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1. Introduction
There is a voluminous theoretical literature on sealed high-bid auctions (auctions in which

bids are sealed and the high bidder pays his bid.) See for example, Vickrey (1961),

Myerson (1981), Riley and Samuelson (1981), Milgrom and Weber (1982), Matthews
(1983), Maskin and Riley (1984), Holt (1980), Cox, Smith and Walker (1988). A critical
property on which this literature relies 1s the existence of equilibrium in which buyers’
bidding strategies are monotonic in their? types. This enables the analyst to perform
comparative statics as the distribution ofj types changes, and to compare the welfare-
properties of the high-bid auction with those of other auction institutions.

One case in which the existence of monptonic equilibrium is readily established is that in
which buyers’ types are distributed smoéthly, independently and symmetrically. In this case,
there exists a symmetric equilibrium - - bne in which all bidders share the same bidding
behavior as a function of their valuationg - - and this bid function is the solution to a first
order differential equation.

However, many applications require consideration of asymmetric distributions (see Maskin
and Riley (1996), common values (see Milgrom and Weber (1982)), or disérete distributions.
And for these cases the issue of equilibr;ium existence is not as straightforward. Indeed, even
in apparently simple cases, monotonic equilibrium may fail to exist (see examples 1-3).
Therefore we attempt here to provide sufficient conditions that are general enough to cover
most applications that the literature has considered.

In section 2 we introduce the model. In ?section 3, we first show that, under mild assumptions
on preferences, equilibrium bidding musi be monotonic, if types are distributed

independently. With affiliation we introfduce the stronger assumption of log super modularity
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and, in section 4, consider the case of discrete types. In general there may be no equilibrium
under the standard tie-breaking rule (in which the winner is selected at random.) However
we are able to establish existence of a xﬁonotonic equilibrium of a sealed high-bid auction in
which the tying high bidders compete for the item in a second round Vickrey auction. In
section 5 we extend our existence theorém (under the modified tie-breaking rule) to the case
of continuously distributed types. Finalljy we establish existence of equilibrium under the
standard tie-breaking rule by showing thht buyers’ strategies remain best responses when the

tie-breaking rule in changed. We offer some concluding remarks in section 6.
2. The Model

Throughout the paper we shall maiﬁke the following assumptions about auctions and
participants. A single item is to be sold. All potential buyers who choose to participate
submit nonnegative sealed bids simultaneously. The item is awarded to the buyer who makes
the highest bid, and he pays this bid. ! If there is more than one highest bidder, the winner
is selected from them according to a spéciﬁed tie-breaking rule. In particular, in the
standard high-bid auction, the winner is %chosen randomly, where each of the highest bidders
has an equal chance of winning. |

There are n potential buyers ind{:xed by i. Buyer i has utility ui(b,si,s_i) if he
wins with a bid of b and is of type sife S; while the other buyers are of types

s; = (sl""’si-l’si +1"“’Sn)‘ We shau consider two cases: (i) Si is a finite set (the finite

1If no buyer submits a bid, the item is not sold.
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type-space case) and (ii) S ; isa compacﬂ interval Lsi,Ei] (the continuous type-space case.)2
The joint distribution of types is given by the function f: Sy X+ XS§ n~ R We

interpret f(sl,...,sn) as the (joint) probability of (51"“’sn) in case (i). We suppose that, for

Al

all i and all 5 € Si’ there exists s 4i € S_j such that f(sj,s_p) > 0. This ensures

that for all s; and S the conditional pjrobability gi(s_i}si) is well-defined:

gi(s=jlsy) = _islf_—_l;)__
Z f(si’s—i)
s’ |
In case (ii), f(sl,..,,sn) is the joint dem;sity of (sl,...,sn). In this case we suppose that f
is twice differentiable and j f(%i,s_i)ds_i > 0 forall s; €S, so that the
s, €S8
conditional density
ils) = ——oo
j f(sj,s_)ds_;
s €S |

is well-defined.

Without loss of generality, we nor%malize payoff functions so that the utility of buyer i
is zero if his bid is unsuccessful. Let qi(b,si,s_i) be decreasing in b and twice
continuously differentiable for i = 1,..i,n. We shall assume that buyers are not willing to
bid unbounded amounts, that is, for all 1 and S5 if Bi(si) is the biggest bid such

that r;max u;(bi(s;),8i,5-p) = 0, then ;bi(si) < oo,
—l i

2Although we do not demonstrate it}here, our methods generalize to the case in which
types are multidimensional. See also the Corollary to Proposition 3, which does not require
one-dimensionality. |
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In the simplest case, buyer i’s type s; can be identified with buyer i’s reservation
price:
Uj(05;8) = 5; - b |
Alternatively, 5 might represent information that buyer i has obtained about the objective
monetary value of the item,

The bidding behavior of buyer i of type s, can be described by the random variable

Si(si), where each realization is either a nonnegative number or the null bid corresponding

to the choice not to participate. The bl_q function Bi(-) is a best res;ponse3 to E_i(-) if, for

all ; and all bi € real Bi(si) (the set?of realizations of Si(si)), bi maximizes buyer i’s
expected payoff, given that the other bugrers are using bid functions G_i(-) and their types
are drawn according to the conditional cﬁistﬂbution gi(s_i}si).

An equilibrium is a vector (5,(),....5 () such that, for all i, B() is a best

response to B_i(-).

3. Monotonicity

We are particularly interested in monotonic equilibria, i.e., equilibria (b 1(-),...,En(-))

in which, for all i and s, s; €S, if s;>s;, b; € real B(s;), and
b € real b. (s) then b b Hence We shall often invoke some widely-used assumptions

on preferences and distributions to ensuﬁe monotonicity. We shall call preferences

3 For many tie-breaking rules (including the random rule used in the standard auction),
buyer i’s best response to other buyers’ behavior can be captured completely by his bid
function. For some rules, however, hlgh bidders are called upon to take further action if a
tie occurs, in which case the bid functlon by itself is not a full description of behavior (see
section 4).
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monotonic if

du;
@) _a?_l(b,si,s_i) > 0 forall i,b,sands .
1

As the work of Milgrom and Shannon (1994) shows, some form of supermodularity (or "log
supermodularity;” see below) is also needed to guarantee that equilibrium bid functions are

increasing in types. Call preferences w;c_a§ kly supermodular if

620i .
2) m(b’si’s-i) =2 0 foralli, s and s_

4
1

Note that if preferences take the commonly-used form
3 ui(b’si’s—i) = Ui(d)i(si"s—i)_b)’

where Ui(-) is an increasing von Neumann-Morgenstern utility function, then (1) and (2)

0; "
are equivalent to the requirements 79_3—1 > 0 and U; =< 0 (the latter being the assumption
i

that the buyer is risk neutral or risk ave;se.)

Because the high-bid auction is a discontinuous game, buyers do not always have best
responses. For example, consider buyeﬁ i with utility function u; = 2-b in the standard
auction. Suppose that the other buyers bid 1 with probability one. If buyer i also bids
1, then he wins with probability strictly less then one. Thus he is better off bidding slightly
more than 1. However, there is no optimal choice because he would like to bid as close to
1 as possible while still remaining above 1. Nevertheless, if types are distributed

independently, monotonicity and weak supermodularity together ensure that, when a best

™ 3 . . ' . g
response bi(-) does exist, it is monotonic in the sense that if s; <55, bi € real bi(si)

(where real Bi(si) denotes the set of possible realizations of Bi(si))’ and b; € real Bi(s;),

4We make the qualification "weaklyj“ because, unlike in the conventional definition, we
place no restriction on the other cross partial derivatives.
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then bi < b;, provided that buyer i’s expected payoff from bi and b; are positive when

his types are s; and s; respectively.5

Proposition 1: Monotonicity and Independence

Suppose that, for i € {1,...,n}, buyer i’s type is distributed independently of other types,
i.e., the conditional distribution gi(s_i{si) does not depend on s.. Assume that buyer i’s
preferences are monotonic and weakly supermodular, Then if Bi(-) is a best response to

B_i(-), it is monotonic.
Proof: (see the Appendix).

Proposition 1 no longer holds if we drop the independence hypothesis. To see this,

consider the following example.

Example 1: Nonmonotonic Bidding

There are two risk neutral buyers i=11,2 with utility functions u(b,s;) = s;-b. The
parameter s, which is buyer i’s valuation, takes on the values 0, 3, or 6. If s, = 3,
buyer i knows that the other buyer’s valuation is also 3. If s; = 6, he knows for sure
that the other buyer’s valuation is 0; whereas if ; is 0, he knows that the other
buyer’s valuation is 6. In the standard high-bid auction, it is easy to see that it is an
equilibrium strategy for a buyer to bid 0 if his valuation is 6, bid 3 if his valuation is
3, and to refrain from bidding if his valuation is 0. Moreover, equilibrium is unique,

and so bidding is necessarily nonmonotonic.

5We require the proviso that b, ; gives a positive payoff when buyer i’s type is s
because otherwise any b. that wins with zero probability is as good a response as b. 0 since
both give a zero payoff. The same is true of b and s..
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To rule out such examples, let us assume that buyers’ types are affiliated (c.f.

Milgrom and Weber (1982)). In the continuous type-space case, this amounts to assuming

that
2

d
3Si88j

Assume too that preferences are "log supermodular":
2

abasj

and exhibit private values

© %ui(b,si,s_i) =0 for all i,j with ij.

J
If preferences take the form (3), then (5) and (6) become

) log f(s1,...,sp) = 0 forall i and j and all j # i.

o) log uj(b,sj,s—;) = 0 for all i,j,

' " aqs
(U)* Ui = 0
5]
and

a .
.i}=o , for i3],

c'isJ
and so sufficient conditions for (5) and (6) to be satisfied are that preferences are
monotonic and exhibit either risk aversion or risk neutrality.
What are the precise hypotheses under which one can extend Proposition 1 to the
case of affiliated types remains an open question. In Propositions 2 and 3 below,
however, we show that as long as values are private and preferences are log supermodular,

affiliation implies the existence of a monotonic equilibrium, when ties are broken

appropriately.
4. Equilibrium in the Finite Type-Space Case

The discontinuities that occur in the case of ties may prevent the existence of
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equilibrium in the standard version of the high-bid auction. To see this, consider the
following example:
Example 2: Non-existence in the standard high-bid auction

1  with probability = 0.5

517 { : -
2 with probability = 0.5

s2=1

u(s;,b) =5, - b, i=1,2
Given any equilibrium strategy by buyer 2, buyer 1 wins for sure with a bid of 1 + ¢ for
all e > O (if not, then, in equilibrium, buyer 2 would have to make a bid more than 1
and win with positive probability, which would be irrational). Thus the maximum point in
the support of the distribution of winning bids is b* = 1. Suppose that the minimum
point in the support, b,, is strictly less than 1. Then each buyer has a strictly positive
payoff regardless of his reservation price since the latter is at least 1 and any bid between
b, and 1 wins with positive probability. But then any equilibrium bid must win with
probability bounded away from zero, and for this to be the case, both buyers must bid b,
with positive probability. Then, regardless of the tie-breaking rule, at least one buyer is
better off bidding a little bit more and breaking the tie. We conclude therefore that
b, = 1. But this cannot correspond to an equilibrium either, since buyer 1 then wins with
probability only ' if his reservation price is 2, and so he is strictly better off bidding a

little bit more than 1.
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In view of the problem illustrated by example 26, let us consider an alternative to
the random tie-breaking rule of the standard auction. Specifically, let us imagine that, if a
tie occurs for the high bid, a Vickrey auction is conducted among the high bidders. That
is, in addition to making a sealed bid bi’ each buyer i must also submit a nonnegative
sealed "tie-breaker" bid c,. If several buyers tie with a high-bid of b, the winner is the

buyer i for whom G is highest among those bidding b, and he pays

b + max{Cj | b; =b}. (If there is a tie for highest tie-breaker bid the winner is determined
j#i

by randomizing among those making this bid with equal probability.)

Notice that this rule restores equilibrium to Example 2. In such an equilibrium all
types bid bi = 1. A buyer with valuation 1 sets ci=0 in the tie-breaking Vickrey
auction whereas a buyer with valuation 2 takes ¢ > 0. (His weakly dominant strategy
is to take ¢; = 1, but any positive ¢ will do as well). Thus a valuation-2 buyer always
beats a valuation-1 buyer (although he pays only 1).

In fact, except for one additional problem, the device of breaking ties using a
Vickrey auction works quite generally to ensure existence of equilibrium. The additional
problem turns on the issue of how a buyer’s utility depends on other buyers’ types. In
Proposition 1 of the previous section, we needed to make no assumptions at all about
%u_.i for j# i. However, the following example shows that some restriction is required

5
for existence.

6In an earlier version of this paper, we established that the nonexistence problem

exemplified by Example 2 is avoided if either (i) each buyer’s minimum possible reservation
price is zero, or (ii) the seller sets a reserve price no less than each buyer’s minimum
reservation price.
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Example 3: Nonexistence with the Vickrey auction tie-breaking rule

There are two buyers with independently distributed types. Suppose that, for i=1,2,
s; assumes the values 0 and 1 with probabilities %s and Y, respectively. Let
ui(b,si,sj) =3 4+ 5 -‘2«sj - b, where j # i.

In the Appendix, we show that there exists no equilibrium for the high-bid auction in this

example, even when ties are broken using a Vickrey auction.

In view of the pathology illustrated by Example 3, we will assume henceforth that a
buyer’s utility is nondecreasing in other buyers’ types. For later convenience, we will
break this into two alternative cases: either that of private values (i.e. (6) holds) or else
that of common values

duj P
@) — > 0 foralliandj # i

E)Sj
Proposition 2: Existence with finitely many types and the Vickrey tie-breaking rule
Suppose that there are finitely many types. Assume that preferences are monotonic. If
either (i) preferences are weakly supermodular, (7) holds, and types are independently
distributed, or (ii) preferences are log supermodular, (6) holds and types are affiliated,

then there exists a monotonic equilibrium of the high-bid auction when ties are broken

using a Vickrey auction.

To establish Proposition 2, we will follow the method of Dasgupta-Maskin (1986).
Let us think of the high-bid auction as an néplayer game in which each buyer i submits a

bid function Ei(-) (i.e., a random bid Bi(si)) for each type s € Si)’ after which a
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vector of types (S‘l’""sn) is realized, and the winner is then determined according to the
bids of the realized types.

For now, let us consider the following modification of the high-bid auction. Instead
of breaking ties using the Vickrey auction, suppose that in case of ties, the winner is the
high bidder whose expected payoff conditional on winning (given his realized type and the
other buyers’ bid functions) is highest. (If there is more than one buyer with the highest
conditional expected payoff, the winner is determined by randomizing among them with
equal probabilities.) That is, if the bid functions are (Bi('), E‘&i(')) and buyer i’s and j’s
realized types are 8 and Sj’ and these two types are the high bidders with a bid of b,

then buyer i beats buyer j if
&) Vi(b,Ei('),ﬁ_i('),Si) > Vj(b>ﬁj(');i5.j(')’sj s

where the left- and right-hand sides of (8) are buyer i’sand j’s conditional expected
payoffs.7 If buyer i of type s; has a higher conditional expected payoff from bidding
b than any other buyer j of type s, who (according to Bj(')) bids b, then

¥ ubss,8.)8,(5_ls)Pe{b_(s_)< b}
©) VobOb 08 = 22—

3 2,6 Js)Pr{b (s )< b)

where Pr{ﬁ_i(s_.)s b} is the probability that all other buyers’ bids are less than or equal

to b, given that their types are S5 and they bid according to B-i(s~i) (because, by
assumption, buyer i of type s, has the highest conditional expected payoff from bidding

b, he wins the modified auction with a bid of b provided that all other buyers’ bids are

7Note that Vi depends on Ei(-), not just on b, because whether bidder i wins turns

on whether Vi is bigger than Vj’ and the latter depends upon Bi(-).




filename:eq99_m23.wp 12

less than or equal to b). Similarly, if buyer i of type s; has a lower conditional
expected payoff from b than any other buyer of type S; who bids b, then his expected

payoff V,(b,b,(),b_,().s,) is given again by formula (9) except that Pr{b_(s_)<b} is

replaced by Pr{ﬁ_i(s~ )<b} (reflecting the fact that, given the tie-breaking rules, buyer i
wins the auction only if all other buyers bid strictly less than b). And for a type 5;

corresponding to an intermediate expected payoff, V,(b,b,(),b_(),s) is defined by a
corresponding probabilistic expression intermediate between Pr{f)_i(s_i)sb} and
Pr{b_(s_)<b). .
Of course, this modification of the high-bid auction cannot actually be implemented
in practice because the tie-breaking rule depends on expected payoffs, which are private
information. Nevertheless, as we now show, an equilibrium of this modified auction

corresponds to an equilibrium of the auction with the Vickrey tie-breaker.

Lemma 1: Suppose that there are finitely many types. Assume that preferences satisfy
either (6) or (7). Then if there exists a monotonic equilibrium of the modified auction,

there exists a monotonic equilibrium of the auction with the Vickrey tie-breaker,

Proof: Let (61(')""’611(')) be a monotonic equilibrium of the modified auction. We shall
construct a monotonic equilibrium of the auction with Vickrey tie-breaker. The non-tie-
breaking equilibrium behavior of buyers will be the same in ‘the latter equilibrium. We
have only to describe their tie-breaker bids. In particular, éonsider buyer i of type ;
and b € real Ei(si). If there is positive probability of a tie for the high bid at b ’and if

(10) Y uj(b,s;,5-Dgi(s—i}spPr{b_;(s ) <b} > 0,
S

then buyer i submits a Vickrey bid c; > 0 (the precise value does not matter as long as
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it is strictly positive) together with b. Otherwise, he takes ¢ = 0.

To verify that this behavior cohstitutes an equilibrium for the auction with Vickrey
tie-breaker, suppose first that for all b € real Ei(si), the prbbability that b ties for the
high bid is zero. Then as long as buyer i does not deviate from 6i(si), the tie-breaking
rules do not matter and his expected payoff is the same for the Vickrey-tie-break auction
as for the modified auction. Consider, therefore, whether it would strictly pay him to

deviate to some bid b’. If so then

A1) T uid,s;,5-gi(s i spPr{b_j(s_p=b'} > 0.

$-i
Indeed, if (11) failed to hold then, from (6) or (7) ‘and because other buyers’ bid functions

are monotonic, buyer i’s payoff from b’, conditional on winning, would be nonpositive,
a contradiction of the assumption that it pays to deviate to b’. Now, buyer i’s conditional
payoff from b’ can be no more than the left-hand side of (11). But in the modified
auction, buyer i can obtain a payoff arbitrérily close to the left-hand side of (11) by
submitting the bid bi = b’+e. Hence if deviation paid in the Vickrey tie-break auction, it
would also pay in the modified auction, a contradiction of equilibrium.

Next, suppose that, for some b € real Bi(si),, b ties for the high bid with positive
probability. Assume first that, in the modified auction, buyer i wins the tie-breaker at b
with probability one. Then b must satisfy (10). (If instead the left-hand side of (10)
were zero, then, since the other buyers bidding b must get at least a zero conditional
payoff, buyer i could not win with probability one.) We wish to argue that b still wins
the tie-breaker with probability one in the Vickrey tie-break auction, so that buyer i’s

expected payoff from b is the same in both auctions. From our above discussion, buyer
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i submits ¢ > 0 together with b. Thus he indeed wins the Vickrey tie-break with
probability one unless some other buyer j also submits G > 0. But according to our
discussion, that could happen only if buyer j tied at b with positive probability and
satisfied (10). Yet this would contradict the 'assumption that buyer j loses the tie-break
with probability one in the modified auction; he would have been strictly better off
submitting a bid slightly greater than b in the modified auction. Hence buyer j cannot
bid ¢ > 0. Finally, assume that in the modified auction, buyer i wins the tie-breaker at
b with probability less than 1. Then b cannot satisfy (10); the left hand side of (10)
must be zero (if it were positive, buyer i would be strictly better off in the modified
auction bidding slightly more than b). But buyer i’s conditional payoff from b must
also be zero. Hence, since he loses the tie-breaker with strictly positive probability, (6)
must obtain, and, from our above discussion, buyer i’s expected payoff from b is also

zero in the Vickrey tie-break auction.
Q.E.D.

Proof of Proposition 2: In view of Lemma 1, it suffices to prove that a monotonic
equilibrium exists for the modified auction. For each i and 5, €8, let
Bi(si) = [O,Ei(si)]. (Recall that Ei(si) is the biggest bid for which buyer i’s payoff could
possibly be nonnegative when his type is Si') Foreach m = 1,2,... let B?(si) be the
finite subset {0, b,(s,)/2™, 2b,(s)/2™,..., bi(s)}. For each m, consider the "finite
approximation" auction in which type 8 of player i is confined to making bids in the
set B7(s,).

If hypothesis (i) of Proposition 2 holds, then, from Proposition 1, each buyer i’s best

response to monotonic bid functions B_i(-) is monotonic. Hence, from Nash’s theorem,
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there exists, for each m, a monotonic equilibrium for the m-th approximation’ éuction. If
hypothesis (ii) holds, then treat each player-type as a distinct player and alter the m-th
approximation auction so that if a type strictly outbids a higher type of the same player,
then his utility is reduced by an amount P>0. From Nash’s theorem, there exists an
equilibrium of this altered auction where, for all i, each type s; of player i is restricted to
bid in Bnil(si). Moreover, for P sufficiently big, the equilibrium must be monotonic with
high probability (i.e. the probability that a low type outbids a high type must be low.)
Now send the penalty P to infinity, and we get a sequence of equilibria converging to a
monotonic configuration E of strategies. We claim that E constitutes an equilibrium
of the m-th approximation auction (i.e., the auction without any penalty). To see this,
suppose to the contrary that (*) type s:, of player i bids b with positive probability in the
limiting configuration but that (**) in the absence of P he is strictly better off bidding b’.
(Without loss of generality, we can assume that b" is type si’s best bid.) Then (*) and
(**) hold for an equilibrium E far enough out in the sequence of equilibria of altered
auctions converging to E*. Now, with a penalty, b is an optimal bid for s{ in E and so,
if b'<b, s { continues to prefer b to b’ (at least weakly) in E once the penalty is eliminated
(the probability that b is bigger than the bid of some other type of player i is clearly at »
least as great as the probability that b’ is bigger). Hence b’>b. Now, the fact that type s:
is at least as well off bidding b as b’ in equilibrium E when the penalty is imposed
implies that there exists some s’i’ > si and b” <b’ such that, in E, type s'{ bids b” with
positive probability (without loss of generality we can assume that s’i’ is the highest such
type). Moreover, the fact that type s§ is at least as well off bidding b’ as b” when the

penalty is not applied implies




filename:eq99_m23.wp 16

12) weLs) Y eGls) 2 ouots) Y g6als) S
b_j(s_p=b’ b_j(s_) <b”

Now if type s’i' bids b’ and the other types bid according to E, then the probability he

outbids a higher type is zero, since s’i’ is the highest type who bids less than b’ in E.

n ?
Hence, since in E type s'i' is at least as well off bidding b as b , we have

13 uwid”s) Y gG-lsD = wbLhs) Y gG-ilsi”) -
Bi(s_p=b” O bospsb

Dividing (13) by (12), we obtain
uyid"s") Y eGalsi) wdhs) Y g6-ilsi?)

. N<h? t . NA<h!
(14) P-is-)=b > . ei-)=h _ .
ui”s) Y g(s-ilsi) ui’s-i) Y. els-ilsq)
b_j(s-)=b” b_j(s-p) <b’
But log supermodularity implies that
ui(bll,sillr) ui(bl’sill)

uj(d”,si") u;d’,s;")

and affiliation implies that

g(s—ils{")ds [ 6oilsinas
b_j(s_;) <b” - b_j(s.p)<b’

g(s-qlsjds_; J g(s-jlsi)ds_;
b_j(s_;) <b” b_j(s_p)=b’

‘ %
which together contradict (13). We conclude that E  constitutes a monotonic equilibrium
of the m-th approximation auction after all.
Let (BT(-),,...,BI:(")) be a monotonic equilibrium for the m-th approximation auction.

We can assume that the sequence (ET(-),.,..,E?:(-)) weakly converges to some vector

8The left- and right-hand sides of (12) may not be quite right because of the possibility
of ties. But this does not affect the validity of our argument.
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~% ~%
(bl('),...,bn(-)). It remains to show that this latter vector constitutes an equilibrium of the
modified high-bid auction.

We first argue that, for all i, 5; € Si’
(15  Ubb()b()s) = lim sup U®;'s)5;'0).65().s)
m-o

forall b € Bi(si), where
Ui(b»ﬁi( ')’E_i( ) ,Si)

= Prob{b wins the modified auction |5,(),6_,(),8}V,(6,5,(),5_():8)-

Suppose, to the contrary, that for some i and S there exists b € ﬁi(si) for which

(16) Ui(ﬁyﬁz('):gti(')’si) > lim sup U,(g?(sl):sin();f:()’si)
Now if, for all k i, Pr{f);(-)=ﬁ} = 0 then since discontinuities occur only when there
are ties, U(6,b;(),6%(),s) is continuous in (b(3,5_()) at (B;(),6°(9) , and so, by

the definition of weak convergence, U,(b,b]"(),6%(),s) converges to

UG5;06%()s) . But since ©T(),....57¢)) is an equilibrium for the m™

approximation auction, we have, for all ™ e BT(si),
UG"5T0B50s) = UGIE)BOB%0s) -
Moreover, we can find a sequence ™M > % such that, for all k, Pr{ﬁk(sk)= 6™} -0.
Hence, taking limits, we obtain,
UG Ob,0)s) < lim sup UGB E)b6I0)B50.s),
a contradiction of (16). Hence there exists k # i such that
(17)  Pr{b;(9=b}>0.
Now the right-hand side of (16) is non-negative, and so the left-hand side is strictly

positive. In particular, this means that b < Bi(si) and so there exists b®> b such that,
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forall b € (6,69,

(18) U®b()b5()s) > lim sup UB[(s)b1()B%5().s):
But the above argument implies that, for each such b, there exists k = i such that (17)

holds when b is replaced by b. Since there are uncountably many b in the interval
(ﬁ,bo), we conclude that, for some k, 5;(-) has uncountably many atoms, an
impossibility.

We conclude that (15) holds after all. Hence, in particular,

(19)  Ubis).b;(0b5()s) < lim sup U(b; ()67 (0,50).8)
forall i and ;-

Now because, in the modified high-bid auction the winner is always the buyer with
the highest conditional payoff among those with the highest bid, the sum of payoffs across

buyers is upper semicontinuous:

E Z: U,(B;(S,),EI(),Sfi(),sl)hl(si) 2

i=1 i‘esi

(20)

lim sup Z E Ul(E;n(Sl):B:n()’Bﬁ()’si)hl(sl)

i=l  s;e§;
where  h(s) =E f(s;s_)-
84

From (20), we conclude that (19) holds with equality, and so, from (15),

@D Umb()bL0)s) < UMb ()s) , for all b.
Thus (5;(),...,b, (")) is indeed an equilibrium.

Q.E.D.
The hypotheses that the parameter space is one-dimensional and that preferences are

supermodular (or log supermodular) and that types are affiliated in Proposition 2 and
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Lemma 1 are invoked simply to ensure monotonic bidding. If we are willing to dispense
with monotonicity, we can drop these hypotheses while still establishing existence in the

case of private values.

Corollary: Existence without monotonicity
Suppose that there are finitely many types. Assume that preferences exhibit private
values. Then there exists an equilibrium of the high-bid auction when ties are broken

using a Vickrey auction.
5. Equilibrium Existence with a Continuous Type-Space

In this section we extend Proposition 2 to the case of a continuous type-space. That
is, we establish existence under the modified (Vickrey) tie-breaking rule. We then
establish existence under the standard tie-breking rule by showing that the bidding
strategies remain best responses when the Vickrey tie-breaker rule is switched. As a
preliminary, we begin by establishing two general properties of monotonic equilibrium bid

distributions in high-bid auctions.9 The proofs are in the appendix.

Proposition 3: The distribution of winning bids is continuous and its support

is connected

Suppose that buyer i’s utility, ui(b,,si,s_i), i=1,...,n, is increasing in s and strictly
increasing in his own type 8; Given a monotonic equilibrium of the high-bid auction, the

support of the distribution of winning bids is an interval [b,,b*]. Moreover the c.d.f. of

9 The results are derived for any tie-breaking rule for which an equilibrium exists, not
just that of Proposition 2. Moreover, they hold for both the cases of discrete and continuous
types. .
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winning bids is continuous on [b,,b*].

Proposition 4: Payoffs at the lower endpoint

Suppose that buyer i’s utility, ui:(b,si,s_i), i=1,...,n, is increasing in s and strictly
increasing in his own type s;: Given a monotonic equilibrium, let b, be as in
Proposition 3. Suppose types 5; and sj of buyers i and j bid b, with positive
probability. Then if type s;’s expected payoff is ‘strictly positive, type sj’s expected payoff

is zero.

We now use Propositions 3 and 4 to extend Proposition 2 to the case of a continuous
type-space.

For each i, let Si = [§i,§i] and let f(sl"“"sn) be the joint density of (sl,...,sn)
as in section 2. For each i and each k=1,2,... choose Sli( c Si such that
k

Si={ sps;+ (-1 $1):8; ——(1 $)»---,5i }. Foreach k, choose a probability

distribution fk over Sli Xees ><Sll(l such that K converges uniformly to f and such
that if types are independent or affiliated under f, then they have the corresponding
property under £,

Given the hypotheses of Proposition 3, we can choose, for each k, a monotonic
equilibrium (Slf(-),...,ﬁﬁ( +)) for the high-bid auction (with Vickrey auction tie-breaker)

k k
1><...;><Sﬂ

when types are restricted to S and the probability distribution over types is £,
We will define bid functions (by(+),...,b () that are the limits of (55(),...,5K(+)) as

k- o,

k ~k .
Let bi(si) = pax supp_bi(si). Write 'S = Ul U1 S = {s(1),5(2),...}.
1=
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Choose a subsequence {km(l)};=1 of {1,2,...} such that, if s(1) € Si for some i,
k(1) o |

then bi (s(1)) converges to some point by(s(1)) as m - o. Choose a

subsequence {k™(2)} _; of {k™(1)} such that, for each i, if s(2) € S; then

m
Lk ™)

i (s(2)) converges to Bi(s(Z)) as m -> o, Continuing in this way, we can

specify Bi(-) for all points in S N Si' Clearly, f)i(-) is monotonic since each Bli((.)
is. Forany s, € (§i,°s'i) define
bisp), ifs; €S
b ) ={ i by(s), if s; & S

sts;

where "lim" denotes the limit with respect to an increasing sequence of points in S
stsj

converging to s.. (Note that, because b.(+) is monotonic, the limit does not depend
g i i

upon the choice of sequence.)

Proposition 5: Existence under the standard high-bid auction rules

Consider a continuous type-space S1 X... X8 y and ‘suppose that preferences and the
distribution over types satisfy the hypotheses of Proposition 2. Then the vector
@I(-),...,b:(*)) constitutes a monotonic and pure-strategy equilibrium of the standard high-

bid auction.

Proof: As in the proof of Proposition 2, consider the modified auction in which the
winner is the high bidder whose payoff conditional on winning is highest. For each m,

let K™ = km(m), where k™(m) is as in the paragraph preceding the statement of

Proposition 5. For each i and s; € Si choose a sequence {siKm} such that
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K® oK® K®
s, €S and s =~s. Define

Witsp = lim sup UE*"6s )6 (85 08",
m-e

Choose S §i € Si with 5; < §. and consider the corresponding sequences

i
m m m m o
{s? } and {§§( } such that in( -s; and §If -»§; . For m big enough, we
have

UGS 8 085 0 )

s UBR (s )5 085 045
m KB ~K®, . ~K®, . KD

< UGR"E b 0B85 055 .

Hence Wi(si) is nondecreasing in S We claim that W'i(si) is continuous. If not, then

because Wi is nondecreasing, there exists $; and ¢ > 0 such that either

(22) lm Wi(sp)+e < Wi(sp)
sits; ‘

or
@3) Wi < lim Wi(s) - e.
s; ¥sj
Now because U, is continuous there exists & > 0 such that if {ﬁi-si{ < 6 then
1U30,00),6-4(),8) - Ujd,b5(),65¢),sp} < e
for all b, Si(-),, and b ;(-). Hence, given §;< s; and {8;-s5;} <3

km Kkm , ;
if §;° —»§; and s;° -s; , then for m big enough

UGF" G BF 065 085

= UGB 085085
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= UGB OBS O0sF) - e
and so
Wi) =Wis) - e,
which contradicts (22). A similar contradiction can be found to (23). We conclude that
W.() is indeed continuous.
Following the same argument that established (15), we have

(24) Ui(bi:bi*(')sb:i(')ysi) < Wi(si)
for all i and s; € §;, and b,. From the upper semicontinuity of the sum of payoffs in

the modified auction, we obtain

@) [T U008

[ X Wis)h(s)ds,

i=1
where h(s) = f f(s;s_)ds; . Hence from (24) and (25) we have
26)  Ud;'(s)b,(Ob5()s) = Wi(s) for almost all s, € 8,

Now if there exists s; such that

@) U0 Eb 030,85 < Wis) |
then because Ui is monotonic and Wi is continubus, (27) continues to hold when s; is
replaced by S5 for all s in a left-neighborhood of s;, a contradiction of (26). We
conclude that (26) holds for all 5 € Si’ Hence from (24),

Uibpb (Ob50)s) < U )b’ (Ob50.s)

for all b, and s;» and so (b’;(-),b ii(-)) constitutes a monotonic and pure-strategy

equilibrium for the modified auction.
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It remains only to show that this constitutes an equilibrium for the standard high-bid
auction. Consider buyer i of type s;- If the bid b’:(sl) = b does not tie for highest bid
with positive probability, then it remains an equilibrium bid when the standard tie-breaking
rule is used. Assume therefore that b ties for highest bid with positive probability.
Then, for some j#i, there exists a nondegenerate interval of types (s;.k,s;‘*) such that,
for all Sj in this interval, b;(sj) = b. From Proposition 3, f)#b*, the minimum point in
the suppport of winning bids. Now,

Vi(bab: ()b .(),50) = 0

j(b*s j( )s _.j( ),Sj ) =2 0.
Hence
28) V.(bx,b: ()b " > 0, forall s, > s,
(28) _](b*’ J( )s —J( ),Sj) , 10T Sj S-j .
Proposition 4 implies that
® * '
(29 Vi(b*’bi’(')’b—fi(")’si) = 0.
Formulas (28) and (29) together imply that in the modified auction, buyer j always wins in
a tie between iand j at b*. But in view of (29), if the tie-breaker rules are changed so
that the winner is determined by flipping a coin, buyer i has no incentive to change his
bid.
Q.E.D.

6. Concluding Remarks

In this paper we have established conditigﬁs under which there exists a monotonic
equilibrium in a sealed high-bid auction. For the case in which types are symmetrically
distributed, there are well-known conditions under which there exists a symmetric
equilibrium (see, however, example 3). Qur primary contribution, has been to extend the

analysis to the case when types are asymmetrically distributed.
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Using methods developed in Dasgupta and Maskin (1986), we are able to establish
existence if values are private and types are affiliated. " If values are not private we again
establish existence, this time under the assumption that types are independent.

As with almost all other auction theory, our results assume that each buyer’s private
information can be parametrized with a singleparameterl0 (see, hoWever, the corollary
to Proposition 3). Nevertheless, our methods can be generalized to include multi-
dimensional type spaces.

Work by Simon and Zame (1996) establishes existence via a rather different route.
For the continuous éasc with independent private values they show directly that in a class
of games with the discontinuities in payoffs that appear in auctions, there is some tie
breaking rule for which an equilibrium exists. They then characterize the equilibrium
(following the approach taken here) to show that changing the tie-breaking rule to the
standard rule has no effect on bidders’ best replies. By contrast, Athey (1997) uses a
single-crossing property to establish existence of a pure strategy equilibrium when buyers
are restricted to bids in a finite set. Finally, Lebrun (1995), Bajari (1997) and Lizzeri and
Persico (1997) establish directly that a solution to a suitable set of differential equétions
exists.

Our existence results, with heterogeneous buyers provide a foundation for our
companion paper (Maskin and Riley (1999)) which compares expected revenue in the
sealed high bid auction with that in the opén auctioﬁ when buyers’ types are

asymmetrically distributed.

10There are a few exceptions. For an analysis of a two-signal bidding model, see for
example, Cox, Smith and Walker (1988).
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APPENDIX
Probosition 1: Monotonicity and Independence
Suppose that, for i € {l,...,n}, buyer i’s type‘}is distributed iﬁdependently of other
types, i.e., the conditional distribution ,gi(s;itsi) does not ,de,p“end‘mn s;- Assume that
buyer i’s preferences are monotonic and weakly supermodular. Then if Bi(') is a best
response to | | :

S_i(-), it is monotonic.

Proof: If Ei(’) is a best response to f)_i(°), ‘th'eni, ‘fbr any 5, any
bi € real bi(-si), and any bi < bi’

, e . - A , 11
(Al) J o ujby,sisogispds; 2 : | I o uj(by, 84,8 -pgi(s—pds—;-
b-i(s-) <b; boits-p=b;
To complete the proof, it suffices to show that

dug ‘
(A2) -,-é?(bifasiisg—i)gi(s-i’)ds ~i
by ps=b;

uj; . ‘ k
> 7= (05,81,8-1)gi(s-ds ;.
© i Lo
boj(s_p <b; : *
’ ! - [ : 4 A
since if it holds and s, > s, thenany b, € real by(s;) must satisfy b, > b;. Now,

the left hand side of (A2) can be rewritten as

11Fc»r simplicity, we employ integrals in (A1) even though, in the discrete case, they are
actually sums. The expression g.(s.) is shorthand for g.(s_.|s:) which does not depend on
s;- The left- and right-hand sides of (A1) may not be quite right because of the possibility of
atieat b. or b, with positive probability. However, these possible discrepancies do not
affect the rest of the argument. -
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du;
(A3) ] == 03,8i,5-Dgi(-)ds_j
by<bs_p=<b; '

duy
+ 4 r(bi.’si’s'-*i)gi(s-i)ds-i-
by =b; \

Because bi is a best response, Bi must win with strictly smaller probability than bi
(otherwise, it would pay buyer i to lower his bid to f)i). Hence (1) implies that the first
term in (A3) is strictly positive. But (2) impﬁes that the second term in (A3) is at least as

big as the right-hand side of (A2). | B Q.E.D.

Example 3: Nonexistence with the Vickrey auction tie-breaking rule

There are two buyers with independently di‘stributéd types. Suppose that, for i=1,2,

s; assumes the values 0 and 1 with probabilities % and Y, respectively. Let

ui(b,si,sj) =3 4+ s; - 2sj - b, where j # i. |

To verify that there is no equilibrium, we shall cozﬁﬁne attention here to potential

symmetric equilibria, but the same can be shown for fhe asymmetric case. Therefore, let

b(-) be an equilibrium bid function (we omit the subscript from the bid function since we

are concentrating on symmetric equilibrium.) |
For s, € {0,1}, let b,,.(si) be the minimum and bf(si) be the maximum points in

the support of E(Si) From monotonicity (‘Propositioﬁ 1’)‘, we have b*(()) < b(D).

Suppose first that b,(0) = 3. Then b,(0) = 3 (.chsc‘rwise a 0-buyer would earn a |

negative expected payoff from bidding b,(0) if b,(0) were bid with positive probability

in equilibrium, or from bidding just above b,(0) if b,(0) were bid with zero probability
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in equilibrium.) Now if b (1) = 3, there will bea tieat 3. A O-buyer will bid zero in
the tie-breaking phase. Hence, a 1-buyer will not bid zero with probability one (if both
types of buyer 2 bid zero with probability 1, th.e type 1 of buyer 1 obtains a strictly
positive payoff from making a positive bid). However, if, say, type 1 of Euyer 2 sets |
¢, > € with positive probability then the type 1 of buyer 1 is better off setting

c; S € with probability 1 (since the additional‘ instances in which he would win by
taking ¢; > € would all give him a negative payoff.) Hence there can be no symmetric
equilibrium in this case. If b (1) > 3, then the bid b (1) by type 1 of buyer 2

beats type 1 of buyer 1 with positive probability‘. But in this event, buyer 2’s p'ayc)ff
G+ 1-2~b*(1)) is negative, a contradiction. | We conclude that b,(0) <3.

Now, if b,(0) is bid with probability 0, then the equilibrium payoff for a 0-buyer
is 0, which implies that 3-2p(b)-b < 0 for b near b,(0). Here p(b) is the
probability that, conditional on the buyer winning With a bid of b, the other buyer’s type
is 1. Hence p(b) > O for b near b,(0), which means that a 1-buyer makes bids
arbitrarily close to b,(0) in equilibrium. Hence, from mdnptonicity, b.(0) is bid with’
probability 1, a contradiction. |

Therefore b,(0) is bid with positive probability by a O-buyer. Suppose first that a
1-buyer also bids b,(0) with positive probability. Then there is a tie at b,(0) with
positive prbbabili;y. Now, in the tie-breaking Vici(rey aueﬁiqn~,~ it cannot be the case that
both types bid zero with probability one: if both types of buyer’ 2 bid zero with
probability 1, thentype 1 of buyer 1 'géts a positive :exi)ected payoff from making a

positive bid. Hence, with positive probability, 1-buyers bid more than zero in the tie-
breaker. Let € be the maximum bid that a 1-buyer will make. Then a 1-buyer making




this bid must obtain a non~negative payoff from beating another 1-buyer who makes this
bid. But then he would have been better off ‘malki.%lgza sealed bid of

bi = b (0)+ %.e in the first place (thereby avoiding'the tie-breaker altogether), a
contradiction. We conclude that a 1-buyer cannot@:b‘id; b,(0) with positive probability
after all. Hence a O-buyer has a positive ;éxpected% payoff’-fmm bidding b,(0), which
means that he will not bid 0 with probabilitj' 1 in a tie-breaker. But then, as we just
argued for a l-buyer; he is better off making asealed bid of slightly more than b,(0) in

the first place, a contradiction. We conclude that no equilibrium is. possibi&

Proposition 3: The distribution of winning bids is continuous and its support

is connected

Suppose that each buyer’s payoff, ui(b,si,s_i), i=1,...,n, is monotonic in types and strictly
increasing in his own type. Given a monotonic eq}fuilibrium of the high-bid auction, the
support of the distribution of winning bids is an interval [b,,b*]. Moreover the ¢.d.f. of

winning bids is continuous on [b,,b*].

Proof: Let b, be the minimum point in the suppbrt of the distribution of winning bids.
Then any buyer whose equilibrium bid b exceeds;’ b, must has}re a strictly positive
expected payoff since his probabilizy of winning is stnctly positive on (b,, b) (if he had a
zero expected payoff, he could do strictly better, from (6) or (7), by reducing his bid
slightly).

We first show that the c.d.f. of winning bids; is continuous at all b > b*. Suppose
not. Then, for some b > b,, there exi’sts‘ abuyer i who bids some b with strictly

positive probability. We have just argued that his equilibrium payoff must be strictly
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positive. (There cannot be more than one such buyer since, under any tie breaking rule, at
least one buyer would be strictly better off breaking the tie by bidding slightly more than
b.) Consider b' € (by,b). There exist § and y > 0 sufficiently small such that if
buyer j#i has surplus less than v from bidding b, then he is better off bidding b’ than
any bid in the interval [b-8,b]. Because b is bid with strictly positive probability by
buyer i, there exists 5’ < 0 such that, if buyer j » i has surplus at least y from
bidding b, then he is better off bidding slightly more than b than making any bid in the
interval [b—é',b). It follows that no buyer other than i bids in [bha',b) with positive
probability. But then buyer i is strictly better off bidding b-5 rather than the proposed
equilibrium bid of b.

To show that the support of the distribution of winning bids is an interval, consider
the interval (b’, b”) where b’ and b” are in the support. Suppose contrary to the
claim that no buyer bids with positive probability in this interval. Then, because the c.d.f.
of winning bids is continuous, the probability of winning with a bid of b” is the same as
that with a bid of b’. It follows that any buyer bidding sufficiently close to b” is strictly

better off bidding b’.

Q.E.D.
Proposition 4: Payoffs at the lower endpoint

Suppose that gach buyer’s payoff, ui(b,si,s_i), i=1,...,n, is monotonic in types and strictly
increasing in his own type. Given a monotonic equilibrium, let b, be as in Proposition
3. Suppose types ; and sj of buyers i and j bid b, with positive probability. Then if
type si’s expected payoff is strictly positive, type Sj’S expected payoff is zero.
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Proof: Suppose the claim is false. Regardless of the tie-breaking rule it must be the case

that if s; and tie, one of them wins with a probability no greater than 0.5. This

Sj
buyer can thus raise his probability of winning discontinuously by bidding slightly more
than b,. If, moreover, his expected payoff is positive from bidding b, then (6) or (10)
imply that he is strictly better off doing so.

Q.E.D.




