Choice under uncertainty

Part 1

1. Introduction to choice under uncertainty 2
2. Risk aversion 15
3. Acceptable gambles 19

Part 2

4. Measures of risk aversion 24
5. Insurance 30
6. Efficient risk sharing 35
7. Portfolio choice 47

57 slides
1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let \bar{x} be the most preferred element of X and let \underline{x} be the least preferred element.
1. Introduction to choice under uncertainty (two states)

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let $x_\bar{X}$ be the most preferred element of X and let x be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X = \{x_1, x_2\}$ Let π_1 be the probability that the state is x_1 so that $\pi_2 = 1 - \pi_1$ is the probability that the state is x_2.

We write this "consumption prospect" as follows:

$$(x; \pi) = (x_1, x_2; \pi_1, \pi_2)$$

*
1. **Introduction to choice under uncertainty (two states)**

Let X be a set of possible outcomes ("states of the world").

An element of X might be a consumption vector, health status, inches of rainfall etc.

Initially, simply think of each element of X as a consumption bundle. Let \bar{x} be the most preferred element of X and let \underline{x} be the least preferred element.

Consumption prospects

Suppose that there are only two states of the world. $X = \{x_1, x_2\}$ Let π_1 be the probability that the state is x_1 so that $\pi_2 = 1 - \pi_1$ is the probability that the state is x_2.

We write this "consumption prospect" as follows:

$$(x; \pi) = (x_1, x_2; \pi_1, \pi_2)$$

If we make the usual assumptions about preferences, but now on prospects, it follows that preferences over prospects can be represented by a continuous utility function

$$U(x_1, x_2, \pi_1, \pi_2).$$
Prospect or “Lottery”

\[L = (x_1, x_2, \ldots, x_S; \pi_1, \ldots, \pi_S) \]

(outcomes; probabilities)

Consider two prospects or “lotteries”, \(L_A \) and \(L_B \)

\[L_A = (x_1, x_2, \ldots, x_S; \pi_1^A, \ldots, \pi_S^A) \quad L_B = (c_1, c_2, \ldots, c_S; \pi_1^B, \ldots, \pi_S^B) \]

Independence Axiom (axiom of complex gambles)

Suppose that a consumer is indifferent between these two prospects (we write \(L_A \sim L_B \)).

Then for any probabilities \(\pi_1 \) and \(\pi_2 \) summing to 1 and any other lottery \(L_C \)

\[(L_A, L_C; \pi_1, \pi_2) \sim (L_B, L_C; \pi_1, \pi_2) \]

Tree representation

\[\pi_1 \quad \pi_2 \]

\[L_A \quad L_C \sim \]

\[\pi_1 \quad \pi_2 \]

\[L_B \quad L_C \]
This axiom can be generalized as follows:

Suppose that a consumer is indifferent between the prospects L_A and L_B

and is also indifferent between the two prospects L_C and L_D, i.e. $L_A \sim L_B$ and $L_C \sim L_D$

Then for any probabilities π_1 and π_2 summing to 1,

$$(L_A, L_C; \pi_1, \pi_2) \sim (L_B, L_D; \pi_1, \pi_2)$$

Tree representation

We wish to show that if $L_A \sim L_B$ and $L_C \sim L_D$ then
Proof: $L_A \sim L_B$ and $L_C \sim L_D$

Step 1: By the Independence Axiom, since $L_A \sim L_B$
Proof: $L_A \sim L_B$ and $L_C \sim L_D$

Step 1: By the Independence Axiom, since $L_A \sim L_B$

$$\begin{align*}
\pi_1 & \sim_{IA} \pi_2 \\
L_A & \sim L_B
\end{align*}$$

Step 2: By the Independence Axiom, since $L_C \sim L_D$

$$\begin{align*}
\pi_1 & \sim_{IA} \pi_2 \\
L_A & \sim L_C \\
L_B & \sim L_C \\
L_D & \sim L_D
\end{align*}$$
Expected utility

Consider some very good outcome \(\overline{x} \) and very bad outcome \(\underline{x} \) and outcomes \(x_1 \) and \(x_2 \) satisfying

\[x < x_1 < \overline{x} \text{ and } x < x_2 < \overline{x} \]

Reference lottery

\[L_R(v) = (\overline{w}, w, v, 1 - v) \] so \(v \) is the probability of the very good outcome.

\[L_R(0) < x_1 < L_R(1) \text{ and } L_R(0) < x_2 < L_R(1) \]

Then for some probabilities \(v(x_1) \) and \(v(x_2) \)

\[x_1 \sim L_R(v(x_1)) = (\overline{x}, x; v(x_1), 1 - v(x_1)) \text{ and } x_2 \sim L_R(v(x_2)) = (\overline{x}, x; v(x_2), 1 - v(x_2)) \]

Then by the independence axiom

\[(x_1, x_2; \pi_1, \pi_2) \sim (L_R(v(x_1)), L_R(v(x_2)); \pi_1, \pi_2) \]

Definition: Expectation of \(v(x) \)

\[\mathbb{E}[v(x)] = \pi_1 v(x_1) + \pi_2 v(x_2) \]
Note that in the big tree there are only two outcomes, \bar{x} and x. The probability of the very good outcome is $\pi_1 v(x_1) + \pi_2 v(x_2) = \mathbb{E}[v(x)]$

The probability of the very bad outcome is $1 - \mathbb{E}[v(x)]$. Therefore
We showed that

\[x_1 \sim x_2 \quad \pi_1 \quad L_R(v(x_1)) \sim \pi_2 \quad L_R(v(x_2)) \]

Thus the expected win probability in the reference lottery is a representation of preferences over prospects.

i.e.

\[(x_1, x_2; \pi_1, \pi_2) \sim (\bar{x}, \bar{x}; \mathbb{E}[v], 1 - \mathbb{E}[v]) \]
An example:

A consumer with wealth \hat{w} is offered a “fair gamble”. With probability $\frac{1}{2}$ his wealth will be $\hat{w} + x$ and with probability $\frac{1}{2}$ his wealth will be $\hat{w} - x$. If he rejects the gamble his wealth remains \hat{w}. Note that this is equivalent to a prospect with $x = 0$.

In prospect notation the two alternatives are

\[(w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})\]

and

\[(w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \frac{1}{2}, \frac{1}{2}).\]

These are depicted in the figure assuming $x > 0$.

Expected utility

\[U(w_1, w_2, \pi_1, \pi_2) = \mathbb{E}[v] = \pi_1 v(w_1) + \pi_2 v(w_2)\]

Class discussion

MRS if $v(w)$ is a concave function
Convex preferences

The two prospects are depicted opposite.

The level set for $U(w_1, w_2; \frac{1}{2}, \frac{1}{2})$ through the riskless prospect N is depicted.

Note that the superlevel set

$$U(w_1, w_2; \frac{1}{2}, \frac{1}{2}) \geq U(\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})$$

is a convex set.

*
Convex preferences

The two prospects are depicted opposite. The level set for \(U(w_1, w_2; \frac{1}{2}, \frac{1}{2}) \) through the riskless prospect \(N \) is depicted.

Note that the superlevel set

\[
U(w_1, w_2; \frac{1}{2}, \frac{1}{2}) \geq U(\hat{w}, \hat{w}; \frac{1}{2}, \frac{1}{2})
\]

is a convex set.

This is the set of acceptable gambles for the consumer.

As depicted the consumer strictly prefers the riskless prospect \(N \) to the risky prospect \(R \).

Most individuals, when offered such a gamble (say over $5) will not take this gamble.
2. Risk aversion

Class Discussion: Which alternative would you choose?

\[N: (w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \pi_1, \pi_2) \quad R: (w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2) \text{ where } \pi_1 = \frac{50}{100} \]

What if the gamble were “favorable” rather than “fair”

\[R: (w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2) \text{ where } (i) \pi_1 = \frac{55}{100}, \ (ii) \pi_1 = \frac{60}{100}, \ (iii) \pi_1 = \frac{75}{100} \]

*
Class Discussion: Which alternative would you choose?

\[N: (w_1, w_2; \pi_1, \pi_2) = (\hat{w}, \hat{w}; \pi_1, \pi_2) \quad R: (w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2) \text{ where } \pi_1 = \frac{50}{100} \]

What if the gamble were “favorable” rather than “fair”

\[R: (w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x; \pi_1, \pi_2) \text{ where } (i) \pi_1 = \frac{55}{100} \quad (ii) \pi_1 = \frac{60}{100} \quad (iii) \pi_1 = \frac{75}{100} \]

What is the smallest integer \(n \) such that you would gamble if \(\pi_1 = \frac{n}{100} \)?

Preference elicitation

In an attempt to elicit your preferences write down your number \(n \) (and your first name) on a piece of paper. The two participants with the lowest number \(n \) will be given the riskless opportunity.

Let the three lowest integers be \(n_1, n_2, n_3 \). The win probability will not be \(\frac{n_1}{100} \) or \(\frac{n_2}{100} \). Both will get the higher win probability \(\frac{n_3}{100} \).
2. Risk preferences

\[U(x, \pi) = \pi_1 v(x_1) + \pi_2 v(x_2) \quad \text{or} \quad U(x, \pi) = \mathbb{E}[v] \]

Risk preferring consumer

Consider the two wealth levels \(x_1 \) and \(x_2 > x_1 \).

\[v(\pi_1 x_1 + \pi_2 x_2) < \pi_1 v(x_1) + \pi_2 v(x_2) \]

If \(v(x) \) is convex, then the slope of \(v(x) \) is strictly increasing as shown in the top figure.
$U(x, \pi) = \pi_1 v(x_1) + \pi_2 v(x_2)$

Risk averse consumer

$\nu(\pi_1 x_1 + \pi_2 x_2) > \pi_1 \nu(x_1) + \pi_2 \nu(x_2)$.

In the lower figure $u(x)$ is strictly concave so that

$\nu(\pi_1 x_1 + \pi_2 x_2) > \pi_1 \nu(x_1) + \pi_2 \nu(x_2) = \mathbb{E}[\nu]$.

In practice consumers exhibit aversion to such a risk. Thus we will (almost) always assume that the expected utility function $\nu(x)$ is a strictly increasing strictly concave function.

Class Discussion:

If consumers are risk averse why do they go to Las Vegas?
3. Acceptable gambles: Improving the odds to make the gamble just acceptable.

New risky alternative: \((w_1, w_2; \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x, \frac{1}{2} + \alpha, \frac{1}{2} - \alpha)\).

Choose \(\alpha\) so that the consumer is indifferent between gambling and not gambling.

3. Acceptable gamble: Improving the odds to make the gamble just acceptable.

New risky alternative: \((w_1, w_2, \pi_1, \pi_2) = (\hat{w} + x, \hat{w} - x, \frac{1}{2} + \alpha, \frac{1}{2} - \alpha)\).

Choose \(\alpha\) so that the consumer is indifferent between gambling and not gambling.

For small \(x\) we can use the quadratic approximation of the utility function

Quadratic approximation of his utility

As long as \(x\) is small we can approximate his utility as a quadratic. Suppose \(u(w + x) = \ln(w + x)\).

Define \(\bar{u}(x) = \ln(w + x)\).

Then (i) \(\bar{u}(0) = \ln w\) (ii) \(\bar{u}'(0) = \frac{1}{w}\) and (iii) \(\bar{u}''(0) = -\frac{1}{w^2}\)

Consider the quadratic function

\[
q(x) = \ln w + \left(\frac{1}{w}\right)x - \frac{1}{2}\left(\frac{1}{w^2}\right)x^2.
\] (3.1)

If you check you will find that \(\bar{u}(x)\) and \(q(x)\) have the same, value, first derivative and second derivative at \(x = 0\). We then use this quadratic approximation to compute the gambler’s (approximated) expected gain.
With probability \(\frac{1}{2} + \alpha \) his payoff is \(q(x) \) and with probability \(\frac{1}{2} - \alpha \) his payoff is \(q(-x) \). Therefore his expected payoff is

\[
\mathbb{E}[q(x)] = \left(\frac{1}{2} + \alpha \right) q(x) + \left(\frac{1}{2} - \alpha \right) q(-x)
\]

Substituting from (3.1)

\[
\mathbb{E}[q(x)] = \left(\frac{1}{2} + \alpha \right) \left[\ln w + \left(\frac{1}{w} \right) x - \frac{1}{2} \left(\frac{1}{w^2} \right) x^2 \right] + \left(\frac{1}{2} - \alpha \right) \left[\ln w + \left(\frac{1}{w} \right) (-x) - \frac{1}{2} \left(\frac{1}{w^2} \right) (-x)^2 \right].
\]

*
With probability $\frac{1}{2} + \alpha$ his payoff is $q(x)$ and with probability $\frac{1}{2} - \alpha$ his payoff is $q(-x)$. Therefore his expected payoff is

$$
\mathbb{E}[q(x)] = \left(\frac{1}{2} + \alpha\right)q(x) + \left(\frac{1}{2} - \alpha\right)q(-x)
$$

Substituting from (3.1)

$$
\mathbb{E}[q(x)] = \left(\frac{1}{2} + \alpha\right)\left[\ln w + \left(\frac{1}{w}\right)x - \frac{1}{2}\left(\frac{1}{w^2}\right)x^2\right]
$$

$$
+ \left(\frac{1}{2} - \alpha\right)\left[\ln w + \left(\frac{1}{w}\right)(-x) - \frac{1}{2}\left(\frac{1}{w^2}\right)(-x)^2\right].
$$

Collecting terms,

$$
\mathbb{E}[q(x)] = \ln w + 2\alpha\left(\frac{1}{w}\right)x - \frac{1}{2}\left(\frac{1}{w^2}\right)x^2.
$$

If the gambler rejects the opportunity his utility is $\ln w$. Thus his expected gain is

$$
\mathbb{E}[q(x)] - \ln w = 2\alpha\left(\frac{1}{w}\right)x - \frac{1}{2}\left(\frac{1}{w^2}\right)x^2 = \frac{2x}{w}\left[\alpha - \frac{1}{4}\left(\frac{1}{w}\right)x\right].
$$

Thus the gambler should take the small gamble if and only if $\alpha > \frac{1}{4}\left(\frac{1}{w}\right)x$.

The general case: quadratic approximation of his utility

\[q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2 \]

Class Exercise: Confirm that the value and the first two derivatives of \(u(\hat{w} + x) \) and \(q(x) \) are equal at \(x = 0 \).

The expected value utility of the risky alternative is

\[\mathbb{E}[u(\hat{w} + x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x) \]
The general case: quadratic approximation of his utility

\[q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2 \]

Class Exercise: Confirm that the value and the first two derivatives of \(v(\hat{w} + x) \) and \(q(x) \) are equal at \(x = 0 \).

The expected value utility of the risky alternative is

\[
\mathbb{E}[u(\hat{w} + x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)
\]

\[= (\frac{1}{2} + \alpha)[v(\hat{w}) + v'(\hat{w})x - \frac{1}{2} v''(\hat{w})x^2]
\]

\[+ (\frac{1}{2} - \alpha)[v(\hat{w}) + v'(\hat{w})(-x) - \frac{1}{2} v''(\hat{w})(-x)^2]. \]

Collecting terms,

\[\mathbb{E}[q(x)] = v(\hat{w}) + 2\alpha v'(\hat{w})x - \frac{1}{2} v''(\hat{w})x^2. \]

*
The general case: quadratic approximation of his utility

\[q(x) = v(\hat{w}) + v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2 \]

Class Exercise: Confirm that the value and the first two derivatives of \(v(\hat{w} + x) \) and \(q(x) \) are equal at \(x = 0 \).

The expected value utility of the risky alternative is

\[
\mathbb{E}[u(\hat{w} + x)] \approx \mathbb{E}[q(x)] = (\frac{1}{2} + \alpha)q(x) + (\frac{1}{2} - \alpha)q(-x)
\]

\[= (\frac{1}{2} + \alpha)[v(\hat{w}) + v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2]
\]

\[+ (\frac{1}{2} - \alpha)[v(\hat{w}) + v'(\hat{w})(-x) + \frac{1}{2} v''(\hat{w})(-x)^2]. \]

Collecting terms,

\[\mathbb{E}[q(x)] = v(\hat{w}) + 2\alpha v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2. \]

The gain in expected utility is therefore

\[
\mathbb{E}[q(x)] - v(\hat{w}) = 2\alpha v'(\hat{w})x + \frac{1}{2} v''(\hat{w})x^2
\]

\[= 2v'(\hat{w})x[\alpha - \frac{1}{4}(-\frac{v''(\hat{w})}{v'(\hat{w})})x] \]

Thus the probability of the good outcome must be increased by \(\alpha = \frac{1}{4}(-\frac{v''(\hat{w})}{v'(\hat{w})})x \).