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Optimal Multi-unit Auctions

ERIC MASKIN AND JOHN RILEY

1. Introduction

Recently, a large literature has examined alternative methods for
auctioning off an indivisible good. (See McAfee and McMillan 1987;
Milgrom 1986; and Wilson 1987 for surveys.) Particular attention has
been paid to two auctions used frequently in practice: the open,
ascending-bid auction (also called the English auction), and the sealed,
high-bid auction. A theoretical benchmark is provided by the Revenue
Equivalence Theorem (Vickrey 1961b; Myerson 1981, and Riley and
Samuelson 1981). This theorem asserts that, when_each.bidder’s reserva-
tion price for the good is an independent draw from_the same distribution - -
and bidders are risk-neutral, the two common=auctions give rise to
exactly the same expected revenue for the seller.’

A good deal of research has considered the implications of relaxing one
or more of the underlying hypotheses. Thus, Holt (1980) substitutes
risk-averse for risk-neutral buyers and shows that, in this case, the
sealed-bid auction generates greater expected revenue than its open
counterpart. '

In contrast, Milgrom and Weber (1982) show that, when reservation
prices are not independent but are positively correlated, the additional
informational about other buyers emerging in the open auction raises
revenue on average relative to that in the sealed-bid auction.

A third strand of this research (Maskin and Riley 1986) relaxes
symmetry. That is, buyers’ reservation values are no longer postulated to
be identically distributed. In this case, the ranking of the two auctions
depends on how the distributions vary across buyers.

Rather than simply compare the expected revenue from specific
auction schemes, one may wish to characterize optimal selling proce-
dures, that is, selling procedures that maximize the seller’s expected
revenue. Under the hypotheses of the Revenue Equivalence Theorem,
and provided that the distribution of reservation prices is sufficiently
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! For a formal statement of this result, generalized to the case of multiple units, see
Section 2.
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regular (see Section 3 for a precise definition of regularity), the open- and
sealed-bid auctions are both optimal if the seller sets an appropriate
minimum allowable bid (called a reserve price). Myerson (1981) charac-
terizes optimal auctions when regularity fails and also when the symmetry
assumption is dropped. Matthews (1983), Maskin and Riley (1984b), and
Moore (1984) study the case of risk-averse buyers, whereas Myerson
(1981), Maskin and Riley (1981), and Cremer and McLean (1985)
consider correlated reservation prices. Finally, Harris and Raviv (1981)
relax the assumption that only a single good is to be sold.

This last paper is the starting point of our analysis here. For the special
case of a uniform distribution of reservation prices, Harris and Raviv
show that the Revenue Equivalence Theorem continues to hold if there
are multiple units for sale and each buyer wishes to purchase at most a
single unit. Here we establish equivalence for all distributions, and also
show that, as long as the regularity assumption mentioned above is
satisfied, the standard auctions with appropriate reserve prices are

-optimal for the seller. In addition, we charactenze ‘the optlmal auction
_ when this restriction is violated. - . ..o -

- We then relax the restriction to unit demand and instead assume
simply that each buyer has a downward-sloping demand curve. We
observe that, in general, the standard auctions are no longer optimal.
Instead, an optimal procedure is to set a payment schedule T(q) and ask
each buyer to submit an order g; a buyer who demands g pays T(g). If
aggregate demand is less than supply, the auctioneer fills each order. If,

however, orders exceed supply, the auctioneer scales down each buyer’s’

demand, in a predetermined way, until the capacity constraint is met.
The optimal procedure is thus a nonlinear pricing scheme modified to
take account of the supply constraint. Not surprisingly, therefore, the
methods of analysis build on earlier work on nonlinear pricing, in
particular that of Mussa and Rosen (1978) and Maskin and Riley (1984a).

2. Formulation of the Seller’s Optimization Problem

The seller has g, units of a good for sale. There 'are n buyers, each of
whose ‘type’ v is drawn independently from the same distribution F(v).
A buyer of type v has preferences represented by the utility function

Ug, R v)= [ " px, v) dx — R=N(g, v) - R )

where q is the number of units purchased from the seller and R is total
spending on these units. The seller and other buyers do not observe a
buyer’s v but know that it is drawn from F(v). Throughout, we shall
assume that higher levels of v are associated with higher demand.
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Moreover, we suppose that buyers’ demand curves are never positively
sloped and that demand is finite for all p = 0.
To be precise, we impose the following restrictions.

AssumpTiON Al. For all v, the demand price function p(q, v) is finite,
twice continuously differentiable, strictly decreasing in ¢, and strictly
increasing in v whenever p is greater than zero.

Since it is of independent interest, we shall sometimes make the
alternative assumption of unit demand, as follows.

AssuMpTION Al*. Unit Demand. Preferences are given by the demand
price function

g=l1

g>1,

p(g, v)= {g

so that v is the buyer’s reservation price.

We also assume that the unobservable parameter v is continuously
distributed and that the cumulative distribution function F(-) satisfies the
followmg assumption.

R g 2 T AT e

AssumpTiON. A2. The cumulative distribution function F(v)wis strictly -
“increasing and continuously differentiable on the interval [0, #], with
F(0)r=0and F(9)=1.

Although, in general, it is not possible to rule out gains to randomized
selling procedures, we show in Section 5 that, under a fairly weak
restriction on the distribution of types, the following assumption is
sufficient for the optimal selling scheme to be deterministic (if we
interpret (1) to be a buyer’s von Neumann—Morgerstern utility function).

AssumpTioN B1. Non-decreasing Price Elasticity. Demand elasticity is
non-decreasing in the demand price. That is,

3_( qap) 0
du\ paq '

For a buyer of type v, formula (1) gives us

i(__ %’) 13 (_2?_2)
v\ 8q°/ g/ qav\ paq)

Assumption Bl implies, therefore, that absolute risk aversion with
respect to consumption is non-decreasing in v.

Readers should note that we have a great deal of flexibility of our
choice of a parameterization. In particular, if p(g, v) represents a family
of inverse demand curves satisfying Assumptions Al, A2, and'B1, then
plg, w(v)] represents the same family and also satisfies these three
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assumptions if () is strictly increasing and twice continuously
differentiable. For convenience, we shall henceforth choose, without loss
of generality, a parametrization for which the increases in demand price

are non-decreasing as v rises.

AssuMPTION B2. pay(q, v) <0.

Elsewhere (Maskin and Riley 1984a) we have shown that there are
large classes of preferences satisfying these four assumptions.

The seller cannot force buyers to purchase his goods; his sales depend
on their behaviour. Hence, a selling procedure is a rule that assigns
buyers quantities and charges them prices on the basis of their actions.
Depending on the procedure, an action might consist of making a bid,
submitting a demand function, or, in principle, anything else that a buyer
might do to signal his demand. Formally, a procedure is a schedule of
pairs, one for each buyer:

(GG - - Sa) RSty -0 8], i=1,..0,n 2

_ where s; is buyer i’s strategy, lying in strategy space §;, and R; and §; are,

d allocation of _the good. Allocations must

respectively, his paymen
i nstraint..

satisfy the aggregate supp.

~ n
2, 45) <40 3)
where s=(s1, ...,5,). The tildes reflect the possibility that payments

and allocations may be random. Initially, however, we restrict attention
to deterministic procedures, so that (2) can be rewritten in deterministic

form as )
[4:(s: s_i), Ri(s:, s3] )

where s_;={(54, - - - » Sie1s Sit15 - - + 5 Sp)-

We suppose that the seller can select any selling procedure it desires
and makes its selection to maximize expected revenue. The key to solving
its optimization problem is the incorporation of the constraints implied by
the buyers’ choice of strategies. We assume that buyers choose their
strategies without collusion. Thus, they play a game of incomplete
information. A natural non-cooperative solution concept for such a game
is the Bayesian equilibrium of Harsanyi (1967-8), an extension of
ordinary Nash equilibrium.

To define a Bayesian equilibrium, we introduce the notion of a strategy
rule for buyer i, a function s;() that, for each possible type v;, assigns a
strategy s;(v;). With buyers behaving non-cooperatively, the vector of
strategy rules (s(-), ..., sa(*)) is an equilibrium if, when conformed to
by all others, each buyer’s best option (in the sense of maximizing his
expected utility) is to conform to it also. Of course, there is no reason, in
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general, why equilibrium should be unique. (But see Maskin and Riley
1982 for a treatment of uniqueness in sealed-bid and open auctions.)
Thus, when we speak of a procedure that maximizes expected revenue,
we really mean that there is an equilibrium of that procedure that
maximizes expected revenue.

Consider the expected surplus of buyer i if, when his parameter value
is v;, he chooses the strategy s; =s/(x) instead of s}(v;). With other
buyers adopting the strategy rules

sLO)=[7C) - sI(), sTa(), - sa O]
buyer i has an expected surplus of
IIi(x, v) = Ey_[N(di(s7 (x), sZ{v-)), v;) = Ri(s}(x), s v_))]  (5)

where N(q, v;) = [§ p(z, v;) dz and where the expectation is taken with
respect to the distribution F(-). Let us suppress the functions s;(-) and
define

qi(x, v_;) = Gi(s} (x), s’ﬁi(v_l.)’)r}‘ - o
Rix) = E, Ri(s?(&), s*v_)). ) ™

Then (5) can be rewritten as o I

I(x, v) = E, N(gi(x, v-), v)) ~ Ri(x). )

Since we have defined s;(v;) to be buyer i’s optimal strategy, if his
parameter value is v;, it follows that IT,(x, v;) must take its maximum at
x =v;; that is, for all i and v,,

(v, v) = max I, (x, v;). (8)

We now show that, given (6)—(8), we can express maximized surplus
II(v;, v;) solely in terms of the allocation rule g;(v;, v_;).

ProrosiTioN 1. Necessary Condition for Self-selection, i.e., Incentiv
Compatibility. Under Assumptions Al (or A1*) and A2, the maximizcd
expected surplus of buyer i with parameter value v; can be written as

I-Ii(U,‘, ‘U,~) = H,-(O, 0) + Eu_if lNz(qi(z, U_i), z) dz. (())
0

Remark. We have derived [g,(-), R(-)] from [§;(-), R:(-)] through (6).
However we can think of [g;(:), R:(*)],i=1,...,n, as a selling procc
dure itself in which buyers announce parameter values as strategies; in
other words, it is a direct revelation mechanism. Condition (8), moreover .
ensures that buyers announce their frue values in equilibrium. Of coursc .
if instead we confront a buyer with arbitrary functions ¢;(-) and R,(-), il
may not be in his interest to reveal truthfully. Proposition 1 implies that .
if IT;(x, v,) is defined by (7), a necessary condition for truthful revelation
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is (9). That is why we have attached the label ‘incentive compatibility’ to
the proposition.
Proof.? Because IL(v;, v))=1L(x,v;) (from (8)), and if (v;>x)
Hi(x’ vi) = Hi(x) x))
H,‘(v,', U,‘) had H,-(x, x) = 0, for v; > Xx. (10)

Also, from (7),
IL(v;, v;) — I(v;, x) = E,_(N(q:(v;, v-1), vi) — N(qi(vi, v-,), X))

qi(vav-;) v
=Eu_,- b J' pZ(Z) )’) dy dz
qi(vi,v-i) (v
<t [ [ peowe
0 x

where the inequality follows from Assumption B2 (which, without loss of
generality, we can assume holds). Hence, for all v;=x,
qi(vi,v i)

0=<II;(v;, v;) —ILi(x, x) < (v; — x)E, pa(z, x) dz. (12)
)

Therefore, IL,(v;, v;) is continuous. In fact, since 0<g; <qo, the expec- -
tation in (12) is bounded and so IT,(v;, v;) is an absolutely continuousy: ... . .

function. N
From (8), for all x and v;,

v € arg min [[L,(x, %) ~ IL(v,, )} (13)

From (7), IL(v;, x) is a differentiable function of x. Moreover, as we
have just argued, IT,(x, x) is continuous and non-decreasing, hence
differentiable almost everywhere. Thus, almost everywhere we can write
the first-order condition for (13) as )

dIl; oIl _ _

e (x, x) P (v, x)=0 at x=uwv,.
From (7),

a1l

?X_ (U,-, x) . = Ev_,-NZ[qi(vi’ U—i)! Ug].

A necessary condition for (8) to hold, therefore, is |
d
E;Hi(v,-, v;) = E,_Ny(q:(vi, v_;), v;) almost everywhere. 149

Moreover, since IT;(v;, v;) is absolutely continuous, we can rewrite (14)
in the more convenient integral form (9). Q.ED

2 For the proof presented here we acknowledge the helpful suggestions of Steven
Matthews.
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Because the seller cannot force any buyer to participate, the expected
surplus of every buyer must be non-negative. Since II(v;, v;) is a
non-decreasing function, this ‘voluntary participation’ constraint can be
expressed simply as

I1,(0, 0) = 0. (15)

Propositions 1 showed that (9) is a necessary condition for arbitrary
functions [gq;(:), R:(*)}, i=1,...,n, to constitute a direct revelation
mechanism in which truth-telling is an equilibrium. We next show that, if
the function g;(-) is suitably monotonic, then conditions (9) and (15) are
sufficient conditions.

LemMa 1. Suppose that preferences satisfy Assumption Al or Al*.
Assume that g,(v;, v_;) is a non-decreasing function of v;, and define I,
by (9). Then if II; satisfies (15), we have

(i) (v, vi) = 1i(x, v;)
and
(i) M(v;, v;)=0

for ail-x and v,. : S
Proof. If I1(v;, v;) satisfies (9), then for any y =

Yy
0, ) = T 9 = B, | Maz, v-), 2) a2

Y
£, [ Mawv)d Q6

since, by hypothesis, g,(z, v_;) is non-decreasing in z, and, by Assump-
tion Al (or Al*), p,= N, is non-negative and N, is positive. Hence,
from (15), (ii) holds. But, from (7),

I;(x, y) = Ii(x, x) = E,_, fy Ny(gi(x, v_)), z) dz. W)

Thus, combining (16) and (17), we obtain
ni(y’ y)>l'I,-(x, y)r y >X.

Hence, (i) holds for all x <wv;. An almost identical argument establishes
that it holds for all x > v; as well. Q.E.D

A selling procedure can be extremely complicated, and therefore, in
principle, so can be maximizing expected revenue over the class of all
procedures. As we have seen, however, any selling procedure is
equivalent (in allocation and expected payments) to a direct revelation
mechanism. (This equivalence is sometimes called the Revelation Prin-
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ciple.) Thus, the optimization can be restricted to the much smaller class
of such mechanisms. Lemma 1 helps simplify this optimization by
establishing that, if the functions [g¢;(v;, v_;)] are non-decreasing, then
there exist corresponding payment functions [R;(-)] such that
[¢:(-), Ri(*)], i=1,...,n is a direct revelation mechanism in which
truth-telling is an equilibrium. Indeed, from (7) and (9), the expected
payment by buyer i with valuation v_; is

R() = Eu. [N v-0, 0= Nolaerv-0, )z | -110,0). (19

Thus, the seller’s problem boils down to maximizing over functions g;(-).
Specifically, the expected revenue from buyer i can be written as

Ro= Euo. [ V@0 v-0, 0) = [ Maie, v, 2) d2 ] =110, 0)

Integrating the second term on the right by parts, we obtain
R= Eu..,.‘,:,:[N (‘Ii(»vingr—i): v;) — No(gi(vi, v_i), vi)/p(v))] - T1(0, 0)  (19)

where p(v,).=(dF(v;)/dv)/[1 — F(v;)] is the hazard rate for F.

Becausé=the “expression in (19) enclosed in braces is independent of
I1;(0, 0), and because the latter must satisfy (15), maximization of
expected revenue clearly implies setting I1,(0, 0) =0. Summing over n,
we obtain the following proposition.

ProposITION 2. Expected Seller Revenue. Consider a selling procedure
[4:(5), Ri(5)],,es5, in which a buyer with parameter value zero has zero
expected surplus in equilibrium. Under Assumptions Al or A1* and A2,
expected revenue equals .

Eu;,u_;[é I(qi(vi, v_)), vy) é:lqi(vi: v_;) sQO] (20)
where
I(g;, v;) = N(q;, v;) — Nx(q;, vi)/ p(v;) (21)

and [g;(*), R,(*)] is the direct revelation mechanism corresponding to

As a direct implication of Proposition 2, we can demonstrate that two
standard selling procedures—the open and sealed-bid auctions—generate
the same expected revenue when buyers have unit demand. In the open
auction, the auctioneer raises the asking price continuously until all but
qo bidders have dropped out (assuming that there are g, units for sale).
Each remaining bidder receives one item and pays the final price. In the
sealed-bid auction, buyers all submit secret bids. The winners are the g,
highest bidders, and they pay their bids.
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PrOPOSITION 3. Revenue Equivalence. 1f Assumptions A1* and A2 hold,
expected seller revenue is the same under the sealed-bid and the open
auctions.

Remark. Harris and Raviv (1981) and Vickrey (1961a) establish this
result for the case of a uniform distribution.

Proof. It is clear, first, that in both types of auctions I1,(0, 0) =0. In
the open auction, each buyer’s dominant strategy is to remain in the
auction until the asking price equals his parameter value. The items for
sale are thus sold to those with the g, highest values; that is,

avv-) =

1, if v; is among the g, highest values 22)
0, otherwise.

In view of Proposition 2, it remains only to show that (22) holds as well
in the sealed-bid auction. To do so, it suffices to show that there exists an
equilibrium in which buyers all use the same, strictly increasing, bidding
strategy b; = B(v,). In such an equilibrium, the goods are clearly sold to
those with the highest values. The methods of Maskin and Riley (1982)
can, moreover, be applied to establish that this is the unique equilibrium.
Define

P(x) = Pr{fewer than g, of n — 1 buyers have valuations greater than x}

et in—1 n—1-k k
=% (", e - For
Suppose B(x) is the solution to the differential equation

dP(x)

d
—_— = =u. 23
S[P@B=x—3"  B(0)=0 (23)
Rewriting (23) in integral form, we obtain
vi dP
PE)B)= [ xS () e
b dx

Because dP(x)/dx >0,

vi dP Vi dP
J’ x?‘;(x)dx<f0 v,-a(x)dx—v,-P(vi), v; > 0.

0

From (24) it thus follows that, for v; >0, B(v;) <v;. From (23),

Py Y _ L 1w, - B

Because B(v;) <u;, it follows that B(v;) is strictly increasing.
Suppose that all buyers but i bid according to B(-) and that buyer i bids
b; = B(x) for some x not necessarily equal to v;. His expected surplus is
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then
I,(x, v;) = Pr{x is among the g, highest valuations}(v; — b;)
= P(x)[v; — B(x)].
Differentiating by x, we obtain
dP(x) d

Bx (x, v)=v PR [P(x)B(x)].
Substituting from (23), we can rewrite this as
oI, _ dP(x)
ax (x’ Ul) - (vl x) dx .

Because P(x) is strictly increasing, it follows immediately that buyer i’s
optimal choice is x =v;, that is, to bid B(v;). Thus, B(-) is indeed an
equilibrium bidding strategy. Because it is strictly increasing, we conclude
that (22) holds for the sealed-bid auction. QED

Remark 1. An almost identical argument can be used to establish the
equivalence of the open and sealed-bid auctions when the seller sets a
non-zero reserve price.

Remark 2. We have concentrated in Proposition 3 on the open and
sealed-bid auctions, but it is clear that there are many other auctions as
well that satisfy I1,(0, 0) = 0 and (22) and so generate the same expected
revenue. For example, the (admittedly peculiar) auction ‘in“which buyers...
submit sealed bids and the go highest are winners, but only losers pay
their bids satisfies these conditions.

3. Solving For the Revenue-maximizing Selling Procedure: the Regular
Case

To solve for the optimal (deterministic) selling procedure, we begin by
choosing g(-) =[q:(-), - - -, @(")] to maximize (20). We then show that
the solution to this problem ¢*(-)=[g7(:), ..., qa()] is monotonic as
required by Lemma 1 if the distribution is ‘regular’ in the sense defined
below. Thus, g*(-) solves the seller’s optimization problem. The reg-
ularity assumption, which we will invoke throughout this section, is as

follows.

AssumpTion C. Regularity of the Distribution Function®

L
Jw)=v o) (25a)

3 §ee Maskin and Riley (1984a) for a discussion of this assumption. Clearly, it is satisfied
if the hazard rate p(v) either increases or does not decline too rapidly with v. We noted
earlier that we can always choose our parametrization so that Assumption B2 is satisfied.
The choice, however, may affect whether or not Assumption C holds.




322 Eric Maskin and John Riley

is increasing or

1 3 [pAg(v), v)
pz(é(v),v)av[ o(v) ]<1 (25b)

where G(v) solves (31/34)(q, v)=0.

We first consider the case of unit demand, Assumption Al*. Although
units are themselves indivisible, the optimization problem is not so
constrained, since we can give ¢; a probabilistic interpretation. That is, q;
between zero and unity should be thought of as the probability that buyer
i receives a unit. Given Assumption Al*,

I(g;, v;) =7 (v;) min{q;, 1} (26)

where J(:) is given by (25a). Substituting (26) into (20), we seek the
solution to

max [Eu.-.u_‘ 2 J()g: | 0<gq:<1, > 4 s‘10] . @
v i=1 - =1 et e
Define

v° = max{v | J(v) = 0}. (28)

If Assumption C holds, so that J (v) is increasing,* then J(v) is positive if
and only if v >v°. It follows immediately that the solution to (27), q*(),
satisfies

qr (v, v_)=0,v; <’

We now establish the following proposition.

ProposITION 4. Optimal Selling Procedure for Unit Demand: the Regular
Case. 1f buyers’ preferences satisfy A1l* and F(v) satisfies Assumption C
(so that J(v) is increasing), expected seller revenue is maximized by
selling up to go units to those buyers with the highest reservation prices in
excess of v° (defined by (28)).

Remark. There are clearly many selling procedures that satisfy the
conditions of Proposition 4 and are therefore optimal. Indeed, the open
and sealed-bid auctions described above are optimal as long as the
auctioneer sets a minimum price of vl

Proof. Suppose there are m buyers for whom J(v;) >0, that is, m
buyers with reservation values exceeding v°. If m < go, the term in braces
in (27) is maximized by setting g; =1 if v,>v° and ¢; =0 otherwise. If
m > q°, the term in braces is maximized by setting g; =1 for those qo
buyers with the highest values of J, that is, with the g highest reservation

4 For the unit demand case, condition (25b) reduces to (25a).
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values. To summarize, (27) is solved by choosing

Q?(Un v
_ {1, if v; = v° and v; is among the g, highest reservation values

0, otherwise.
(28a)

Since gr(v;, v_;) is a non-decreasing function of wv;, it satisfies the
hypotheses of Lemma 1. Thus, g} (v, v_y), i=1,...,n,is the expected
revenue-maximizing allocation rule. QED

We now consider the problem of general downward-sloping demand
curves. Perhaps the best-known selling procedure for demand curves of
this type is the US Treasury bill auction. Buyers may submit orders at
one or more prices. Thus, in principle, a buyer can approximate any
demand curve arbitrarily closely. Current practice is for the Treasury to
fill orders at the prices submitted until orders filled equal the size of the
offering. However, the Treasury has also experimented with a sealed bid
~uction in’ which all buyers pay the price of the highest unsuccessful

. wbidder.>
b

=*%s we will see, neither of these auctions is optimal even with a reserve
price. Moreover,\ expected revenue from the two auctions is not in
general the same.

Suppose that Assumptions Al, A2, B1, B2, and C hold. Consider the
problem of maximizing (20). If, for all i, the solution ql (v, vy is
non-decreasing in v;, then once again the hypotheses of Lemma 1 are
satisfied. Thus, if g} (v;, v-;) satisfies this monotonicity property, it is the
solution to the seller’s optimization problem. The following lemma is

helpful.
Lemma 2. If Assumptions Al, A2, B1, B2, and C hold, then

(a) I(g, v) is a strictly quasi-concave function of g (that is, its second
derivative with respect to ¢ is negative whenever its first derivative is
non-negative); and

(b) 3I/3q is strictly increasing in v. .

Proof. We first establish that Assumptions A1, A2, and Bl together

imply (a). From (21),

al
% =p(q, v) — p2(q, v)/ p(v). 29

5 The Treasury has not yet announced the results of its experiment with the one-price
auction. In future work we plan to use the results of this paper to compare the two forms of
Treasury bill auctions with the theoretical optimum. For a discussion of the one-price
auction when buyers bid for a share of a divisible good, see Wilson (1979) and Maxwell

(1982).
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Hence,
ol . .
5E> 0 if and only if 1/p <p/p.. 30)
Note that
&1
Erealaly p/p-

If p,, is non-negative, 8°I/3¢* is negative, since, by Assumption Al,
p1<0 for p >0. If p,, is negative, then by (30),

p

By Assumption B1, the final expression is non-positive. Thus, I(g, v) is
indeed strictly quasi-concave. Furthermore,

31 2]

o124 (8)

..0qdv  *° D28v \p . R

- 5 dp/dv
JUpRE =p2(1 + P 5 ) _B___ZZ N
P P

_ Y P2
_P2 dU (v) p )

since dJ(v)/dv=1+ (dp/dy)/p> Thus, by Assumptions B2 and C,
8%1/3q v is strictly positive Q.ED

Form the Lagrangean for the maximization of (27); that is,

L= Eub,,_i[z1 I{(q;, v))+ p(v;, v_; (qo - Z q,-)].
i= i=1

The solution g{(-), . . ., g,(-) satisfies

g7 (v;, v_;) =0 and u(v;, v_;) non-negative

n 3
w(vi, U—:’)[Z1 qi (v, v_;) — ‘Io] =0
. ol ,
q/ (v, v_y) 5&(‘1:‘ (vi, voi), v) —p(u;, v_) [=0 } (31)
ol
q: (v, v-)) =0>— (0, v;)) < u(v;, v_,).
3q J

Given the hypotheses of Lemma 2, I(g;, v;) is strictly quasi-concave in
q; hence the necessary conditions (31) are also sufficient. To show that
qi(), ..., qx(:) solves the seller’s maximization problem, it remains to
argue that g;(v;, v_;) is non-decreasing in v;, so that we can apply




(30)

ssumption Al,

Thus, I(g, v) is

ms B2 and C,

at is,

)

=0 (31)

1 quasi-concave in
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(8q}/3v) (i, v_,) is trivial
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in which case

,v_;), either g}, v-) = 0,
_)>0. In the

ly pon-negative, or else qf (vi, v

3L (gt(w - 00 = W ¥
q

Moreover, the equality holds in a neighbourhood of (v;, V-i)
we obtain

Differentiating this last equation with respect to U;,
aqr &I _3

Floa , = - o8, (31a)

dq* dv; dqdv 9

Suppose that au/dv; is non-positive. Because 5%1/3q dv is positive and

(thanks to strict quasi-concavity) &°1/8q? is negative. (31a) implies that

aq;/ov; is positive. Assume, therefore, that du/dv; is positive; this
implies, in particular, that p > 0. If, for j#i 3l(q; (vi, v_), v))/9q < i

then dq;/ovi= 0. Moreover, if al(g; (vis v_), v)/8q =i then
(&1 8q*)(3q;/ dv;) = ou/dv; implying that 3q;/dv; <0. In either case,

therefore 3g; /3 is non-positive for j #i. But because

n *
$, %k (v, 370 =
Shov e
(since u>0), we can deduce again that dq;
q:7C¢) - q2(-) solves the seller’s problem.
Define §(v;) so that (al 13g) (@), i) = 0 for all v;, and let ¢(*) be the
inverse of 4(v;)- Take
R(g) = Ri(¢(9:) (32)
where RF(v;) satisfies (18) with q() =47 () and T1,(0, 0) = 0. Given the
preceding analysis, the following result describes an optimal selling
procedure. '
PROPOSITION 5. Optimal Selling Procedure for General Demand: the
Regular Case. 1f Assumptions Al, A2, Bl, B2, and C hold, expected
revenue from the sale of qo units is maximized if the seller sets the
payment schedule R(q:) defined by (32). Each buyer i submits an order g;
and pays R(g) U total orders exceed supply, final allocations are

redpced according to the rationing scheme:
| al

* — ’.", D) — =0
qi {aq,. (CHEICO) u]
2 qi<do (33)
i=1
ol

*=0—>—(0 Y < u.
qi - 3q ( ’ ¢(q.)) u

I

g

/3v; is non-negative. Hence -
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For the special case in which demand curves have the simple form

p(g, vi) =v; - vq,,
the allocation rule is especially straightforward. From (33), we obtain

47 >0->v(qi—q)~u=0->qr=¢q,—uly.
Thus, the seller simply reduces each buyer’s order by the same amount
(subject to its remaining non-negative) if demand exceeds supply.

It is easy to see that the open and sealed-bid auctions,® as well as the
two Treasury bill procedures, cannot be optimal in general. Suppose, for
example, that g, is so large that the supply constraint is never binding.
Then all these auctions have the property that the equilibrium price is
just the seller reserve price, at which buyers can buy all they want. In the
optimal selling procedure, however, pricing is nonlinear: a buyer with
value v; buys g(v), solving I(§(v), v) =0, and pays

R(v) =N(q(v), v) = Nx(g(v), v)/p(v). e

4. Optimal Selling Procedures: the General Case

We next study revenue-maximizing procedures when Assumption C is
not imposed. To simplify matters, we consider only the case of unit
demand.

In addition to the necessary conditions (9) and (15) derived in Section
2, we first note that the allocation rule must satisfy a monotonicity
conditoon. (Earlier we noted that monotonicity was a sufficient
hypothesis for Lemma 1.) For unit demand, (7) becomes

H,'(x, U,‘) = Eu_‘.viqi(x, U_,-) - R,‘(x).
Thus,
ITi(x, x) — Ii(x, v;) = (x — vi)Ev_,-qi(xy v_;). (34)
From (8),
H,‘(x, x) - ni(v,‘, x) 2 O and n,-(v,-, U,‘) - Hi(x, U,‘) = 0
Adding these two inequalities and substituting from (34), we obtain

(vi —x)E,_[q:(vi, v_;) — gi(x, v_;)] = 0.
Thus, the allocation rule g;(v;, v_;) must satisfy the condition that

E,_gi(v;, v_;) is non-decreasing in v,. 35)

® When buyers may want more than one unit, these auctions must be modified slightly. In
the open auction the auctioneer continuously raises the price, and at each level buyers
indicate how many units they would want to buy. The actual price is determined when the
level is raised high enough so that supply equals demand. In the sealed-bid auction, buyers
submit demand curves, and the auctioneer uses these to compute the market-clearing price
and allocations.
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Adding this constraint to programme (27), we obtain the maximization
problem

fnax {Eu,-,v-; 2 J(v;)q; | E,_qi(vi, v-;) is non-decreasing,
i i=1

0<g;<1, Zl q,-Sqo}. (36)

In general, the function J(v)=v —1/p(v) is non-monotonic, and so
the earlier argument does not generalize immediately. Instead we begin
by defining a modified function J*(v) that is monotonic, and solve for the
optimal {q;(-)} with J* replacing J. We then show that this allocation rule
also solves the original problem. Finally, we interpret the optimal selling
procedure as an auction.

Mobiriep J Funcrion. Let {[x®, y“]|y® <x“*'},.a be a collection of
subintervals of [0, 0] such that (a) the function

{J(v) ifve UQ [x y“]

' '7""(;}) =
. o ), ifvelx®,y®]  for some

is non-decreasing, amd (b). the function
ym
k@)= [ U@ -IoINdFE)

satisfies

° =0, for all v=<y®
K (v){=0 v=x% '

A proof that the collection {[x“, y“]} exists can be constructed along the
following geometrical lines. Consider Figure 14.1. Startmg at v=1¥ and
moving to the left, we define J*(v) =J(v) until a point y! is reached at
which, for some x <y!,

[ v@-1om1ar@ =0 -

Since J(v) <v, <0 =J(), y, if it exists, is less than . Define x! to be
the smallest such x satisfying inequality (**) and define J*(v) =J(y")
over [x!, y']. This process is continued until v =0.

ProposiTiON 6. Optimal Allocation Rule. For any (v;, v_;), choose J so
that the number, M, of buyers with parameter values v; for which
J*(v;)=J is at least go, and the number, m, for which J*(v)>J is
at most go— 1. Then expected seller revenue is maximized by
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JA

Fig. 14.1 Derivation of J*.

q’(), - - - » g1 (") satisfying

1, if J*(v,)>JF>0
aiw,v)={ =" itrw)=J=0 (37)
0, otherwise.

Proof. Because J*(-) is non-decreasing, ¢;(v;, v_,) is non-decreasing
in v;. Hence, (35) is satisfied. The proof is completed in three steps.
First, we show that, for any q,(-), . . ., g,(-) satisfying the constraints of
(36),

n

E,.. 2 J(v)gi(vi, v ) <E, ., 2 J*(v)gi(vi, v-y). (38)
i=1 i=1
Next, we show that ¢{(-), ..., ¢x(-) defined by (37) solves the modified
optimization problem in which J(-) in (36) is replaced by J*(-). Finally,
we confirm that, for g,(-) = g7(-), (38) holds with equality. :
To prove the first step, we define

gi(v;) = E, qi(v;, v_;
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for any allocation {g;(-)} satisfying the constraints of (36). Then,

E,o U (v) = T*(v)lgi(v, v-) = L ) V() —J*(v))§i(v) dF (v)

Z [J(v) J*(v)]—(v)q.(v)dv

weQ

men J' " Gi(v)dv 39)

where the last two equations follow directly from the definitions of J* and
K*®. By construction, K“(v) is non-positive and §,(v) is non-decreasing.
Thus, integrating by parts, we obtain.

e (v)q.(v) dv <K“(x“)§:i(x*) - K*(y“)gi(y*)<0  (40)
from the definition of K. Inequality (38) follows from (39) and (40).
Next, consider the maximization problem b

max {Eu_,,,_, 2 J*W)qiv, v_) [0=<¢q; <1, ¢/ < q},‘}‘t'”' (41)
{q:(-)} w  i=1 i=1

Because J* is non-decreasing, the solution, from the argument in Section
3, is to set g} =1 for the (up to) g, buyers with the highest non-negative
values of J*. Since J* is not strictly increasing, ties occur with positive
probability. These can be broken by randomizing—that is, by giving all
buyers with J*=J a chance (go—M)/(M —m) of winning—thereby
obtaining exactly g, ‘winners’. Thus, {g;(-)} given by (37) solves the
maximization problem (41).

By definition, ¢/ (v;, v—;) is a constant as a function of v; on any
interval [x“, y“], w € Q. Hence,

L Elff(v) F(v)dv=[K“(y*) - K*(x*))§i (y*) =0

where
4 (v) = Eo_q7 (v, v-0).

Thus, (39) implies that (38) holds with equality.

Finally, note that, because ¢;(v;, v_;) is non-decreasing in v;, Lemma
1 implies that, because it solves (36), it solves the seller’s optimization
problem. ©Q.ED

Combining (18) and (37), we can readily compute the expected

payment R;(v;) made by buyer i with parameter value v; in the optimal
selling procedure. Thus, the seller can maximize expected revenue
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through a direct revelation mechanism in which, if the n buyers
‘announce’ parameter values (xi, ..., X,), the allocation and expected
payments are

[qF(xq, - - -, x2), RE(x)), i=1, ..., n

We next show that, alternatively, the seller can use a modification of the
open-bid auction.

ProOPOSITION 7. Optimal Multi-unit Auctions with Unit Demand. Let
{[x% y°]} wea be the collection of intervals in the definition of J*. For
each w, there exists z® € (x*, y®) such that if, in an open auction, the
asking price is started at v®=maxfv |J*(v)=0], and is raised discon-
tinuously from x® to z® whenever it reaches x®, then that auction is
optimal.

Remark. When the price rises from x“ to z“, buyers’ decisions about
whether to continue bidding must be revealed simultaneously (since, with

positive probability, several will drop out at the same time). One way of

achieving this is for the auctioneer to confer (privately) with each buyer

to determine whether more than go wish to continue bidding. ifznat,-

TR |

those remaining in the auction pay z and receive one unit. The winners
among those dropping out are selected at random and pay x .

Proof. It suffices to show that we can choose z“ such that the
corresponding allocation rule is defined by (37). For each w, choose z?
so that

Eu-i[Q?(xw: vo) | #ix® v)>qo— 1J(y“—-x*)
=E,_[q}(y® v-) | #:(x% v_)>qo—1](y* — z%), (42)

where #;(v,, v_;) is defined to be the number of buyers (other than i)
whose parameter value is at least v;. In (42), z“ is chosen so that a buyer
with reservation value y© is indifferent between staying in and dropping
out when the price reaches x“. Hence all buyers with values less than y©
drop out when (or before) the price rises to x“ but stay in if their
reservation values exceed y “. The induced allocation rule of this modified
open auction thus equals that of (37). Q.ED

We should point out that in the auction of Proposition 7 all buyers with
reservation values in an interval [x®, y“] have an equal chance of
winning. This means that there is a positive probability that a buyer who
does not have one of the g, highest reservation values will be assigned a
unit. The proposition therefore assumes implicitly that the seller can
enforce a no-resale provision. In the absence of such a provision, the
prospect of resale changes buyers’ behaviour, and expected seller
revenue declines. None the less, we show in Maskin and Riley (1980) that
the conditions under which it is optimal for the seller to raise the asking
price discontinuously are the same with and without resale.
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" We conclude this section by illustrating the seller’s potential gain from
using the optimal rather than the sealed-bid or open auctions. Suppose
that the distribution F(-) can be approximated by the following two-point

distribution:

0, v<32
F(v)=143/4, 32<v<80
v = 80.

b

Suppose there are two buyers and one unit for sale. Clearly, if the
ordinary open auction with reserve price is to be used, the seller is best
off setting the reserve price equal to 32 or 80. If the former, the item sells
for 32 unless both buyers have a valuation of 80. Since the latter occurs

with probability 1/16, expected seller revenue is
15 1
(R)32 + (E)SO = 35.
If the reserve price is 80, there are no bids with probability (3/4)(3/4)y=""
414%.. Expected seller revenue is therefore g
s 7
—)80=35.
(fe)s0-3

Thus, in this example a reserve price of either 32 or 80 is optimal for the

seller in an open auction.

Alternatively, suppose that the seller uses an auction like that of
Proposition 7 and opens the bidding at 32 but then jumps the bid to (just
less than) 56. Suppose that buyer 2 stays in the auction only if his
reservation value is 80. Then buyer 1 gains from staying in himself only if
buyer 2 has a low reservation value. (If both stay in, all consumer surplus
is bid away.) His expected gain is therefore slightly greater than

3
; (80— 56)=18.

If buyer 1 chooses not to stay in the auction, he wins (with probability
1/2) only if buyer 2 has a low valuation. Thus his expected gain is

3
5(80-32)=18.

Buyer 1 therefore has an incentive to use the same strategy as buyer 2, s0
that this is the equilibrium bidding strategy. Expected seller revenue is

therefore 9 1 6
i + | — — _ 3
(16)32 (16)80 + (16)56 a4

By jumping the bid, the seller can thus increase its expected revenue by
9, a gain over 25 per cent.
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5. Randomized Selling Schemes

At the outset, we noted that the seller could in principle use a selling
procedure in which the outcome is a random schedule

[:(vis v_y), Ri(vi’ U—i')].'=1,...,n-7

We restricted attention however, to deterministic selling procedures. In
this section we investigate the desirability of randomness.
Because preferences take the form

q
U,(q, R, 'U) =j P(x: U) dy —R,
(1]

so that buyers are neutral towards income risk, i.e., they are indifferent
between the random payment R;(v;, v—;) and its mean (given v;). Thus,
we may assume that the optimal selling procedure is of the form

[Gi(vi, v-i)s Ri(v)].
Moreover: for the“special case of unit demand, it is clear that-there-is no

 loss-inFgenerality..in ‘assuming that each realization of §;(vi, v._;) is no.- -

greater than unity. Thus,

Ui(Gi, R)=vgi — R
is linear in §;, and so buyers are again indifferent to risk. Hence, in the
case of unit demand, the seller gains nothing by using random selling

procedures. We next show that the same principle applies to a broad class
of smooth demand curves.

ProposiTioN 8. Under Assumptions Al, A2, B1, B2, and C, the optimal
deterministic selling procedure generates at least as much expected
revenue as any random one.

Proof. Let [gi(), Ri(*)] be a random selling procedure. Although
Gi(v;, v—;) is now a random variable, we can still argue as in Section 2 to
establish the following counterpart of (9):

L v0 - L0, 0= B, [E [ M) dz] @)

where the inner expectation is over the possible realizations of §;(z, v_;).
It follows immediately that the counterpart of (18) holds, namely,

Ri(v) = E,,_,,{E[N(q,-(v,-, v_)) - fo " NGz, v_i), 2) dz]} ~TI,(0, 0).
(44)

7 We are expressing all selling procedures in this section as direct revelation mechanisms,
which, by the Revelation Principle, we are entitled to do.

S
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Since there can be no gain to supplying the buyer with more than
q°(v;), the amount he would purchase at a zero price, we can assume that
each realization of §; satisfies §;<q°v;). Thus, N(g;, v;) is strictly
increasing over the domain of g;, and we can define the inverse function

q:=N"'(n, vy). (45)

For any random variable §; and 7 =N(§;, v;), we can then choose
g; = N~'(#, v;) where 7i = E(fi). That is,

EN(qi, U,') = N(qi) U,') =n. (46)
Consider the function

G(n) = NZ(N-l(nr ‘U,-), U,-). (47)

We shall suppose that G(-) is convex. (We will later confirm that this is
the case.) Thus

EG(A)=ENy(§:, vi)= G(ﬁ) =N2(qu 13:) (48)

Next; defifie

et
a3

& @9

) T

IL(vi, v)=E,, A Ny(G(Z702)), z)
N

where N(G(v;, v_), v;) = EN(Gi(v;, v_,), v;). Then §; satisfies the neces-

sary condition (9). Arguing exactly as in Section 2, we deduce that the

expected payment schedule for buyer i is

Rw) = E, [N@ws v-), 0) = [ M@z, v-), 2 82 =110, O).
° (50)
From (46), the first terms on the right-hand side of (44) and (50) are
equal. From (48), the second term in (44) is no greater than the second
term in (50). Thus Ri(v) = Ri(v). (51)

We now show that the procedure [§:(-), R(-)] satisfies the aggregate
feasibility condition n
21 3i(vi, v_)) <qo.

By Assumption Al, N is an increasing, concave function of g. Therefore,
from Jensen’s Inequality,

EN(Gi(vi, v—;), v;) < N(EGi(v;, v_)), vi),
and so
gi(vi, v_) < Eqi(v;, v_y).
But
21 Gi(vi, v_;) < qo,

establishing feasibility.




334 Eric Maskin and John Riley

Because we are imposing regularity (Assumption C), the optimal
deterministic selling procedure [q;(-), R}(:)]i=1,...,» solves the problem of
maximizing expected revenue subject only to feasibility, (9), and (15). In
particular, we need not impose monotonicity; thanks to the proof of
Proposition 4, it is satisfied automatically. Now, [§(-), R;(+)] satisfies (9)
and (15) by construction, and as we have seen it satisfies feasibility.
Hence EZR}(v;)=EZR,(v;). Thus, in view of (51), EZR;(v;)=
EZR;(v;); that is, the optimal deterministic selling procedure generates at
least as much expected revenue as the random one.

It remains to establish that, as hypothesized, G(n) is convex. From
(45) and (47),

G(N(g:> v))) = Na(gi, vo)-

Thus, differentiating by g; and rearranging, we obtain

dG
a (N(gi, vi) = Nio/ Ny = pa/p.

[ R T e )

Differentiating again by g;, we obtain

TG wikta v =5 (2)

_PnpP —P1P2
2

P
=_3_<&)
du\p

=0 by Assumption B1.

6. Concluding Remarks

In this paper we have shown how the earlier analysis of optimal auctions
by Harris and Raviv (1981), Myerson (1981), and Riley and Samuelson
(1981) can be generalized to multiple units. We conclude with some
comments on the crucial assumptions.

First of all, we have assumed agents to be neutral towards income risk.
With risk-averse buyers, the analysis is considerably more complicated.
With only a single, indivisible unit for sale, it is relatively easy to show
that the sealed high-bid auction generates greater expected revenue than
the second-bid auction. However, the expected profit-maximizing selling
scheme is no longer a simple auction. Instead, as Matthews (1983) and
Maskin and Riley (1984a) establish, the seller can exploit buyer risk
aversion still further by making losers as well as winners pay in a
sealed-bid auction.
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A second important assumption is that parameter values are drawn
independently. This implies that any pair of buyers, with possibly very
different parameter values, has the same beliefs about the parameter
value of a third buyer. Although this is the natural first approximation,
there are situations in which it is clearly deficient. For example, suppose
that, as in the auctioning of mineral rights, the true value of the item is
unknown. Each buyer has an estimate based on his research. In this case
it is natural to assume that a buyer with a low estimate will have more
conservative beliefs about the estimates of other buyers than a buyer with
a high estimate. Milgrom and Weber (1982) apply the concept of
‘affiliatedness’ (implying positive correlation of parameter values) to
formalize this idea to compar€ the sealed-bid and open auctions. A
central result is that the information revealed as the open auction
progresses raises the expected selling price. With risk-neutral buyers,
there is no equivalent effect in the sealed-bid auction, and so the open
auction dominates in terms of expected revenue.®

This conclusion suggests that the seller might be able to exploit the

~ Correlation of buyer’s reservation values with a selling procedure very
_different from either of the usual’ auctions. Indeed, work.by Myerson

(1981), Cremer and McLean (1985), and Maskin and Riley (1981) shows
that, when buyers are disk-neutral and their parameter values are
correlated and discretely distributed, the seller can extract all surplus.
Finally, agents’ parameter values are assumed to have been drawn
from the same distribution. Although symmetry is a commonly invoked
theoretical simplification, it is certainly a strong restriction. To illustrate,
suppose that several contractors bid for the right to resurface a section of
roadway. If one contractor is much busier than the others, he will have to
hire workers overtime, reduce maintenance, and so on. 1f, moreover, the
other bidders know about this, symmetry is violated. As we show in
Maskin and Riley (1986), either the sealed-bid or the open auction can
dominate the other (in terms of expected revenues), depending on the

nature of the asymmetry.

8 Because risk aversion has the effect of improving the sealed bid auction relative to the
open auction, there is no simple ranking of the two except given risk-neutral buyers.




