
Econ 201B: Exam Solutions

1. Game Theory

You are studying a normal form game G = (I ;A; u) where I denotes the set of players,
A the compact set of action pro�les, and u : A! RI the players�payo¤s.

For parts (a) � (c), explain what additional assumptions you need to impose on the
structure of the game, and what mathematical tools and results you can use in order to:

(a) Establish the existence of a Nash equilibrium.

In order to establish existence, we need to show that the best response correspondence
has a �xed point. Thus, we need to appeal to a Fixed Point Problem. There are two possible
alternatives.
1. Kakutani�s FPT states that a non-empty, upper-hemi continuous, compact-valued,

convex-valued correspondence on a compact metric space has a �xed point. Thus, we need to
show that the best-response correspondence is non-empty, upper-hemi continuous, compact-
and convex-valued.
The theorem of the maximum states that if B and X are compact, and u : B �X ! R

is continuous, then the correspondence g(x) = argmaxb2B u(b; x) is non-empty, compact-
valued and upper-hemi continuous. (remark: the continuity restriction can be relaxed to
upper semi-continuity in b, so that at any point, u(b; x) is de�ned by the maximum of the
right- and left-hand limits w.r.t. b).
Therefore, if we use B = Ai and X = A�i, and assume that u is continuous, the THM of

the maximum implies that the best-response correspondence is non-empty, compact-valued
and upper-hemicontinuous.
We still need convex-valuedness. If we assume that u is also strictly quasi-concave in

ai for all a�i, then the BR correspondence will be single-valued (and hence a continuous
function) - implying convex-valuedness.
As an alternative to continuity in A, and quasi-concavity in ai, we can also assume

that each player has a �nite number of actions, so that A is �nite-valued. In that case,
we recast the game�s strategies as mixed strategy probabilities. The resulting preferences
are continuous in the probability (by construction), so the THM of the maximum gives us
non-emptyness, compact-valuedness and upper-hemicontinuity of the BR correspondence.
Convex-valuedness follows because if any two actions are best responses, any mixture over
those two, i.e. any convex combination of mixing probabilities, is a best response as well.
Summary: to apply Kakutani�s FPT, we need either continuity of payo¤s in A, and quasi-

concavity of payo¤s in ai, or �niteness of A, in which case Kakutani is directly applicable to
the space of mixed strategies.
2. Topkis FPT states that an increasing function on a compact metric space has a �xed

point.
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To apply Topkis�FPT, we need to �nd conditions, under which the best response corre-
spondence admits a monotone selection. This follows when the payo¤s are super-modular,
i.e. ui is continuous in a�i, upper-semi continuous in ai, and exhibits increasing di¤erences:

ui (ai; a�i)� ui (a0i; a�i) � ui
�
ai; a

0
�i
�
� ui

�
a0i; a

0
�i
�

whenever ai � a0i and a�i � a0�i.
Summary: to apply Topkis�FPT, we again need the conditions for the maximum theorem

to hold, plus increasing di¤erences in payo¤s (super-modularity).

(b) Establish the existence of a Nash equilibrium in pure strategies

Again, there are two approaches to show existence of a pure strategy equilibrium.
1) if we are using Kakutani�s FPT, it is su¢ cient to show that the BR correspondence in

pure-strategies is convex-valued. For this it su¢ ces to have quasi-concavity in own actions,
for a compact action space.
2) if we are using Topkis�FPT, the conditions for super-modularity immediately imply

monotone best responses in pure strategies, implying existence of PSE.

(c) Show that the Nash equilibrium is unique.

To establish uniqueness, we need stronger properties on the best response correspondence
- essentially we need to rule out the possibility of multiple �xed points. A su¢ cient condition
for uniqueness is that the best response correspondence is a contraction. Alternatively, if
one considers a super-modular game, such a game has a �highest�and a �lowest�equilibrium,
and one can establish uniqueness by showing that the two coincide. This might be easier to
establish than the conditions required for a global contraction property to hold.

(d) Show that, if the game is strictly super-modular and has two players, the set of Nash
equilibria can be ordered, that is if (a1; a2) and (b1; b2) both constitute Nash equilibria and
a1 � b1, then a2 � b2.

Suppose to the contrary that a2 < b2. Since the game is super-modular, it then must be
the case that

u2 (a1; b2)� u2 (a1; a2) > u2 (b1; b2)� u2 (b1; a2)
Moreover, since (a1; a2) and (b1; b2) both constitute a Nash equilibrium, we also have

u2 (a1; a2) � u2 (a1; b2)

and u2 (b1; b2) � u2 (b1; a2) .

But then, we have the following contradiction:

0 � u2 (a1; b2)� u2 (a1; a2) > u2 (b1; b2)� u2 (b1; a2) � 0
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4. Common Value Auction II

Consider exactly the same set-up as you studied in question 2, but here we ask you to �nd
the optimal auction mechanism, in which the seller seeks to maximize expected revenue.
2 bidder�s �type� �i, i = 1; 2, is an independent draw from a distribution with support

[0; 1], c.d.f. F (�) and p.d.f. f (�). You may assume that F satis�es the monotone hazard
rate condition, i.e. (1� F (�i)) =f (�i) is strictly decreasing. Buyer i�s valuation vi (�) =
(1� �) �i + ���i, where � 2 [0; 1].

(a) Set up the mechanism design problem. What variables are determined by the
mechanism? What constraints does the mechanism have to satisfy?

We set this up as a direct revelation mechanism. The mechanism de�nes a probability
that bidder i obtains the object, as well as transfers from each bidder to the seller. Formally,
let qi (�) denote the probability that bidder i obtains the object, and ti (�) the transfer from
i to the seller, conditional on a pro�le of announcements �. The mechanism design problem
is:

max
fqi(�);ti(�)g;i=1;2

Z 1

0

Z 1

0

X
i=1;2

ti (�) f (�1) f (�2) d�1d�2

subject to Ui (�i) �
Z 1

0

[vi (�i; ��i) qi (�i; ��i)� ti (�i; ��i)] f (��i) d��i

�
Z 1

0

[vi (�i; ��i) qi (�
0
i; ��i)� ti (�0i; ��i)] f (��i) d��i for all i, �i, �0i

Ui (�i) � 0 for all i, �i.X
i=1;2

qi (�) � 1

The �rst constraint represents the incentive compatibility constraints for a bidder with type
�i. The second set of constraints represents the participation constraints. The third con-
straint imposes the requirement that the object can be sold at most once (i.e. the two
probabilities have to add up to at most 1).

(b) Using the usual tricks, �nd an expression for the seller�s expected revenue in an
incentive compatible mechanism

De�ne expected transfers and probabilities:

�qi (�i) =

Z 1

0

qi (�i; ��i) f (��i) d��i and �ti (�i) =
Z 1

0

ti (�i; ��i) f (��i) d��i

In addition, de�ne

���i (�i) =

Z 1

0

��iqi (�i; ��i) f (��i) d��i.
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Now, the indirect utility function is de�ned as

Ui (�i) = (1� �) �i�qi (�i) + ����i (�i)� �ti (�i) .

As usual, incentive compatibility is equivalent to monotonicity and local incentive compati-
bility. Thus, we have:

U 0i (�i) = (1� �) �qi (�i)

Ui (�i) = Ui (0) + (1� �)
Z �i

0

�qi (�
0) d�0

�ti (�i) =

Z 1

0

(1� �) �i�qi (�i) + ����i (�i)� Ui (0)� (1� �)
Z �i

0

�qi (�
0) d�0

=

Z 1

0

vi (�i; ��i) qi (�i; ��i) f (��i) d��i � Ui (0)� (1� �)
Z �i

0

�qi (�
0) d�0

Now, the seller�s revenue can be expressed as

R =
X
i=1;2

Z 1

0

�ti (�i) f (�i) d�i

=
X
i=1;2

�Z 1

0

Z 1

0

vi (�i; ��i) qi (�i; ��i) f (��i) d��if (�i) d�i � Ui (0)� (1� �)
Z 1

0

Z �i

0

�qi (�
0) d�0f (�i) d�i

�
.

Now, notice thatZ 1

0

Z �i

0

�qi (�
0) d�0f (�i) d�i =

Z 1

0

�qi (�i) (1� F (�i)) d�i =
Z 1

0

Z 1

0

qi (�i; ��i)
1� F (�i)
f (�i)

f (�1) f (�2) d�1d�2,

so R =
Z 1

0

Z 1

0

X
i=1;2

qi (�i; ��i)

�
vi (�i; ��i)� (1� �)

1� F (�i)
f (�i)

�
f (�1) f (�2) d�1d�2�

X
i=1;2

Ui (0)

(c) Does the Revenue Equivalence Theorem apply to this auction with common val-
ues?

Yes it does: from the above expression, notice that the seller�s revenue only depends on
the lowest types utility and the allocation rule.

(d) Derive the optimal allocation rule, transfers and the seller�s expected revenue.
Show that whenever � < 1=2, the item, if it is sold, always goes to the bidder with the highest
valuation. What about � = 1=2, or � > 1=2?

The allocation rule allocates the good to the bidder with the highest virtual surplus
v (�i; ��i)� (1� �) (1� F (�i)) =f (�i), provided that this is positive.
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When does the bidder with the highest actual surplus also have the highest virtual surplus,
and/or is the highest type? For that, notice that the bidder with the higher type, also has the
higher actual surplus, if and only if v (�i; ��i) > v (��i; �i) whenever �i > ��i, or equivalently,

(1� �) �i + ���i > (1� �) ��i + ��i
(1� 2�) (�i � ��i) > 0.

Thus, whenever � < 1=2, the higher type has the higher valuation. Due to the monotone
hazard condition, we then also have

v (�i; ��i)� (1� �) (1� F (�i)) =f (�i) > v (��i; �i)� (1� �) (1� F (��i)) =f (��i)

if �i > ��i, so that the item goes to the higher type, if it gets sold. When � = 1=2, both types
have the same valuation, in which case the good is sold to the higher type purely because of
informational rents, and when � > 1=2, the higher type actually has the lower valuation.

(e) Does the high-bid auction you studied in problem 2 implement the optimal alloca-
tion rule? If not, how would you have to modify the auction so that it does?

No: In the high bid auction, the object was always sold (ex post e¢ ciency), even when
virtual surplus was negative. The high bid auction would have to be augmented by a reserve
price in order to implement the optimal allocation rule.

5. Insurance with Moral Hazard

An insurance company proposes to protect a driver against accidents. The probability
that the driver has an accident is p(e), which is a decreasing, convex function of the driver�s
choice e of driving safely. When an accident occurs, the resulting losses x are distributed
with a pdf f(x) - notice that only the probability of an accident is a¤ected by e, but not the
distribution of losses. The driver�s utility is �d(t) � e, where e stands for the e¤ort cost,
and d(t) is an increasing, convex disutility of the driver�s �nancial losses t, which consists
of the driver�s payment to the insurance company.

For parts a) - d) you may assume that any accident is automatically reported to the
insurance company.

a) Set up and solve the insurer�s problem, when the driver�s choice of e is observable,
and contractual obligations can be made contingent on e. You may assume that if the driver
doesn�t agree to the contract, he is fully responsible for any damage caused by an accident.

The contract speci�es a payment t (�) from the driver to the insurer, which is contingent
on the occurrence and size of the accident damage (where we use x = 0 to denote the
occurrence of no accident), and the e¤ort choice e. The contract also speci�es a required
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e¤ort choice e�, which must be incentive compatible. In this case, the insurer is a monopolist,
who will o¤er the pro�t maximizing contract, subject to the driver�s participation constraint:

max
fe;t(�)g

(1� p (e)) t (0; e) + p (e)
Z 1

0

(t (x; e)� x) f (x) dx

s.t. (1� p (e)) d (t (0; e)) + p (e)
Z 1

0

d (t (x; e)) f (x) dx+ e

� (1� p (e0)) d (t (0; e0)) + p (e0)
Z 1

0

d (t (x; e0)) f (x) dx� e0 for all e0 6= e

(1� p (e)) d (t (0; e)) + p (e)
Z 1

0

d (t (x; e)) f (x) dx+ e

� min
e

�
p (e)

Z 1

0

d (x; e) f (x) dx� e
�
� �U

By requiring punitive payments for any e¤ort level other than the desired one, one can
implement any e¤ort choice, wihtout concern about incentive compatibility. The problem
can then be reduced to �nding the optimal e¤ort level, and transfers for this e¤ort level,
such that the participation constraint is satis�ed:

max
fe;t(�)g

(1� p (e)) t (0) + p (e)
Z 1

0

(t (x)� x) f (x) dx

(1� p (e)) d (t (0)) + p (e)
Z 1

0

d (t (x)) f (x) dx+ e

� min
e

�
p (e)

Z 1

0

d (x; e) f (x) dx� e
�
� �U

The point-wise �rst order condition for this problem w.r.t. t (x) gives (1� �d0 (t (x))) = 0,
from which it follows immediately that d0 (t (x)) must be constant for all x, including x = 0.

b) Set up the insurer�s problem of designing an optimal contract. You may assume
that if the driver doesn�t agree to the contract, he is fully responsible for any damage caused
by an accident.

The contract speci�es a payment t (�) from the driver to the insurer, which is contingent
on the occurrence and size of the accident damage (where we use x = 0 to denote the
occurrence of no accident). The contract also speci�es a required e¤ort choice e�, which
must be incentive compatible. In this case, the insurer is a monopolist, who will o¤er the
pro�t maximizing contract, subject to the driver�s participation and incentive compatibility
constraints:
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max
fe;t(�)g

(1� p (e)) t (0) + p (e)
Z 1

0

(t (x)� x) f (x) dx

s.t. (1� p (e)) d (t (0)) + p (e)
Z 1

0

d (t (x)) f (x) dx+ e

� (1� p (e0)) d (t (0)) + p (e0)
Z 1

0

d (t (x)) f (x) dx� e0 for all e0 6= e

(1� p (e)) d (t (0)) + p (e)
Z 1

0

d (t (x)) f (x) dx+ e

� min
e

�
p (e)

Z 1

0

d (x) f (x) dx� e
�
� �U

The �rst constraint represents the driver�s incentive constraint (the proposed e must be
incentive compatible). The second constraint represents the driver�s participation constraint
- accepting the contract must be at least as good as not having any insurance.

c) Show that in the optimal contract, the insurance company conditions the �nancial
responsibility of the driver only on the occurrence of an accident, but not on the actual
damage incurred.

Notice that in the optimal contract, the driver�s incentive and participation constraints
only depend on D =

R1
0
d (t (x)) f (x) dx and d (t (0)). For given values of D and d (t (0)),

such that the incentive and participation constraints are satis�ed, we can thus derive the
pro�le of payments that maximizes the insurer�s pro�ts:

max

Z 1

0

(t (x)� x) f (x) dx s.t.
Z 1

0

d (t (x)) f (x) dx = D

Taking point-wise FOC�s for t (x), we �nd f (x) (1� �d0 (t (x))) = 0, where � denotes
the multiplier on the constraint

R1
0
d (t (x)) f (x) dx = D. Therefore, 1 = �d0 (t (x)) for all

x > 0, implying that t (x) is constant for all x > 0.
Intuitively, the accident size is not informative of the driving e¤ort, only the occurrence

of an accident is. Therefore, the optimal contract should not make the payments contingent
on the damages, only on the occurrence of an accident.

d) Show that if the insurer�s optimal contract implements e > 0, then t (0) < �t � t (x)
for x > 0, i.e. implementing positive e¤ort requires that the driver pays strictly more when
an accident occurs.

With two payments, the driver�s IC constraint becomes

(1� p (e)) d (t (0)) + p (e) d (�t) + e � (1� p (e0)) d (t (0)) + p (e0) d (�t)� e0 for all e0 6= e
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If the insurer wishes to implement any e > 0, it must be the case that

(1� p (e)) d (t (0)) + p (e) d (�t) + e � (1� p (0)) d (t (0)) + p (0) d (�t)
or (d (�t)� d (t (0))) (p (0)� p (e)) � e.

Since p (0) > p (e), this can hold only if d (�t) > d (t (0)), and therefore �t > t (0).

e) How would you set up the problem, if there were two companies who could simul-
taneously o¤er competing insurance contracts?

With two competing insurers, the insurer�s pro�ts get competed away, and the contract
maximizes the driver�s expected utility, subject to incentive compatibility, and the insurer
breaking even:

min
fe;t(�)g

(1� p (e)) d (t (0)) + p (e)
Z 1

0

d (t (x)) f (x) dx+ e

s.t. (1� p (e)) d (t (0)) + p (e)
Z 1

0

d (t (x)) f (x) dx+ e

� (1� p (e0)) d (t (0)) + p (e0)
Z 1

0

d (t (x)) f (x) dx� e0 for all e0 6= e

0 = (1� p (e)) dt (0) + p (e)
Z 1

0

(t (x)� x) f (x) dx

Suppose now that accidents are not automatically reported to the insurance company.
Instead, the driver has the option of declaring the accident after it has occurred, along with
a documentation of the realized damages.

f) Suppose that the optimal contract you found under c) and d) implements a positive
e¤ort level. Show that this contract is no longer implementable, if the driver self-reports any
accident. That is, show that with the contract you found, the driver would not be willing to
report all accidents.

Consider the realization of an accident with a damage realization x < �t� t (0). That is,
the accident is smaller in size than the penalty the driver would have to pay by self-reporting
the accident. Clearly the driver will prefer not to report such a small accident.

g) How would you introduce this form of voluntary self-reporting into the structure
of the optimal contracting problem? How do you think this would a¤ect the design of the
contract? (no need to provide a full formal analysis here, just a sketch of your argument).

The problem remains the same as in the set-up in a) (for a monopolistic insurer) or d)
for a competitive insurance market, except that the contract has to satisfy some additional
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ex post incentive constraints, after the accident has occurred, and the driver faces the choice
of disclosing the accident. The additional constraint requires that the driver always prefers
to disclose - this is without loss of generality, since a contract in which some accidents are
not disclosed is equivalent to a contract with full disclosure, followed by full liability (i.e.
the agent paying the full amount of the damage) in some states. This additional constraint
thus requires that t (x) � x for all x.
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