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NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF
NONADDITIVE HEDONIC MODELS

BY JAMES J. HECKMAN, ROSA L. MATZKIN, AND LARS NESHEIM1

This paper studies the identification and estimation of preferences and technologies
in equilibrium hedonic models. In it, we identify nonparametric structural relationships
with nonadditive heterogeneity. We determine what features of hedonic models can be
identified from equilibrium observations in a single market under weak assumptions
about the available information. We then consider use of additional information about
structural functions and heterogeneity distributions. Separability conditions facilitate
identification of consumer marginal utility and firm marginal product functions. We
also consider how identification is facilitated using multimarket data.

KEYWORDS: Hedonic models, hedonic equilibrium, nonadditive models, identifica-
tion, nonparametric estimation.

1. INTRODUCTION

HOW MUCH ARE CONSUMERS WILLING TO PAY for increased product qual-
ity? What wage premium do workers require to compensate them for an in-
crease in on-the-job fatality risk? How much are homeowners willing to pay
to avoid moving one mile further from work? What will be the effect of new
clean air legislation on real estate prices? Hedonic models provide informa-
tion that helps to narrow the range of possible answers to these questions. In
an hedonic market, the price function for a good or service decomposed into
its attributes measures the equilibrium relationship between attributes of the
good and the price at which buyers and sellers are willing to trade. It is the
price that equates supply and demand in the space of hedonic attributes. It
provides an exact measure of the marginal willingness to pay and willingness
to accept for equilibrium transactions in a market. However, in general, the
equilibrium price function does not identify the willingness to pay for coun-
terfactual transactions that might occur in markets characterized by different
endowments, technology, and preferences. Due to unobserved heterogeneity,

1This research was supported by NSF Grants SES-024158 and BCS-0433990/BCS-0852261.
Lars Nesheim also thanks the Leverhulme Trust and the U.K. Economic and Social Research
Council (ESRC Grant RES-589-28-0001) for support through its funding of the Centre for Micro-
data Methods and Practice (http://www.cemmap.ac.uk). Rosa L. Matzkin’s research has been sup-
ported also by NSF Grant SES-0551272/SES-0833058. We thank the co-editor, Whitney Newey,
and three referees for their extremely useful input and the participants at seminars at Northwest-
ern University, Universidad de San Andres, Princeton University, Harvard/MIT, UCLA/USC,
University of California at Berkeley, University of Minnesota, the Bureau of Labor Statistics,
University of Chicago, Universidad Torcuato Di Tella, the 2002 Workshop on Characteristics
Models: Theory and Applications (University of Copenhagen), the 2002 Workshop on Mathe-
matical Economics (IMPA), and the 2004 Banff International Research Station (BIRS) workshop
on “Mathematical Structures in Economic Theory and Econometrics” for their useful comments.
We thank Myrna Wooders and Daniel McFadden for many stimulating conversations, Donald J.
Brown for helpful comments, and Yong Hyeon Yang for excellent research assistance.

© 2010 The Econometric Society DOI: 10.3982/ECTA6388

http://www.econometricsociety.org/
http://www.cemmap.ac.uk
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA6388


1570 J. J. HECKMAN, R. L. MATZKIN, AND L. NESHEIM

there is a selection problem.2 To take a labor market example, workers who
choose to work in jobs with a low fatality risk are likely to have low unobserved
tolerance for risk. As a result, the compensation they require to accept more
risk is likely to be higher than the equilibrium wage premium for risky jobs. To
identify willingness to pay and willingness to accept for counterfactual transac-
tions, one needs to identify the structural parameters of buyers and sellers.

Knowledge of the hedonic price function alone is not enough to analyze
general equilibrium effects of policy changes in hedonic markets. When supply
or demand conditions change, buyers and sellers will, in general, alter how
they sort in hedonic markets. Hence, to analyze general equilibrium changes
in hedonic markets, it is necessary to identify the structural parameters.3

Observed and unobserved heterogeneity play key roles in hedonic equilib-
rium sorting models. In particular, their distributions and the underlying utility
and production functions of the agents generate equilibrium sorting outcomes
and shape how an hedonic economy will react to changes in the economic envi-
ronment. Previous studies of hedonic markets have analyzed either parametric
or restrictive nonparametric utility and production functions, where the unob-
served heterogeneity is specified as a term added to marginal utility or mar-
ginal product functions.4 Ekeland, Heckman, and Nesheim (2004) analyzed
nonparametric hedonic models with additive marginal utility and additive mar-
ginal product functions. They showed that hedonic models with additivity re-
strictions are nonparametrically identified with single market data, and they
presented two methods for recovering the structural functions in such models.

The additivity assumptions used to establish identification in Ekeland, Heck-
man, and Nesheim (2004) are strong. No heterogeneity in the curvature of pro-
duction and preference functions is allowed. In addition, these restrictions are
overidentifying.

In contrast, this paper establishes nonparametric identification of structural
functions and distributions in general hedonic models without imposing addi-
tivity. We allow the curvature of the marginal utility for the product attribute,
as well as the distribution of the marginal utilities, to vary in general ways
across agents with different observed characteristics. We allow an analogous
property to hold for nonadditive unobserved heterogeneity in marginal prod-
uct functions on the supply side of the market.

We first analyze what can be identified in an unrestricted model fit using
data from a single market that satisfies standard economic regularity condi-
tions and additional mild statistical regularity conditions. We then restrict the
functional structure of the marginal utilities and marginal product functions,

2See, for example, Rosen (1974).
3See, for example, Hurwicz (1962) or, for a more modern statement, Heckman and Vytlacil

(2007).
4For analyses of identification of parametric hedonic models, see Brown and Rosen (1982),

Brown (1983), Epple (1987), Bajari and Benkard (2005), or Berry and Pakes (2007).
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obtaining nonparametric versions of random coefficient and household scale
models. We show that in these cases, the marginal utility and marginal product
functions, as well as the distribution of the unobserved characteristics of the
agents, are identified. Our proofs of identification are constructive and sug-
gest nonparametric estimation strategies whose properties we examine in the
Technical Appendix (Heckman, Matzkin, and Nesheim (2010)).5

We go on to show that models that cannot be identified in a single cross
section can be identified using data from multiple markets. This follows from
the economics of the hedonic model. In general, variation in the distributions
of observed variables across markets induces cross-market variation in price
functions. This part of our analysis formalizes and extends discussions in Rosen
(1974), Brown and Rosen (1982), Epple (1987), and Kahn and Lang (1988).

To focus on the key identification problems that arise in a setup where mar-
ginal utilities are nonadditive in unobserved heterogeneity, we concentrate on
an hedonic model with a single product characteristic. Our main results can be
extended to hedonic models with multiple characteristics captured by an index
structure, as in Epple and Sieg (1999) and Sieg, Smith, Banzhaf, and Walsh
(2004). Our methodology extends the two stage method of Rosen (1974) to a
nonparametric setting. The first stage estimates the hedonic price function and
its derivatives. Using the estimated price function together with the first order
conditions of the agents identifies marginal production and utility functions.

This paper proceeds in the following way. Section 2 describes the hedonic
model for a product with a single attribute. Section 3 studies the identification
of nonadditive marginal utility and nonadditive marginal product functions.
Section 4 analyzes identification in multiple markets. Nonparametric estima-
tors are discussed in Section 5. Their properties are derived in the Technical
Appendix (see Heckman, Matzkin, and Nesheim (2010)). The Technical Ap-
pendix also presents a limited Monte Carlo analysis. Section 6 summarizes and
discusses possible extensions.

2. THE COMPETITIVE HEDONIC EQUILIBRIUM MODEL

The model analyzed in this paper applies to a spot market in which products
are differentiated by their attributes, prices are set competitively, and partic-
ipating buyers and sellers each trade a single type of product chosen from a
set of feasible products. Our analysis of demand in this section and in Sec-
tion 3 can be applied to hedonic demand estimation problems in imperfectly
competitive markets with a continuum of potential products where consumers
are fully informed price takers. The multimarket analysis in Section 4 also can
readily be adapted to study demand in imperfectly competitive markets with a
continuum of products as long as there is sufficient cross-market variation in
market structure to induce price variation. We focus on competitive markets
for ease of exposition.

5See Technical Appendices D and F.
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To fix ideas, we consider a labor market setting in which jobs are character-
ized by their attributes. Workers (sellers) match to single employee firms (buy-
ers) and supply job services indexed by a scalar z, where z ∈ Z̃.6 We assume
that Z̃ ⊆ R is compact. The space Z̃ is the space of technologically feasible job
attributes. The variable z denotes a job attribute assumed to be a disamenity
for the workers and an input for the firms. For example, z could measure the
probability of injury on the job as in Kniesner and Leeth (1995) or Leeth and
Ruser (2003), so Z̃ = [0�1]. Let P(z) be a twice continuously differentiable
price function defined on Z̃. The value of P(z) is the wage paid at a job char-
acterized by attribute z.

Each worker has quasilinear utility function P(z)−U(z�x�ε), where x is a
vector of observed characteristics of dimension nx and ε is a scalar unobserved
heterogeneity term.7 Observe that U(·) is a disutility. ε is statistically inde-
pendent of x. In the risk of injury example, ε is interpreted as the component
of unobserved preference for risk that is independent of observables such as
age, education, gender, race, and so forth. Note that since ε is allowed to enter
marginal utility Uz in a nonadditive way, the independence assumption is much
weaker than it would be if ε entered additively. In particular, the nonadditive
specification is consistent with a model where Uz is a function of an unobserved
ξ = m(x�ε), whose distribution depends on the vector of observed character-
istics, x, of the agent. The population of workers is described by the pair of
density functions fx and fε, which are assumed to be differentiable and strictly
positive on the compact sets X̃ ⊆ Rnx and Ẽ ⊆ R, respectively. Each worker
may choose not to trade, in which case they obtain reservation utility V0.

Each firm has a production function Γ (z� y�η), where y is a vector of ob-
served characteristics of the firm of dimension ny and η is a scalar unobserved
heterogeneity term. We assume that η is statistically independent of y and that
(y�η) is independent of (x�ε). The population of firms is described by the
pair of density functions fy and fη that are strictly positive on the compact sets
Ỹ ⊆ Rny and H̃ ⊆ R, respectively. If a firm opts out of the market, it earns
reservation profits Π0.

Both U and Γ are assumed to be twice continuously differentiable with re-
spect to all arguments.8 Additionally, we assume that, given the equilibrium
price function, each worker and firm that participates has a unique interior op-

6If jobs are characterized by a vector of attributes a ∈ Ã ⊆ Rn� we assume that preferences and
costs depend on a only through the scalar index z = g(a). We discuss identification of a single
index model in Section 3. Alternatively, if utility is quasilinear and both utility and production
functions are additively separable functions of z and other attributes, the price function will share
these properties and the market for z can be analyzed independently of the other attributes.

7When utility is not quasilinear, we can identify the ratio of the marginal utility of z to the
marginal utility of income (see Technical Appendix B).

8The equilibrium analysis can be extended to cases in which z is a vector, the arguments of the
functions are discrete, the measures on characteristics are not absolutely continuous with respect
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timum. A sufficient condition for this to hold is a Spence–Mirrlees type single-
crossing condition, requiring that Uzz − Γzz > 0� Uzε < 0, and Γzη > 0, for all
(z�x�ε� y�η), be satisfied.9 For simplicity, we assume that these conditions are
satisfied.

Each worker chooses z ∈ Z̃� a job type or a location in the space of job
attributes, to maximize

P(z)−U(z�x�ε)�

Under the above conditions, it follows from Gale and Nikaido (1965) that there
exists a supply function z = s(x�ε) such that

Pz(s(x�ε))−Uz(s(x�ε)�x�ε)= 0�(2.1)

By the Implicit Function Theorem,

∂s(x�ε)

∂ε
= Uzε(s(x�ε)�x�ε)

Pzz(s(x�ε))−Uzz(s(x�ε)�x�ε)
(2.2)

so that ∂s(x�ε)

∂ε
> 0 since Uzε < 0 and the denominator is negative from the as-

sumption of an interior optimum. Our assumptions imply that s(x�ε) is strictly
monotonic in ε and that its inverse with respect to ε exists. We denote the
inverse supply function by ε = s̃(z�x).

A parallel analysis can be performed for the demand side of the market.
Each firm chooses z ∈ Z̃ to maximize the profit function

Γ (z� y�η)− P(z)�

The resulting demand function, z = d(y�η), satisfies

Γz(d(y�η)� y�η)− Pz(d(y�η))= 0�

and

∂d(y�η)

∂η
= Γzη(d(y�η)� y�η)

Pzz(d(y�η))− Γzz(d(y�η)� y�η)

so that ∂d(y�η)
∂η

> 0 since Γzη > 0 and the denominator is positive. We denote the
inverse demand function η = d̃(z� y).

The inverse supply and demand functions characterize equilibrium.10 Let

Zs = {z ∈ Z̃ | z = s(x�ε) for some (x�ε) ∈ X̃ × Ẽ}

to Lebesgue measure, or the functions are not differentiable. See Ekeland (2010) or Chiappori,
McCann, and Nesheim (2010) for details.

9See Chiappori, McCann, and Nesheim (2010) for details.
10See Ekeland, Heckman, and Nesheim (2004).
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be the range of the mapping s(x�ε). Using a standard change of variables for-
mula, the density of supply implied by the inverse supply function is∫

X̃

fε(̃s(z�x))fx(x)
∂̃s(z�x)

∂z
dx(2.3)

for z ∈ Zs. For z ∈ Z̃ \Zs� the density of supply is zero.
Analogously, let

Zd = {z ∈ Z̃ | z = d(y�η) for some (y�η) ∈ Ỹ × H̃}
be the range of the mapping d(y�η). The density of the demanded z is

∫
Ỹ

fη(d̃(z� y))fy(y)
∂d̃(z� y)

∂z
dy(2.4)

for z ∈ Zd . For z ∈ Z̃ \Zd� the density of demand is zero. Both inverse supply
and inverse demand depend on P(z), although the dependence is implicit.

Among the set of smooth price functions that yield unique interior optima,
an equilibrium price function must satisfy the condition that the density of
supply equals the density of demand for all values of z ∈ Z̃. Making explicit the
dependence of the supply and demand densities on P , this condition requires
that Zs =Zd and that∫

X̃

fε
(̃
s(z�x;P(z)))fx(x) ∂̃s(z�x;P(z))

∂z
dx(2.5)

=
∫
Ỹ

fη
(
d̃(z� y;P(z)))fy(y)∂d̃(z� y;P(z))

∂z
dy

for all z ∈ Zs ∩ Zd , where P(z) is the price function. The equilibrium price
function solves this equation.

2.1. Properties of Equilibrium

Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) showed that
an equilibrium exists in the hedonic model under very general conditions which
include those given in the previous section. They also showed that the single-
crossing property presented in the previous section is sufficient for equilibrium
to be unique and pure in the sense that each worker matches to a single firm
and each pair chooses a single job type z. This implies, in particular, that coun-
terfactual policy analysis using this model provides unambiguous answers.

A key implication of the model is that cross-market variation in the price
function is determined by cross-market variation in the functions (fx� fε)
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and (fy� fη). To see this more clearly, substitute for ∂̃s(z�x)

∂z
and ∂d̃(z�y)

∂z
, and

rewrite (2.5) as

Pzz(z) =

∫
Ỹ

fηfy
Γzz

Γzη

dy −
∫
X̃

fεfx
Uzz

Uzε

dx∫
Ỹ

fηfy

Γzη

dy −
∫
X̃

fεfx

Uzε

dx

�(2.6)

where the arguments of the functions are suppressed. This second order dif-
ferential equation depends on the objects (U�Γ ), (fx� fε), and (fy� fη). If the
parameters (U�Γ ) and (fε� fη) are fixed while (fx� fy) vary across markets, the
equilibrium price will vary across markets. We exploit the variation induced by
these changes in Section 4 to show identification of the structural parameters
using multimarket data.

Finally, our assumptions imply that the joint distribution of observables
(z�x� y) implied by the model will be continuous. Since the distributions of
(x�ε) and (y�η) are continuous, the joint distribution of (z�x� y) will be con-
tinuous if almost all agents do not bunch at a single point in Z̃. Given a point
zb ∈ Z̃� it is possible that a positive measure of agents will bunch at zb only if
the set

B = {(x�ε)� (y�η) | Γz(zb� y�η)= Uz(zb�x�ε)}
has positive measure. When (x�ε) and (y�η) are continuously distributed, this
set cannot have positive measure if Γzη > 0 and Uzε < 0. Our assumed single-
crossing condition rules out bunching and implies that (z�x� y) are continu-
ously distributed on their respective domains.11

3. IDENTIFICATION IN A SINGLE MARKET

This section discusses identification of the supply function s(x�ε), the mar-
ginal utility function Uz(z�x�ε), and the distribution of ε in a single market.
We do not discuss the demand side of the market because the analysis for that
case is analytically similar. Our analysis assumes that the equilibrium price
function P(z) and the distribution of (z�x) are known, where z denotes the
observed hedonic location choice of an individual and x denotes the vector of
observed worker characteristics. Estimation of P(z) does not affect the identi-
fication analysis. In Section 5, we discuss how it impacts estimation. (See Tech-
nical Appendix D.)

11Examples with bunching can be generated either by allowing for mass points in the distri-
butions of worker or firm types or by relaxing the single-crossing condition. Further analysis of
bunching is available in Technical Appendix C.
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We conduct the analysis for the case where z ∈ R. The analysis applies
equally to the case where z = g(a) ∈ R and a ∈ Rn subject to a normaliza-
tion on g. For example, if z = β · a and the first coordinate of β� β1 = 1,
then the vector of parameters for β can be estimated from the price function
since the equilibrium price has the form p = P(β · a). Under these conditions
(dP/daj)/(dP/da1) = βj . Once β has been identified, the analysis in this pa-
per can be applied to z = β · a.12

In nonadditive hedonic models, the supply function s(x�ε) is a nonsepara-
ble function of a vector of observables x and a scalar unobservable ε. While
we assume that ε is independent of x, nonetheless, the nonadditive structure
allows for arbitrary interactions between x and ε in producing outcomes. Fur-
thermore, the theoretical structure of Section 2 implies that s is a strictly in-
creasing function of ε. The function s(x�ε) can then be identified using results
from Matzkin (1999, 2003), where it is shown that, using the independence
between ε and x� and the strict monotonicity of s in ε� one has that for all
values x of X and all values ε′ of ε,

Fε(ε
′) = Pr(ε ≤ ε′)

= Pr(ε≤ ε′|X = x)

= Pr(s(X�ε)≤ s(x�ε′)|X = x)

= FZ|X=x(s(x�ε
′))�

The conditional distribution function, FZ|X=x� of Z given X = x is strictly in-
creasing when the density of ε is everywhere positive. In this case,

s(x�ε′)= F−1
Z|X=x(Fε(ε

′))�

Note that s(x�ε) is a reduced form. It depends on the structural utility function
and on the equilibrium price P(z). Nevertheless, it can be used to predict par-
tial equilibrium impacts of changes in x or ε on equilibrium outcomes. More-
over, identification of s(x�ε) is a first step required for identification of Uz .

Identification of s(x�ε) requires either a normalization of the function (e.g.,
fixing its values at a particular value of X) or of the distribution of the unob-
served ε (e.g., assuming that the distribution Fε(ε

′) is known). If, for example,
we normalize s so that at a value x of X and all ε′,

s(x�ε′)= ε′�

then one gets from the above equations that for all ε′,

Fε(ε
′) = FZ|X=x(s(x�ε

′)) = FZ|X=x(ε
′)

12Epple and Sieg (1999) and Sieg, Smith, Banzhaf, and Walsh (2004) used this index structure
in their analysis of parametric hedonic models.
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and for all x,

s(x�ε′)= F−1
Z|X=x

(
FZ|X=x(ε

′)
)
�

See Matzkin (1999, 2003) for details.
Certain features of the function s, such as ∂s(x�ε′)/∂x (the partial derivative

of s with respect to x) or z1 − z0 = s(x1� ε) − s(x0� ε) (the change in z due to
a change in x from x0 to x1� leaving the value of ε fixed), are invariant to the
choice of a normalization. These can be expressed as

∂s(x�ε′)
∂x

= −
(
∂FZ|X=x(z)

∂z

)−1(
∂FZ|X=x(z)

∂x

)
�

where z = s(x�ε′), and as

s(x1� ε)− s(x0� ε)= F−1
Z|X=x1

(
FZ|X=x0(z0)

) − z0�

See Matzkin (2007) for details. We next consider assumptions under which Uz

is identified. We start with a nonidentification result that motivates our identi-
fication analysis.

3.1. A Nonidentification Result

Given s(x�ε) and P(z), we seek to identify the marginal utility function Uz .
In equilibrium, this function satisfies the first order condition

Uz(s(x�ε)�x�ε)= Pz(s(x�ε))�(3.1)

Note that the marginal utility function is identified for those values of (z�x�ε)
that lie on the surface {(z�x�ε)|z = s(x�ε)}. On this surface, the value of the
marginal utility Uz is known, since it must equal the value of the marginal price
function.

However, it is clear from this expression that without further restrictions, it
is not possible to identify the function Uz for all values of (z�x�ε) using data
from a single market. For any arbitrary values of x and ε� the value s(x�ε), the
first argument of the function, is uniquely determined. Thus, even if we could
observe ε� we could not independently vary (z�x�ε) and trace out the function
on its nx + 2 dimensional domain.13

We offer three responses to this fundamental nonidentification problem:
(i) Focus attention on features of Uz that are identified; (ii) impose functional
restrictions on Uz that enable analysts to overcome the exact functional depen-
dence between z� x� and ε that is implied by economic theory, or (iii) obtain

13This is the nonparametric generalization of the nonidentification result reported in Brown
and Rosen (1982).
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data from equilibria in different markets and make use of independent vari-
ation in hedonic equilibrium prices across markets. We pursue the first two
approaches in the remainder of this section and develop the third approach in
Section 4.

3.2. What Is Identified Without Further Structure

Even though Uz is not identified using data from a single market, some fea-
tures of the function Uz are identified. A revealed preference argument shows
that the hedonic price function provides a bound on Uz . If a worker (x0� ε0)
chooses z0 and not z1, where z0 > z1, then it must be the case that

P(z0)− P(z1) ≥ U(z0�x0� ε0)−U(z1�x0� ε0)

=
∫ z0

z1

Uz(s�x0� ε0)ds�

Differences in hedonic prices for z0 and z1 in general overestimate the change
in welfare between z1 and z0.14

Other features of Uz are point identified. For example, if x contains two
variables, x1 and x2, the ratio of the partial derivatives of Uz with respect to x1

and x2 is identified. To see this, note that one can totally differentiate equa-
tion (3.1) with respect to x1 and x2 to obtain

Uzz(z�x1�x2� ε)
∂s(x1�x2� ε)

∂x1
+Uzx1(z�x1�x2� ε)

= Pzz(s(x1�x2� ε))
∂s(x1�x2� ε)

∂x1

and

Uzz(z�x1�x2� ε)
∂s(x1�x2� ε)

∂x2
+Uzx2(z�x1�x2� ε)

= Pzz(s(x1�x2� ε))
∂s(x1�x2� ε)

∂x2
�

Hence, from the assumed properties of U and the additional assumption that
Uzz − Pzz is nonzero in equilibrium,

Uzx1(z�x1�x2� ε)

Uzx2(z�x1�x2� ε)
=

∂s(x1�x2� ε)

∂x1

∂s(x1�x2� ε)

∂x2

∣∣∣∣∣∣∣∣
s(x1�x2�ε)=z

�(3.2)

14See Scotchmer (1985), Kanemoto (1988), and Griffith and Nesheim (2008).
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Since the derivatives of s(x�ε) are identified, the ratios of partial derivatives
in (3.2) are identified without any further restrictions. The ratio on the left
hand side of (3.2) measures the effect on Uz of changing x1 relative to chang-
ing x2. Since Uz is the marginal willingness to accept (WTA) for the worker
who chooses z� this ratio measures the relative impact on WTA of x1 and x2.
For example, when z is injury risk and x1 and x2 are education and experience,
respectively, the ratio measures the relative impacts on WTA of education and
experience. This identification result requires no further restrictions on the set
of admissible Uz functions other than what has been assured thus far. It does
not require any normalization of the s function.

Similarly, if x is scalar and one assumes that the distribution of ε is known,
the same type of arguments can be used to show that the ratio of partial deriv-
atives

Uzx(z�x�ε)

Uzε(z�x�ε)
=

∂s(x�ε)

∂x
∂s(x�ε)

∂ε

∣∣∣∣∣∣∣
s(x�ε)=z

(3.3)

is identified without any further restrictions on Uz . In this case, (3.3) can be
used to evaluate the relative impacts on Uz of observed x and unobserved ε for
different values of x and at different quantiles of the distribution of ε. In the
job injury example, this ratio could be used to study the impact of education on
WTA for injury risk at different quantiles of the distribution of unobservables.

3.3. Identification Assuming Further Information About the Structure of
Preferences and Technology

A second way to deal with the fundamental nonidentification problem is to
assume additional restrictions on the set of admissible Uz functions. For exam-
ple, Ekeland, Heckman, and Nesheim (2004) overcame the nonidentification
problem by imposing an additive structure on Uz . In their leading example,
they assumed that

Uz(z�x�ε)= u0(z)− u1(x)− ε�

This assumption implies that heterogeneity shifts the marginal utility of z, but
has no effect on higher order derivatives. All workers have the same curvature
in the utility function.

Under this restriction (and similar restrictions discussed in Ekeland, Heck-
man, and Nesheim (2004)), equation (3.1) reduces to

u0(s(x�ε))− u1(x)− ε = Pz(s(x�ε))�

Ekeland, Heckman, and Nesheim (2004) showed that this implies that u0, u1,
and the distribution of ε are identified up to scale and location parameters.
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However, the additive structure may be too strong for certain economic en-
vironments. From an economic perspective, it significantly limits the role of
heterogeneity in hedonic models. Moreover, it imposes testable restrictions
on observed data. Under the additive model restriction, the ratios analogous
to (3.2) are

∂u1

∂x1
(x1�x2)

∂u1

∂x2
(x1�x2)

=
∂s(x1�x2� ε)

∂x1

∂s(x1�x2� ε)

∂x2

∣∣∣∣∣∣∣∣
s(x1�x2�ε)=z

�

The rate of trade-off between x1 and x2 must be the same for all quantiles of
the z distribution. This is a testable restriction. In the case of scalar x� we have

∂u1(x)

∂x
=

∂s(x�ε)

∂x
∂s(x�ε)

∂ε

∣∣∣∣∣∣∣
s(x�ε)=z

�

The impact of x on z must be the same for all ε.
The additive model structure is overidentified. We investigate weaker con-

ditions for identification. Proceeding along these lines, we develop three theo-
rems. Each introduces a different assumption on marginal utility, but all have
the effect of reducing the number of arguments of Uz by at least one to over-
come the nonidentification result of Section 3.1. All impose some separability
structure on the utility or production functions and some sort of scale normal-
ization. The types of restrictions we study are similar in spirit to either those
required to identify household equivalence scales in classical demand theory or
those used in random coefficient models. See Lewbel (1989, 1997) for related
results on identification of household equivalence scales and a survey of that
literature. For all the theorems below, we assume that the assumptions in Sec-
tion 2 are satisfied. In particular, (i) Uz and Pz are continuously differentiable,
(ii) for all ε ∈ Ẽ and x ∈ X̃� the supply function s(x�ε) satisfies (2.1) and (2.2),
(iii) ε is distributed independently of x with a distribution, Fε, that is continu-
ously differentiable and strictly increasing on the compact set Ẽ� and (iv) the
density fx of X is strictly positive on the compact set X̃ .

3.3.1. Observable Scales

For our first theorem, we assume that Uz is a weakly separable function
in the pair (z�x1). We let (x1�x2) ∈ X̃1 × X̃2 = X̃ , where X̃2 may be the
empty set. For some functions m : R × X̃2 × Ẽ → R and q : Z̃ × X̃1 → R�
Uz(z�x1�x2� ε) = m(q(z�x1)�x2� ε). We assume that the function, q, which
aggregates the effect of z and x1 on Uz , is known. In the job risk example,



IDENTIFICATION AND ESTIMATION OF HEDONIC MODELS 1581

q(z�x1) can be interpreted as the observable scale or quality of the job–worker
match, while ε is unobserved heterogeneity in marginal utility. Note that when
q(z�x1) = z/x1� our specification is in the same spirit as Barten’s (1964) scale
model for utility. Since m is nonadditive in ε� a normalization on either m or
the distribution of ε is also needed. In the next theorem, we assume that the
distribution of ε is specified a priori.15

THEOREM 3.1: Suppose that for some unknown continuously differentiable
function m : R × X̃2 × Ẽ → R� which is strictly decreasing in its last argument,
and some known continuously differentiable function q : Z̃ × X̃1 → R� the mar-
ginal utility function can be written

Uz(z� x1� x2� ε)= m(q(z�x1)�x2� ε)�(3.4)

Further assume that the distribution, Fε, of ε is known. For all (x2� ε) ∈ X̃2 ×
Ẽ� let Q̃(x2� ε) = {t ∈ R | for some x1 ∈ X̃1� q(s(x1�x2� ε)�x1) = t}. Then, for all
(z�x1�x2� ε) such that (x2� ε) ∈ X̃2 × Ẽ and q(z�x1) ∈ Q̃(x2� ε), Uz(z�x1�x2� ε)
is identified.

See Appendix A for the proof.
The intuition for this result is that for a given value of (x2� ε), identification

of s(x1�x2� ε) allows one to find all pairs of (z�x1) that are consistent with that
value of (x2� ε). The separability restriction on Uz allows one to select from
among these pairs the one that produces a given value of q(z�x1). Combining
these two results allows one to identify Uz at any arbitrary point.

Theorem 3.1 uses a separability restriction and a normalization of the distri-
bution of ε. An alternative approach is to invoke separability, but to normalize
the function Uz� instead of the distribution of ε� by assuming that its value is
known at all points on a one dimensional curve. Along these lines, we obtain
the following theorem.

THEOREM 3.2: Suppose that for some unknown continuously differentiable
function m : R × X̃2 × Ẽ → R� which is strictly decreasing in its last argument,
and some known continuously differentiable function q : Z̃ × X̃1 → R,

Uz(z� x� ε)= m(q(z�x1)�x2� ε)�

Let x ∈ X̃ be specified and normalize Z̃ = Ẽ� Define the line {(z�x�ε)|z = ε�x=
x}. For all points on this line, use the function Pz to fix the value of the unknown
function Uz by requiring that for all z ∈ Z̃,

Uz(z�x� z)= Pz(z)�(3.5)

15For example, since ε is not observed, a natural choice is to specify that ε is uniformly distrib-
uted. Thus ε can be interpreted as the quantile in the unobserved heterogeneity distribution.
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For all (x2� ε) ∈ X̃2 × Ẽ� let Q̃(x2� ε) = {t ∈ R | for some x1 ∈ X̃1� q(s(x1�x2�
ε)�x1)= t}. Then, for all (z�x1�x2� ε) such that (x2� ε) ∈ X̃2 × Ẽ and q(z�x1) ∈
Q̃(x2� ε), Uz(z�x1�x2� ε) is identified.

See Appendix A for the proof.

3.3.2. Random Coefficients

Results analogous to Theorems 3.1 and 3.2 can be obtained if, instead of
requiring that Uz be separable in (z�x1), one assumes that Uz is separable
in (z�ε). In other words, one can assume that for some unknown function
m : R × X̃ → R� which is strictly increasing in its first argument, and some
known function q : Z̃ × Ẽ → R� which is strictly decreasing in its second ar-
gument,

Uz(z�x�ε)=m(q(z�ε)�x)�(3.6)

where both m and q are assumed to be continuously differentiable to guar-
antee that Uz is continuously differentiable as assumed in Section 2. This
specification is a generalization of a linear random coefficients model. When
q(z�ε) = z/ε and Ẽ ⊂ R++, this specification is consistent with a linear random
coefficients model for the marginal utility.16

A result analogous to that of Theorem 3.1 can be obtained when Fε is known.
For any x ∈ X̃� let Q̃(x) = {t ∈ R | for some ε ∈ Ẽ� q(s(x�ε)�ε)= t}. Following
an argument similar to that used in the proof of Theorem 3.1, it is easy to show
that for all (z�x�ε) such that (x�ε) ∈ X̃ × Ẽ and q(z�ε) ∈ Q̃(x), Uz(z�x�ε) is
identified. The result that corresponds to Theorem 3.2 is obtained by fixing the
values of m when x = x and z = ε, as

m(q(z� z)�x) = Pz(z)�

3.3.3. Multiple Observed Scales

In the previous cases, the vector x could possess only one coordinate.
When x is a vector, alternative restrictions can be used to achieve identifi-
cation. As an example, when x is a two-dimensional vector (x1�x2), we can
impose the restriction that Uz is weakly separable into two known functions,
q1(z�x1) and q2(x2� ε). The next theorem establishes that this restriction, along
with a normalization on Uz� which is weaker than what is required in the case
where x is a scalar, allows one to identify Uz .

16The scalar version of the parametric demand model analyzed in Bajari and Benkard (2005)
is a special case of this model. They assumed that m is parametric.
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THEOREM 3.3: Let x = (x1�x2�x3) ∈ X̃1 × X̃2 × X̃3 = X̃ . Suppose that for
some unknown continuously differentiable function m : R2 × X̃3 → R, which is
strictly increasing in its second argument, and some known continuously differen-
tiable functions q1 : Z̃ × X̃1 → R and q2 : X̃2 × Ẽ → R.

Uz(z�x1�x2�x3� ε)=m(q1(z�x1)�q2(x2� ε)�x3)(3.7)

where q2 is strictly decreasing in its second argument. Let [ql
2� q

u
2 ] denote the

support of q2(x2� ε). Assume that the function Uz is known at one point
(z�x1�x2�x3� ε) ∈ Z̃ × X̃ × Ẽ, so that

Uz(z�x1�x2�x3� ε)= Pz(z)�(3.8)

Let α ∈ [ql
2� q

u
2 ] be such that q2(x2� ε) = α, and assume that for all ε ∈ Ẽ,

there exists x2 ∈ X̃2 such that q2(x2� ε) = α. For all t2 ∈ [ql
2� q

u
2 ] and x3 ∈ X̃3,

let Q̃(t2�x3) = {t1 ∈ R | for some (x1�x2� ε) ∈ X̃1 × X̃2 × Ẽ� q2(x2� ε) = t2 and
q1(s(x1�x2�x3� ε)�x1) = t1}. Then, for all (z�x1�x2�x3� ε) such that (x2� ε) ∈
X̃2 × Ẽ and q1(z�x1) ∈ Q̃(t2�x3), Uz(z�x1�x2�x3� ε) is identified.

See Appendix A for the proof.
Identification of Uz is obtained from a sequence of arguments. First, equa-

tion (3.7) implies that the supply function s(x1�x2�x3� ε) is a function of x1�x3,
and q2(x2� ε). Equation (3.8) implies that the supply function is known at
one point. Further, the strict monotonicity of m and q2 in their second ar-
guments implies that the supply function is strictly increasing in ε. These
implications guarantee that the supply function s and the distribution of ε
are identified. Next, to identify the value of m(t1� t2�x3) at an arbitrary point
(t1� t2�x3) on the relevant domain, we first find values x∗

1�x
∗
2� and ε∗ such that

z = s(x∗
1�x

∗
2�x3� ε

∗), q1(z�x
∗
1) = t1, and q2(x

∗
2� ε

∗) = t2. Finally, since such a z
satisfies the first order condition (FOC), it follows that m(t1� t2�x3) = Pz(z) =
Pz(s(x

∗
1�x

∗
2�x3� ε

∗)). Thus, independent variation in x1 and x2� the assumed
dependence of Uz on only two arguments, and knowledge of the functions q1

and q2 allow one to trace out Uz as a function of its two arguments.
The statement and proof of Theorem 3.3 can easily be modified to show

that the function Uz is also identified when it can be expressed as a function
m(t1�x1�x3)� where t1 = q1(z� t2) and t2 = q2(x2� ε). To see this, suppose that
for some unknown function m : R × X̃1 × X̃3 → R and some known functions
q1 : Z̃ × R → R and q2 : X̃2 × Ẽ → R� such that m is strictly increasing in its
first argument, q1 is strictly increasing in its second argument, and q2 is strictly
decreasing in its second argument,

Uz(z�x1�x2�x3� ε)=m
(
q1(z�q2(x2� ε))�x1�x3

)
�(3.9)

Assume that the function m is known at one point (z�x1�α�x3), so that

m(q1(z�α)�x1�x3)= Pz(z)�(3.10)
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Then, as in the proof of Theorem 3.3, it can be shown by using (3.9) that the
supply function, s(x1�x2�x3� ε), is weakly separable in (x2� ε). By (3.10), the
value of s is known at one point. By the monotonicity of m and q1� s is strictly
increasing in ε. These properties guarantee identification of s and of the dis-
tribution of ε using the analysis of Matzkin (1999, 2003). To identify the value
of m(t1� t2�x3) at an arbitrary vector (t1� t2�x3)� let x∗

1 = t2� and find x∗
2� and ε∗

such that when z = s(x∗
1�x

∗
2�x3� ε

∗)� q1(z�q2(x
∗
2� ε

∗)) = t1. Then, as in the pre-
vious argument, m(t1� t2�x3)= Pz(z) = Pz(s(x

∗
1�x

∗
2�x3� ε

∗)).

3.3.4. Economic Implications of the Restrictions

Consider the economic implications of some of the restrictions that we have
invoked. We focus on the restrictions used in Theorems 3.1 and 3.2 with x = x1.
Consider the alternative specifications

Uz(z�x�ε)=m1(zx�ε)(3.11)

and, for Ẽ ⊂ R++,

Uz(z�x�ε)=m2(z/ε�x)�(3.12)

These models make different assumptions about how heterogeneity impacts
marginal utility. Model (3.11) imposes the requirement that Uzz/Uzx = x/z,
while model (3.12) imposes the requirement that Uzz/Uzε = −ε/z. The for-
mer condition might be appropriate when the researcher has prior informa-
tion about the marginal rate of substitution between z and observable x, but
has no information about how unobserved heterogeneity affects marginal util-
ity. The latter might be appropriate if the researcher is willing to impose a
random coefficients structure, but has no prior information about the effects
of observables.

4. IDENTIFICATION IN MULTIPLE MARKETS

The possibilities for identification of Uz(z�x�ε) in a single market are lim-
ited because all workers face a unique price schedule. Across multiple markets,
the marginal price function Pz(z) will typically vary depending on underlying
market conditions. For example, assuming that the marginal utility function,
Uz(z�x�ε), does not vary across markets, the marginal price function (and the
supply function s(x�ε)) will, in general, vary across markets when the distrib-
utions of worker or firm attributes vary across markets. When data are avail-
able from multiple markets and cross-market variation in the distributions of
observables causes cross-market variation in Pz(z) and s(x�ε), such variation
can be used to identify the function Uz(z�x�ε) without invoking the conditions
of Section 3.
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Our analysis provides a general approach to identification of Uz under
weaker conditions than are required when using data from a single cross sec-
tion. Use of multimarket data to identify hedonic models is proposed in Brown
and Rosen (1982), Brown (1983), and Epple (1987). Our analysis is more gen-
eral than theirs because we consider the nonseparable case, whereas their
analyses assume linearity of supply and price equations. Also, our approach
makes explicit that the equilibrium price and the supply function depend on
the distributions of observable characteristics of firms and workers.

Suppose that the distributions of ε and η are the same in all markets.
Further assume that the distributions of x and y with densities denoted by
(fx� fy) ∈ F(X̃) × F(Ỹ ) ⊆ L2(X̃�μx) × L2(Ỹ �μy) vary across markets. Here,
μx and μy are Lebesgue measures on X̃ and Ỹ , respectively, and L2 represents
the space of square integrable functions. Suppose that a multimarket sample
exists from M markets. The marginal price and supply functions in market
m will depend on (fm

x � fm
y ), the densities of observed x and y in that market.

Dropping superscripts, write these functions as Pz(z� fx� fy) and s(x�ε� fx� fy).
The functions (fx� fy) and the functional Pz(z� fx� fy) are identified in a mul-

timarket sample satisfying these conditions. Using results in Matzkin (1999,
2003), the functional s(x�ε� fx� fy) is nonparametrically identified. Hence, mul-
timarket data allow one to identify the distributions of the observables and
the dependence of the marginal price and the supply function on these dis-
tributions. We use this information to identify the marginal utility function
Uz(z�x�ε) in the following way.

From the workers’ first order condition,

Uz(s(x�ε� fx� fy)�x�ε)= Pz(s(x�ε� fx� fy)� fx� fy)�

We have made explicit the dependence of Pz and s on fx and fy . In a single cross
section, the price function and the supply function are fixed, and we cannot
independently vary the three arguments of Uz . With multimarket data, both Pz

and s may vary for each (x�ε) provided that fx, fy , or both vary across markets.
Before stating and proving Theorem 4.1, we need to introduce some new

notation. For each (fm
x � fm

y ) ∈ F(X̃) × F(Ỹ ), let sm(x�ε) and Pm(z) be, re-
spectively, the supply function and price function implied by equilibrium con-
dition (2.5). Further, let

S = {(z�x�ε)|z = sm(x�ε) for some (fm
x � fm

y ) ∈ F(X̃)× F(Ỹ )}�(4.1)

Similarly, let dm(y�η) be the equilibrium demand function and

D= {(z� y�η)|z = dm(y�η) for some (fm
x � fm

y ) ∈ F(X̃)× F(Ỹ )}�(4.2)

The sets S and D are the sets of matches that could occur in some feasible
equilibria.
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THEOREM 4.1: Let S and D be defined as in (4.1) and (4.2). Assume that
(fε� fη) are known and are the same across markets. Then Uz(z�x�ε) is identified
for all (z�x�ε) ∈ S and Γz(z� y�η) is identified for all (z� y�η) ∈ D.

PROOF: Let (z�x�ε) ∈ S. Then z = sm(x�ε) for some market m with
(fm

x � fm
y ) ⊆ F(X̃)× F(Ỹ ) and Uz(z�x�ε) = Pm

z (s
m(x�ε)), where Pm

z (z) is the
marginal price in market m. Thus, Uz is identified at all points (z�x�ε) such
that z is an equilibrium choice for (x�ε) in some feasible equilibrium. By an
identical argument, Γz(z� y�η) is identified for all (z� y�η) ∈D. Q.E.D.

Theorem 4.1 exploits the variation in price and supply functions induced by
cross-market variation in the distributions of observables. Given a fixed pair
(f 0

x � f
0
y ), under the conditions stated in Section 2, equation (2.5) will have

a unique solution P0(z). This solution will imply a pair of supply and de-
mand functions s0(x�ε) and d0(y�η). Perturbing the underlying distributions
to (f 1

x � f
1
y ) will result in a new equilibrium price function P1(z) and new supply

and demand functions s1(x�ε) and d1(y�η). In general, if the dependence of
utility and production functions on y and x is not degenerate, it will be true
that P1(z) �= P0(z), s1(x�ε) �= s0(x�ε), and d1(y�η) �= d0(y�η).

5. ESTIMATION

Since our identification results are constructive, they suggest estimators for
the marginal utility (resp. production) functions and their distributions, based
on estimators for the derivative of the price function and the supply (resp.
demand) function. The derivative of the price function can be estimated as
the derivative of the kernel regression of price on z. The demand and supply
functions, and the distributions of the unobserved variables, can be estimated
also using kernel methods as described in Matzkin (2003).

The innovation in this paper over previous research is the estimation of the
marginal utility and marginal product functions. Following our proofs of iden-
tification, we can construct estimators for either the supply or demand side.
Consider, for example, the specification of the marginal utility in Theorem 3.3,
where for some unknown function m and known functions q1 and q2�

Uz(z�x1�x2�x3� ε)=m(q1(z�x1)�q2(x2� ε)�x3)�

The supply function resulting from this specification is separable in (x2� ε).
An estimator for such supply function, denoted by ŝ(x1� q2(x2� ε)�x3), can be
derived following Matzkin (2003). Let P̂z(z) denote the kernel estimator for
the derivative of the price function, and let t1 and t2 be arbitrary values of q1(·)
and q2(·). It follows from the proof of Theorem 3.3 that

m̂(t1� t2�x3) = P̂z(̂s(x̂
∗
1� t2�x3))�(5.1)
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where x̂∗
1 is the value of x1 that solves the equation

q1(̂s(x1� t2�x3)�x1)= t1�(5.2)

Equation (5.1) with the estimated P̂z and ŝ plugged in is our estimator of the
marginal utility function in this model.

Let x∗
1 denote the value of x1 that satisfies

q1(s(x
∗
1� t2�x3)�x

∗
1)= t1�

We demonstrate in Technical Appendix D that, under some conditions, the rate
of convergence of x̂∗

1 to x∗
1 is the same as that of ŝ to s. We develop the results

using the Implicit Function Theorem in Banach spaces of Hildebrandt and
Graves (1927) to derive a first order Taylor type approximation for the func-
tional that maps the estimated distribution of the observable variables into the
value of x̂∗

1. Note that because q1 is known and (t1� t2) is given, equation (5.2)
implies that ŝ(x̂∗

1� t2�x3) is a deterministic function of x̂∗
1. Hence, the asymptotic

behavior of ŝ(x̂∗
1� t2�x3) can be derived from that of x̂∗

1 using well known tech-
niques. Also note that when the dimension of the vector (x1�x2�x3) is strictly
larger than the dimension of z plus 2� we may assume for the purpose of an-
alyzing the asymptotic behavior of P̂z(̂s(x̂

∗
1� t2�x3)) that Pz is known. Hence,

under standard regularity conditions, m̂(t1� t2�x3) will converge to m(t1� t2�x3)
at the same rate that ŝ converges to s, with an asymptotic variance that can be
calculated from that of x̂∗

1 using the standard Delta method. See Technical Ap-
pendix D for additional detail and Technical Appendix E for some simulations
that suggest that the method is practical and works well in practice.

6. CONCLUSIONS

This paper develops methods for identifying the structural parameters of he-
donic equilibrium models where both the marginal utility of workers and the
marginal product of firms are nonadditive functions of attributes and a random
vector of individual characteristics, which are different for the workers and
firms. We develop sufficient conditions to identify the marginal utility and mar-
ginal product functions using both single market and multimarket data. In the
single market case, we develop nonparametric estimators for these functions
and show in Technical Appendix D that they are consistent and asymptotically
normal. Limited Monte Carlo evidence presented in Technical Appendix E
suggests that the methods work well in practice.

Our analysis is for an hedonic model with a single attribute. However, as
discussed in Sections 2 and 3, these results apply equally to a model in which
the hedonic attribute is a single index with some known structure in terms of
a vector of characteristics. We also note that our methods allow one to deal
with unobserved product attributes, as long as these can be identified from
the price function, as in Bajari and Benkard (2005), since in such a case one
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can treat them as observed. In contrast to their analysis, our analysis allows
for a nonparametric utility function. More generally, the first order conditions
in unrestricted multiple attribute hedonic models are systems of simultaneous
equations. General conditions for nonparametric identification of systems of
equations are given in Matzkin (2008). Further work is required to investigate
which types of restrictions developed in Matzkin (2008) are most appropriate
for hedonic applications.

APPENDIX A: PROOFS

PROOF OF THEOREM 3.1: Since model (3.4) satisfies the conditions in Sec-
tion 2, s(x�ε) is characterized by (2.1) and (2.2). Thus, s is nonadditive and
strictly increasing in ε. Since ε is independent of X and FZ|X=x is strictly in-
creasing at z = s(x�ε), it follows by Matzkin (1999, 2003) that

s(x�ε)= F−1
Z|X=x(Fε(ε))�

Since Fε is known, s(x�ε) is identified. Let (t1�x2� ε) be such that (x2� ε) ∈
X̃2 × Ẽ and t1 ∈ Q̃(x2� ε). By the definition of Q̃(x2� ε), there exists x∗

1 ∈ X̃1

such that

q(s(x∗
1�x2� ε)�x

∗
1)= t1�

Then

m(t1�x2� ε)= Pz(s(x
∗
1�x2� ε))�

It follows that for all (z�x�ε) such that q(z�x1)= t1 ∈ Q̃(x2� ε),

Uz(z�x�ε)=m(q(z�x1)�x2� ε)= Pz(s(x
∗
1�x2� ε))� Q.E.D.

PROOF OF THEOREM 3.2: As in Theorem 3.1, s is a nonadditive, strictly in-
creasing function of ε. Further, it follows from equation (3.5) that the supply
function, s(x�ε), satisfies

s(x�ε)= ε�

Then, by Matzkin (1999), for all ε ∈ Ẽ,

Fε(ε)= FZ|X=x(ε)

and, for all x ∈ X̃ ,

s(x�ε)= F−1
Z|X=x

(
FZ|X=x(ε)

)
�
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To establish that the function m is identified, let (t1�x2� ε) be such that (x2� ε) ∈
X̃2 × Ẽ and t1 ∈ Q̃(x2� ε). By the definition of Q̃(x2� ε), there exists x∗

1 ∈ X̃1

such that

q(s(x∗
1�x2� ε)�x

∗
1)= t1�

Then,

m(t1�x2� ε)= Pz(s(x
∗
1�x2� ε))�

It follows that for all (z�x�ε) such that q(z�x1)= t1 ∈ Q̃(x2� ε),

Uz(z�x�ε)=m(q(z�x1)�x2� ε)= Pz(s(x
∗
1�x2� ε))� Q.E.D.

PROOF OF THEOREM 3.3: Since Uz is weakly separable in (x2� ε)� the func-
tion z = s(x1�x2�x3� ε) is also weakly separable in (x2� ε). Hence, for some
unknown function v,

s(x1�x2�x3� ε)= v(x1� q2(x2� ε)�x3)�

Further, since all of the conditions in Section 2 are satisfied, s is strictly increas-
ing in ε. Since q2 is strictly decreasing in ε, then v is strictly decreasing in its
second argument.

Let x2 and ε be such that q2(x2� ε) = α. Then, by separability and condi-
tion (3.8) in the statement of the theorem,

Uz(z�x1�x2�x3� ε)= Pz(z)�

Hence, z satisfies the FOC (2.1) when x1 = x1 and q2(x2� ε) = α. It follows that

s(x1�x2�x3� ε)= v(x1� q2(x2� ε)�x3)= z�

It then follows from the analysis of Matzkin (2003) that the function v and
the distribution of ε are identified from the conditional distribution of z given
(x1�x2�x3).

To show that the function m is identified, let (t1� t2�x3) be any vector such
that t2 ∈ [ql

2� q
u
2 ], x3 ∈ X̃3, and t1 ∈ Q̃(t2�x3). Let x∗

1 denote a solution to

q1(v(x
∗
1� t2�x3)�x

∗
1) = t1�

Since q1 is a known function and v can be recovered from the conditional cu-
mulative distribution function of z given (x1�x2�x3)� the only unknown in the
expression is x∗

1. Since t2 ∈ [ql
2� q

u
2 ], x3 ∈ X̃3, and t1 ∈ Q̃(t2�x3), x∗

1 exists. Since
v(x∗

1� t2�x3) satisfies the FOC (2.1),

m(t1� t2�x3) = m
(
q1(v(x

∗
1� t2�x3)�x

∗
1)� t2�x3

)
(A.1)

= Pz(v(x
∗
1� t2�x3))

= Pz(s(x
∗
1�x

∗
2�x3� ε

∗))
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for any x∗
2 and ε∗ such that q2(x

∗
2� ε

∗)= t2. In (A.1), the first equality follows be-
cause q1(v(x

∗
1� t2�x3)�x

∗
1) = t1. The second equality follows because the value

of the marginal utility function m equals the value of the marginal price func-
tion at the particular value of z that satisfies the first order conditions. The
third equality follows by the restriction on the function s. Since the function Pz

is known and the function s can be recovered without knowledge of m, (A.1)
implies that m is identified, and hence Uz is identified. Q.E.D.
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