1. Introduction 2
2. Maximization 6
3. Non-negativity constraints 8
4. Examples: Profit maximizing firm 10
5. Resource constrained maximization - a graphical approach 20
6. Resource constrained maximization - shadow price approach 23

33 pages

See also Calculus of Econ Modules 7 and 8.

Introduction

Four questions

What makes economic research so different from research in the other social sciences (and indeed in almost all other fields)?

Introduction
Four questions
What makes economic research so different from research in the other social sciences (and indeed in almost all other fields)?

What are the two great pillars of economic theory?

Introduction
Four questions
What makes economic research so different from research in the other social sciences (and indeed in almost all other fields)?

What are the two great pillars of economic theory?

Who are you going to learn most from at UCLA?

Introduction

Four questions

What makes economic research so different from research in the other social sciences (and indeed in almost all other fields)?

What are the two great pillars of economic theory?

Who are you going to learn most from at UCLA?

What do economists do?
Discuss in 3 person groups

2. Maximization

Suppose $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ solves $\operatorname{Max}_{x}\left\{f\left(x_{1}, \ldots, x_{n}\right)\right\}$.
Define $\bar{x}_{-1}=\left(\bar{x}_{2}, \ldots, \bar{x}_{n}\right)$

Then \bar{x}_{1} solves $\operatorname{Max}_{x_{1}}\left\{f\left(x_{1}, \bar{x}_{-1}\right)\right\}$.

This is a one variable problem.
The necessary condition for a maximum is the

Fig. 1 -Necessary condition for a maximum
zero slope condition $\frac{\partial f}{\partial x_{1}}\left(\bar{x}_{1}, \bar{x}_{-1}\right)=0$
Making an identical argument for each of the other variables we have the following result.

First order necessary conditions for a maximum

For \bar{x} to be a maximizer the following conditions must hold

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}(\bar{x})=0, \quad j=1, \ldots, n \tag{2-1}
\end{equation*}
$$

Consider Fig 2.

The first order necessary condition holds at \bar{x}_{1}.

If the slope is strictly increasing at \bar{x}_{1}, then the slope
is strictly negative to the left and strictly positive
to the right. Therefore $f\left(x_{1}, \bar{x}_{1}\right)$ is not maximized at \bar{x}_{1}.

Thus a further necessary condition for a maximum is that

Fig. 2: Local minimum the slope must be decreasing at \bar{x}_{1}.

We therefore have a second set of necessary conditions for a maximum. Since they are restrictions on second derivatives they are called the second order necessary conditions.

Second order necessary conditions for a maximum

If \bar{x} is a maximizer of $f(x)$, then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{j}^{2}}=\frac{\partial}{\partial x_{j}} \frac{\partial f}{\partial x_{j}}(\bar{x}) \leq 0, \quad j=1, \ldots, n \tag{2-2}
\end{equation*}
$$

3. Non-negativity constraints

Many economic variables cannot be negative. Suppose this is true for all variables
Let $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ solve $\operatorname{Max}_{x \geq 0}\{f(x)\}$.
We will consider the first variable.

It is helpful to write the optimal value
of all the other variables as \bar{x}_{-1}. Then

$$
\bar{x}_{1} \text { solves } \operatorname{Max}_{x_{1} \geq 0}\left\{f\left(x_{1}, \bar{x}_{-1}\right)\right\} .
$$

Case (i) $\bar{x}_{1}>0$
This is depicted opposite.

Case (i): Necessary condition for a maximum

For \bar{x}_{1} to be the maximizer,
the graph of $f\left(x_{1}, \bar{x}_{-1}\right)$ must be zero at \bar{x}_{1}.

Case (ii) $\bar{x}_{1}=0$

This is depicted opposite.
For \bar{x}_{1} to be the maximizer,
the graph of $f\left(x_{1}, \bar{x}_{-1}\right)$ cannot be strictly
positive at \bar{x}_{1}.

Taking the two cases together,
$\frac{\partial f}{\partial x_{1}}(\bar{x}) \leq 0$, with equality if $\bar{x}_{1}>0$

An identical argument holds for all of the
variables.
Necessary conditions
$\frac{\partial f}{\partial x_{j}}(\bar{x}) \leq 0$, with equality if $\bar{x}_{j}>0, j=1, \ldots, n$

Case (ii): Necessary condition for a maximum

Case (ii): Necessary condition for a maximum
4. Examples: Profit-maximizing firm

Example 1:

Cost function

$$
C(q)=5+12 q+3 q^{2}
$$

Demand price function

$$
p(q)=20-q
$$

Group exercise: Solve for the profit maximizing output and price.

Example 2: Two products

MODEL 1

Cost function

$C(q)=10 q_{1}+15 q_{2}+2 q_{1}{ }^{2}+3 q_{1} q_{2}+2 q_{2}{ }^{2}$
Demand price functions
$p_{1}=85-\frac{1}{4} q_{1}$ and $p_{2}=90-\frac{1}{4} q_{2}$
Group 1 exercise: How might you solve for the profit maximizing outputs?

MODEL 2

Cost function

$C(q)=10 q_{1}+15 q_{2}+q_{1}^{2}+3 q_{1} q_{2}+q_{2}^{2}$
Demand price functions
$p_{1}=65-\frac{1}{4} q_{1}$ and $p_{2}=70-\frac{1}{4} q_{2}$
Group 2 exercise: How might you solve for the profit maximizing outputs?

MODEL 1:

Revenue

$$
R_{1}=p_{1} q_{1}=\left(85-\frac{1}{4} q_{1}\right) q_{1}=85 q_{1}-\frac{1}{4} q_{1}^{2}, \quad R_{2}=p_{2} q_{2}=\left(90-\frac{1}{4} q_{2}\right) q_{2}=90 q_{2}-\frac{1}{4} q_{2}^{2}
$$

Profit

$$
\begin{aligned}
\pi & =R_{1}+R_{2}-C \\
& =85 q_{1}-\frac{1}{4} q_{1}^{2}+90 q_{2}-\frac{1}{4} q_{2}^{2}-\left(10 q_{1}+15 q_{2}+2 q_{1}^{2}+3 q_{1} q_{2}+2 q_{2}^{2}\right) \\
& =75 q_{1}+75 q_{2}-\frac{9}{4} q_{1}^{2}-\frac{9}{4} q_{2}^{2}-3 q_{1} q_{2} .
\end{aligned}
$$

Note that profit is positive for small q.
Class exercise: Explain why profit is negative for large q.

It follows that a maximum exists.
$\pi=75 q_{1}+75 q_{2}-\frac{9}{4} q_{1}^{2}-\frac{9}{4} q_{2}^{2}-3 q_{1} q_{2}$

Think on the margin

Marginal profit from increasing q_{1}

$$
\frac{\partial \pi}{\partial q_{1}}=75-\frac{9}{2} q_{1}-3 q_{2}
$$

Marginal profit from increasing q_{2}

$$
\frac{\partial \pi}{\partial q_{2}}=75-3 q_{1}-\frac{9}{2} q_{2}
$$

Therefore a critical point $\bar{q} \gg 0$ must satisfy

the following two necessary conditions

$$
\frac{\partial \pi}{\partial q_{1}}=75-\frac{9}{2} q_{1}-3 q_{2}=0, \quad \frac{\partial \pi}{\partial q_{2}}=75-3 q_{1}-\frac{9}{2} q_{2}=0
$$

The graphs of these two lines are depicted. If you solve for \bar{q} satisfying both equations you will find that the unique solution is $\bar{q}=\left(\bar{q}_{1}, \bar{q}_{2}\right)=(10,10)$.

MODEL 2

Cost function

$C(q)=10 q_{1}+15 q_{2}+q_{1}^{2}+3 q_{1} q_{2}+q_{2}{ }^{2}$

Demand price functions

$p_{1}=65-\frac{1}{4} q_{1}$ and $p_{2}=70-\frac{1}{4} q_{2}$

Revenue
$R_{1}=p_{1} q_{1}=\left(65-\frac{1}{4} q_{1}\right) q_{1}=65 q_{1}-\frac{1}{4} q_{1}^{2}, \quad R_{2}=p_{2} q_{2}=\left(70-\frac{1}{4} q_{2}\right) q_{2}=70 q_{2}-\frac{1}{4} q_{2}^{2}$

Profit

$$
\begin{aligned}
\pi & =R_{1}+R_{2}-C \\
& =65 q_{1}-\frac{1}{4} q_{1}^{2}+70 q_{2}-\frac{1}{4} q_{2}^{2}-\left(10 q_{1}+15 q_{2}+q_{1}^{2}+3 q_{1} q_{2}+q_{2}^{2}\right) \\
& =55 q_{1}+55 q_{2}-\frac{5}{4} q_{1}^{2}-\frac{5}{4} q_{2}^{2}-3 q_{1} q_{2}
\end{aligned}
$$

Profit is strictly positive for small q and negative for large q so there is a solution.
$\pi=55 q_{1}+55 q_{2}-\frac{5}{4} q_{1}{ }^{2}-\frac{5}{4} q_{2}{ }^{2}-3 q_{1} q_{2}$
Think on the margin
Marginal profit of increasing q_{1}

$$
\frac{\partial \pi}{\partial q_{1}}=55-\frac{5}{2} q_{1}-3 q_{2}
$$

Marginal profit of increasing q_{2}

$$
\frac{\partial \pi}{\partial q_{2}}=55-3 q_{1}-\frac{5}{2} q_{2}
$$

Therefore a critical point $\bar{q} \gg 0$ satisfies
Model 2: Necessary conditions
the following two necessary conditions
$\frac{\partial \pi}{\partial q_{1}}=55-\frac{5}{2} q_{1}-3 q_{2}=0$ and $\frac{\partial \pi}{\partial q_{2}}=55-3 q_{1}-\frac{5}{2} q_{2}=0$
If you solve for \bar{q} satisfying both equations you will find that the unique critical point $\bar{q} \gg 0$ is $\bar{q}=\left(\bar{q}_{1}, \bar{q}_{2}\right)=(10,10)$.

However, we must also check to see if there are any other output vectors satisfying the necessary conditions.

Look along the boundaries.
Necessary conditions for a maximum at $\hat{q}=\left(\hat{q}_{1}, 0\right)$

Model 1:

$\hat{q}=\left(\hat{q}_{1}, 0\right)$ must satisfy the following two conditions
$\frac{\partial \pi}{\partial q_{1}}=75-\frac{9}{2} \hat{q}_{1}=0 \quad, \quad \frac{\partial \pi}{\partial q_{2}}=75-3 \hat{q}_{1} \leq 0$
$\frac{\partial \pi}{\partial q_{1}}=0$ implies that $\hat{q}=\frac{50}{3}$. But then $\frac{\partial \pi}{\partial q_{2}}>0$.
A symmetrical argument shows that the necessary
conditions cannot both hold at $\hat{\hat{q}}=\left(0, \hat{\hat{q}}_{2}\right)$ either.

Model 1: Necessary conditions

Thus the necessary conditions only hold at $\bar{q}=(10,10)$.

Hence this must be the maximizer.

The profit function is depicted below (using a spread-sheet)

Model 2:

At $\hat{q}=\left(\hat{q}_{1}, 0\right)$ the necessary conditions for a maximum are

$$
\frac{\partial \pi}{\partial q_{1}}=55-\frac{5}{2} q_{1}-3 q_{2}=55-\frac{5}{2} \hat{q}_{1}=0
$$

and

$$
\frac{\partial \pi}{\partial q_{2}}=55-3 q_{1}-\frac{5}{2} q_{2}=55-3 \hat{q}_{1} \leq 0
$$

Note that $\hat{q}=(22,0)$ satisfies both conditions.

Model 2: Necessary conditions

A symmetrical argument establishes that $\hat{\hat{q}}=(0,22)$
satisfies the necessary conditions as well.
If you check you will find that
$\pi(\bar{q})<\pi(\hat{q})=\pi(\hat{\hat{q}})$
Therefore profit is maximized by producing only one commodity.

The profit function has the shape of a saddle. The output vector \bar{q} where the slope in the direction of each axis is zero is called a saddle-point.

5. Resource constrained maximization - a graphical approach

2 variables so $x=\left(x_{1}, x_{2}\right)$
Problem: $\operatorname{Max}_{x \geq 0}\{f(x) \mid b-g(x) \geq 0\}$.

Assumption: Both $f(x)$ and $g(x)$
are strictly increasing functions.
For $\bar{x} \gg 0$ to be the solution, the slopes of
the level sets

$$
f(x)=f(\bar{x}) \text { and } g(x)=g(\bar{x})=b
$$

must be equal at \bar{x}.

But what is the slope of a level set?

The slope of a level set

The level set $f\left(x_{1}, x_{2}\right)=f(\bar{x})$ implicitly defines a mapping $x_{2}=\phi_{f}\left(x_{1}\right)$. That is,

$$
f\left(x_{1}, \phi_{f}\left(x_{1}\right)\right)=f(\bar{x})
$$

Differentiate by x_{1}.

$$
\frac{\partial f}{\partial x_{1}}(x)+\frac{\partial f}{\partial x_{2}}(x) \phi_{f}^{\prime}\left(x_{1}\right)=0
$$

Slope of a level set

Thus the slope of the level set at \bar{x} is $\phi_{f}^{\prime}\left(\bar{x}_{1}\right)=-\frac{\frac{\partial f}{\partial x_{1}}(\bar{x})}{\frac{\partial f}{\partial x_{2}}(\bar{x})}$.
Then the Necessary condition for a maximum is

$$
-\frac{\frac{\partial f}{\partial x_{1}}(\bar{x})}{\frac{\partial f}{\partial x_{2}}(\bar{x})}=\phi_{f}^{\prime}\left(\bar{x}_{1}\right)=\phi_{g}^{\prime}\left(\bar{x}_{1}\right)=-\frac{\frac{\partial g}{\partial x_{1}}(\bar{x})}{\frac{\partial g}{\partial x_{2}}(\bar{x})}
$$

Class discussion: Can the graphical approach be used when there are more than 2 variables?
6. The shadow price (Lagrange multiplier) method and an economic interpretation Problem: $\operatorname{Max}_{x \geq 0}\{f(x) \mid b-g(x) \geq 0\}$

NOTE: Always write a resource constraint in the form $h(x) \geq 0$
Introduce a shadow price $\lambda \geq 0$. The "Lagrangian" of the problem is

$$
\mathfrak{L}=f(x)+\lambda(b-g(x))
$$

Necessary conditions for \bar{x} to solve the resource constrained problem
For some $\lambda \geq 0$

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}(\bar{x}, \lambda)=\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0, \text { with equality if } \bar{x}_{j}>0
$$

Moreover, if the constraint is not binding (i.e. $b-g(\bar{x})>0$) then $\lambda=0$.

Problem: $\operatorname{Max}_{x \geq 0}\{f(x) \mid b-g(x) \geq 0\}$

Economic interpretation of the problem.
If the firm chooses x it requires $g(x)$ units of a resource that is fixed in supply (i.e. floor space of plant, highly skilled workers)

We interpret $f(x)$ as the revenue of the firm. The fixed supply of this input is b.

The relaxed problem

Suppose first that the firm could purchase or sells units of the resource at the market price λ.
If the firm purchases $g(x)-b$ additional units of the resource its profit is then

$$
\mathfrak{L}=f(x)-\lambda(g(x)-b)=f(x)+\lambda(b-g(x))
$$

If the firm sells $b-g(x)$ units of the resource its profit is then

$$
\mathfrak{L}=f(x)+\lambda(b-g(x))
$$

The firm then solves the following problem.

$$
\operatorname{Max}_{x \geq 0}\{\mathfrak{L}=f(x)+\lambda(b-g(x))\}
$$

Necessary conditions for \bar{x} to solve the relaxed problem

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}(\bar{x})=\frac{\partial f}{\partial x_{j}}(\bar{x})-\lambda \frac{\partial g}{\partial x_{j}}(\bar{x}) \leq 0, \text { with equality if } \bar{x}_{j}>0, j=1, \ldots, n
$$

It is a beautiful (and deep) theorem that, under very weak assumptions, there exists a "shadow price" $\lambda \geq 0$ such that these are also the necessary conditions when there is no market in which to purchase or sell the resource.

The shadow price is the marginal value of an additional unit of the resource.
If the constraint is not binding at the maximum $(b-g(\bar{x})>0)$ then the value of an additional unit is zero, i.e. $\lambda=0$

The 2 variable case with $\bar{x} \gg 0$

$$
\begin{aligned}
& \frac{\partial \mathfrak{L}}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}-\lambda \frac{\partial g}{\partial x_{1}}=0 \\
& \frac{\partial \mathfrak{L}}{\partial x_{2}}=\frac{\partial f}{\partial x_{2}}-\lambda \frac{\partial g}{\partial x_{2}}=0
\end{aligned}
$$

Equivalently, $\frac{\partial f}{\partial x_{1}}=\lambda \frac{\partial g}{\partial x_{1}}$ and $\frac{\partial f}{\partial x_{2}}=\lambda \frac{\partial g}{\partial x_{2}}$

Therefore

$$
\frac{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}}=\frac{\lambda \frac{\partial g}{\partial x_{1}}}{\lambda \frac{\partial g}{\partial x_{2}}}=\frac{\frac{\partial g}{\partial x_{1}}}{\frac{\partial g}{\partial x_{2}}}
$$

This is the Necessary Condition obtained using the graphical approach.

Remark:

With multiple constraints $g_{i}(x) \leq b_{i}, i=1, \ldots, m$ the necessary conditions are the same. The Lagrangian becomes

$$
\mathfrak{L}=f(x)+\sum_{i=1}^{m} \lambda_{i}\left(b_{i}-g_{i}(x)\right) .
$$

For any constraint that is not binding, the associated shadow price must be zero.

Solving for the maximum

Example 1: Consumer choice with 2 commodities

A consumer's preferences are represented by the utility function $f(x)=\sum_{j=1}^{2} \alpha_{j} \ln x_{j}$
where $\alpha \gg 0$ and $\sum_{i=1}^{2} \alpha_{i}=1$. The price vector is p. The consumer has an income I.

$$
\operatorname{Max}_{x \geq 0}\{f(x) \mid I-p \cdot x \geq 0\}
$$

We write down the Lagrangian

$$
\mathfrak{L}=\sum_{j=1}^{2} \alpha_{j} \ln x_{j}+\lambda\left(I-\sum_{j=1}^{2} p_{j} x_{j}\right)
$$

Necessary conditions

$$
\begin{equation*}
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\alpha_{j}}{x_{j}}-\lambda p_{j} \leq 0, \text { with equality if } \bar{x}_{j}>0, \quad j=1,2 \tag{6-1}
\end{equation*}
$$

Necessary conditions

$$
\frac{\partial \mathfrak{L}}{\partial x_{j}}=\frac{\alpha_{j}}{x_{j}}-\lambda p_{j} \leq 0, \text { with equality if } \bar{x}_{j}>0, \quad j=1,2
$$

Note that $\lim _{x_{j} \rightarrow 0} \frac{\alpha_{j}}{x_{j}}=\infty$. Therefore the inequality cannot hold at $x_{j}=0$. Then $\bar{x}_{j}>0$ and so the necessary conditions are equalities. Hence

$$
\begin{equation*}
p_{j} x_{j}=\frac{\alpha_{j}}{\lambda}, j=1,2 \tag{6-2}
\end{equation*}
$$

Summing over the commodities,

$$
\begin{equation*}
I=\sum_{j=1}^{2} p_{j} x_{j}=\sum_{j=1}^{2} \frac{\alpha_{j}}{\lambda}=\frac{1}{\lambda}, \text { since } \sum_{j=1}^{2} \alpha_{j}=1 \tag{6-3}
\end{equation*}
$$

Appealing to (6-2) and (6-3) it follows that

$$
p_{j} \bar{x}_{j}=\alpha_{j} I \text { and so } \bar{x}_{j}=\frac{\alpha_{j}}{p_{j}} I, j=1,2
$$

Example 2: Consumer choice with 3 commodities

A consumer's preferences are represented by a utility function $f(x)=\sum_{j=1}^{3} \alpha_{j} \ln x_{j}$
where $\alpha \gg 0$ and $\sum_{i=1}^{3} \alpha_{i}=1$. The price vector is p. The consumer has an income I.

Group Exercise:

Show that the solution is

$$
\bar{x}_{j}=\frac{\alpha_{j}}{p_{j}} I, j=1,2,3
$$

Example 3: Output maximization with a budget constraint

A firm has a production function $q=g(x)=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}$ where $\alpha \gg 0$ and $\sum_{i=1}^{2} \alpha_{i}=1$.
The input price vector is p. The manager is given a budget of \bar{b} and tasked with maximizing output.

$$
\operatorname{Max}_{x \geq 0}\{g(x) \mid \bar{b}-p \cdot x \geq 0\}
$$

Group Exercise:

Explain why the solution is $\bar{x}_{j}=\frac{\alpha_{j}}{p_{j}} \bar{b}, j=1,2$
Then maximized output is

$$
\bar{q}=g(\bar{x})=\left(\frac{\alpha_{1} \bar{b}}{p_{1}}\right)^{\alpha_{1}}\left(\frac{\alpha_{2} \bar{b}}{p_{2}}\right)^{\alpha_{2}}=\bar{b}\left(\frac{\alpha_{1}}{p_{1}}\right)^{\alpha_{1}}\left(\frac{\alpha_{2}}{p_{2}}\right)^{\alpha_{2}}
$$

