Walrasian Equilibrium with production

1.	Convex sets and concave functions	2
2.	Production sets	14
3.	WE in a constant returns to scale economy	22
4.	WE with diminishing returns to scale	28
5.	Aggregation theorem for firms	31
6.	Appendixes	34

All sections last edited 17 October 2018.

Convex sets and concave functions

Convex combination of two vectors

Consider any two vectors z^0 and z^1 . A weighted average of these two vectors is

 $z^{\lambda} = (1 - \lambda)z^0 + \lambda z^1$, $0 < \lambda < 1$

Such averages where the weights are both strictly positive and add to 1 are called the convex combinations of z^0 and z^1 .

-2-

*

Convex sets and concave functions

Convex combination of two vectors

Consider any two vectors z^0 and z^1 . The set of weighted average of these two vectors can be written as follows.

 $z^{\lambda} = (1 \! - \! \lambda) z^0 + \lambda z^1$, $0 \! < \! \lambda \! < \! 1$

Such averages where the weighs are both strictly positive and add to 1 are called the convex combinations of z^0 and z^1 .

Convex set

The set $S \subset \mathbb{R}^n$ is convex if for any z^0 and z^1 in *S*,

every convex combination is also in S

A convex set

Convex combination of two vectors

- - another view

Consider any two vectors z^0 and z^1 . The set of weighted average of these

two vectors can be written as follows.

 $z^{\lambda} = (1 - \lambda)z^0 + \lambda z^1$, $0 < \lambda < 1$

Rewrite the convex combination is follows:

 $z^{\lambda} = z^{0} + \lambda(z^{1} - z^{0})$ The vector z^{λ} is a fraction λ of the way along the line segment connecting z^{0} and z^{1}

Concave functions of 1 variable

Definition 1: A function is concave if, for every x^0 and x^1 , the graph of the function is above the line joining $(x^0, f(x^0))$ and $(x^1, f(x^1))$, i.e.

 $f(x^{\lambda}) \ge (1 - \lambda)f(x^0) + \lambda f(x^1)$

for every convex combination

 $x^{\lambda} = (1 - \lambda)x^0 + \lambda x^1$

Note that as the distance between x^1 and x^0 approaches zero, the line passing through two blue markers becomes the tangent line.

Tangent line is the linear approximation of the function f at x^0

$$f_L(x) \equiv f(x^0) + f'(x^0)(x - x^0) \; .$$

Note that the linear approximation has the same value at x^0 and the same first derivative (the slope.)

In the figure $f_L(x)$ is a line tangent to the graph of the function.

Definition 2: Differentiable concave function

A differentiable function is concave if every tangent line is above the graph of the function. i.e.,

$$f(x) \le f(x^0) + f'(x^0)(x^1 - x^0)$$

Definition 3: Concave Function

A differentiable function f defined on an interval X is concave if f'(x), the derivative of f(x) is decreasing.

The three types of differentiable concave function are depicted below.

Note that in each case the linear approximations at any point x^0 lie above the graph of the function.

Concave function of *n* **variables**

Definition 1: A function is concave if, for every x^0 and x^1 ,

 $f(x^{\lambda}) \ge (1-\lambda)f(x^0) + \lambda f(x^1)$ for every convex combination $x^{\lambda} = (1-\lambda)x^0 + \lambda x^1$, $0 < \lambda < 1$

(Exactly the same as the definition when n=1)

Group questions (added today!)

Prove the following results

Proposition:

If f(x) is concave then it has convex superlevel sets, i.e. If $f(x^0) \ge k$ and $f(x^1) \ge k$ then for every convex combination x^{λ} , $f(x^{\lambda}) \ge k$.

Proposition:

If g(y) is a strictly increasing function and h(x) = g(f(x)) is concave then f(x) has convex superlevel sets.

Linear approximation of the function f at x^0

$$f_L(x) \equiv f(x^0) + \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x^0)(x_j - x_j^0) .$$

Note that for each x_j the linear approximation has the same value at x^0 and the same first derivative (the slope.)

Definition 2: Differentiable Concave function

For any x^0 and x^1

$$f(x^1) \le f(x^0) + \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x^0)(x_j - x_j^0)$$

© John Riley

Group exercise: Appeal to one of these definitions to prove the first of the following important propositions.

Proposition

If f(x) is concave, and \overline{x} satisfies the necessary conditions for the maximization problem

 $\max_{x \ge 0} \{f(x)\}$

then \overline{x} solves the maximization problem.

Proposition

If f(x) and h(x) are concave, and \overline{x} satisfies the necessary conditions for the maximization problem $\underbrace{Max}_{x\geq 0} \{f(x) \mid h(x) \geq 0\}$ then \overline{x} is a solution of the maximization problem

Remark: This result continues to hold if there are multiple constraints $h_i(x) \ge 0$ and each function $h_i(x)$ is concave.

Concave functions of *n* **variables**

Proposition

- 1. The sum of concave functions is concave
- 2. If f is linear (i.e. $f(x) = a_0 + b \cdot x$) and g is concave then h(x) = g(f(x)) is concave.
- 3. An increasing concave function of a concave function is concave.
- 4. If f(x) is homogeneous of degree 1 (i.e. $f(\theta x) = \theta f(x)$ for all $\theta > 0$) and the superlevel sets of f(x) are convex, then f(x) is concave.

Remark: The proof of 1-3 follows directly from the definition of a concave function. The proofs of 4 is more subtle. For the very few who may be interested, Proposition 4 is proved in a Technical Appendix.

Examples: (i) $f(x) = x_1^{1/3} + x_2^{1/3}$ (ii) $f(x) = (x_1^{1/3} + x_2^{1/3})^3$ (iii) $f(x) = (x_1^{1/3} + x_2^{1/3})^2$

Group exercise: Prove that the sum of concave functions is concave.

Group Exercise: Suppose that f and g are twice differentiable functions. If (i) n=1 and (ii) f and g are concave and g is increasing, prove that h(x) = g(f(x)) is concave

Group Exercise: Output maximization with a fixed budget

A plant has the CES production function

 $F(z) = (z_1^{1/2} + z_2^{1/2})^2.$

The CEO gives the plant manager a budget B and instructs her to maximize output. The input price vector is $r = (r_1, r_2)$. Solve for the maximum output q(r, B).

Class Discussion:

What is the firm's cost function?

If the firm is a price taker why must equilibrium profit be zero?

2. Production sets and returns to scale (first 3 pages are a review)

Feasible plan

If an input-output vector (z,q) where $z = (z_1,...,z_m)$ and $q = (q_1,...,q_n)$ is a feasible plan if q can be produced using z.

-13-

Production set

The set of all feasible plans is called the firm's production set.

**

Production sets

Feasible plan

If an input-output vector (z,q) where $z = (z_1,...,z_m)$ and $q = (q_1,...,q_n)$ is a feasible plan if q can be produced using z.

Production set

The set of all feasible plans is called the firm's production set.

Production function

If a firm produces one commodity the maximum output for some input vector z,

$$q = G(z)$$

is called the firm the firm's production function

*

Production sets

Feasible plan

If an input-output vector (z,q) where $z = (z_1,...,z_n)$ and $q = (q_1,...,q_n)$ is a feasible plan if q can be produced using z.

Production set

The set of all feasible plans is called the firm's production set.

Production function

If a firm produces one commodity the maximum output for some input vector z,

$$q = G(z)$$

is called the firm the firm's production function

Example 1: One output and one input

$$S^{f} = \{(z^{f}, q^{f})\} | 0 \le q_{f} \le 2z^{f}\}$$

Example 1: One output and one input

$$S^{f} = \{(z_{f}, q_{f}) \ge 0\} | q_{f} \le 2z_{f}\}$$

Note that the production function

$$q = G(z_f) = 2z_f$$

Therefore

*

$$G(\theta z_f) = 2\theta z_f = \theta G(z_f)$$

Such a firm is said to exhibit constant returns to scale

Example 1: One output and one input

$$S^{f} = \{(z_{f}, q_{f}) \ge 0\} | q_{f} \le 2z_{f}\}$$

Note that the production function

$$q = G(z_f) = 2z_f$$

Therefore

$$G(\theta z_f) = 2\theta z_f = \theta G(z_f)$$

Such a firm is said to exhibit constant returns to scale

*

Example 2: One output and one input

$$S^{f} = \{(z_{f}, q_{f}) \ge 0 \mid h(z_{f}, q_{f}) = z_{f}^{1/2} - q_{f} \ge 0\}$$

Class question: Why is S^f convex?

Example 3: two inputs and one output

$$S^{f} = \{(z,q) \ge 0 \mid h^{f}(z,q) = A(z_{1})^{1/3}(z_{2})^{2/3} - q \ge 0\}$$

Class discussion:

The production function is concave. Why?

Hence h(z,q) is concave because...

Example 4: one input and two outputs

$$S^{f} = \{(z,q) \ge 0 \mid h^{f}(z,q) = z - (3q_{1}^{2} + 5q_{2}^{2})^{1/2} \ge 0\}$$

Aggregate production set

Let $\{S^f\}_{f=1}^F$ be the production sets of the F firms in the economy.

The aggregate production set is

 $S = S^1 + ... + S^F$

That is

$$(z,q) \in S$$
 if there exist feasible plans $\{(z_f,q_f)\}_{f=1}^F$ such that $(z,q) = \sum_{f=1}^F (z_f,q_f)$.

Aggregate production set

Let $\{S^f\}_{f=1}^F$ be the production sets of the *F* firms in the economy.

The aggregate production set is

 $S = S^1 + ... + S^F$

That is

$$(z,q) \in S$$
 if there exist feasible plans $\{(z_f,q_f)\}_{f=1}^F$ such that $(z,q) = \sum_{f=1}^F (z_f,q_f)$.

Example 1:
$$S^f = \{(z_f, q_f) \ge 0 | 2z_f - q_f \ge 0\}$$

In this simple case each unit of output requires 2 units of input so it does not matter whether one firm produces all the output or both produce some of the output. The aggregate production set is therefore $S = \{(z,q) \ge 0 | 2z - q \ge 0\}$.

Example 2:
$$S^f = \{(z_f, q_f) | (z_f)^{1/2} - q_f \ge 0\}$$

Group Exercise

Show that with four firms, the aggregate production set is $S = \{(z,q) | 2z^{1/2} - q \ge 0\}$

Since $q_f = (z_f)^{1/2}$ it follows that maximized output is

$$\hat{q} = M_{q} \left\{ \sum_{f=1}^{4} q_{f} = \sum_{f=1}^{4} z_{f}^{1/2} \mid \hat{z} - \sum_{f=1}^{4} z_{f} \ge 0 \right\}$$

3. Walrasian equilibrium (WE) with Identical homothetic preferences & constant returns to scale

Consumer h has utility function $U(x_1^h, x_2^h) = x_1^h x_2^h$. The aggregate endowment is $\omega = (a, 1)$. All firms have the same linear technology. Firm f can produce 2 units of commodity 2 for every unit of commodity 1. That is the production function of firm f is $q_f = 2z_f$

Then the aggregate production function is q = 2z .

*

Walrasian equilibrium (WE) with Identical homothetic preferences and constant returns to scale

Consumer h has utility function $U(x_1^h, x_2^h) = x_1^h x_2^h$. The aggregate endowment is $\omega = (a, 1)$. All firms have the same linear technology. Firm f can produce 2 units of commodity 2 for every unit of commodity 1. That is the production function of firm f is $q_f = 2z_f$

Then the aggregate production function is q = 2z .

Aggregate feasible set

If the industry purchases z units of commodity 1 it can produce q = 2z units of commodity 2.

Then total supply of each commodity is

$$x = (a - z, 1 + 2z)$$
.

This is depicted opposite.

Step 1: Identical homothetic utility so maximize

the utility of the representative consumer

Solve for the utility maximizing point

in the aggregate production set.

$$U(x_1^r, x_2^r) = x_1^r x_2^r = (a - z)(1 + 2z)$$

$$=a+(2a-1)z-2z^{2}$$

$$U'(z) = (2a-1) - 4z.$$

Case (i) $a \ge \frac{1}{2}$. Then $\overline{z} = \frac{1}{4}(2a-1)$
Hence $\overline{x} = (a - \overline{z}, 1 + 2\overline{z}) = (\frac{1}{2}a + \frac{1}{4}, a + \frac{1}{2})$

Case (ii) $a < \frac{1}{2}$. Then $\overline{z} = 0$ Hence $\overline{x} = (a, 1)$

Step 2: Supporting prices

At what prices will the representative consumer not wish to trade?

Case 1:
$$\frac{p_1}{p_2} = MRS(\overline{x}) = \frac{\partial U}{\partial x_1}(\overline{x}) / \frac{\partial U}{\partial x_2}(\overline{x}) = \frac{\overline{x}_2}{\overline{x}_1} = 2$$
.

Case 2:

$$\frac{p_1}{p_2} = MRS(\overline{x}) = \frac{\partial U}{\partial x_1}(\overline{x}) / \frac{\partial U}{\partial x_2}(\overline{x}) = \frac{\overline{x}_2}{\overline{x}_1} = \frac{1}{a}$$

Step 3: Profit maximization

The profit of firm $f\,$ is

$$\Pi^f = p_2 q_f - p_1 z_f = p_2 2 z_f - p_1 z_f = z_f (2p_2 - p_1) .$$

*

Profit maximization

The profit of firm f is

$$\Pi^f = p_2 q_f - p_1 z_f = p_2 2 z_f - p_1 z_f = z_f (2p_2 - p_1) .$$

If $\frac{p_1}{p_2} > 2$: the profit maximizing firm will purchase no inputs and so produce no output.

If
$$\frac{p_1}{p_2} < 2$$
: No profit maximizing plan

If $\frac{p_1}{p_2} = 2$: any input-output vector $(z_1, q_2) = (z_1, 2z_1)$ is profit maximizing.

Note that equilibrium profit must be zero.

Group Exercise: Must Walrasian Equilibrium profit be zero if the production functions exhibits constant returns to scale?

Second example:

One output and one input

$$S^{f} = \{(z_{f}, q_{f}) \ge 0 | q_{f} \le a_{f}(z_{f})^{1/2} \}$$

-28-

There are two firms $(a_1, a_2) = (3, 4)$

The aggregate endowment is $\omega = (12, 0)$

Consumer preferences are as in the

previous example. $u(x) = \ln U(x) = \ln x_1 + \ln x_2$

Study exercise

Show that the aggregate production set can be written as follows:

 $S = \{(z,q) \ge 0 \mid q \le 5z^{1/2}\}$

The answer is in Appendix 1*

*Might be helpful for Homework 2!

Step 1: Solve for the utility maximizing consumption

Step 3: Check to see if firms are profit maximizers

Step 2: Find prices that support the optimum

Step 1:

$$(x_1, x_2) = (\omega - z_1, q_2) = (12 - z_1, 5z_1^{1/2})$$

Define $u(x) = \ln U(x) = \ln x_1 + \ln x_2$

$$u = \ln(12 - z_1) + \ln(z_1^{1/2})$$

 $=\ln(12-z_1)+\frac{1}{2}\ln z_1$

Exercise: Why is $u(z_1)$ concave?

$$u'(z_1) = -\frac{1}{12 - z_1} + \frac{\frac{1}{2}}{z_1}$$

This has a unique critical point $\overline{z}_1 = 4$.

Then

$$(\bar{x}_1, \bar{x}_2) = (\omega - z_1, q_2) = (12 - z_1, 5z_1^{1/2}) = (8, 10)$$

Step 2: Supporting the optimum

$$\frac{\partial u}{\partial x}(\overline{x}) = \left(\frac{\partial u}{\partial x_1}(\overline{x}), \frac{\partial u}{\partial x_2}(\overline{x})\right) = \left(\frac{1}{\overline{x}_1}, \frac{1}{\overline{x}_2}\right) = \left(\frac{1}{8}, \frac{1}{10}\right) = \frac{1}{80}(10, 8) \ .$$

Necessary conditions

$$\frac{\partial u}{\partial x}(\bar{x}) = \lambda p \; .$$

Then $\frac{\partial u}{\partial x}(\overline{x})$ or any scalar multiple is a supporting price vector.

Hence p = (10,8) is a supporting price vector

Step 3: Profit maximization

$$\pi = p_2 q_2 - p_1 z_1 = 8(5z^{1/2}) - 10z_1$$
$$\pi'(z_1) = 20z_1^{-1/2} - 10 = \frac{20}{z_1^{1/2}} - 10.$$

So profit is maximized at $\overline{z}_1 = 4$ and maximized profit is $\pi(\overline{z}_1) = 40$

Aggregation Theorem for price taking firms (no gains to merging)

Proposition: If there are 2 firms in an industry, prices are fixed and $(\overline{z}^f, \overline{q}^f)$ is profit maximizing for firm f, f = 1, 2 then $(z,q) = (\overline{z}_1 + \overline{z}_2, \overline{q}_1 + \overline{q}_2)$ is industry profit-maximizing.

**

Aggregation Theorem for price taking firms

Proposition: If there are 2 firms in an industry, prices are fixed and $(\overline{z}_f, \overline{q}_f)$ is profit maximizing for firm f, f = 1, 2 then $(z,q) = (\overline{z}_1 + \overline{z}_2, \overline{q}_1 + \overline{q}_2)$ is industry profit-maximizing.

<u>Proof</u>: Let Π^f be maximized profit of firm f Since the industry can mimic the two firms, industry profit cannot be lower. Suppose it is higher. Then for some feasible (\hat{z}_f, \hat{q}_f) , f = 1, 2,

 $p \cdot (\hat{q}_1 + \hat{q}_2) - r \cdot (\hat{z}_1 + \hat{z}_2) > \overline{\Pi}^1 + \overline{\Pi}^2$.

*

Aggregation Theorem for price taking firms

Proposition: If there are 2 firms in an industry, prices are fixed and $(\overline{z}_f, \overline{q}_f)$ is profit maximizing for firm f, f = 1, 2 then $(z,q) = (\overline{z}_1 + \overline{z}_2, \overline{q}_1 + \overline{q}_2)$ is industry profit-maximizing.

-33-

<u>Proof</u>: Let Π^f be maximized profit of firm f Since the industry can mimic the two firms, industry profit cannot be lower. Suppose it is higher. Then for some feasible (\hat{z}_f, \hat{q}_f) , f = 1, 2,

 $p \cdot (\hat{q}_1 + \hat{q}_2) - r \cdot (\hat{z}_1 + \hat{z}_2) > \overline{\Pi}^1 + \overline{\Pi}^2$.

Rearranging the terms,

$$(p \cdot \hat{q}_1 - r \cdot \hat{z}_1 - \overline{\Pi}^1) + (p \cdot \hat{q}_2 - r \cdot \hat{z}_2 - \overline{\Pi}^2) > 0$$

Then either

 $p \cdot \hat{q}_1 - r \cdot \hat{z}_1 > \overline{\Pi}^1 \text{ or } p \cdot \hat{q}_2 - r \cdot \hat{z}_2 > \overline{\Pi}^2$

But then $(\overline{z}^1, \overline{q}^1)$ and $(\overline{z}^1, \overline{q}^1)$ cannot both be profit-maximizing.

QED

Remark: Arguing in this way we can aggregate to the entire economy.

Appendix 1: Answer to exercise:

One output and one input

$$S^{f} = \{(z_{f}, q_{f}) \ge 0 | q_{f} \le a_{f}(z_{f})^{1/2} \}$$

There are two firms $(a_1, a_2) = (3, 4)$

(a) Show that the aggregate production set can be written as follows:

$$S = \{(z,q) \ge 0 \mid q \le 5z^{1/2}\}$$

If the allocation of the input to firm 1 is z_1 , then maximized output is $q = 3(z_1)^{1/2}$. Similarly $q_2 = 4(z_2)^{1/2}$ and so

$$q_1 + q_2 = 3(z_1)^{1/2} + 4(z_2)^{1/2}$$

Maximized industry output is therefore

$$q = Max\{q_1 + q_2 = 3(z_1)^{1/2} + 4(z_2)^{1/2} \mid \hat{z} - z_1 - z_2 \ge 0\}$$

The problem is concave so the necessary condition are sufficient. We look for a solution with $(z_1, z_2) >> 0$. The Lagrangian is

-35-

$$\mathfrak{L} = 3z_1^{1/2} + 4z_2^{1/2} + \lambda(\hat{z} - z_1 - z_2)$$

FOC:

$$\frac{\partial L}{\partial q^1} = \frac{3}{2} (z^1)^{-1/2} - \lambda = 0 , \quad \frac{\partial L}{\partial q^1} = \frac{4}{2} (z^1)^{-1/2} - \lambda = 0$$

Therefore

$$\frac{z_1^{1/2}}{3} = \frac{z_2^{1/2}}{4} = \frac{1}{2\lambda}$$

Squaring each term,

$$\frac{z_1}{9} = \frac{z_2}{16} = \frac{1}{4\lambda^2}$$

Squaring each term,

$$\frac{z_1}{9} = \frac{z_2}{16} = \frac{1}{4\lambda^2}$$

Method 1: Appeal to the Ratio Rule*

Then

$$\frac{z_1}{9} = \frac{z_2}{16} = \frac{z_1 + z_2}{9 + 16} = \frac{\hat{z}}{25}.$$

So

$$(z_1, z_2) = (\frac{9}{25}\hat{z}, \frac{16}{25}\hat{z}) \tag{(*)}$$

Therefore

$$(q_1, q_2) = (3z_1^{1/2}, 4z_2^{1/2}) = (\frac{9}{5}\hat{z}^{1/2}, \frac{16}{5}\hat{z}^{1/2})$$

So $q = q_1 + q_2 = (\frac{9}{5} + \frac{16}{5})\hat{z}^{1/2} = 5\hat{z}^{1/2}$.

*Ratio Rule: If
$$\frac{a_1}{b_1} = \frac{a_2}{b_2}$$
 then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_1 + a_2}{b_1 + b_2}$

Method 2:

 $\frac{z_1}{9} = \frac{z_2}{16} = \frac{1}{4\lambda^2}$. Therefore $z_1 = \frac{9}{4\lambda^2}$ and $z_2 = \frac{16}{4\lambda^2}$. $\overline{z} = z_1 + z_2 = \frac{25}{4\lambda^2}$ It follows that Then $\frac{z_1}{\hat{z}} = \frac{9}{25}$ and $\frac{z_1}{\hat{z}} = \frac{9}{25}$. Therefore $(z_1, z_2) = (\frac{9}{25}\hat{z}, \frac{16}{25}\hat{z})$

Then proceed as in Method 1.

(*)

Appendix 2 : (Technical and definitely *not* required material!)

Proposition: If f(x) exhibits constant returns to scale and the superlevel sets of f are convex, then, for any non-negative vectors a and b, the function is super-additive, i.e.

 $f(a+b) \ge f(a)+f(b)$

Since *a* and Θb are in the superlevel set, $S = \{x | f(x) \ge f(a)\}$

It follows that

$$f(x(t)) = f(\frac{\theta}{1+\theta}a + \frac{1}{1+\theta}\theta b) \ge f(a)$$

We have shown that

$$f(x(t)) = f(\frac{\theta}{1+\theta}a + \frac{1}{1+\theta}\theta b) \ge f(a), \text{ where } f(b) = \frac{1}{a}f(a) \tag{0-1}$$

i.e.

$$f(\frac{\theta}{1+\theta}a + \frac{\theta b}{1+\theta}) = f(\frac{\theta}{1+\theta}(a+b)) = \frac{\theta}{CRS} \frac{\theta}{1+\theta} f(a+b) \ge f(a)$$

Therefore

$$f(a+b) \ge \frac{1+\theta}{\theta} f(a) = \frac{1}{\theta} f(a) + f(a) = f(a) + \frac{1}{\theta} f(a)$$

Appealing to (0-1)

$$f(a+b) \ge f(a) + f(b)$$
. QED

Choose $a = (1 - \lambda)x^0$ and $b = \lambda x^1$, Then

$$f((1-\lambda)x^0 + \lambda x^1) \ge f((1-\lambda)x^0) + f(\lambda x^1)$$

Appealing to constant returns to scale $f(\theta z) = \theta f(z)$. Therefore

$f((1-\lambda)x^0 + \lambda x^1) \ge (1-\lambda)f(x^0) + \lambda f(x^1)$