Walrasian Equilibrium with production

1. Convex sets and concave functions 2
2. Production sets 14
3. WE in a constant returns to scale economy 22
4. WE with diminishing returns to scale 28
5. Aggregation theorem for firms 31
6. Appendixes 34
[^0]
Convex sets and concave functions

Convex combination of two vectors

Consider any two vectors z^{0} and z^{1}. A weighted average of these two vectors is

$$
z^{\lambda}=(1-\lambda) z^{0}+\lambda z^{1}, 0<\lambda<1
$$

Such averages where the weights are both strictly positive and add to 1 are called the convex combinations of z^{0} and z^{1}.
*

Convex sets and concave functions

Convex combination of two vectors

Consider any two vectors z^{0} and z^{1}. The set of weighted average of these two vectors can be written as follows.

$$
z^{\lambda}=(1-\lambda) z^{0}+\lambda z^{1}, 0<\lambda<1
$$

Such averages where the weighs are both strictly positive and add to 1 are called the convex combinations of z^{0} and z^{1}.

Convex set

The set $S \subset \mathbb{R}^{n}$ is convex if for any z^{0} and z^{1} in S, every convex combination is also in S

A convex set

Convex combination of two vectors

- - another view

Consider any two vectors z^{0} and z^{1}.
The set of weighted average of these two vectors can be written as follows.

$$
z^{\lambda}=(1-\lambda) z^{0}+\lambda z^{1}, 0<\lambda<1
$$

Rewrite the convex combination is follows:

$$
z^{\lambda}=z^{0}+\lambda\left(z^{1}-z^{0}\right)
$$

The vector z^{λ} is a fraction λ
of the way along the line segment
connecting z^{0} and z^{1}

Concave functions of 1 variable

Definition 1: A function is concave if, for every x^{0} and x^{1}, the graph of the function is above the line joining $\left(x^{0}, f\left(x^{0}\right)\right)$ and $\left(x^{1}, f\left(x^{1}\right)\right)$, i.e.

$$
f\left(x^{\lambda}\right) \geq(1-\lambda) f\left(x^{0}\right)+\lambda f\left(x^{1}\right)
$$

for every convex combination

$$
x^{\lambda}=(1-\lambda) x^{0}+\lambda x^{1}
$$

Note that as the distance between x^{1} and x^{0} approaches zero, the line passing through two blue markers becomes the tangent line.

Tangent line is the linear approximation of the function f at x^{0}

$$
f_{L}(x) \equiv f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right) .
$$

Note that the linear approximation has the same value at x^{0} and the same first derivative (the slope.) In the figure $f_{L}(x)$ is a line tangent to the graph of the function.

Definition 2: Differentiable concave function

A differentiable function is concave if every tangent line is above the graph of the function. i.e.,

$$
f(x) \leq f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x^{1}-x^{0}\right)
$$

Definition 3: Concave Function

A differentiable function f defined on an interval X is concave if $f^{\prime}(x)$, the derivative of $f(x)$ is decreasing.

The three types of differentiable concave function are depicted below.

Note that in each case the linear approximations at any point x^{0} lie above the graph of the function.

Concave function of n variables

Definition 1: A function is concave if, for every x^{0} and x^{1},

$$
f\left(x^{\lambda}\right) \geq(1-\lambda) f\left(x^{0}\right)+\lambda f\left(x^{1}\right) \text { for every convex combination } x^{\lambda}=(1-\lambda) x^{0}+\lambda x^{1}, 0<\lambda<1
$$

(Exactly the same as the definition when $n=1$)

Group questions (added today!)

Prove the following results

Proposition:

If $f(x)$ is concave then it has convex superlevel sets, i.e. If $f\left(x^{0}\right) \geq k$ and $f\left(x^{1}\right) \geq k$ then for every convex combination $x^{\lambda}, f\left(x^{\lambda}\right) \geq k$.

Proposition:

If $g(y)$ is a strictly increasing function and $h(x)=g(f(x))$ is concave then $f(x)$ has convex superlevel sets.

Linear approximation of the function f at x^{0}

$$
f_{L}(x) \equiv f\left(x^{0}\right)+\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(x^{0}\right)\left(x_{j}-x_{j}^{0}\right) .
$$

Note that for each x_{j} the linear approximation has the same value at x^{0} and the same first derivative (the slope.)

Definition 2: Differentiable Concave function
For any x^{0} and x^{1}

$$
f\left(x^{1}\right) \leq f\left(x^{0}\right)+\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(x^{0}\right)\left(x_{j}-x_{j}^{0}\right)
$$

Group exercise: Appeal to one of these definitions to prove the first of the following important propositions.

Proposition

If $f(x)$ is concave, and \bar{x} satisfies the necessary conditions for the maximization problem

$$
\operatorname{Max}_{x \geq 0}\{f(x)\}
$$

then \bar{x} solves the maximization problem.

Proposition

If $f(x)$ and $h(x)$ are concave, and \bar{x} satisfies the necessary conditions for the maximization problem

$$
\operatorname{Max}_{x \geq 0}\{f(x) \mid h(x) \geq 0\}
$$

then \bar{x} is a solution of the maximization problem

Remark: This result continues to hold if there are multiple constraints $h_{i}(x) \geq 0$ and each function $h_{i}(x)$ is concave.

Concave functions of n variables

Proposition

1. The sum of concave functions is concave
2. If f is linear (i.e. $f(x)=a_{0}+b \cdot x$) and g is concave then $h(x)=g(f(x))$ is concave.
3. An increasing concave function of a concave function is concave.
4. If $f(x)$ is homogeneous of degree 1 (i.e. $f(\theta x)=\theta f(x)$ for all $\theta>0$) and the superlevel sets of $f(x)$ are convex, then $f(x)$ is concave.

Remark: The proof of 1-3 follows directly from the definition of a concave function. The proofs of 4 is more subtle. For the very few who may be interested, Proposition 4 is proved in a Technical Appendix.

Examples: (i) $f(x)=x_{1}^{1 / 3}+x_{2}^{1 / 3}$ (ii) $f(x)=\left(x_{1}^{1 / 3}+x_{2}^{1 / 3}\right)^{3}$ (iii) $f(x)=\left(x_{1}^{1 / 3}+x_{2}^{1 / 3}\right)^{2}$

Group exercise: Prove that the sum of concave functions is concave.

Group Exercise: Suppose that f and g are twice differentiable functions. If (i) $n=1$ and (ii) f and g are concave and g is increasing, prove that $h(x)=g(f(x))$ is concave

Group Exercise: Output maximization with a fixed budget

A plant has the CES production function

$$
F(z)=\left(z_{1}^{1 / 2}+z_{2}^{1 / 2}\right)^{2}
$$

The CEO gives the plant manager a budget B and instructs her to maximize output. The input price vector is $r=\left(r_{1}, r_{2}\right)$. Solve for the maximum output $q(r, B)$.

Class Discussion:

What is the firm's cost function?
If the firm is a price taker why must equilibrium profit be zero?
2. Production sets and returns to scale (first 3 pages are a review)

Feasible plan

If an input-output vector (z, q) where $z=\left(z_{1}, \ldots, z_{m}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ is a feasible plan if q can be produced using z.

Production set

The set of all feasible plans is called the firm's production set.

Production sets

Feasible plan

If an input-output vector (z, q) where $z=\left(z_{1}, \ldots, z_{m}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ is a feasible plan if q can be produced using z.

Production set

The set of all feasible plans is called the firm's production set.

Production function

If a firm produces one commodity the maximum output for some input vector z,

$$
q=G(z)
$$

is called the firm the firm's production function

Production sets

Feasible plan

If an input-output vector (z, q) where $z=\left(z_{1}, \ldots, z_{n}\right)$ and $q=\left(q_{1}, \ldots, q_{n}\right)$ is a feasible plan if q can be produced using z.

Production set

The set of all feasible plans is called the firm's production set.

Production function

If a firm produces one commodity the maximum output for some input vector z,

$$
q=G(z)
$$

is called the firm the firm's production function
Example 1: One output and one input

$$
\left.S^{f}=\left\{\left(z^{f}, q^{f}\right)\right\} \mid 0 \leq q_{f} \leq 2 z^{f}\right\}
$$

Example 1: One output and one input

$$
\left.S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0\right\} \mid q_{f} \leq 2 z_{f}\right\}
$$

Note that the production function

$$
q=G\left(z_{f}\right)=2 z_{f}
$$

Therefore

$$
G\left(\theta z_{f}\right)=2 \theta z_{f}=\theta G\left(z_{f}\right)
$$

Such a firm is said to exhibit constant returns to scale

Example 1: One output and one input

$$
\left.S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0\right\} \mid q_{f} \leq 2 z_{f}\right\}
$$

Note that the production function

$$
q=G\left(z_{f}\right)=2 z_{f}
$$

Therefore

$$
G\left(\theta z_{f}\right)=2 \theta z_{f}=\theta G\left(z_{f}\right)
$$

Such a firm is said to exhibit constant returns to scale

Example 2: One output and one input

$$
S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0 \mid h\left(z_{f}, q_{f}\right)=z_{f}^{1 / 2}-q_{f} \geq 0\right\}
$$

Class question: Why is S^{f} convex?

Example 3: two inputs and one output

$S^{f}=\left\{(z, q) \geq 0 \mid h^{f}(z, q)=A\left(z_{1}\right)^{1 / 3}\left(z_{2}\right)^{2 / 3}-q \geq 0\right\}$
Class discussion:
The production function is concave. Why?
Hence $h(z, q)$ is concave because...

Example 4: one input and two outputs
$S^{f}=\left\{(z, q) \geq 0 \mid h^{f}(z, q)=z-\left(3 q_{1}^{2}+5 q_{2}^{2}\right)^{1 / 2} \geq 0\right\}$

Aggregate production set

Let $\left\{S^{f}\right\}_{f=1}^{F}$ be the production sets of the F firms in the economy.
The aggregate production set is

$$
S=S^{1}+\ldots+S^{F}
$$

That is

$$
(z, q) \in S \text { if there exist feasible plans }\left\{\left(z_{f}, q_{f}\right)\right\}_{f=1}^{F} \text { such that }(z, q)=\sum_{f=1}^{F}\left(z_{f}, q_{f}\right) .
$$

Aggregate production set

Let $\left\{S^{f}\right\}_{f=1}^{F}$ be the production sets of the F firms in the economy.
The aggregate production set is

$$
S=S^{1}+\ldots+S^{F}
$$

That is

$$
(z, q) \in S \text { if there exist feasible plans }\left\{\left(z_{f}, q_{f}\right)\right\}_{f=1}^{F} \text { such that }(z, q)=\sum_{f=1}^{F}\left(z_{f}, q_{f}\right)
$$

Example 1: $S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0 \mid 2 z_{f}-q_{f} \geq 0\right\}$
In this simple case each unit of output requires 2 units of input so it does not matter whether one firm produces all the output or both produce some of the output. The aggregate production set is therefore $S=\{(z, q) \geq 0 \mid 2 z-q \geq 0\}$.

Example 2: $S^{f}=\left\{\left(z_{f}, q_{f}\right) \mid\left(z_{f}\right)^{1 / 2}-q_{f} \geq 0\right\}$

Group Exercise

Show that with four firms, the aggregate production set is $S=\left\{(z, q) \mid 2 z^{1 / 2}-q \geq 0\right\}$
Since $q_{f}=\left(z_{f}\right)^{1 / 2}$ it follows that maximized output is

$$
\hat{q}=\operatorname{Max}_{q}\left\{\sum_{f=1}^{4} q_{f}=\sum_{f=1}^{4} z_{f}^{1 / 2} \mid \hat{z}-\sum_{f=1}^{4} z_{f} \geq 0\right\}
$$

3. Walrasian equilibrium (WE) with Identical homothetic preferences \& constant returns to scale

Consumer h has utility function $U\left(x_{1}^{h}, x_{2}^{h}\right)=x_{1}^{h} x_{2}^{h}$. The aggregate endowment is $\omega=(a, 1)$. All firms have the same linear technology. Firm f can produce 2 units of commodity 2 for every unit of commodity 1. That is the production function of firm f is $q_{f}=2 z_{f}$

Then the aggregate production function is $q=2 z$.

Walrasian equilibrium (WE) with Identical homothetic preferences and constant returns to scale
Consumer h has utility function $U\left(x_{1}^{h}, x_{2}^{h}\right)=x_{1}^{h} x_{2}^{h}$. The aggregate endowment is $\omega=(a, 1)$. All firms have the same linear technology. Firm f can produce 2 units of commodity 2 for every unit of commodity 1 . That is the production function of firm f is $q_{f}=2 z_{f}$

Then the aggregate production function is $q=2 z$.

Aggregate feasible set

If the industry purchases z units of commodity 1
it can produce $q=2 z$ units of commodity 2 .
Then total supply of each commodity is

$$
x=(a-z, 1+2 z) .
$$

This is depicted opposite.

Step 1: Identical homothetic utility so maximize

 the utility of the representative consumerSolve for the utility maximizing point
in the aggregate production set.
$U\left(x_{1}^{r}, x_{2}^{r}\right)=x_{1}^{r} x_{2}^{r}=(a-z)(1+2 z)$

$$
=a+(2 a-1) z-2 z^{2}
$$

$U^{\prime}(z)=(2 a-1)-4 z$.
Case (i) $a \geq \frac{1}{2}$. Then $\bar{z}=\frac{1}{4}(2 a-1)$
Hence $\bar{x}=(a-\bar{z}, 1+2 \bar{z})=\left(\frac{1}{2} a+\frac{1}{4}, a+\frac{1}{2}\right)$

Case (ii) $a<\frac{1}{2}$. Then $\bar{z}=0$
Hence $\bar{x}=(a, 1)$

Step 2: Supporting prices

At what prices will the representative consumer not wish to trade?

Case 1: $\frac{p_{1}}{p_{2}}=\operatorname{MRS}(\bar{x})=\frac{\partial U}{\partial x_{1}}(\bar{x}) / \frac{\partial U}{\partial x_{2}}(\bar{x})=\frac{\bar{x}_{2}}{\bar{x}_{1}}=2$.

Case 2:

$$
\frac{p_{1}}{p_{2}}=M R S(\bar{x})=\frac{\partial U}{\partial x_{1}}(\bar{x}) / \frac{\partial U}{\partial x_{2}}(\bar{x})=\frac{\bar{x}_{2}}{\bar{x}_{1}}=\frac{1}{a}
$$

Step 3: Profit maximization

The profit of firm f is

$$
\Pi^{f}=p_{2} q_{f}-p_{1} z_{f}=p_{2} 2 z_{f}-p_{1} z_{f}=z_{f}\left(2 p_{2}-p_{1}\right)
$$

Profit maximization

The profit of firm f is

$$
\Pi^{f}=p_{2} q_{f}-p_{1} z_{f}=p_{2} 2 z_{f}-p_{1} z_{f}=z_{f}\left(2 p_{2}-p_{1}\right)
$$

If $\frac{p_{1}}{p_{2}}>2$: the profit maximizing firm will purchase no inputs and so produce no output.
If $\frac{p_{1}}{p_{2}}<2$: No profit maximizing plan
If $\frac{p_{1}}{p_{2}}=2$: any input-output vector $\left(z_{1}, q_{2}\right)=\left(z_{1}, 2 z_{1}\right)$ is profit maximizing.
Note that equilibrium profit must be zero.

Group Exercise: Must Walrasian Equilibrium profit be zero if the production functions exhibits constant returns to scale?

Second example:

One output and one input

$$
S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0 \mid q_{f} \leq a_{f}\left(z_{f}\right)^{1 / 2}\right\}
$$

There are two firms $\left(a_{1}, a_{2}\right)=(3,4)$
The aggregate endowment is $\omega=(12,0)$
Consumer preferences are as in the

previous example. $u(x)=\ln U(x)=\ln x_{1}+\ln x_{2}$

Study exercise

Show that the aggregate production set can be written as follows:

$$
S=\left\{(z, q) \geq 0 \mid q \leq 5 z^{1 / 2}\right\}
$$

The answer is in Appendix 1*
*Might be helpful for Homework 2!

Step 1: Solve for the utility maximizing consumption
Step 2: Find prices that support the optimum
Step 3: Check to see if firms are profit maximizers
Step 1:

$$
\left(x_{1}, x_{2}\right)=\left(\omega-z_{1}, q_{2}\right)=\left(12-z_{1}, 5 z_{1}^{1 / 2}\right)
$$

Define $u(x)=\ln U(x)=\ln x_{1}+\ln x_{2}$

$$
\begin{aligned}
u & =\ln \left(12-z_{1}\right)+\ln \left(z_{1}^{1 / 2}\right) \\
& =\ln \left(12-z_{1}\right)+\frac{1}{2} \ln z_{1}
\end{aligned}
$$

Exercise: Why is $u\left(z_{1}\right)$ concave?

$$
u^{\prime}\left(z_{1}\right)=-\frac{1}{12-z_{1}}+\frac{\frac{1}{2}}{z_{1}}
$$

This has a unique critical point $\bar{z}_{1}=4$.
Then

$$
\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(\omega-z_{1}, q_{2}\right)=\left(12-z_{1}, 5 z_{1}^{1 / 2}\right)=(8,10)
$$

Step 2: Supporting the optimum

$$
\frac{\partial u}{\partial x}(\bar{x})=\left(\frac{\partial u}{\partial x_{1}}(\bar{x}), \frac{\partial u}{\partial x_{2}}(\bar{x})\right)=\left(\frac{1}{\bar{x}_{1}}, \frac{1}{\bar{x}_{2}}\right)=\left(\frac{1}{8}, \frac{1}{10}\right)=\frac{1}{80}(10,8) .
$$

Necessary conditions

$$
\frac{\partial u}{\partial x}(\bar{x})=\lambda p .
$$

Then $\frac{\partial u}{\partial x}(\bar{x})$ or any scalar multiple is a supporting price vector.
Hence $p=(10,8)$ is a supporting price vector

Step 3: Profit maximization

$$
\begin{aligned}
& \pi=p_{2} q_{2}-p_{1} z_{1}=8\left(5 z^{1 / 2}\right)-10 z_{1} \\
& \pi^{\prime}\left(z_{1}\right)=20 z_{1}^{-1 / 2}-10=\frac{20}{z_{1}^{1 / 2}}-10
\end{aligned}
$$

So profit is maximized at $\bar{z}_{1}=4$ and maximized profit is $\pi\left(\bar{z}_{1}\right)=40$

Aggregation Theorem for price taking firms (no gains to merging)

Proposition: If there are 2 firms in an industry, prices are fixed and $\left(\bar{z}^{f}, \bar{q}^{f}\right)$ is profit maximizing for firm $f, f=1,2$ then $(z, q)=\left(\bar{z}_{1}+\bar{z}_{2}, \bar{q}_{1}+\bar{q}_{2}\right)$ is industry profit-maximizing.

Aggregation Theorem for price taking firms

Proposition: If there are 2 firms in an industry, prices are fixed and (\bar{z}_{f}, \bar{q}_{f}) is profit maximizing for firm $f, f=1,2$ then $(z, q)=\left(\bar{z}_{1}+\bar{z}_{2}, \bar{q}_{1}+\bar{q}_{2}\right)$ is industry profit-maximizing.

Proof: Let Π^{f} be maximized profit of firm f since the industry can mimic the two firms, industry profit cannot be lower. Suppose it is higher. Then for some feasible $\left(\hat{z}_{f}, \hat{q}_{f}\right), f=1,2$,

$$
p \cdot\left(\hat{q}_{1}+\hat{q}_{2}\right)-r \cdot\left(\hat{z}_{1}+\hat{z}_{2}\right)>\bar{\Pi}^{1}+\bar{\Pi}^{2} .
$$

Aggregation Theorem for price taking firms

Proposition: If there are 2 firms in an industry, prices are fixed and $\left(\bar{z}_{f}, \bar{q}_{f}\right)$ is profit maximizing for firm $f, f=1,2$ then $(z, q)=\left(\bar{z}_{1}+\bar{z}_{2}, \bar{q}_{1}+\bar{q}_{2}\right)$ is industry profit-maximizing.

Proof: Let Π^{f} be maximized profit of firm f since the industry can mimic the two firms, industry profit cannot be lower. Suppose it is higher. Then for some feasible $\left(\hat{z}_{f}, \hat{q}_{f}\right), f=1,2$,

$$
p \cdot\left(\hat{q}_{1}+\hat{q}_{2}\right)-r \cdot\left(\hat{z}_{1}+\hat{z}_{2}\right)>\bar{\Pi}^{1}+\bar{\Pi}^{2} .
$$

Rearranging the terms,

$$
\left(p \cdot \hat{q}_{1}-r \cdot \hat{z}_{1}-\bar{\Pi}^{1}\right)+\left(p \cdot \hat{q}_{2}-r \cdot \hat{z}_{2}-\bar{\Pi}^{2}\right)>0
$$

Then either

$$
p \cdot \hat{q}_{1}-r \cdot \hat{z}_{1}>\bar{\Pi}^{1} \text { or } p \cdot \hat{q}_{2}-r \cdot \hat{z}_{2}>\bar{\Pi}^{2}
$$

But then $\left(\bar{z}^{1}, \bar{q}^{1}\right)$ and $\left(\bar{z}^{1}, \bar{q}^{1}\right)$ cannot both be profit-maximizing.

Remark: Arguing in this way we can aggregate to the entire economy.

Appendix 1: Answer to exercise:

One output and one input

$$
S^{f}=\left\{\left(z_{f}, q_{f}\right) \geq 0 \mid q_{f} \leq a_{f}\left(z_{f}\right)^{1 / 2}\right\}
$$

There are two firms $\left(a_{1}, a_{2}\right)=(3,4)$
(a) Show that the aggregate production set can be written as follows:

$$
S=\left\{(z, q) \geq 0 \mid q \leq 5 z^{1 / 2}\right\}
$$

If the allocation of the input to firm 1 is z_{1}, then maximized output is $q=3\left(z_{1}\right)^{1 / 2}$. Similarly $q_{2}=4\left(z_{2}\right)^{1 / 2}$ and so

$$
q_{1}+q_{2}=3\left(z_{1}\right)^{1 / 2}+4\left(z_{2}\right)^{1 / 2}
$$

Maximized industry output is therefore

$$
q=\operatorname{Max}\left\{q_{1}+q_{2}=3\left(z_{1}\right)^{1 / 2}+4\left(z_{2}\right)^{1 / 2} \mid \hat{z}-z_{1}-z_{2} \geq 0\right\}
$$

The problem is concave so the necessary condition are sufficient. We look for a solution with $\left(z_{1}, z_{2}\right) \gg 0$. The Lagrangian is

$$
\mathfrak{L}=3 z_{1}^{1 / 2}+4 z_{2}^{1 / 2}+\lambda\left(\hat{z}-z_{1}-z_{2}\right)
$$

FOC: $\quad \frac{\partial L}{\partial q^{1}}=\frac{3}{2}\left(z^{1}\right)^{-1 / 2}-\lambda=0, \quad \frac{\partial L}{\partial q^{1}}=\frac{4}{2}\left(z^{1}\right)^{-1 / 2}-\lambda=0$
Therefore

$$
\frac{z_{1}^{1 / 2}}{3}=\frac{z_{2}^{1 / 2}}{4}=\frac{1}{2 \lambda}
$$

Squaring each term,

$$
\frac{z_{1}}{9}=\frac{z_{2}}{16}=\frac{1}{4 \lambda^{2}}
$$

Squaring each term,

$$
\frac{z_{1}}{9}=\frac{z_{2}}{16}=\frac{1}{4 \lambda^{2}}
$$

Method 1: Appeal to the Ratio Rule*

Then

$$
\frac{z_{1}}{9}=\frac{z_{2}}{16}=\frac{z_{1}+z_{2}}{9+16}=\frac{\hat{z}}{25} .
$$

So

$$
\begin{equation*}
\left(z_{1}, z_{2}\right)=\left(\frac{9}{25} \hat{z}, \frac{16}{25} \hat{z}\right) \tag{*}
\end{equation*}
$$

Therefore
$\left(q_{1}, q_{2}\right)=\left(3 z_{1}^{1 / 2}, 4 z_{2}^{1 / 2}\right)=\left(\frac{9}{5} \hat{z}^{1 / 2}, \frac{16}{5} \hat{z}^{1 / 2}\right)$
So $q=q_{1}+q_{2}=\left(\frac{9}{5}+\frac{16}{5}\right) \hat{z}^{1 / 2}=5 \hat{z}^{1 / 2}$.
*Ratio Rule: If $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$ then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{1}+a_{2}}{b_{1}+b_{2}}$

Method 2:

$\frac{z_{1}}{9}=\frac{z_{2}}{16}=\frac{1}{4 \lambda^{2}}$. Therefore $z_{1}=\frac{9}{4 \lambda^{2}}$ and $z_{2}=\frac{16}{4 \lambda^{2}}$.
It follows that $\quad \bar{z}=z_{1}+z_{2}=\frac{25}{4 \lambda^{2}}$
Then $\frac{z_{1}}{\hat{z}}=\frac{9}{25}$ and $\frac{z_{1}}{\hat{z}}=\frac{9}{25}$.
Therefore $\left(z_{1}, z_{2}\right)=\left(\frac{9}{25} \hat{z}, \frac{16}{25} \hat{z}\right)$
Then proceed as in Method 1.

Appendix 2 : (Technical and definitely not required material!)
Proposition: If $f(x)$ exhibits constant returns to scale and the superlevel sets of f are convex, then, for any non-negative vectors a and b, the function is super-additive, i.e.

$$
f(a+b) \geq f(a)+f(b)
$$

For some $\theta>0$,

$$
f(a)=f(\theta b) \underset{C R S}{=} \theta f(b)
$$

Therefore

$$
f(b)=\frac{1}{a} f(a)
$$

Choose $t=\frac{1}{1+\theta}$. Then $1-t=1-\frac{1}{1+\theta}=\frac{\theta}{1+\theta}$

Since a and θb are in the superlevel set, $S=\{x \mid f(x) \geq f(a)\}$
It follows that

$$
f(x(t))=f\left(\frac{\theta}{1+\theta} a+\frac{1}{1+\theta} \theta b\right) \geq f(a)
$$

We have shown that

$$
\begin{equation*}
f(x(t))=f\left(\frac{\theta}{1+\theta} a+\frac{1}{1+\theta} \theta b\right) \geq f(a), \quad \text { where } f(b)=\frac{1}{a} f(a) \tag{0-1}
\end{equation*}
$$

i.e.

$$
f\left(\frac{\theta}{1+\theta} a+\frac{\theta b}{1+\theta}\right)=f\left(\frac{\theta}{1+\theta}(a+b)\right) \underset{C R S}{ } \frac{\theta}{1+\theta} f(a+b) \geq f(a)
$$

Therefore

$$
f(a+b) \geq \frac{1+\theta}{\theta} f(a)=\frac{1}{\theta} f(a)+f(a)=f(a)+\frac{1}{\theta} f(a)
$$

Appealing to (0-1)

$$
f(a+b) \geq f(a)+f(b)
$$

QED
Choose $a=(1-\lambda) x^{0}$ and $b=\lambda x^{1}$, Then

$$
f\left((1-\lambda) x^{0}+\lambda x^{1}\right) \geq f\left((1-\lambda) x^{0}\right)+f\left(\lambda x^{1}\right)
$$

Appealing to constant returns to scale $f(\theta z)=\theta f(z)$. Therefore

$$
f\left((1-\lambda) x^{0}+\lambda x^{1}\right) \geq(1-\lambda) f\left(x^{0}\right)+\lambda f\left(x^{1}\right)
$$

[^0]: All sections last edited 17 October 2018.

