworth box formed in Figure 4.3 with corners at the origin and at
¥*. Suppose the two proportionate shareholdings in the firm are ﬁ.\ and

gr=1- &M.m With 0 as the origin for j, his budget constraint is:
B + B = g I1* (4.2.1)

This is, as depicted, parallel to IT* = P - y but with vertical intercept
&qd* /P,. Then the risk-bearing optimum for individual j is point C* where
Ui(c], ¢]) is maximized subject to the budget constraint (4.2.1).

Of course, this budget line can also be viewed as the budget line for
individual k, using the point y* as her origin. As depicted, the state-claim
prices P, and P, are such that aggregate consumption equals aggregate
production in each state — markets are cleared. Since neither individual
can do any better without making the other worse off, the competitive
equilibrium is Pareto efficient. And, specifically, price-taking behavior and
profit maximization result in an allocation in which the Marginal Rate of
Substitution of state-1 claims for state-2 claims, M = —dc, / dc,, is, for each
individual, equal to his or her marginal rate of productive transformation
—dy,ldy,.

Note that, just as in the pure-exchange case, the analysis is formally equiv-
alent to the traditional certainty model. However, whereas in the standard
certainty model y is a vector of outputs of different commodities, y here
becomes a state-contingent output vector. This suggests a way of demon-
strating the efficiency of a CCM regime in a much more general setting. All
we have to do is to show that the description of individual optimization and
market clearing is formally equivalent to that in the traditional certainty
model, where the efficiency of competitive equilibrium is a standard result.

As a first step, let us briefly review the traditional general-equilibrium
model. Suppose the economy consists of I individuals indexed by i, F firms
indexed by f, and G commodities indexed by g Firm f chooses a vector of
inputs and outputs y/ = G\m ey u\mv from the set Y/ of feasible vectors.

® In Chapter 2 and elsewhere, q',denoted the number of units of asset a held by individual
i. Here, the total number of shares in firm f is defined as unity, so each individual’s
shareholding ﬁﬁ will represent a fractional number of units,
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We assume that a firm can always choose not to produce so that the zero
vector is in Y. A positive km indicates that the firm produces more than it
purchases of commodity g while a negative V\M indicates that the firm is a
net purchaser of the commodity. With commodity prices P= (P,,. .., Pg),
the firm chooses &m to maximize profit,” that is:

ﬁm mo?mm?_wﬁwés_%\ € %J
y

Since firm f can always choose not to produce, maximized profit IT/ is
non-negative,

Each individual 4, with utility function U’(c’) where ¢’ = (cl, ..., c}),
has some initial endowment of commodities o' = (@i, ..., wt) and owns
a proportion mw of firm f. The individual then chooses ¢! to maximize utility
subject to the constraint that total expenditure on commodities does not
exceed the value of his endowment plus profit shares. That is, ¢! is the
solution of:

Ziqg&_? <P o+ M&:L
!

For P to be a market equilibrium price vector, supply must equal demand
in every market, ' that is:

IREEDICED
¥ i i

And on the assumption that each individual, regardless of his consumption
vector, always strictly prefers more of some commodity we know also — from
the first theorem of welfare economics (Debreu, 1959) — that this market
equilibrium is Pareto efficient.

We now seek to extend this result to include uncertainty. Instead of
just G markets, one for each commodity, we introduce markets for each

° For example, the production set of the neoclassical firm producing Q units of output with
capital and labor according to the production function Q = ®(K, L) is:

Yf={(Q -K -D)|Q= &K, L),K, L= 0)
With prices (P, P,, P,) = (p, r, w), the firm chooses y/ € Y/ to maximize:
P.yf = pQ+ r(—K) + w(—=L) = pQ — (rK + wL).

10" As a more general statement (allowing also for corner solutions), supply must at least
equal demand, and the price must be zero for any market in which there is excess supply.
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commodity in each state of the world — G x Smarkets in all. The price Py, is
then the price of purchasing a unit of commodity g for delivery if and only
if state s occurs.

Each firm makes a decision as to its purchases and sales in each state.
For example, a firm producing commodity 1 using commodities 2 and 3 as
inputs might have a state-dependent production function:

e =o! (= vl =)

The firm then contracts to purchase contingent inputs and deliver contin-
gent outputs in order to maximize its profit:

In general, just as in the certainty case, firm fchooses y{ so that:
n/=p.ylzP.y, yev/

In the same way, individual i with endowment o' and utility function
vi(cl), where ¢l = (cf,, ..., ¢g,), chooses his final consumption bundle to
maximize expected utility:

QN.QJ = Mamiﬁv
5
This maximization is, of course, subject to the budget constraint:

P.d<P-o'+) g/
f

Viewed in this way, it is clear that any conclusions about the certainty
model must carry over. In particular the equilibrium allocation must lead
to a Pareto-efficient allocation of risk bearing.

Several aspects of the equilibrium are worthy of note:

1 Under complete markets, the efficient allocation is achieved when firms
simply maximize profit (net market value). Profit being deterministic
rather than stochastic, there is no need to consider expected profit or
to adjust for some concave function of profit representing owner risk
aversion. The point is that, at the time a production decision is made,
the firm can also complete all sales of its contingent outputs at the
ruling state-claim prices. Net earnings or profit can then be handed
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over to stockholders. Of course, actual input and output levels will be
uncertain. However, the market equilibrium state-claim prices already
provide the correct adjustments for the risk factor, so owners are best
served when the chosen production vector maximizes net market value.
It follows also that stock markets and stock trading have no special role.
Indeed, no one has any incentive to trade his initial asset endowment
except to make final consumption purchases.

2 Different consumers need not have the same beliefs about the likelihood
of different states. The CCM equilibrium is efficient with respect to
beliefs actually held.

3 All trading in this economy takes place prior to learning which state
s has occurred. This raises the question as to whether any individual
might wish to engage in posterior trading after the state of the world is
revealed. To answer this question, suppose that all prior trading takes
place on the anticipation that markets will 7ot reopen after the state
is revealed. Consumer i will then initially select his state-distributed
consumption vector so that his Marginal Rate of Substitution of com-
modity 1 for commodity g in a particular state is equal to the price

ratio:
Clog , 0V
s 9e P
mn: _ is __ Tls
o' T 9V T PR, (422
s
9¢gq 0¢y

Now suppose that the state is revealed to be s, and that, unexpectedly,
markets do in fact reopen for posterior trading. If the state-s market-
price ratiosamong the G commodities were to remain unchanged from
the prior ratios of (4.2.2), individual 4, now with utility function yi (c,),
will wish to trade so that his new Marginal Rate of Substitution of
commodity 1 for commodity j will equal the unchanged price ratio,

that is:
9y
?_.“ it (4.2.3)
o " E,
mn.ﬁ

Comparing (4.2.2) and (4.2.3), it follows immediately that individual
i will have no need to trade again. Thus, the prior-trading price ratios
for the state-s commodity claims dictate a posterior equilibrium in
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which no retrading occurs.!! This proposition will play an important
role when we consider the topic of speculation in Chapter 6.

So far, we have considered only the unanticipated opportunity for
retrading after the state is revealed. If the possibility of posterior trading
is indeed anticipated, consumers must form beliefs about prices in
future states (“future spot prices”). Our argument indicates that, as
long as everyone believes that relative future spot prices in the state
that actually occurs will be the same as relative prior contingent prices,
there will be no gains to multiple rounds of trading. Moreover, such
beliefs will be self-fulfilling — the market-clearing future spot price
ratios will indeed equal the corresponding contingent price ratio.'?

4 We have implicitly been assuming that production, consumption, and
exchange all occur at a single date in time. This also is an expositional
simplification that can easily be generalized. The same equation format
for a CCM regime can allow for specifying the commodity, the state,
and also the date. The price P, is then the price paid, in the current
period, for commodity g to be delivered at time ¢ in the eventuality
that state s occurs. As in the one-period model, firm fchooses yf =
G\w:“ cees v\m&lv from its production set Y/to maximize P- y/ —which is
the net present value of the production plan or, more simply, the value
of the firm at today’s prices. It should be noted that the firm’s plan will,
in general, be a contingent plan. That is, some farther future decisions
may be contingent upon some still uncertain nearer-future events.

Exercises and Excursions 4.2.1

1 Exchange Equilibrium with Complete Markets .
Consider an economy with two states. Every individual has the same utility
function ¥(c) = In(¢) and believes that state 1 will occur with probability 7.

(A) Show that the CCM equilibrium price ratio satisfies:

A__7 (»
B 1-m\n

where y, is the aggregate endowment of claims in state s.

111t is left to the reader to confirm that no firm will wish to change its production plan in
state s either.

Beliefs may then be called “rational,” as in the common but confusing term “rational
expectations equilibrium” — a more accurate term would be “self-fulfilling beliefs equi-
librium.” In the absence of such concordant beliefs about future spot prices, those agents
whose beliefs were incorrect will wish to re-enter the market. This in turn opens up oppor-
tunities for sophisticated traders to “speculate.” We shall have more to say on this topic in
Chapter 6.

12
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(B) If the price of a riskless asset yielding 1 unit in each state is 1, show
that the state-claim prices are:

Y, and B, = (I —=mn

P=— 7 ——
' Ty + 1 —m)y Yy, + (1 —m)y

(C) Suppose there are two types of asset in the economy. A unit of the
riskless asset (asset 1) pays off 1 in each state and has market price
PA = 1. A unit of the risky asset (asset 2) returns z,; = % in state
1 and z,, = 2 in state 2. Aggregate supplies of the two assets are g,
and g,. If the two states are equally likely, show that the price of the
risky asset is:

PA = 5q; + 44,
27 4g,+5q,

(D) Suppose initially there are no units of the risky asset. However, there
is a technology that will create units of the risky asset at the cost of
one unit of the riskless asset. There is free entry into the industry.

What will be the equilibrium price of the risky asset? What will be
the equilibrium supply of the risky asset, expressed as a proportion
of the equilibrium supply of the riskless asset?

2 Complete-Market Equilibrium with Production

Consider an economy in which a single firm produces a single commodity.
There are two states of the world, state 1 and state 2. The n-th plant in the
firm can produce any state-dependent output vector y = (y,, y,) lying in
the production set Y” = {(y,, »,)|y7 + % < 2}. There are two individuals
in the economy, each of whom has a 50% share in the firm, and who behave
as price takers.

(A) If there are two plants, confirm that the aggregate production set
isY = {(, »)ly} + y5 < 8}. Hence, or otherwise, show that with
state-claim prices (P, P,) = (1,1) the firm will produce an output
vector (yf + 35) = (2,2).

(B) Ifindividual 1 believes that state 1 will occur with certainty, explain
why, at the above prices, his final consumption vector is (cl, ¢}) =
(2,0).

(C) Ifthe second individual believes that state 2 will occur with certainty,
confirm that P = (1,1) is the complete-market equilibrium price
vector.
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Strategic Uncertainty and Equilibrium
Concepts

For the most part, the analysis to this point has dealt with event uncertainty.
Individuals were mainly uncertain about nature’s choice of state of the
world. In the following chapters the focus shifts to strategic uncertainty,
where the best course of action for individual A depends upon individual
B’s choice, and vice versa. So the main risks that a person has to deal with
concern the actions and reactions of others. A first step is the choice of
an equilibrium concept for such an environment, which turns out to be a
subtle and still controversial issue. As usual, our discussion will not attempt
to address formal issues of existence or uniqueness of equilibrium. Our aim
instead is to provide an intuitive interpretation of the key ideas.

7.1 Dominant Strategy

We begin with the Prisoners’ Dilemma, a game that is easy to analyze. The
story behind this game is as follows. Two accomplices have been arrested
on suspicion of committing a major crime. The prosecutor does not have
sufficient evidence to convict them of this crime. Without a confession from
at least one of the two accomplices the prosecutor can only send them to
prison for one year for the lesser charge of illegal possession of weapons. The
two accomplices (or prisoners) are locked up in different cells and cannot
communicate with each other. The prosecutor approaches each of them
separately and says, “If you confess and your friend does not then I will
drop all charges against you. On the other hand, if your friend confesses and
you do not then you will do 10 years. If you both confess then I'll see to it
that you get parole after 5 years in prison. Think hard about what you want
to do and let me know tomorrow morning.” Fach prisoner knows that if
both of them remain silent and do not confess then each will be sentenced

270
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Table 7.1. Prisoners’ Dilemma

Prisoner k
Defect Cooperate
X %
. . Defect x| —5,—5 0, ~10
P
rsonery Cooperate x) —10,0 —-1,-1

to only one year of prison on firearms possession charges. What do you
think the prisoners’ will do?

Assume that each prisoner acts purely in his own self-interest and seeks
to minimize his time in prison. Let us call the two choices that each prisoner
faces Defect (if he confesses) and Cooperate (if he does not confess).! The
consequence (i.e., the number of years in prison) for each prisoner depends
not only on his own choice but also on the choice of his accomplice. The
consequences are shown in Table 7.1. If, for example, prisoner j Defects and
prisoner k Cooperates, then j spends 0 years in prison and k spends 10 years.
This is represented as (0, —10) in Table 7.1. (We represent payoffs of games
so that higher numbers are better.)

First, consider this game from prisoner s viewpoint. Suppose that pris-
oner k were to Defect; then prisoner j is sentenced to only 5 years if he
Defects whereas he gets 10 years if he Cooperates. Suppose, instead, that
prisoner k were to Cooperate; then prisoner j spends no time in prison if he
Defects whereas he spends 1 year in prison if he Cooperates. Thus, Defect
is the best course of action for prisoner j, regardless of prisoner ks choice of
action. In the language of game theory, Defect is a strictly dominant strategy
for prisoner j. A symmetric argument establishes that Defect is a strictly
dominant strategy for prisoner k as well. For each prisoner, Cooperate is a
strictly dominated strategy — it is strictly dominated by Defect.

Thus, each prisoner will Defect and end up spending 5 years in prison.
If, instead, each prisoner had selected Cooperate then each would spend
only 1 year in prison. However, a choice of Defect by both players is the
only strategically stable outcome. To convince yourself that this is the case,
suppose that the two prisoners can communicate with each other. They meet
and agree to Cooperate so that each is sentenced to only 1 year in prison.
After reaching this non-binding agreement they go back to their cells. What

! By not confessing, a prisoner Cooperates with his accomplice. Confessing betrays the
accomplice; it is an act of defection.
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Table 7.2. Prisoners’ Dilemma (general payoffs) (e > > g > h)

Defect Cooperate
X 5
Defect % %8 &h
Cooperate % he ff

do you think each prisoner will do when he meets the prosecutor the next
morning? Each prisoner, even if he believes that his accomplice will stick to
the agreement, has an incentive to deviate from Cooperate to Defect — better
to spend no time rather than 1 year in prison. And if the prisoner believes
that his accomplice may renege on their agreement and Defect, then that
makes Cooperate all the more attractive,

There are other strategic situations which have a payoff structure similar
to the Prisoners’ Dilemma. Consider two firms that compete in a market
with completely inelastic demand. Each firm chooses between a Low Price
and a High Price. As demand is inelastic, the total quantity sold by the
two does not change with price. Thus, each firm’s profit is higher when
both choose High Price (which corresponds to Cooperate) than if they both
choose Low Price (which corresponds to Defect). However, if one chooses
Low Price and the other High Price, then the former firm corners the market
and makes a greater profit than if both firms had selected High Price.

Table 7.2 gives the general form of the Prisoners’ Dilemma. The inequal-
ities e > fand g > h on the payoffs ensure that Defect is a strictly dominant
strategy. The inequality f > g implies that payoff obtained when the two
players choose (Defect, Defect) is Pareto dominated by the payoff under
(Cooperate, Cooperate). We shall return to this game in Chapter 11, where
we investigate whether repeated interactions between the same two players
increases the possibility of cooperation.

In most games, players do not have a strictly dominant strategy, and it is
less obvious how they should play. We turn to this issue in the remainder of
this chapter.

7.2 Nash Equilibrium

In a coordination game, the parties’ interests are somewhat parallel. A specific
example known as “Stag Hunt” originates in a situation presented by the
philosopher Jean-Jacques Rousseau. Two hunters can either hunt hare on
their own or cooperate to hunt stag. A stag is more difficult to hunt and
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Table 7.3. Stag Hunt

Player k
Stag Hare
x )
J
Player j Mmm A 10,10 0,7
are x; 7,0 6,6

requires the combined efforts of the two; it also provides more meat for each
hunter than a hare. This is reflected in the payoffs in Table 7.3, where if both
players (hunters) jand k select Stag they each get a payoff of 10, whereas if
each player chooses Hare, the payoff for each is 6. If player j chooses Stag
and player k chooses Hare then j gets 0 — he does not succeed in hunting any
game — whereas k gets 7.2 Thus, the two parties both gain by coordinating
their activities on a stag hunt. But a trust dilemma arises here. Even if the
two hunters were to agree to hunt stag, can each trust the other not to stray
from this decision? To quote from Rousseau’s A Discourse on Inequality
(1755):

If it was a matter of hunting a deer, everyone well realized that he must remain
faithfully at his post; but if a hare happened to pass within the reach of one of them,
we cannot doubt that he would have gone off in pursuit of it without scruple and,
having caught his own prey, he would have cared very little about having caused his
companions to lose theirs. -

The decision is further complicated by the fact that payoff from Hare (7 if
the other player chooses Stag, 6 if the other player chooses Hare) is much
less variable than the payoff from Stag (either 10 or 0).

Approaching this problem in terms of game theory, we can view each
player as choosing an action without knowledge of the other player’s action
choice. In effect, the players can be thought of as choosing their actions
simultaneously. We can depict this situation with a game tree in Figure 7.1.
Player jis represented here as having the first move, but player k must make
a decision without knowing s choice. This is represented by means of the
dashed line called the “information set” connecting the two decision nodes
of player k. Player jmoves first, and then player k gets to move. Player k does

2 When a player is the only one hunting hare, his payoff is slightly higher than when both
hunt hare (7 instead of 6).
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St
8 (10, 10)
| Playerk ©,7)
: Hare ’
Stag “
Player j Information set
Hare |
_ Stag
7,0
Player k Mm mw
Hare ’

Figure 7.1. Game tree of Stag Hunt.

not know which of the two decision nodes in his information set has been
reached; i.e., he does not know player j’s action.’

The most frequently used solution concept for games is called the Nash
non-cooperative solution, or Nash equilibrium.* The key idea is that there is
an equilibrium when, given the strategies of all the other players, each single
participant finds that his own strategy is (at least weakly) a best response to
their choices. Thus the Nash equilibrium is a “no regret” equilibrium.

Our simple example is a two-player game in which each player simulta-
neously chooses one of two actions. With simultaneous play, each player is
assumed to have made a hypothesis about the strategies of his opponents.
His own strategy is then a best response to the others’” hypothesized strate-
gies. If, for each player, the chosen action coincides with what the other
players have hypothesized about his strategy, a Nash equilibrium exists.?

In the Stag Hunt game, it is a best response to always match the action
of the other player. If player k, say, were to choose Stag, the best response of
player j is also Stag since it yields a payoff of 10 while Hare gives only 7 to
player j. Similarly, if j were to choose Stag, ks best response is Stag. Hence,
the action or strategy pair (Stag, Stag) is a Nash equilibrium in this game.
In this equilibrium the parties achieve the mutually preferred outcome
(10, 10).

? We could also have drawn this game tree with the decision nodes of the two players
exchanged. That is, player k moves first and player j has two decision nodes within an
information set. This game tree represents exactly the same strategic situation.

* Nash (1951). The Nash equilibrium is a generalization of a solution to the oligopoly
problem that goes back to Cournot (1838).

® Note that the Nash equilibrium is not justified by appealing to some plausible dynamic
process. Rather, it is a state of affairs in which, if it were somehow to come about, no party
would unilaterally want to revise his action.
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A similar argument establishes that (Hare, Hare), another mutual best
response pair of actions, is also a Nash equilibrium. In this second Nash
equilibrium, the parties achieve the inferior outcome (6, 6).

Unlike the Stag Hunt game, many games do not have a Nash equilibrium
in simple actions or pure strategies. In such situations, a fruitful approach
is to extend the range of choice beyond the pure strategies available to
each player so as to consider mixed strategies as well; that is, the set of
probabilistic combinations of the available pure strategies. If there are only
two pure strategies, the complete set of pure and mixed strategies available
to player i can be expressed (in analogy with the “prospect notation” of
chapter 1) as:

X={(d s 1-r) o< <1}

where ¢ = probability that player i chooses x.

More generally, if player i has a set of A’ feasible pure strategies X' =
{xi, ..., x}), then player 7's complete set of strategies (the set of probability
vectors over these pure strategies) can be expressed as:

>—
X'=1(xi,.... x4 i, ..., mp) [0 < 7)< 1and M ni=1
a=1

where 7/ is the probability that player i chooses strategy 7 .

Returning to the Stag Hunt game tree, recall that there are two Nash
equilibria in pure strategies. Either the players coordinate on strategy 1
(Stag) or on strategy 2 (Hare). In each case, either party acting alone can only
lose by changing to a different action. But now there is also an equilibriumin
mixed strategies. The following condition provides a technique for locating
a Nash equilibrium in which at least one player uses a mixed strategy:

Suppose player i has chosen a mixed strategy. For his mixed strategy to be part of
a Nash equilibrium, player i must then be indifferent — given the chosen strategies
(pure or mixed) of the other players — among all of the pure strategies entering with
non-zero probability into his own mixed strategy.

In the Stag Hunt game, suppose the players have chosen respective mixed
strategies (%, 1 — '), i = j, k. We now ask when player jwill be indifferent
between the pure strategies 1 (Stag) and 2 (Hare). If he chooses Stag, his
expected payoff is:

7*(10) + (1—7%)(0) = 107"
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Table 7.4. Chicken

Player k
Coward Hero
x_w ¥
‘ Coward x 4,4 0,8
Player j H j
ero X, 8,0 —6, —6

If he chooses Hare, his gain is:
')+ (1 =a")©6) =6+ 7+

Player j will be indifferent between Stag and Hare if and only if player ks
probability mixture is (7%, 1 — %) = (2/3, 1/3). Given the symmetry
of the game, player k’s expected gains are equal when player 7s mixture is
(2/3,1/3) also. Evidently, this strategy pair is the only mixed-strategy Nash
equilibrium.

Note that while the two pure strategy Nash equilibria here are strong,
meaning that a player who unilaterally switches to any other strategy will
end up actually worse off for having done so, the mixed strategy Nash
equilibrium is weak. In fact, as follows directly from the condition stated
above for finding the mixed strategy solution, if all other parties are playing
in accordance with the mixed strategy Nash equilibrium then any single
player could equally well have chosen any of the pure strategies entering into
his Nash equilibrium mixture — or, indeed, any other mixture of them as
well. More generally, a Nash equilibrium in pure strategies may be either
strong or weak, but a Nash equilibrium in mixed strategies is always weak.

We now consider an alternative payoff environment, the famous game
of Chicken® (Table 7.4), again under the assumption of simultaneous play.
For instance, if j chooses Coward and k chooses Hero, the payoffs to jand k
are 0 and 8 respectively.

In the Chicken game, there are once again two pure-strategy Nash equi-
libria, but in this case they are asymmetrical — at the off-diagonal cells
(x{, ) and(x], xF). There is a mixed strategy Nash equilibrium as well.
Given the specific payoffs of Table 7.4, the equilibrium mixed strategy is
symmetrical: each player chooses strategy 1 (Coward) and strategy 2 (Hero)
with probabilities 0.6 and 0.4, respectively. At the mixed strategy Nash

¢ Inthe biological literature, the game of Chicken is known as Hawk-Dove (Maynard Smith,
1976).
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equilibrium each player’s expected return is 2.4, intermediate between the
Hero payoff of 8 and the Coward payoff of 0 at each of the pure-strategy
Nash equilibria.

The “normal form” matrices of Tables 7.1, 7.3, and 7.4 describe the payoff
environments of Prisoners’ Dilemma, Stag Hunt, and Chicken, respectively.
To represent other aspects of the game such as the procedural rules (for
example, whether the players move simultaneously or in sequence, and if in
sequence who moves first) and the information or beliefs that the different
parties possess, one turns to the game tree or “extensive form.”” In the
next three sections of the chapter we will describe how these procedural
and informational aspects of the problem affect possible solutions of a
game. And, in particular, we will explore how they provide possible ways of
separating more plausible Nash equilibria from those that are less plausible.

Exercises and Excursions 7.2

1 Tender Trap

Another example of a co-ordination game is Tender Trap (Hirshleifer, 1982).
The Dvorak typewriter keyboard s, it has been claimed, ergonomically supe-
rior to the currently standard “Qwerty” arrangement. But having settled on
the current standard keyboard, largely by historical accident, now manu-
facturers are supposedly reluctant to produce Dvorak keyboards so long
as almost all typists are trained on Qwerty, while typists do not want to
train on Dvorak when almost all keyboards are Qwerty.® Even the inferior
keyboard as a matched choice is superior to failing to coordinate at all.

Player k (typist)
Dvorak Qwerty
k k
X1 )

Dvorak x%. 10, 10 4,4

Player j (manufacturer)
Qwerty xJ 4,4 6,6

The above table shows the payoffs to the two players — manufacturer and
typist — in Tender Trap. Draw the game tree corresponding to this payoff

7 Figure 7.1 is an example of a game tree.
8 Liebowitz and Margolis (1990) claim that this story is mythical and that the Dvorak
keyboard is not superior to Qwerty.
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table. Find all pure strategy Nash equilibria. Is there a mixed strategy Nash
equilibrium in this game?

Tender Trap illustrates the binding force of convention (of having an
agreed rule) even allowing for the possibility that the convention is not
ideal. We tacitly agree upon many conventions to order our daily lives —
rules of the road, rules of language, rules of courtesy. Although better rules
might well have been arrived at, it is hard to change a settled convention.

7.3 Subgame-Perfect Equilibrium

While the Nash equilibrium concept remains at least a preliminary guide,
frequently there are multiple Nash equilibria. Not only do multiple Nash
equilibria create difficulties when it comes to prediction, they also pose
problems for the theory itself. A condition of equilibrium is that each player’s
choice be a best response to the strategy of his opponents. But, if Nash
equilibrium is not unique, how will a player know whether a given strategy
choice on his part is a best reply when the opponents may be choosing
among several different Nash equilibria strategies? Owing to such problems,
much effort has gone into “refining” the Nash equilibrium concept (Selten,
1965, Selten, 1975; Myerson, 1978; Kreps and Wilson, 1982; Kohlberg and
Mertens, 1986; Grossman and Perry, 1986; Cho and Kreps, 1987). Two
widely accepted refinements of Nash equilibrium will be examined in this
and the next section.

Consider the following game. One firm, the “entrant,” moves first by
deciding whether or not to invade a market now occupied solely by an
“incumbent” firm. If she chooses to enter, the entrant will quote a price
lower than that previously ruling. The incumbent must respond in one of
two ways. He can (i) match the entrant’s price and hence share the market, or
(ii) quote a price still lower than hers so as to drive out the new competitor.
In the latter case, the incumbent’s profits are further reduced while the
entrant suffers a loss.

Figure 7.2 depicts the game tree of this game; Table 7.5 depicts the same
game in tabular or normal form. In these diagrams, the first number is
the incumbent’s payoff and the second is the entrant’s payoff; thus, if the
entrant stays out the incumbent’s payoff is 6 and the entrant’s payoff is
0. Looking at the table, there are two Nash equilibria in pure strategies,’
indicated by the asterisks. (1) If the incumbent is going to choose Undercut,
the entrant’s best response is to choose Out. And if she chooses Qut, the

9 Since this is a sequential-move game, we need not consider mixed strategies.
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Table 7.5. Entry game

Player 2 (entrant)

Enter Out
) Match 2,2 6,0

Player 1 bent ' ,
ayer 1 (incumbent) Undercut 0,—1 6, 0*

incumbent loses nothing by being prepared to Undercut. (2) On the other
hand, if the entrant chooses Enter, the incumbent’s best response is Match.
And, given the choice Match, the entrant is indeed better off choosing Enter.

But is the first equilibrium really plausible? In other words, once entry
has taken place, will the incumbent carry out this threat or intention to
Undercut her price? In terms of the decision sequence or game tree, the
entrant might reason as follows: “Once I have chosen Enter, the incumbent
will be better off choosing Match. Undercut is an empty threat. I therefore
am better off choosing Enter.”

Formally, a subgame of a game tree starts at a single node that is not
in an information set with other nodes. The entry game has the simple
subgame depicted in Figure 7.3. Given that fact, instead of requiring only
that strategies be best replies for the original game, it seems reasonable
to impose the additional condition that the relevant parts of each player’s
overall strategy be a best response in any subgame as well. In other words,
the chosen strategy should not only be rational in the Nash equilibrium
“best response” sense but in addition should not involve the player in an
irrational choice among available options at any later (decision) node, even
nodes that may not be reached if the Nash equilibrium is played. Whenever
the Nash equilibrium strategies are rational at any subgame starting from
a node in a tree, the equilibrium is said to be perfect, or, more precisely,
subgame perfect (Selten, 1965).

The Nash equilibrium (Out, Undercut) involves a suboptimal choice
by the incumbent in the event that the entrant deviates from the Nash

zmhoﬁ ) AMJ Nv
Incumbent (0,-1)
Undercut
Enter
Entrant ) (6, 0)
Out :

Figure 7.2. Game tree of entry.
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Match

(0,-1)

Undercut

Figure 7.3. Subgame for incumbent.

equilibrium and chooses to Enter. In other words, this Nash equilibrium is
supported by a threat by the incumbent to Undercut upon entry, a threat
that the incumbent is unlikely to carry out as it is not in his self-interest to
do so. The requirement of subgame perfection eliminates Nash equilibria
(such as this one) that are supported by non-credible threats.

As another illustration of subgame-perfect equilibrium, consider an auc-
tion conducted under the following rules. The auctioneer starts the bidding
at $1,000 and will make raises in steps of $1,000. The n bidders draw num-
bers out of a hat. The buyer drawing number 1 has the first opportunity
to accept or reject the initial asking price. If buyer 1 rejects, he is out of
the auction and buyer 2 has a chance to bid $1,000. If buyer 1 accepts, the
asking price is raised by $1,000 and the auctioneer moves to buyer 2 who
then must decide whether to accept at $2,000 or reject (and hence exit). The
auction continues until the asking price is rejected by all buyers, in which
case the last acceptance becomes the actual sale.

Suppose there the two buyers are bidding for a diamond tiara. Alex, who
drew the number 1, values the tiara at $3,500. Bev, who drew the number 2,
values the tiara at $2,500.'° The “sensible” solution is for Alex to accept the
opening price of $1,000 while Bev accepts the next asking price of $2,000.
Alex then bids $3,000 and wins the tiara. However, there are other Nash
equilibria. Consider the following alternative strategy pair as a solution:

Alex’s strategy: Reject the initial price.
Bev’s strategy: Accept an asking price if and only if it is less than $5,000.

The strategy described for Bev seems rather weird, since it raises the pos-
sibility that she could end up paying for the tiara more than her valuation
of $2,500. But let us follow the logic of the proposed solution. Given that
Alex does reject immediately, Bev will take the tiara for $1,000, getting her
maximum net payoff of $2,500 — $1,000 = $1,500. So this strategy for Bev
is indeed a best response to Alex. Now consider whether Alex’s strategy is
a best response to Bev’s. If Alex rejects he ends up with nothing. But if he

' We are implicitly assuming that the seller does not have full knowledge of the buyers’
reservation prices. For, if he did, rather than hold an auction he would simply announce
an asking price close to $3,500.
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ASKING PRICES
$1,000 $2,000 $3,000 $4,000 $5,000

Accept Accept Accept _|||_ Accept _Ill_ Accept
E E As B, A (-1500,0)

3

Reject Reject Reject Reject

(0,1500) {2500,0) (0,500) (600,0) (0,-1500)

Figure 7.4. Open auction with alternating bids.

accepts, that is, if he follows some strategy other than the one considered
here, for example, bidding up to his own valuation, the bidding sequence
might go as follows:

Alex bids $1,000

Bev bids $2,000

Alex bids $3,000 :

Bev bids $4,000 (!) and gets the tiara.

No matter what specific strategy Alex chooses (he might, for example, set
himself an upper limit of $1,000 or $3,000 or $5,000 or... ), he will either
end up with nothing or, worse, end up paying more for the tiara than it
is worth to him. To reject the initial asking price is therefore indeed a best
response to Bev’s strategy. It follows that the pair of proposed strategies is
also a Nash equilibrium.

Just as in the entry game, we can eliminate this “implausible” Nash
equilibrium by requiring that the equilibrium be subgame perfect. The tree
or extensive form of the game is depicted in Figure 7.4, with initial node
A,. There are four subgames beginning at B, A,, B, and A;. Bach is easily
analyzed. Starting with the last subgame beginning at A,, Alex loses $1,500
by accepting once Bev has bid $4,000, so his best response is to reject. This
is denoted by the arrow pointing down from A,.

Next, consider the subgame originating at B,. If Alex had bid $3,000, Bev’s
payoff from accepting at $4,000 would be —$1,500 (= $2,500 — $4,000)
since, as we have just argued, Alex will reject at his next opportunity. Her
optimal move at B, is therefore to reject, which would violate the strat-
egy under consideration. It follows that the implausible Nash equilibrium
associated with that strategy pair is not subgame perfect.

To confirm that the “sensible” intuitive Nash equilibrium is subgame
perfect, consider the subgame with initial node A,. From our previous
argument, if Alex accepts the asking price of $3,000, Bev will reject the



282 Strategic Uncertainty and Equilibrium Concepts

asking price of $4,000, and so Alex’s net payoffis $500 (= $3,500 — $3,000).
It follows that his optimal strategy is to accept. This is depicted by an arrow
pointing across from the node A,.

Now consider the subgame with initial node B, . Bevis outbid if she accepts
and gets nothing if she rejects. Therefore to accept the asking price of $2,000
is a best response. Given this, Alex’s optimal strategy in the opening round is
to accept also. We conclude therefore that the “sensible” Nash equilibrium
(in which Alex will bid up to $3,000 and Bev up to $2,000) is subgame
perfect.

Unfortunately, this is not the end of the story. From node B, Bev is indif-
ferent between accepting and rejecting. Rejecting $2,000 is therefore also a
best response. It follows that there is a second subgame-perfect equilibrium
in which Alex accepts the starting offer of $1,000 and Bev then drops out
of the bidding. Nor is this an entirely implausible outcome. Intuitively, Bev
may note that Alex always has an incentive to outbid her, and so she may
well decide not to bother going through the exercise of pushing up the price
on the seller’s behalf. However, if there is any chance at all that Alex will
not continue bidding, Bev is strictly better off staying in and accepting the
asking price of $2,000.

This suggests a further approach to “refining” the Nash equilibrium con-
cept. Starting with some game G, one might perturb the payoffs and consider
what happens as the perturbation approaches zero. A Nash equilibrium for
the original game G that is the limit of Nash equilibria in the perturbed
game is surely more credible than if this were not the case. For example,
in the previous bidding game suppose that Alex’s valuation is $3,500 with
probability 1 — 7, and $1,500 with probability 7, while Bev’s valuation
is $2,500 with probability 1 — 7 and $500 with probability . (Here
each person’s probability distribution is known to the opponent, but only
the individual knows his or her own actual realization.) If Alex accepts the
initial price of $1,000, he will take the tiara at that price with probability
7y, since Bev will not bid if her valuation is $500. If Bev has a valuation of
$2,500, she will accept at $2,000 and win with probability 7 &> since Alex
will bid $3,000 only if his valuation is $3,500. Of the two subgame-perfect
equilibria for the bidding game, the equilibrium in which the price is bid
up to $3,000 is therefore more credible than the one in which Bev rejects
the asking price of $2,000.

A second approach, also due to Selten (1975), introduces “noisy” strate-
gies. Suppose an individual who intends to select some strategy x, from his
set of feasible pure strategies (x;, x,, ..., x4) unintentionally plays some
other strategy x, with probability 7, > 0, where D btaTp = € and € is
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small. Then an opponent may want to choose her strategy in the light of
this “tremble” possibility.

For our alternating-bid auction, the possibility of such trembles may
induce each buyer to stay in the bidding until the asking price exceeds his or
her reservation price. Again, the reason should be clear. As long as there is a
chance that an opponent will make a mistake and drop out, a buyer is better
off accepting any asking price below his or her reservation price, since there
is a positive probability of winning.

We explore this idea more systematically in the next section.

Exercises and Excursions 7.3

1 Entry Game with Two Types of Entrant

Suppose that with probability 7 the entrant, if she decides to enter, signs a
short-term contract with a supplier. If so the payoffs in the game are exactly
as in Table 7.5. With probability 1 — 7 the entrant, if she decides to enter,
signs a long-term contract. In that case payoffs are:

ENTRY GAME WITH A LONG-TERM CONTRACT

Player 2 (entrant)

Enter Out
Player 1 (incumbent) Match 3,1 6,0
Undercut -1, =2 6,0

The incumbent does not know whether the entrant has signed a short-
term or long-term contract.

(A) If # = 1, we have seen that there are two Nash equilibria, one of
which is subgame perfect. Show that the conclusion is the same if
7 =0.

(B) There are two subgame-perfect equilibria if 0 < 7 < 1. Explain.

(C) Suppose that the entrant “trembles” as she chooses her strategy so
that there is a small probability that she will stray from her pure Nash
equilibrium strategy. What will be the outcome of such a game?

(D) Does your answer change if the incumbent also “trembles” with
small probability?
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2 Second-Price Sealed-Bid Auction
Alex has a valuation of $3,500, Bev a valuation of $2,500. Bids must be
submitted in hundreds of dollars. Valuations are common knowledge to the
two buyers but are unknown to the seller.

Each buyer makes a sealed bid, without knowledge of the opponent’s bid.
The high bidder is the winner and pays the second highest bid.

(A) Explain why bids by Alex and Bev of $3,500 and $2,500, respectively,
are Nash equilibrium bids. (Since there are no subgames the solution
is also subgame perfect.)

(B) Explain why bids of $0 by Alex and $10,000 by Bev are also Nash
equilibrium bids. Are there other equilibria as well?

(C) Appeal to arguments along the line of those at the end of the section
to conclude that the Nash equilibrium of (A) is more credible than
any other equilibrium.

7.4 Further Refinements

As has been seen, the additional requirement of subgame perfectness can
reduce the number of Nash equilibria. But subgame perfectness is applicable
only to games in which players move one at a time (and where these moves
are publicinformation). And, even when there is a strong subgame structure,
there may be multiple subgame-perfect equilibria, some of which seem more
credible than others. It would be desirable therefore to find other criteria
for ruling out certain of the implausible Nash equilibria.

Consider the following modification of the entry game analyzed in the
previous section. The rules are as before except that now the entrant as first
mover can enter in two different ways. These affect the outcome if the seller
tries to Match. If the entry is Mild, the entrant accepts a price match by the
incumbent, whereas, if the entry is Tough, the entrant fights with a further
price cut. The incumbent must choose his strategy knowing whether entry
has occurred but without knowing whether the entrant has chosen Mild or
Tough.

Payoffs in this game are given in Table 7.6 (note that if the entrant chooses
Mild, the payoffs are exactly as in the example of Table 7.5). The tree or
extensive form of the game is depicted in Figure 7.5. As before, the nodes
connected by the dashed line (the information set) indicate that the player
at that point must choose without knowing which branch of the tree he or
she is on.
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Table 7.6. Entry game with tough entry-I

Player 2 (entrant)

Mild entry Tough entry Out

Match 2,2 6,0

. 1,1
Player 1 (incumbent) Undercut 0 —1 0.0 6.0

There are two Nash equilibria in pure strategies: (1) the entrant stays Out
and the incumbent chooses Undercut; (2) the entrant chooses Mild Entry
and the incumbent chooses Match.

Since there are no subgames of this game, we need to employ some
other refinement of Nash equilibrium to rule out one of these equilibria.
Consider how the incumbent fares against each possible entry strategy.
With Mild entry, the incumbent has a payoff of 2 if he matches and 0 if
he undercuts. If the entry strategy is Tough, again the incumbent is strictly
better off choosing Match. Therefore, regardless of the type of entry, the
incumbent is strictly better off choosing Match.

Undercut is a weakly dominated strategy. Once entry has occurred, Under-
cut yields the incumbent a lower payoff than Match. And of course, if the
entrant remains Out, it.makes no difference what the incumbent would
have done. It thus seems reasonable to conclude that the incumbent will

Match
— Incumbent (2,2)
(0,-1)
I Undercut
|
|
|
|
|
Mild entry “
Information
Entrant " set
Tough entry [
|
]
Out “
|
| Maich
, ({))]
L t !
(6,0) Incumben ©,0)
Undercut

Figure 7.5. Entry game with two entry strategies.
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Table 7.7. Entry game with tough entry-IT

Player 2 (entrant)

Mild entry Tough entry Out

Match 2,2 -1,1 6,0
6,0

Pl i bent
ayer 1 (incumbent) Undercut 0, -1 0, —1

£l

respond to entry with Match. This eliminates the Nash equilibrium in which
the entrant stays out because of the (empty) threat of undercutting,

Another very similar example is given in Table 7.7. Here the payoffs in
the second column of Table 7.6 (when the entrant chooses Tough) have
been changed. Now it is no longer the case that Undercut is a weakly
dominated strategy. However, consider the choices of the entrant. If the
incumbent matches, the entrant’s payoffis higher if she chooses Mild. If the
incumbent undercuts, the entrant’s payoff is the same whether she chooses
Mild or Tough. Tough entry is therefore a weakly dominated strategy for the
entrant. By eliminating such a strategy the game is reduced to the original
entry game analyzed in the previous section (Table 7.5).

Eliminating (weakly) dominated strategies!! is a relatively uncontro-
versial further refinement. However, only in rare cases is the dominance
criterion applicable. Consider next the three-player game depicted in tree
form in Figure 7.6. Each player chooses either Up or Down. The two nodes
for player 3 are connected, indicating that this is an information set. That
is, player 3 must select his action without knowing whether it was player
1 or player 2 who made the previous move. The payoffs to the players are
specified at the terminal nodes: for instance, if players 1 and 3 each chooses
Up, then players 1, 2, and 3 get —1, 0, and 1, respectively.

If player 1 chooses Up, player 3’s best response is Down. Player 1 then
ends up with a payoff of 3. Since player 1 is certain to have a lower payoff if
he chooses Down, this is a Nash equilibrium.

But what if player 1 and player 2 both choose Down? This will occur
if player 1 is a pessimist and thinks that player 3 will choose Up. Player
1 therefore chooses Down. If player 2 is also a pessimist he too will choose
Down rather than Up, out of fear that player 3 will choose Down.

Note that this outcome occurs because player 1 thinks that player 3 will
choose Up while player 2 thinks that player 3 will choose Down. That is, the
players have mutually inconsistent beliefs.

"' A somewhat stronger refinement is the successive elimination of weakly dominated
strategies.
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Figure 7.6. Playing against an unknown opponent.

One way of overcoming this problem has been suggested by Kreps and
Wilson (1982). Take any strategy vector s = (s, ..., s,) for the n players.
Consider, for each agent, a completely mixed strategy'? that is close to s. Since
all nodes are reached with completely mixed strategies, Bayes’ Theorem
can be applied in a straightforward manner to compute beliefs of each
information set. Beliefs are then consistent if they are the limiting beliefs as
the mixed strategies approach s.

For our example, suppose players 1 and 2 choose Down. Then consider
this as the limit of mixed strategies in which player 1 chooses Up with
small probability p, player 2 chooses Up with small probability g, and player
3 chooses Up with probability r. The probability that player 3 is then called
on to play is p + (1 — p)q and the conditional probability that it was player
1 who chose Up is:

Prob(1 chose Up | 3’s information set is reached)

p (p/a)
= = 7.4.1
wiTEQ@\@tu@ (74:1)

In the limit, as p — 0 this approaches:

p/q
1+ p/q

12° A completely mixed strategy for a player is a mixed strategy in which every pure strategy
of the player is selected with non-zero probability.
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If g goes toward zero faster than p, this ratio approaches 1 in the limit. On
the other hand, if p goes to zero more quickly than g, this ratio approaches
zero. Indeed, any conditional belief is consistent. To see this, set p/q = /(1
— ) where 0 < m < 1. Substituting into (7.4.1) and taking the limit we
obtain:

Mw,mowwovﬁ chose Up | 3’ information set is reached) = 7

Thus, for this example, consistency imposes no restrictions upon the beliefs
of agent 3. However, it still has predictive power since it imposes the restric-
tion that players 1 and 2 must agree about agent 3’s beliefs.

For the tree in Figure 7.6, the payoffs of players 1 and 2 for the top pair
of terminal nodes are just the mirror image of those for the second pair of
terminal nodes. If 7 > 1 so that player 3 is more likely to be at the upper
node, his best response is Down. If 7 < w player 3’s best response is Up.
Finally, if 7 = Wv then player 3 is indifferent and so willing to play a mixed
strategy.

We can now establish that, for any consistent beliefs, the terminal node

1,3, 4) will not be reached in equilibrium. For if 7 >  player 3 chooses
Down and so player 1’s best response is Up. And if 7 < ,N_. player 3’s best
response is Up, in which case player 2’s best response is Up. Finally, if 7 = .M.
and player 3 adopts the mixed strategy of choosing Up with probability
r, the payoff of player 1 is 3 — 4r if he chooses Up. Moreover, if player
1 chooses Down and player 2 chooses Up, player 2 has an expected payoff of
4r -~ 1.

For all possible values of 7, the larger of these two payoffs is at least 1. It
follows that, for all r, either player 1 or player 2 or both have a best response
of Up. The terminal node of @. W« 4) is therefore never reached if beliefs
are consistent.

We now formalize the concept of consistency.

Definition: Consistent Beliefs

Let :mﬂﬁ oo st =1, 2, ...} beasequence of completely mixed strate-
gies which convergesto (5, ..., ). Let {(H}, ..., H")|t = 1,2...} be the
corresponding beliefs of the 2 agents at each node of the tree induced by
the completely mixed strategies (via Bayes’ Theorem). If (H', ..., H") is
the limit of this sequence then these beliefs are consistent with strategy
..., 9.

Having characterized consistent beliefs at every node and information set
in the tree, it is then a straightforward matter to work backwards through the
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tree and determine whether strategies are best responses. If so, the strategies
are said to be sequential (that is, sequentially consistent).

Definition: Sequential (Nash) Equilibrium

Let (H, ..., H") bebeliefs that are consistent with the Nash equilibrium
strategy (51, ..., §). If, moving sequentially through the entire tree, the
Nash equilibrium strategies are best responses under these beliefs, then the
equilibrium is sequential.

The sequential equilibrium concept is a modification of an earlier
approach due to Selten (1975). He too begins by considering a sequence
of completely mixed strategies that converges to a Nash equilibrium. How-
ever, in contrast with the definition of a sequential equilibrium, the beliefs
induced by the completely mixed strategies and not just the limit of these
beliefs are a part of the definition.

The basic idea is to start with a Nash equilibrium strategy for the n players
(84, ..., 5" and then ask whether, for each i, 5; is still a best response if each
opponent trembles when he tries to play his equilibrium strategy and instead
plays each of his other feasible strategies with a small positive probability.

If such a set of trembles can be found, then the equilibrium is said to
be trembling-hand perfect. Formalizing our earlier intuitive discussion, we
have the following definition:

Definition: Trembling-Hand Perfect Equilibrium

Let XMM, cosHlE = 1,2, ...} be a sequence of completely mixed strategies con-
verging to (5',...,5") and let {(H}, ..., H"|t = 1, 2,...} be the beliefs of the
n agents induced by the completely mixed strategies. If for each i and all ¢ suffi-
ciently large, the best response by agent i, given beliefs H, is ¥, then (3, ..., ) is
trembling-hand perfect.

While the requirements of a trembling-hand perfect equilibrium are mildly
stronger, it is only in rather special cases that a sequential equilibrium is not
also trembling-hand perfect.

One of these is the simple bidding game of Exercise 2 at the end of Sec-
tion 7.3. There Alex had a valuation of $3,500 and Bev a valuation of $2,500.
It is a weakly dominant strategy for Alex to remain in the bidding as long
as the asking price is less than $3,500. Therefore the belief that Alex will be
willing to stay in the bidding beyond Bev’s valuation is sequentially rational.
Thus it is a sequential equilibrium for Bev to reject the initial asking price of
$1,000 and drop out of the bidding. However, if there is a positive probability
that Alex will tremble and drop out of the bidding at a price below $2,500,
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Bev is strictly better off staying in the bidding. So, dropping out immediately
is not a trembling-hand perfect equilibrium strategy for Bev.

At a conceptual level, most people find the trembling-hand analogy quite
straightforward. In contrast, consistency as a limit of beliefs seems abstract
and difficult to grasp. Given this, it is natural to employ the trembling-
hand perfect equilibrium when this proves to be relatively uncomplicated.
However, for sophisticated applications it can be significantly easier to check
whether there exist sequentially consistent beliefs for a Nash equilibrium.

Exercises and Excursions 7.4

1 Sequential Equilibria
Consider the game depicted in Figure 7.6.

(A) Show that (Up, Down, Down) is a sequential equilibrium of this
game.

(B) Is (Down, Up, Up) also a sequential equilibrium?

(C) Are there any sequential equilibria in which player 3 adopts a mixed
strategy?

2 Elimination of a Family of Nash Equilibria
Suppose that the payoffs for the game depicted in Figure 7.6 are modified
as follows:

Payoff vector
If player 1 chooses Up and 3 chooses Up (3,3,2)
If player 1 chooses Up and 3 chooses Down (0,0,0)
If player 1 chooses Down, 2 chooses Up and 3 Up (4,4,0)
If player 1 chooses Down, 2 chooses Up and 3 Down 0,0,1)
If players 1 and 2 both choose Down (1,2, 1)

Let pbe the probability that player 1 chooses Up, g be the probability that
player 2 chooses Up, and r be the probability that player 3 chooses Up.

(A) Show that for g < 2/3 and r < 1/3, two Nash equilibria are (Up, g,
Up) and (Down, Down, 7).

(B) Show that only one of these two classes of equilibria meets the
condition for sequential equilibrium.
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3 Trembling-Hand Perfect Equilibrium

(A) Explain why a trembling-hand perfect equilibrium is a sequential
equilibrium.

(B) Ifthe payoff matrix of a simultaneous-move game is as shown below,
draw the tree of the corresponding sequential-move game, in which
player 1 moves first and player 2 must respond without knowing
what player 1 has chosen.

Player 2
(>1) ! r
Player 1 L 1,1 1,
R 2,0 -1, -1

(C) Confirm that there are two Nash equilibria. Then let &, be the proba-
bility that player 1 takes an out-of-equilibrium action. For each equi-
librium confirm that, as long as ¢, is small, player 2’s best response
is unaffected.

(D) Suppose, in addition, that player 2 makes an out-of-equilibrium
move with probability &,. Show that neither player’s best response
is affected as long as ¢, and ¢, are sufficiently small. That is, the
equilibria are trembling-hand perfect.

(E) Suppose instead that o = 1. Show that there is only one trembling-
hand perfect equilibrium. However, both the Nash equilibria iden-
tified in (C) are sequential.

coMMENT: This example illustrates that it is only for very specific parameter
values of the normal-form payoff matrix that a sequential equilibrium is
not also trembling-hand perfect.

4 Open Bidding with Different Valuations
Section 7.3 took up an example in which Alex and Bev made sequential bids
for a tiara. For this game there are two subgame-perfect equilibria.

(A) Explain why both are sequential equilibria.

(B) Show that only one is trembling-hand perfect.

(C) Would any small change in the parameters of the model change your
answer to (B)?

(D) Try to reconcile your answer with the comment at the end of the
previous question.
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Table 7.8. To fight or not to fight

Player b (Bev)
vh vt € {1, — 4} Aggressive Passive
Aggressive ve, pb 6,0
Player a (Alex) mmwzm 0,6 3,3

7.5 Games with Private Information

While the “refinements” discussed in the previous sections succeed in
excluding some of the implausible Nash equilibria, important difficulties
remain. This is especially the case when players have private information
but their actions may signal their type. Further refinements can be sensibly
applied in such games of private information.

Consider the following example. Each of two players simultaneously
chooses Aggressive or Passive. If both choose Aggressive so that a fight
ensues, for either player the payoffis 1 if he is naturally mean and —4 if he
is naturally kind. A player knows whether or not he is himself a mean type
of individual, but this information is private.

The normal form of the game is depicted in Table 7.8. If player a (Alex)
thinks that player b (Bev) is likely to play aggressively, his best response is
to choose Aggressive if +* = 1 and Passive if v* = —4. Since the game is
symmetric, the same is true for Bev. On the other hand, if Alex thinks that
Bev is likely to choose Passive, then his best response is Aggressive, regardless
of his private information.

But what will Alex think about Bev? And what will Alex think Bev will
think about Alex? And what will Alex think that Bev will think Alex will
think about Bev?. ... And so on.

Economic theorists have, almost exclusively, chosen to rely on a resolution
of this puzzle proposed by Harsanyi (1967-68). Suppose that the uncertain
payoffs v* and v’ are draws from some joint distribution. Moreover, and
this is critical, suppose that this joint distribution is common knowledge.®
That is, each player knows the joint distribution, each player knows that the
other knows the joint distribution, each player knows that the other knows
the joint distribution, and so on. Then each player is able to utilize this
information to compute a best response.

13 The concept of common knowledge was discussed in Section 5.3,
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For our example, there are four possible payoff pairs when both players
choose to be aggressive. Suppose the probability of each payoff-pair is w.
With private information, a complete description of a player’s strategy is
a description of his strategy (possibly mixed) for each possible private
message. We now confirm that it is a Nash equilibrium for each player to
choose Aggressive if his or her parameter value is positive and to choose
Passive if it is negative.

Suppose Bev behaves in this manner. Given our assumption that each
payoff vector is equally likely, there is a probability of 0.5 that Bev will
choose Aggressive. If Alex’s valuation is v4, his expected payoff to Aggressive
is @v% + @vm while his expected payoff to Passive is @vo + Ame. The
net advantage of Aggressive is therefore 1 (v® + 3). This is positive if v =
1 and is negative if v* = —4. Therefore Alex’s best response is to behave as
proposed. Given the symmetry of the example, it follows that the proposed
strategy is a Nash equilibrium.

To reiterate, in a game with private information, a strategy is a descrip-
tion of a player’s action (or probabilistic mix of actions) for each possible
private information state. As long as the underlying distribution of private
informational messages is common knowledge, each player can compute his
expected payoff against a particular strategy of his opponent. Equilibrium
strategies are then strategies that are best responses, just as in the earlier
discussion of Nash equilibrium with no private information. Because of the
importance of the common-knowledge assumption, economists sometimes
acknowledge the distinction by referring to the equilibrium as a Bayesian
Nash equilibrium.

As a second example, let us consider an advertising game with private
information. In this game, there is an equilibrium in which a seller of
high-quality products can signal that fact by costly advertising.

Suppose that a manufacturer is about to introduce a new product that
will be of either superior or mediocre quality. These define two “types” of
firm. If the product is superior, optimal use by consumers is High. If it is
mediocre, optimal use is Low. High rates of consumption generate high
revenue and profit for the firm. Before distribution of the new product
the firm chooses either Zero advertising, Z, Radio advertising, R, or more
expensive TV advertising, T.

It is common knowledge that the odds of a superior product are only
1 to 4. Consumers are not able to observe product quality until it has been
used for some time. They do, however, observe the advertising decision of
the firm. The firm observes product quality before taking an advertising
decision.
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Table 7.9. Advertising game

Consumer’s
choice
Low High
Type of manufacturer ~ Mediocre (prob. =0.8) T  —3,1 Lo ¢
R -1,1 3,0 &
Z 4,1 8,0 1-2¢
Superior (prob. = 0.2) T =3,2 54 ¢
R -1,2 7,4 g
VA 4,2 12,4 1—2¢

The payoff matrix for this game is given in Table 7.9. Note that, in
switching from Zero advertising to Radio advertising, the manufacturer’s
payoff declines by 5. This reflects the cost of the advertising. TV advertising
costs 7 so there is a further decline of 2 in the manufacturer’s payoff if he
switches from Radio to TV,

One Nash equilibrium of this game is for consumers to choose a Low rate
of consumption and for both types of manufacturers to choose Zero adver-
tising. This is readily confirmed from Table 7.9. With consumers choosing
Low, there is no incentive for a manufacturer to incur any advertising costs.

This equilibrium is also sequential (and trembling-hand perfect). To see
this, consider the mixed strategies of the two types given by the final column
in Table 7.9. Since both types choose Radio advertising with probability ¢,
the conditional probability that an advertiser is mediocre is equal to the
prior probability, that is, 0.8. The expected payoff to consuming at a high
rate is therefore (0.8)(0) + (0.2)(4) = 0.8, while the expected payoff to
consuming at a low rate is (0.8)(1) + (0.2)(2) = 1.2. Given such beliefs,
consumers will choose the low rate.

Exactly the same argument holds for TV advertising. Therefore the belief
that both types of manufacturers will choose Zero advertising is consistent.
This “pooling” equilibrium in which the different types are not differenti-
ated is not the only equilibrium, however. There is a second “separating”
equilibrium in which a superior manufacturer signals his product’s quality
via advertising.

Suppose consumers believe that superior manufacturers will choose TV
while mediocre advertisers will choose Radio or Zero advertising. From
Table 7.9, given such beliefs, the best response to TV is a high rate of use,
and the best response to Radio or Zero advertising is a low rate of use. Finally,
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Table 7.10. Equilibrium payoffs in the advertising game

Mediocre Superior

manufacturer manufacturer Consumer
E;: Neither type advertises 4 4 1.2
E,: Superior chooses TV 4 5 1.6
E;: Superior chooses Radio 4 7 1.6

given such choices by consumers, a superior manufacturer has a payoff of
5 if he chooses TV, a payoff of —1 if he chooses Radio, and a payoff of 4 if
he chooses Zero advertising. His best response is therefore to advertise on
TV. On the other hand, a mediocre manufacturer has a payoff of 4 without
advertising and a payoff of 1 if he advertises on TV. It follows that the
proposed strategies are Nash equilibrium strategies. Arguing almost exactly
as above, it may be confirmed that the consumers’ beliefs are consistent.
Therefore the Nash equilibrium is also sequential.

But this is far from the end of the story. Suppose consumer beliefs are
different, and instead they believe that any manufacturer who advertises on
either Radio or TV is of high quality while a manufacturer who does no
advertising is of mediocre quality. From Table 7.9, a mediocre manufac-
turer is still better off not advertising while a superior manufacturer will
choose Radio advertising. We therefore have a third Nash (and sequential)
equilibrium. A

It is instructive to compare the payoffs in the different equilibria, as
summarized in Table 7.10. Note that no player is made worse off and at
least one is made better off in moving from the first to the second and
then to the third equilibrium. In particular, a superior manufacturer has
a strong incentive to try to convince players to play the third equilibrium.
We shall now argue that such a player, if he is allowed to communicate, can
plausibly talk his way out of the other two equilibria. More precisely, we
begin by proposing a (sequential) Nash equilibrium and then ask whether
the equilibrium beliefs are likely to survive if players can communicate.

Suppose, for example, that the proposed equilibrium has the superior-
quality manufacturer choosing TV and the mediocre manufacturer choos-
ing Zero advertising.

The superior firm might send the following message to consumers: “I am
a superior firm but I am going to advertise on Radio rather than Television.
You should believe me and choose a high rate of usage since a mediocre
firm would be worse off if it were to choose Radio and you were to make
the same response.”
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Looking at Table 7.9, we see that this message is correct. With a high
rate of usage, the short-run gains for a mediocre firm are offset by the
cost of advertising and so profit is 3 — which is less than the equilibrium
profit of 4. However, the superior firm is clearly better off. Therefore if
consumers recognize that the argument is correct, the Nash equilibrium
with TV advertising fails the communication test.

More formally, let ® = {0, ..., 6,} be the set of possible types of player.
We will describe an equilibrium as being weakly communication proof if no
message of the following type is credible:'*

I am taking an out-of-equilibrium action and sending you the true message that my
type is 8; € ©, and you should believe me. For if you do and respond optimally, I
will be better off while any other type of player mimicking me would end up worse
off.

This communication test hinges upon the availability of an out-of-
equilibrium action that would be in the interests of only one type of player.
The following stronger test allows for an out-of-equilibrium action that
would be in the interests of a subset of the possible types of player. We
describe an equilibrium as being strongly communication proof if no mes-
sage of the following type is credible:

I am taking an out-of-equilibrium action and sending you the true message that my
type is in B, a subset of ®, and you should believe me. For if you do so and respond
optimally (using prior beliefs about types), any type in B would be better off while
any other type of seller attempting to do the same would end up worse off.

It may be that none of the Nash equilibria survive this strong communica-
tion test. Thus, at least so far as we now can tell, game-theoretic method-
ology will sometimes fail to generate a credible equilibrium. While perhaps
regrettable this is, we believe, hardly surprising. In general, games with
private information have informational externalities. One player’s return
yields information about his type and, by inference, information about
other players who choose different actions. In the presence of such exter-
nalities it would be much more surprising if there were a universal existence
theorem for credible equilibria.

Nevertheless, even without equilibrium explanations for every imagin-
able situation, the Nash equilibrium concept with its refinements has proved
to be fruitful for analyzing a wide range of strategic interactions, as will be
illustrated further in the chapters to come.

4 This is what Cho and Kreps (1987) refer to rather obliquely as the “intuitive criterion.”
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Exercises and Excursions 7.5

1 Bayesian Nash Equilibrium with Correlated Beliefs

In the first example considered in Section 7.5, the probability that an oppo-
nent has a positive payoff when both are aggressive is 1/2 regardless of a
player’s type. That is, types are independent. Suppose instead that v* =
1 and v* = 1 with probability w while v* = 1 and v’ = —4 is  and v* =
—4 and v = 1 is B. That is, the joint probability matrix is symmetric.

(A) Show that types are positively correlated if and only if 8 < w.

va:mw W roEmvmrosﬁrmﬁxmmmwmﬁ&mszmar mm:mmuaqa mOam
player to choose Aggressive when v is positive and Passive when v*
is negative.

(C) Show also that if 8 < Wm then this is no longer a Bayesian Nash
equilibrium.

(D) What is the Bayesian Nash equilibrium in this case?

7.6 Evolutionary Equilibrium

The approach outlined in the preceding sections is not useful in exploring
the long-run equilibria of games that are played repeatedly in large anony-
mous populations subject to natural selection. In such cases what can be
said about the outcome and what equilibria are likely to emerge? One way
of resolving this problem is to introduce evolutionary or natural-selection
considerations, as proposed by the biologist John Maynard Smith (1976,
1982). Imagine a large uniform population of organisms that randomly
encounter one another in pairwise interactions, with payoffs for each single
encounter given by some game matrix. Then, owing to the force of natural
selection, over the generations a strategy yielding above-average return will
gradually come to be used by larger and larger fractions of the population
while strategies with below-average returns will shrink in representation.
Among economic players, imitation may replace or supplement natural
selection, with somewhat similar results (Alchian, 1950; Winter, 1964). If
the dynamic evolutionary process leads to a population whose members are
fractionally distributed over a set of strategies — or, as a special case, all of
whom are following some single strategy — then that distribution is called
an evolutionary equilibrium, provided that the evolutionary process works
to maintain and restore the distribution in the face of all sufficiently small
arbitrary displacements of the population proportions (“shocks”).

To begin with, consider only pure strategies. Let us assume a symmetrical
game (so that the row and column players could be interchanged without
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affecting the matrix of payoffs).!> Denote as V(x, | x,) the expected payoff
to an organism playing x, in an environment where everyone else in the
population is playing x;,. Maynard Smith defined what he termed an “evo-
lutionarily stable strategy” (ESS) as follows. Strategy x, is an ESS if either of
these two conditions hold:

(i) Vix,lx,) > Vix,|x,)
(ii) Or, V(x, I x,) = V(x, | x,) and V(x, | x) > V(x| ;)

forany b # a

The first condition corresponds essentially to the strategy pair (x,, x,)
being a strong Nash equilibrium. If when everyone else is playing x,, any
single player finds that x_ is strictly better for him than any other strategy,
then x, is an ESS. The second condition says that, even if (x,, x,) is only a
weak Nash equilibrium, with x, yielding the same expected payoffas another
strategy x;, that strategy pair can still be an ESS provided that x, can defeat
any other strategy x;, when the population consists almost entirely of players
of x;,. In effect, the first condition says that the home team prevails when it
can beat any intruder. The second says that the home team can still win out
even if it only ties some intruders, provided it can beat any such intruder
on the latter’s own home field.

Satisfying the conditions for an ESS does not necessarily suffice for evo-
lutionary equilibrium, however. In the first place, the ESS definition above
was pitched in terms of a single evolutionarily stable strategy — whereas,
more generally, evolutionary stability is a characteristic of a population dis-
tribution over a set of strategies. If strategies a, b, and c are being played
within a certain population in proportions p,, p,, and p,, respectively, that
distribution may or may not be evolutionarily stable — with no implications
one way or the other as to whether any of the three component strategies is
an ESS standing alone.

It is important not to confuse a mixed population with a uniform popula-
tion playing a mixed strategy. A population distribution in the proportions
P, D> and p, over the pure strategies g, b, and ¢ does not in general have
the same stability properties as a population uniformly playing the cor-
responding probability mixture of the same three strategies. (Except that
when there are only two pure strategies, the stability properties are indeed
equivalent.)!6

15 This amounts to assuming a homogeneous population in which everyone is of one single

type.
16 Maynard Smith (1982), pp. 184-186.
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Figure 7.7. Evolutionary equilibria in Tender Trap and Chicken.

Second and more fundamentally, since an evolutionary equilibrium is
the stable terminus of a natural-selection process over the generations, it is
characterized not only by the payoff elements entering into the definition of
the ESS but also by the dynamic formula governing the change in population
proportions in response to yield differentials in any generation (Taylor and
Jonker, 1978; Zeeman, 1981; Friedman, 1991; Hirshleifer and Martinez Coll,
1988). It may be, for example, that, even if the payoffs remain unchanged,
increasing the sensitivity of the dynamic response formula can lead to
explosive cycling instead of the damped behavior of a system consistent
with ultimate stability.!”

In what follows, we will generally be employing the evolutionary equi-
librium terminology, although in most of the simple cases dealt with the
ESS definition originally proposed by Maynard Smith suffices to locate the
equilibrium,

Along the lines of the analysis in Hirshleifer (1982), the essentials of
the relation between Nash equilibrium and evolutionary equilibrium are
pictured in Figure 7.7. On the horizontal axis is plotted p, the proportion of
the population playing the first or “more cooperative” strategy in the games
Chicken and Tender Trap considered in Section 7.2.18

17 Consider the discrete-generation dynamic formula:
Ap, = RFGN —V), forallstrategiesa=1,...,A

Here p, is the proportion of the population playing strategy a (where, of course,
Y- .P, = 1), V, is the mean payoff received by a player of strategy a, V is the average
mean yield for the population as a whole, and « is a parameter representing the sensitivity
of the dynamic process. Then, if there is an interior Nash equilibrium consisting of a
population distributed over a set of pure strategies, whether or not that Nash equilibrium
is also an evolutionary equilibrium depends upon « being sufficiently small (Hirshleifer
and Martinez Coll, 1988, pp. 387-390).

Recall that “Dvorak” and “Coward” are the more cooperative strategies in (the simultane-
ous move version of) Tender Trap and in Chicken, respectively.

18
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On the assumption that each individual will be randomly encountering
other members of the population in a one-in-one interaction, let V; denote
the average payoff, as a function of p, to an individual choosing the more
cooperative strategy 1. Similarly, let V, be the expected payoff to the less
cooperative strategy 2 as a function of p. Thus:

PV @) + (1= PV (x 1)
= PV (x,lx) + (1 = PV (x],) (7.6.1)

Evidently, the second strategy will be more successful, and thus over the
generations will be naturally selected over strategy 1, whenever V; — V, < 0.
From Q.@.:“

Vi =V, = plVxi]x) = V(mla)] + (1= )V (x1x) — V (xy1,)]

If strategy x, is a strong Nash equilibrium so that the first bracketed term
is strictly positive, then V; — V, is necessarily positive when p approaches
unity. Moreover, even if the payoffs were such that the first bracket is zero,
V, — V, is still positive if the second bracket is positive. Hence sufficient
conditions for an evolutionary equilibrium are indeed those given by (i)
and (ii) in the definition of ESS above.!®

Figure 7.7 indicates that two qualitatively different types of situations
associated with the payoff environments of Tender Trap (line I) and Chicken
(line II). Line I is positively sloped, owing to the fact that in Tender Trap
it is more profitable always to conform to what the great majority of the
other players are doing; line I1 is negatively sloped since in the environment
summarized by the Chicken payoff matrix it is more advantageous to do
the contrary.

For the Tender Trap example of Exercise 7.2.1, p = 0 corresponds to
the mutually less profitable “Qwerty” Nash equilibrium at (x,, x,); p = 1
similarly corresponds to the more profitable “Dvorak” Nash equilibrium at
(%1, %1 ); and finally the crossover point K at the population proportions (py,
1 — px) = (0.25, 0.75) corresponds to the mixed Nash equilibrium. As can
be seen, for p > py, the difference V;, — V, is positive. Then, as indicated
by the arrows, the proportion adopting the first strategy will grow over
the generations, eventually achieving the extreme at p = 1. For any initial
proportion p < py, on the other hand, the evolutionary process over time
will go the other way, terminating at p = 0. Thus, the mixed-strategy Nash

i

4

19 This argument can also be used to show that even when there are more than two pure
strategies (i) any strong Nash equilibrium is an evolutionary equilibrium and (ii) a weak
Nash equilibrium might not be an evolutionary equilibrium.
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Figure 7.8. Examples of possible evolutionary equilibrium patterns when A = 3.

equilibrium?® represented by point K is not an evolutionary equilibrium
(is not “evolutionarily stable”); only the pure-strategy Nash equilibria at
p=0andat p=1 are evolutionary equilibria.

For the Chicken payoff matrix of Table 7.4, there is a mixed Nash equi-
librium at the crossover point L, where (p;, 1 — p;) = (0.6, 0.4). Since in
Chicken it is the less prevalent strategy that has the advantage, as indicated
by the arrows along line II, the evolutionary progression is always away from
the extremes and toward the interior solution at point L. Thus, for Chicken
only, the mixed Nash equilibria is an evolutionary equilibrium.

A number of new possibilities emerge when we consider strategy sets
where the number of pure strategies, A, exceeds 2.2! Figure 7.8 is a sug-
gestive illustration for A = 3. Any point within each triangle represents a
distribution of the population over the three strategy options. The horizon-
tal coordinate represents the proportion p, playing strategy 1, the vertical
coordinate the proportion p, playing strategy 2, while the remaining pro-
portion p, is measured by the horizontal (or, equivalently the vertical)
distance from the hypotenuse. Thus, the origin is the point where p, = 1.
The arrows show convergence possibilities for a number of different possible
cases. Without going into the specific conditions here,?? it is evident that
there may be evolutionary equilibria (as indicated by the heavy dots in the
diagrams) at various combinations of: (i) one or more vertices; (ii) an edge
and a vertex; or (iii) in the interior.?> A vertex evolutionary equilibrium
corresponds to the situation where only a single strategy is represented in
equilibrium; an edge evolutionary equilibrium corresponds to more than

2 Since in both Tender Trap and Chicken only two pure strategies are involved, for purposes of

analyzing evolutionary stability we can, as indicated above, deal with a uniform population
playing a mixed strategy as if it were a mixed population playing the corresponding
distribution of pure strategies.

Here we will always be thinking of mixed populations, each member of which plays some
pure strategy, rather than uniform populations playing a mixed strategy.

22 On this, see Hirshleifer and Martinez Coll (1988, pp. 379-380).

23 Some of the possibilities are illustrated in the exercises below.

21



302 Strategic Uncertainty and Equilibrium Concepts

one, but not all, strategies being represented; an interior evolutionary equi-
librium indicates that all strategies are represented. Or, finally, there may be
no evolutionary equilibrium at all.

For A = 3, there are several other interesting implications. First, it may be
that each of two or more strategies can defeat all others, but are tied against
one another. In such cases, no single one of the winning strategies will meet
the conditions for an evolutionary equilibrium, since it is not stable with
regard to displacements shifting its proportionate representation as against
other members of the winning group. Yet, the group as a whole represents a
kind of evolutionary equilibrium region, since any given starting point of the
evolutionary progression will always be attracted to some terminus along
the edge connecting those strategies. Second, it is also possible to have a
different kind of attractive region: a closed “limit cycle” toward which the
population proportions spiral from within or without — but where, along
the curve itself, the proportions cycle perpetually.

Exercises and Excursions 7.6

1 Nash Equilibrium and Evolutionary Equilibrium

Identify the pure-strategy and mixed-strategy Nash equilibria, and the evo-
lutionary equilibria as well, of the following payoff matrices. Show that 1 has
evolutionary equilibria at all three vertices; 2 has an evolutionary equilib-
rium only along an edge; 3 has only an interior evolutionary equilibrium;
and 4 has no evolutionary equilibrium at all.

b 2,3 5,5 4,0 b 4,4 3,3 2,2
c 7,1 0,4 5,5 c 2,2 2,2 1,1

3 a b c 4 a b c

a 1,1 2,2 3,3 a 3,3 3,3 2,1
b 2,2 1,1 2,3 b 3,3 3,3 2,2
c 3,3 3,2 1,1 c 1,2 2,2 1,1

2 Evolutionary Dynamics
This exercise is designed to illustrate the dynamics corresponding to the
two vertex evolutionary equilibria shown in the first diagram of Figure 7.8.
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For the payoff matrix below, let (p;, p,, p;) be the population proportions
using strategies g, b, and ¢, respectively.

a b c
a 2,2 0,0 0,0
b 0,0 1,1 0,2
c O~O NvO Hv”—

(A) Using the discrete-generation dynamic formula given in footnote 17,
show that the population proportions evolve according to:

Apy=kp(2p; —V)
Ap,=kp(p,—V)
Aps =kps2p, +p5— V)

(B) Since these changes sum to zero, show that:
V=214 i psQpy 5 = 20+ (9 o p) = 207+ (1
p)

(C) Hence show that Ap; > 0 ifand only if 1 > p; > 1.

(D) Show wrmﬁ V exceeds 2 for all p;. Hence explain why Ap, < 0 for all
Py <3 :

(E) Show thatif p; < 3 and p, = 0, Ap, is strictly positive.

(F) Use these results to explain why the population proportions will
evolve as depicted in Figure 7.8a (as long as « is sufficiently small).

3 Nash Equilibrium versus Evolutionary Equilibrium, and Evolutionary

Equilibrium Region

(A) For the payoff matrix below, show that there is a weak Nash equilib-
rium at the (¢, ¢) strategy pair along the main diagonal (correspond-
ing to the c-vertex of the triangle). However, show that this Nash
equilibrium cannot be an evolutionary equilibrium.

[miNT: If p, = 1 — ¢, are there any p,, p, population fractions, sum-

ming to ¢, for which strategy a and/or strategy b has higher payoff than

strategy ¢?]

a b c
a wum wvw r%
b 3,3 3,3 2,2
c 4,1 2,2 2,2




304
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Show that strategy ¢ will be dominated, even as & approaches unity,
by mixtures of a and b in which the latter has more than 50%
representation. Accordingly, identify a range along the a-b edge of
the triangle that represents an evolutionary equilibrium region.

4 Interacting Populations

The analysis in the text postulated interactions within a single homogeneous
population. But sometimes we want to consider interactions between mem-
bers of two distinct populations: e.g., males versus females, buyers versus
sellers, predators versus prey.

(A)

(B)

(©

The payoff matrix below is associated with the game known as Battle
of the Sexes. What are the three Nash equilibria of this game?

In considering evolutionary equilibria of games with interacting
populations, we seek stable vectors of population proportions (p;,
Pasev s Pas 915 Gas - - - » 4) — Where the p’s represent the proportions
of the first population and the ¢’s are proportions of the second
population, both distributed over the A available pure strategies.
Find the evolutionary equilibria of the Battle of the Sexes game, if
any.

Player k
xf x5
. x 10,8 4,4
Player j xm 4,4 8, 10

In the Chicken game, described earlier in the chapter as taking place
within a single homogeneous population, there were three Nash
equilibria of which only the single “interior” Nash equilibrium (rep-
resenting a mixed-strategy or mixed-proportions solution) was an
evolutionary equilibrium. Suppose now that the interacting players
come from different populations. Do the results differ?

5 The “War of Attrition” (Maynard Smith, 1976; Riley, 1979)

Two animals are competing for a single prize (item of food). As long as
they engage in a merely ritualistic (non-damaging) struggle, neither wins
the prize and each incurs an opportunity cost of ¢ per unit of time. If player
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2 withdraws at time ¢, the payoffs are:
U, = —ct

(A) Explain why no player will, in equilibrium, choose any particular
stopping time # with positive probability.

(B) Suppose player 2 adopts the continuously mixed strategy of dropping
out by time t with cumulative probability G(t). Write the expected
payoff to player 1.

(C) Hence, or otherwise, show that the Nash equilibrium strategy of this
game is:

G(H)=1—exp/V

(D) Explain why it is only a matter of notational convenience to choose
a unit of measurement so that c= V.

(E) *Under this assumption, show that the expected payoff to playing
the Nash equilibrium strategy against a mutant strategy H(f) can be
expressed as:

<®§Yu\8QQ%mQY;+\::@§L&
0 . (4}
- \o [G/()(H () — 1) + H()(1 — G(t))]de

[HinT: Integrate [;° G'(f) \oﬂ H(x) dxdt by parts, using the fact that
G(t) = — d(1 — G(1)/dt]

(F) *Show that V(u | u) — V (v| u) reaches a maximum at & = v, that
is, the Nash equilibrium is also an evolutionary equilibrium.

[HInT: Write the Euler condition and then use the fact that G' () + G(¢)
—1=0]

SUGGESTIONS FOR FURTHER READING: There are several first-rate
books on game theory. Friedman (1986) and Gibbons (1992) are excellent
introductions to game theory. For more in-depth treatments, the reader
should consult Fudenberg and Tirole (1991), Osborne and Rubinstein
(1994), or Myerson (1997). For evolutionary game theory, the subject of
Section 7.6, see Weibull (1997).

* Starred questions or portions of questions may be somewhat more difficult.
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