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1. Introduction

Asymmetric information and the implications for economic incentives are now
central to microeconomic theory. It is therefore hard to think back to the revolutionary
days of the 1970’s when General Equilibrium analysis was dominant and our most recent
Nobel Laureates wrote their early path-breaking papers (Akerlof (1970), Spence (1973)
and Rothschild-Stiglitz (1976)).! From a modeling perspective, their analysis of
participation and incentive constraints in competitive markets can be viewed as the
second stage in the development of the new theory, following the foundational work on
mechanism design by Vickrey (1961) and Mirrlees (1971). However, this perspective
misses what I believe to be the central motivation behind the revolution: with asymmetric
information competitive markets are likely to perform very poorly. In Akerlof’s case,
whether it was only the lemons trading, or individuals getting into an unproductive rat-
race, this point is absolutely central. In Spence’s case, the focus was multiple equilibria.
One of his core objectives was to provide an explanation of why similarly talented pools
of individuals, differentiated by race or gender, could have quite different returns to
human capital accumulation. Finally, an enduring theme of Stiglitz’s research is that
without intervention to reduce asymmetry or regulate quality, there might not even be an
equilibrium allocation.

The basic modeling issues have been very well summarized in the companion paper

by Lofgren et al (2002) and are discussed in detail in Riley (2001). It is hard to think of

'"The Rothschild-Stiglitz paper and the closely related papers by Riley (1975, 1979) were both
stimulated by Spence’s research. In writing my second paper I benefited greatly from
communications with Mirrlees, Stiglitz and especially Rothschild.



any other new ideas which have led to such a revolution in theorizing or a richer set of
applications. While there is also a considerable empirical literature (especially in
Finance) I will argue here that there are ways of “taking the model to the data” which
deserve more attention. One approach is calibration. This is illustrated in section 2 for
the Rothschild-Stiglitz insurance model. For the two type example, Rothschild and
Stiglitz illustrated the theoretical possibility of non-existence. For plausible degrees of
risk aversion, I conclude that the existence problem is indeed severe. In addition, I show
that the deductibles needed to sort different types are vastly higher than those typically
observed in practice. I argue that these results obtain because risk aversion is too small to
make the deductible an effective screening device.

In section 3, the screening equilibrium is further analyzed using a simple version of
Spence’s education model. For a continuous version of the model strong necessary and
sufficient conditions for existence are derived. These yield direct testable implications.

Central to Akerlof’s “lemons principle” is the idea that the seller of a higher quality
product has a higher alternative opportunity. In the modern terminology, such an
individual has a tighter participation constraint. Somewhat surprisingly, this possibility is
simply ignored in the screening literature. Section 4 considers the implications of
incorporating the Akerlovian assumption into a screening model. The core result is that
there is now a minimum screening threshold. The greater the participation constraint
varies with quality, the greater is this threshold. Indeed if the participation constraints for
high quality workers bind too tightly, there is no equilibrium.

In more recent years, theorists have examined a variant of the sorting model in which

it is the informed agent who must make the first move, rather than the uninformed



employer or insurance company. In such cases, there is a continuum of equilibria if
uninformed agents are sufficiently pessimistic about any agent who takes an
unanticipated action. In the final section I take issue with the widespread belief that
simple refinements necessarily result in a unique separating equilibrium.

2. The Insurance example

The standard analysis starts with some observable activity z which has a lower
marginal cost for a supplier of higher quality items (indexed by his type #.) The implied
indifference curves for higher quality types, over z and price, are then flatter thn the
indifference curves of lower quality types.> The level of the activity z may thus be used
to sort different types. A central point of this paper is that market outcomes are likely to
be very different if the preferences maps of different types vary only a little, rather than a
lot. In the former case, the sorting potential is weak. High types can only sort by
incurring large costs. In the latter case, higher types have much lower marginal costs of z
and can thus be sorted much more cheaply.

Consider the Rothschild-Stiglitz insurance example. A type ¢ insuree, where

te {L,H}, has a probability 7z, of avoiding damage valued at C. The high quality
insurees have a higher probability of loss avoidance (7, >7,). Risk neutral firms move

first, competing for customers by offering insurance contracts. Each insuree responds by
selecting the most advantageous contract available. With full information, the equilibrium
contracts offered by risk neutral firms are zero-profit policies to each type with full

coverage. Let p, be the premium (paid by type ¢ in the loss and no-loss states). Then the

zero-expected-profit premium is p, = (1—7,)C. With asymmetric information, we

> This is the so called “single-crossing property”.



consider the use of deductibles to sort low and high quality insurees. If type L accepts a

policy with a deducible z, the expected payment by the firm is (1—7,)(C ~z) . Then if the
insuree were to continue to pay p, , the insurance company would make an expected
profit of

V,@)=p, -1-7,XC~2).
Thus zero-expected-profit policies must offer a premium reduction r =V, (z) . This line is

depicted in Figure 1.
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Figure 1: Rothschild-Stiglitz Insurance Model



Similarly, if a high quality type accepts a deductible z, the expected payout is
(1-7, X(C - z) . Thus, if the insurance company could charge a price p, , the expected
profit would be

Vy(@)=p, -A-7, (C-2)
Therefore for high quality types the zero-expected profit premium reduction is r =V, (z) .
This is depicted as the broken line in Figure 1.

If information about types is private, an insurance contract is fully described by the
vector X =(z,r) that is, the deductible z and reduction in premium r. Let u(-) be the
von Neumann-Morgenstern utility function of a type ¢ individual with wealth W. His
expected utility is then,

U,(z,r)=muW —(p,—nN)+1-7)JuW —z~(p,—71))

The solid curve in Figure 1, denoted as X > 0, is the set of contracts yielding the low

quality insuree the same utility as the full insurance zero-profit policy O. Since high
quality insurees have a higher probability of no loss, they are willing to accept a smaller
reduction in premium in return taking on a greater deductible. Thus their indifference
curves (depicted as broken curves) are flatter. To satisfy the zero-profit condition, the
contract for the high quality insures must be on the broken line. To separate the two
types, it cannot be in the interior of the shaded region, since this is the set of contracts

which the low quality insuree strictly prefers. Thus the contract X, is the Pareto

efficient separating contract.

This policy yields the same expected utility as a full coverage offer with a premium

reduction of 7,. Thus the difference between p, — p, and 7, is a measure of the cost of



asymmetric information. Expressing this a bit differently, the presence of the low quality

type imposes a negative externality on the high quality type and the size of this
externality is measured by (p, — py)—7, -

It is easy to see that adding any intermediate type only tightens the incentive
compatibility constraints. Thus the two type case provides a lower bound on the gains to

any better risk type. In Figure 2 the zero-profit premium reduction line for an

intermediate risk type M is depicted along with the Pareto dominant contract X,, that

separates the low and intermediate quality risks. The intermediate quality type has an

indifference curve through X,, , denoted as X ~ X,, which is lower than the indifference
curve though this same contract for low quality insurees. Therefore, the best separating

zero-profit contract for type His X H’ to the North-East of X, .
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Figure 2: Additional sorting costs with 3 types.



Since adding intermediate types always increases the cost of sorting for higher types, we
can use simple finite type examples to obtain lower bounds on deductible levels with
larger number of types.

Consider a pool of individuals in which the mean probability of loss avoidance is
0.99. The loss is 80% of wealth. Individuals exhibit the same constant degree of relative
risk aversion R. Suppose that a firm skims the cream from the pool by offering a policy
with a deductible equal to 10% of the loss. The higher the premium offered, the smaller
will be the fraction of insurees who find the new offer attractive. Consider the first row

of Table 1 below.

Mean probability of loss avoidance 0.99.  Deductible is 10% of loss

Premium Probability of loss avoidance
R | per $1000 | Critical prob. of 0.991 | 0.993 [ 0995
of coverage | loss avoidance Profit per $1000 of coverage
0.5 10.09 0.991 1.09 3.09 5.09
5 9.87 0.991 0.87 2.87 4.87
0.5 10.32 0.993 3.31 5.31
5 10.15 0.993 3.15 5.15
0.5 10.54 0.995
5 10.42 0.995

Table 1: Profits from skimming the cream from the pool
The degree of relative risk aversion is 0.5. If the premium per $1000 of coverage is
$10.09, insurees with a probability of loss avoidance of 0.991 are indifferent between
staying in the pool with full coverage and accepting a deductible equal to 10% of the loss.

This type has an expected cost of $1000(1-0.991)=$9 per $1000 of coverage. Thus it

generates a profit of $1.09 if it accepts the deductible. All higher types are strictly better



off accepting the deductible. Since they have a higher probability of loss avoidance they
generate the larger profits shown in the final two columns of the Table.’

Since the mean loss probability in the pool is 0.01, the pool premium per $1000 of
coverage is $10.00. As the table shows, regardless of whether risk aversion is high or
low, the cream can be skimmed from the pool at rates similar to the pool rate. As a
result, the profit to be made from cream-skimming by offering deductibles is high relative
to the pool premium.

It follows that firms have a very strong incentive to introduce deductibles to attract
individuals with a higher probability of avoiding loss. Thus our simple calibration points
to the economic importance of the “no pooling” result of Rothschild and Stiglitz.

We therefore consider deductible policies which separate out the different risk classes.

Let 7, ,7,, and 7, be the probability of loss avoidance of the worst risks, the median

risks and the best risks. Let the number of types be 7. We assume that for neighboring
types the difference in the probability of loss avoidance is (7, —7x,, )/(T —1). The Pareto

efficient separating zero-profit contracts are easily computed. We then ask what
premium reduction would make the median type indifferent between his separating offer
and full coverage. All lower types would also prefer this offer. The offer thus attracts
what I will call the “median pool.” If, for this pool, the probability of loss avoidance is
sufficiently low, the offer will result in losses. If it is sufficiently high, the offer is
profitable. The critical probability is shown in column 7 of Table 2. For example, in the

top row the worst probability is 0.989 and the median probability is 0.99. Assuming a

3 The Mathcad files used to create the tables can be downloaded from
hitp://www.econ.ucla.edu/riley/research/sie02




symmetric uni-modal distribution of types, the probability of loss avoidance in the
median pool exceeds (7,, — 7, )/2=0.9895. Thus, for this case the median pool is
profitable.

Note that for each case computed, the median pool is profitable. Our calibration thus
shows that the non-existence problem emphasized by Rothschild-Stiglitz is a very serious

one indeed.
Column 9 considers the same issue for a pooling offer which attracts all types. Given

symmetry, the offer is profitable if the mean probability in the pool is below the median

probability 7,, . An asterisk indicates where this is the case.

Critical Deductible as
C/W [ R T, T, m, | T Probabilities % of loss
Median | Pop. | Median | Best
Pool Pool type type
.9894* | .9899* 29 39
.9892* | .9893* 30 40
.9895* | .9902 36 47
.9893* | .9897* 33 38
.9894* | .9901 22 26
.9989* | .9989* 31 41
.9988* | .9992 47 62

0.8 |1.5] 989 | .99 | 991
08 |15] .989 | .99 | 991
08 |05 989 | .99 [ 991
0.8 5 | 989 | .99 | .991
04 [15] .989 | .99 | 991
0.8 [1.5].9989 | .99 |.9991
0.8 [1.5].9986| .99 |.9994
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Table 2: Characteristics of the efficient Separating Contracts

The second row shows that adding six more types has only small effects on the results.
The third and fourth rows show that changing the degree of relative risk aversion also has
only small effects on profitability. Row five considers a less extreme loss and the last
two rows explore the effects of narrowing and widening the range of loss probabilities.

The final two columns of the table show the separating deductibles for the median



and best risks. It is striking that the deductibles are vastly higher than those observed in
practice. Thus the basic insurance model does not seem to be able to explain deductibles
as an equilibrium implication of asymmetric information about the probability of
avoiding loss.

In this insurance application, individuals are forced to choose very high deductibles to
be sorted because the differences in the marginal cost of accepting a deductible are very
small. As a further implication, the gains to sorting are small. The deductible is thus a
“weak” sorting device. In the next section we compare “weak” and “strong” sorting
technologies using Spence’s educational screening model.

3. Education as a sorting device

In the very simplest Spencian model, a worker of productivity ¢ can accumulate

educational credential z at a cost C(t,z). Higher productivity types have a lower
. N d aC . .
marginal cost of signaling (58_ <0). The two type case is depicted below.
z

With full information the wage differential is ¢, —¢,. Thus the cost of signaling,
expressed as a fraction of the maximum possible gain is C(z,, z")/(t2 —t,). For incentive
compatibility, the difference in wages ¢, —¢, must be equal to the education cost for the
low type. Thus the cost of signaling,

C(t,,7) _ Clty,2)
t,-t, C@,7)’

The key point is that the gains to sorting depend on the rate at which the cost of signaling

declines with productivity.
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wage

C@,.2) < X~X,

2 education

Fig. 3: Labor market Sorting

In this section we consider the continuous version of this model. As with the two type
example, a type ¢ individual has productivity v(¢) =¢. Productivity ¢ is distributed
continuously on [, 8] with c.d.f F(-)e C*. There are two possible sorting
technologics.1 For technology i =1,2, the sorting cost is

C,(t,z)=z/ A(2), where A()e C’. (3.1)

Taking the logarithm and differentiating by ¢, the proportional rate of reduction in

sorting cost is

! The analysis immediately generalizes to any multiplicatively separable cost function
c(t,2)= B(z)/ A(t). Simply define y = B(z) and C(t,y) =c(t,B™'(y)) = y/ At)

11
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We assume that this rate of reduction is everywhere greater for the first technology.”
Each type has the same outside opportunity to earn a wage w,(f) =1, € (@, B).

Let w(z) be the equilibrium wage function and let z(¢) be the equilibrium educational
choice. All types below #, choose their outside opportunity w, () =1,. Let u(z,s) be the

expected payoff to type ¢ > ¢, if he makes the equilibrium choice of type s. That is,

u(t,s) =w(z(s))—C(t,z(s)).
Bertrand wage competition among firms requires that the equilibrium wage is equal to
equilibrium productivity. Thus w(z(t))=¢ and so u(t,s) =s—C(t,z(s)) . For incentive

compatibility, u(t,s) takes on its maximum at s=¢. Thus 1—-“%%—(;0, z(t)=0.
Z

Substituting from (3.1) it follows that

dz
& _ . 2
» A() (3.2)

Integrating, z(t)=[ A(w)dw

L)

and hence the equilibrium cost of sorting is

2 Define L(-) so that A (¢) = L(A,(?)). Then our assumption holds if and only if
L(A) < AL’(A) . We will describe the first technology as strongly dominating if, in addition

L'()>0. Then i’>_éz_,_
A A

12



jA(w)dw
Ct, 2() = z((’t)) i o (3.3)

The following result is derived in the Appengix.

Proposition 1: Ranking sorting Technologies

If A(s)>0, i=1,2, A() is increasing and 2((;)) > Z((;)) , X€[s,t] then the costs of

screening are lower for technology 1 than technology 2.
Thus the higher the rate at which the marginal cost of signaling declines with type, the
greater are the gains from complete sorting.

Thus far we have considered a wage function that satisfies the incentive compatibility
and participation constraints and also the zero-profit constraints. It remains to show that
the resulting wage function is a best response. In Figure 4 we depict the indifference

lines for a pair of types ¢, and ¢, >¢, through their respective separating contracts

wage

X~X
4 X~X, 2
w h ///’
(z(t).1)
tO
» 7
education

Figure 4: Attracting an interval of types
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(z(#,),1,) and (z(t,),t,). Since the indifference line X ~ X, is flatter than X ~ X, the
[ 5

two lines meet at some point (Z,W). Suppose a firm offers the contract X = (3,W). Asis
clear from Figure 4, all those types on the interval (z,,2,), with separating contracts on
the curve w(z), between X, and X, strictly prefer (Z,w). All those types less than ¢, or
greater than z, strictly prefer their separating contracts.

The expected profit from such an offer is the expected productivity less the wage, that
is

T tF'(t)dt

ﬂ(tl,t2)=m—w (3.4

We now seek necessary and sufficient conditions for a Nash equilibrium. Consider

Figure 4 once more. Since type ¢, is indifferent between (z(z,),#,) and (Z,W),

A

W= -G =12 (3.5)
A(t) A()

Solving for w, we obtain

LA(,) —LAR) - 2(8,) + 2(t)
A@,) - AQ)

w(t,,t,) = (3.6)

For any par of types we can then solve for the profitability of the offer (Z,w) by
appealing to (3.4) and (3.6). By considering expected profit when ¢, —¢, is small we

obtain the following necessary condition for a Nash equilibrium.

14



Proposition 2: Necessary condition for a Nash equilibrium
For the Pareto efficient zero-profit separating contracts to be equilibrium best responses it

is necessary that

£, F©
A/(t) 2 F’(t) 4 te (to’ﬁ) (37)

The following further result is also derived in the Appendix.

Corollary 3: Sufficient Condition for a Nash equilibrium

If inequality (3.7) is everywhere strict, the Pareto-efficient separating zero-profit
contracts are best responses.

In equilibrium the wage function satisfies w(z(¢)) =¢. Then we can rewrite

inequality (3.7) as follows.

A"(w) > F'(w)
Aw) F'Ww)’

If the screening technology can be estimated, this inequality provides a simple test, since
the wage distribution is directly observable. Alternatively, suppose that the
econometrician only observes the wage function w(z). From the first order condition for
incentive compatibility w'(z) =1/ A(w). Inverting this expression, z’(w)= A(w).

Substituting this into inequality (3.7) yields the following result.

Proposition 4: Testable implication of Nash equilibrium sorting
If a Nash equilibrium exists it is necessarily the case that

Z,”(W) S F’(W)
w)  F'(w)’

15



4. The Screening Threshold
Akerlof’s Lemons Principle emerges because potential suppliers of higher quality
products or services have higher reservation prices. However, in the basic screening

model of the previous section, this feature is absent. Each type of worker has the same

outside opportunity to earn a wage w,(¢) =¢,. In this section we reconsider equilibrium
screening under the Akerlovian assumption that the reservation wage, w, (¢), is an

increasing concave function. We will assume that the lowest type is more productive
selecting the outside opportunity, while the highest type is less productive outside, that is,

w(a)>a and w (f)<f

Given these assumptions there exists a unique type 7 € (e, 8) such that w (f)=7.

Where needed we will appeal to the following simplifying restrictions.’

A(x)dx
A l )

A  A®)

Assumption R: (i) A'(t)/ A(?) is decreasing and (ii) is increasing.

Efficient entry is achieved if all types ¢ > ¢, are screened. For this to be the case, the
minimum screen must be zero. As this next result shows, the minimum equilibrium type
¢ >t, and the minimum “threshold” level of the screen is strictly positive.

Proposition 4: If Assumption R holds, then the minimum type that is sorted is

A@ _ w, @
At) t-w ()’

t = Sup{s| Vte (t,,5))

The functions A’(r)/ A(t) and wo' () /(t —w,(t)) are depicted in Figure 5 below.

From Figure 5, if the screening technology gets everywhere weaker so that

* Conditions (i) and (i) are satisfied, for example, if A(t)=1°, >0.

16



A'(t)] A(t) decreases, the heavy curve shifts down. Then the equilibrium entry level
increases, as does the screening threshold. Indeed, if the screening technology is

sufficiently weak, ¢ = 8 and there is no entry into the screening industry.

Fig. 5: Screening Threshold
Similarly, holding w, () constant, if wo'(t) increases it follows that # —w,(¢)

declines, and hence that wo' (#)/(t —w,(t)increases. Again the equilibrium entry level

increases.
5. Signaling

Until now we have focused on the “screening” version of the model where the
uninformed agents move first. The modern game-theoretic interpretation of Spence’s
multiple signaling equilibria is that they are all Nash equilibria of a model where the
informed agents move first. In the labor market application, a consultant first chooses her

educational credentials and then firms bid for her services based on their beliefs about her

17



productivity. In equilibrium (a) beliefs are confirmed and (b) given these beliefs,

Bertrand price competition results in a wage equal to her productivity.

This is illustrated below for the simplest 2 type case. Type ¢, has a productivity of

wage
w A
X, .
V(tz) /‘/
5 b
v(t) &
Xl
—» Z
E A
L 4 deductible

Fig. 6: Labor Market Signaling

v(t,) and type ¢, a productivity of v(t,) > v(z,). Type ¢, has a lower signaling cost.
Three possible separating equilibria are depicted in the Figure. Since firms know that the

lowest productivity is v(t,), they are willing to pay this to someone who chooses z=0.
Thus one contract offered is X, =(0,v(,)). The contract X, is incentive compatible and
satisfies the zero-profit condition. As long as firms believe that anyone choosing z < z,
is much more likely to be the low type, they will respond to someone choosing Z, with a

low wage offer. Given such responses, no high productivity consultant has an incentive

to choose Z, rather than z,. Of course an identical argument establishes that the contract

18



pairs, X, X , and X,, X, are also Nash signaling equilibria. Also depicted is the contract

(z,v), where Vv is the population mean productivity. Again with sufficiently
conservative beliefs about the type making an out-of-equilibrium choice of z, this is a
Nash signaling equilibrium.

Since a continuum of equilibria implies that the model has little predictive power,
economists typically try to reduce the number of equilibria by applying an equilibrium
refinement. The simplest refinement is the Intuitive Criterion of Cho and Kreps (1987).

The idea is to apply a credibility test to an out-of-equilibrium choice Z,. Suppose that
firms believe that it is type # which chooses Z,. In this case they will bid the wage up to

the type’s productivity so w=7. This response is credible if (i) type # would prefer
(Z,w) to the Nash equilibrium contract (z(f), w(z(f)) and (ii) no lower productivity type
would be better off choosing the new contract.

Consider Figure 6. Suppose that a worker chooses %, and firms believe it is a high
productivity type. The wage is thus bid up to v(z,) . Type ¢, strictly prefers the contract
X » =(%,,v(t,)) to X, while type ¢, prefers the contract X , =(0,v(z,)) to the contract
X ,- Thus it is credible that Z, is selected by the high productivity type. The Nash
equilibrium pair of contracts X,, X, therefore fails the Intuitive Criterion. Since the
same argument holds for any z, > z, it follows that the unique Nash equilibrium which

satisfies the Intuitive Criterion is the contract pair X,, X .

19



Now suppose we modify the model and replace type ¢, by types z,, and t,,. Type ¢,,
has a productivity higher than v(¢,) while type ¢,, has a productivity equal to that of type

t,. The mean productivity of types ¢,, and t,, is v(z,).

Note that we have altered the model in such a way that it is observationally equivalent
to the original model. However now the Intuitive Criterion has no bite. Consider the

Nash equilibrium contract pair X,, X, once more. If a type chooses Z, and firms believe
itis type ¢,, they will bid the wage up to v(¢,,) > v(z,) . But then type t,, is strictly better
off also, so part (ii) of the Intuitive Criterion is violated. It firms believe it is a type ¢,
they will offer a wage of v(¢,) which is strictly worse for this type and so part (i) of the
Intuitive Criterion is violated. Thus X,, X, survives the Cho-Kreps refinement.

An alternative resolution is to argue that since the model is essentially unchanged,
the old arguments should apply. That is, since types ¢,, and t,, are observationally
equivalent, make the conjecture that it is one of these types that is choosing Z,. Then,
applying Bayes’ Rule, expected productivity is v(z,) . Arguing exactly as before, the
belief is credible and so the Nash equilibrium X, X, fails the strengthened refinement.

This refinement was first proposed by Grossman and Perry (1986ab). My view is that
this is the appropriate approach to take. Game theorists are reluctant to employ the

stronger refinement because it comes at a price. No longer is there a general existence
theorem. To see this, consider the best separating Nash equilibrium X,, X, in Figure 6,

and the out-of-equilibrium signal 7 . If the belief is that any of the types might have sent it

and the population mean productivity is v , the wage will be bidupto w=v. As

20



depicted the mean productivity is sufficiently high that all types are indeed better off.
Then even the best Nash separating equilibrium fails the GP Criterion. It is also easy to
show that no pooling equilibrium satisfies the GP criterion either.

In the example, there is no Nash signaling equilibrium which satisfies the GP
Criterion precisely when there is no Nash equilibrium of the screening game. This
conclusion holds very generally. Thus if the Grossman-Perry refinement is to be applied,
the test proposed for the screening model is equally relevant to signaling models.

6. Concluding Remark

I have argued that there are two useful ways of testing the plausibility of screening
and signaling models. First, via calibrating exercises, it is possible to find out whether
the resulting sorting choices look anything like those that we observe. For insurance
markets, I have suggested that the deductible is such a weak sorting mechanism that we
should not expect to see it employed in practice for this purpose.4 Second, the internal
consistency of both screening and signaling stories of equilibrium sorting has important
implications for empirical testing.

A large number of theoretical sorting models have been developed to explain a host
of phenomena over the last two decades. The examples presented in this paper suggest
that, in many cases, the models will not survive empirical scrutiny. If I am correct, it will
follow that economists have not yet fully responded to the challenges laid down by this

year’s Nobel Laureates.

4 It is far from clear that insurance companies do know less about insurance risks than insurees.
However, where there is asymmetric information, the strong conclusions about the incentive to
skim the cream from an insurance pool and the implausible separating contracts would seem to
indicate that we do not yet have a satisfactory model of such markets.
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APPENDIX

We begin with two technical Lemmas.

Lemma 1: If A(s)>0, i=1,2, A() is increasing and 2(( )) ‘:22(( )) x€ [s,t] then

AW A0
[awadx |4, x)ax

j'A, (w)dw

Proof: Define c;(t) =+———— i=12. Then
A®

IAMMW
=120 1 A®. A1)

Al A®) A1)

Given our assumptions it follows that
®=c,t)=c ) <c, () (A.2)

Since c;(s) =0, it also follows that c,.'(s) =1, i=12.

Differentiating (A.1), ¢, (f) =—c, (t)i((t)) c()j IZ((t)) Then c ()=_Xf:;'

It follows immediately that ¢, (#) < c,(¢) for some interval (s,?). If ¢,(f) =c,(f) it follows

also that ¢, (f) > ¢, (f). But this contradicts (A.2).

QED

Proposition 1 follows immediately
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G () G, ()
G(® G
G® . G®

Lemma2: If G ()>0i=12 and

, X€[s,t) then

(@) ,
G,(1)-G,(s)  G,(t)—G,(s)

and

(b) tGl(t)—Gl(S) >- G,()-G,(s) t2s

[ G0-GNdx [ (G, (x)-GCy(s)dx

s

Proof: Define A (#)=G,(t)—G,(s), i=1,2. Then A (s)=0.We can rewrite the

condition, 31 ®.6®, L4’ >ilnA2 (x), that is ~— nA® o
6w Gy & dx A (x)
follows immediately that for any f and s<?,
—A&>& and hence Az( $) A‘(S) , §<t
A®  As) A o NOX

Since A (s)=0, we can integrate this last expression over [s,] to obtain

A0 AO
A () Al @
Thus (a) holds.

t
[ AG)dx
To prove (b) we note that if c,(t) = ‘T , then by 1'Hopital's Rule, ¢,(s) =0 and,

from the proof of Lemma 1,

jA,(w)dw

‘O=1-A"()+—— A3
¢, =1-A@® YO (A.3)

Appealing to 1'Hopital's Rule,
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J.A,. (w)aw
lim 3 = i -AG
SOAWT M 2AMA ) 240

Thus ¢ (s)=1.

Differentiating (A.3),

C,"(t)=—[A’A' I+A"2':_2(A’ )ZI] where I(t)=j A(w)aw .

To determine c,.'(s) we apply I'Hopital's Rule repeatedly.

()= 1 A,A T+AATTY ATAT+ATAR+2(AT) A -4A'AT - 2(A)A]
’ A()'“ 347
oL i AATIH247AN-3AAL
A(s) tJ—s 3A

Since the first term in the numerator is O(t—s)* and A’ is O(t —s)* we can ignore this

term and so

AN AT
3A(S) tls A

¢ (s)=-

Differentiating the numerator and denominator of the bracketed expression once more,

[ 4

()= —— L im P AN +247A7 34T AN 3AT) T34 AT
! 6A'(s)* tis A

Since 1(t) is O(t—s)* and A(#) is O(t —s), we can eliminate the 2", 4™ and 5™ terms

in the numerator and so

¢ (s)=— : m[AA‘A]- 1A®)

Ok A 6 A'(s)

24



It follows that in some right neighborhood of s, ¢,(¢) <c,(¢). Since (a) holds we can

argue exactly as in the proof of Lemma 1 that this inequality must be strict of all 7 > s.

Q.ED.
From (1.4),
j tF'(t)dt
£t,t,) = ————— W
U F()-F@,)
Integrating by parts,

| «r@-Fepax

(1) =t, —- PO -F () -w (A4

Consider two different distributions of productivity and suppose that

—Fi, (t) > —Fz, (t) s E2>1,.
F@® F@)
It follows from Lemma 2 that

(8,1, > 7, (2,,1,)

As is readily conﬁrmed,1

FOE® oo O, 140)

- ~ - —, Vtand Vs<t
F@) F@ F(s) F ()

Thus our sufficient condition for ranking profit is essentially the requirement that the first

distribution exhibits Monotone Likelihood dominance over the second.’

1 4

dt
2If A(0)=0, i=1,2 it follows from Lemma 2 that A"(t)/ A@)> Az’(t)/ A, (¢) thus our
earlier ranking result for the two technologies continues to hold.

InF ()2 %m F/()) ©InF, (x)-InF, (s)>In E, (x)—~In F, (5), Vx>
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Lemma 3:

[ (A@)- A )ax

A

T AG) - AG)

Proof:
From (1.5),

A(t,)(W-t,))=2-2z(t,) and A@t)(W—1)=%-2z(1).
Subtracting the second expression from the first,

(A@t,) - A@))W =1,A(t,) -t A(t) - (z(1,) - z(1)) .
From (1.2) dz/dt = A(t). Hence

() —z2(t) = ii A(x)dx = ii (A(x)—A(t))dx+ A, - t,) .

Substituting into the previous expression,

| a-awnax

A 4

Al -A®)

Q.ED.

Proposition 2: Necessary and sufficient conditions for a Nash equilibrium
For the Pareto efficient zero-profit separating contracts to be equilibrium best responses it

is necessary that
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A’ (t) F” F@)

A(t) F'@t)’ re . 8)

It is sufficient that the inequality be everywhere strict.

At _F'@)

, for some t, € (¢,, ). Since A(:) and F(-)e C’, there is
A6 " Fa) ‘

Proof: Suppose —=

some interval [¢,,z,] over which this inequality continues to hold. From Lemma 3 and

(A4),
| aw-aena [ (Fm-Feyd
A(t1,) =" i (A5)

A@,)—-A®) F(,)-F()
Then appealing to (A.5), 7#(t,,t,) > 0 so the offer (Z,W) is strictly profitable. Hence for

the separating zero-profit contracts to be best replies, it cannot be the case that

A _F't)

A(t) )’ , forsome 1, € (z,, ).

An appeal to Lemma 2 then establishes Corollary 3.
Q.E.D.

Proposition 4: If Assumption A holds, then the minimum type which screens is

A@s) . _w, ()
A(s) s—w,(s)

t" = Sup{t| , Vse(t,,1)}

Proof: Since ltigx(wo' O /t-w, () =oo, t is well defined. Integrating equation (3.2),

the necessary condition for sorting, any sorting function z(¢), can be written as

z(t,k) = I A(x)dx -k . Consider first the sorting function for which all types are sorted.
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Since the minimum type does not signal z(«,k) =0 and hence k =0. The utility of type
tis then u(z,0)=t-1z(¢,0)/ A(z).

For efficient sorting by industry, all those types ¢ > (for which ¢ > w (f)) must be
sorted. Type ¢ must be indifferent between entering and staying out. Hence at 1 =7,

u(t,le) =t- z(t,lg)/ A(t)=w,(r) =t . This is depicted in Figure 7.

payoff
A
u(t, k) X
u(z, k)
A w, (1)
; " u(t,0)

type

Fig. 7: The signaling threshold

Tt follows that z(7,k)=0. Since u(f,0)<7 , it follows that £ >0.

Also, u(t,k) =t —z(t,k)/ A(t) = Max{s — z(s,k)/ A(t)} . Thus, by the Envelope Theorem,

LIy GOV
dr A AG)

But we have just argued that z(f,k)=0 so that %u(t,lé) =0.

1=f
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Therefore, as depicted in Figure 7, the screening payoff is below the outside payoff for
some interval of types (f,7). Thus the participation constraint is violated over this
interval.

It follows that the threshold entry level exceeds ¢ . In the Figure, we can satisfy the

participation constraint by making type ¢ the minimum type that is screened. However
clearly there are sorting functions z(¢,k), with &k > k >0 which are Pareto preferred.
Indeed the Pareto dominant utility curve u(z,k) must touch the outside opportunity curve
on the interval (f,7). We now argue that this occurs at t.
Choose k so that u(t',k)=1"—z(t",k)/ A(£")=w, (") . Then
2", k) = (" —w,(tNAC)

Arguing as above, it follows from the Envelope Theorem that

4 = 2RO
dt A@t) AQ@)
Hence,
d o 2 RAC) e A
dtu(t’k),=,° —_A(t') _—A(t') & -w, @) SR

From the definition of ¢", the right-hand side is wo' (t"). Thus the slopes of the two

functions are the same at ¢ .
t
Also z(t,k)= | A(x)dx—k and kis positive. Hence
[214

1

’ J'A(x)dx ’ ’
_d_u(t k)=z(t,k)A(t)=a Ak A
dr AR) A®) Al A AQ) AQ)
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If Assumption R holds, the right hand side is strictly increasing. Thus u(#,k) is convex.

By hypothesis w,_(¢) is concave so the participation constraints are satisfied for all ¢ > t.

Q.E.D.
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