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Abstract

Structural economic models allow one to analyze counter-factuals when economic system change

and to evaluate the well being of economic agents. A key element in such analysis is the ability

to identify the primitive functions and distributions of the economic models that are employed to

describe the economic phenomena under study. Recent developments in nonparametric identifica-

tion of structural models have provided ways to achieve identification of these primitive functions

and distributions without imposing parametric restrictions. In this article, I consider a small set

of stylized models, and provide insight into some of the approaches that have been taken to develop

nonparametric identification results for those models.

1. Introduction

Among the most important objectives of economics are the understanding of how economic systems

work, the evaluation of the well being of economic agents, and the prediction of values that economic

variables may achieve. Structural econometrics is essential to meet these objectives. The tools

structural econometrics develops employ data to test economic models, to measure the preferences

of economic agents, and to predict outcomes, specially those outcomes resulting from changes in

the economic systems. Nonparametric econometric methods aim at developing such tools without

specifying ad-hoc parametric forms for the functions and distributions in the models.

To provide some examples, suppose that a firm is considering to introduce a new product. To

predict the profit that such action would generate, it would be necessary to obtain an estimate of

the demand for the new product. However, since the product has never been sold, no past obser-

vations on the demand for the product would be available to calculate such estimates. Structural

econometrics provides tools to predict such demand. As developed in McFadden (1974), using data

on the demand for existing products one can estimate the preferences of consumers for the charac-

teristics of the new and its competing products. These preferences can then be used to predict the

demands for both the new and the old products when all are available, after the introduction of the

new product. McFadden (1974) represented the preferences of a typical consumer for each product

as the sum of a linear function of observable characteristics of the product and the consumer and

an unobservable random term. The unobservable random term, representing the preferences of the

consumer for unobserved characteristics had a known distribution. A large literature has evolved

since then, developing results that do not require parametric specifications either for the function

of the observable attributes or for the distribution of the unobservable random terms.

When evaluating what segments in a population would be better off and what segments would be

worse off as a result of a policy, it is necessary to have knowledge of the distribution of preferences in

the population. Structural econometrics can recover such preferences from the distribution of past

choices, as in Heckman and Willis (1977), who developed a model of labor participation choice by

heterogeneous agents. While their model specified all functions and distributions parametrically,

more recent work has considered similar models without specifying parametric assumptions.
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As the previous examples illustrate, the tools developed by structural econometrics allow one to

predict and evaluate new situations when some of the elements in an economic system change, while

other stay stable. Key ingredients for this analysis are economic theory models. They specify

the connection between the underlying functions one would like to recover and the behavior of the

observable variables. In the first example, the underlying function would be that representing

the preferences of the typical consumer on the observable characteristics; the observable function

would be the demand for existent products. Economic theory models also specify how the stable

functions are used to evaluate counter-factuals.

The dependence of structural econometrics on economic theory models is its strength, but it

is also its weakness. If the specified models are incorrect, the conclusions obtained by employing

those models will in general also be incorrect. Not imposing parametric structures on the functions

and distributions in the models reduces the risk of misspecification. Nonparametric tests can be

performed to test the validity of models. Nevertheless, misspecification of the models used in the

analysis is an issue of concern. Some researchers have responded to these concerns by abandoning

the structural approach and focusing on analyses that require no foundation on economic theory

models. When the objective of the analysis is prediction when no significant change in the system

occurs, this reduced form analysis can be effective. When all elements in the economic system

stay stable, analyzing the behavior of observable variables does not require reliance on a model.

However, when the objective is to estimate the value of a function that is not directly observed, or

to predict outcomes when some important elements of an economic system change, understanding

the deep behavior of economic variables becomes usually essential. At the very least, specifying

the economic theory model on the basis of which conclusions are derived allows one to determine

how the conclusions would change if the assumptions did not hold.

The need of relying on economic theory models for the development of econometric methods was

recognized since the early times of the Cowles Commission. As Malinvaud (1988) vividly describes,

"during the first years a good deal of attention was devoted to direct measurement .... Cowles

Commission Monograph No. 3, ... first published on 1938, ... was entirely devoted to working

out monthly indexes of stock prices and annual indexes of stock yields." The motto of the Cowles

Commission at the time was "Science is measurement." However, "By 1952 the role of theory

become so important that the motto "Science is measurement" no longer seemed appropriate."

The suggestion to changing the motto to "Theory and measurement," was immediately accepted.

Cowles Commission Monograph No. 10 (1950) contained papers of, quoting again Malinvaud

(1988), "the most influential conference on statistical inference in economics ever held." The

monograph included the works by R.L. Anderson, T. Haavelmo, H. Hoteling, L. Hurwicz, L.R.

Klein, T.C. Koopmans, R. Leipni, H.B. Mann, J. Marschak, G. Tintner, and A. Wald, which built

the simultaneous-equation methodology.

Economic theory has been concerned since its early times with the concept of recoverability of

primitive functions and with restrictions implied by economic models. Those results have rarely

been built upon restrictions requiring that the unknown functions in the models were known up

to the value of a finite dimensional parameter. For example, Samuelson (1938) Weak Axiom of

Revealed Preference is a set of restrictions on observable choices and budget sets that are necessarily

satisfied by any two choices that are generated by a consumer maximizing a common utility function.

As shown in Richter (1966), Houthakker (1950)’s Strong Axiom of Revealed Preference characterizes

choice behavior generated by the optimization of a common preference over general choice sets.

Only weak properties, such as monotonicity, continuity, and convexity of the preferences generating

the choices are usually assumed when recovering the set of preferences and utility functions that

are consistent with observed choice behavior.

In contrast to the developments in economic theory, econometric methods often started out

by specifying functions and distributions up to the value of such a finite dimensional parameter.
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Even though the concept of nonparametric identification was introduced very early on by Hurwicz

(1950), its value seem to not have been recognized by econometricians till much later.

Econometricians’ strong interest in nonparametric estimators seems to have started around

the late 70’s and 80’s. Manski (1975)’s estimation method for a discrete choice model with no

parametric assumptions for the distribution of the random term challenged the widely held view that

such relaxation of parametric assumptions was impossible. The advances in computer technology

possibly had some effect in the development of nonparametric methods, by significantly reducing

the cost of applying them. Nonparametric estimation methods are well known to be computational

intensive and to be most appropriate for large data sets. There was also increasing evidence during

those years that parametric models performed poorly. Gallant (1981,1982) introduced the Fourier

Flexible Form for estimation of functions motivating the newly developed estimators as converging

in a Sobolev norm, which includes the sup norm of the values and the derivatives of the true

function, to a nonparametric function. The flexible parametric forms that were used prior to that

development approximated any function up to its second derivative only locally around a point.

These second order approximations had been shown to provide very poor global approximations

to several functions. Another work that provided evidence of the poor performance of parametric

methods was presented by Heckman and Singer (1984). They considered a nonlinear duration

model with unobserved heterogeneity, and showed that the parameter of interest can be severely

biased due to a msispecification of the distribution of heterogeneity. Heckman and Singer (1984)

provided conditions under which the parameter of interest as well as a nonparametric distribution

of the unobserved heterogeneity are identified, and developed estimators for both.

Since a nonparametric estimator for a function cannot be shown to be consistent unless the

function is identified, the surging interest in nonparametric estimators fueled the study of nonpara-

metric identification. However, the analysis of nonparametric identification has much more value

than as a necessary first step in a proof of consistency of an estimator.

As Hurwicz (1950) stated in the early days of the Cowles Commission, "nonparametric identifi-

cation is a property of a model." One can ask, for example, whether the utility function generating

a given consumer demand function is identified (see, e.g. Mas-Colell (1977)), or whether the individ-

ual demands of consumers are identified when only the sum of their demand functions is observed.

The answer depends on the mapping, which is implied by the model, from the unobserved functions

to the observed functions. If the unobserved functions are identified in this nonparametric sense,

one can then be more confident about the parametric identification of those same functions. If

the unobserved functions are not nonparametrically identified, but they are identified when one

imposes on them an ad-hoc parametric specification, then identification is imposed by the ad-hoc

restriction, and the conclusions derived from the estimates of such parametric models will strongly

depend on those ad-hoc specifications being correct.

When a function in a model is not nonparametrically identified, one can consider several addi-

tional restrictions in the model and analyze identification under those restrictions. Often, economic

theory implies shape restrictions, such as monotonicity, concavity and homogeneity of degree one,

on functions that may not be observed. Those shape restrictions can be employed to restrict the

set of functions and achieve identification of otherwise nonidentified models, as shown for example

in Matzkin (1992). (See Matzkin (1994) for a review.) An alternative route is to not consider

additional restrictions and stop at the smallest set of functions that contains the function of inter-

est. See Manski (1989, 2003) for introductions to this partial identification approach. The review

article by Tamer (2011) documents earlier and more recent developments on this approach, which

analyzes conditions under which a parameter is set identified. In the sections that follow, I will

review results on point identification, which for short, will be called identification.

Recently, the shape restrictions that can be derived from economic theory models were used

to identify not only unobserved functions but also the values of unobserved variables within the
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models. Variables such as the taste of a consumer for a particular product, or the productivity of

a worker in a particular job, are essential for the analysis of, correspondingly, models of consumer

demand or of labor income. Economic theory models often imply restrictions on the way in which

these unobserved variables affect the values of the observed variables. These restrictions have been

used recently to develop identification results for nonparametric models where these unobserved

variables enter in nonadditive ways in the models. This approach contrast the one where the original

economic model is transformed into another one where the unobservables enter in an additive way.

When confronting an economic model with data, the nonparametric nonseparable approach leaves

the model intact, labeling variables as observed or unobserved, depending on the data at hand. In

contrast, the nonparametric separable approach usually transforms the model into a different one,

separating it into functions whose arguments are only observable variables, and functions whose

arguments involve the unobservable variables. The analysis of the latter approach usually focuses

on the functions of the observable variables. The analysis of the nonparametric nonseparable

approach focuses on the analysis of the original functions in the model, whose arguments are

the observable and unobservable variables. Hurwicz (1950) noted the importance of allowing

nonadditive random terms within econometric models but seemed to recognize that the techniques

that were being developed at that time were not amenable to handle such models. Much later, the

approach was developed making use of parametric assumptions on all functions and distributions.

(See the early works by McFadden (1974), Heckman (1974), and Lancaster (1979).) I will review

the nonparametric results that were developed more recently.

In the following sections, I review some of the identification results that have been developed for

separable and nonseparable nonparametric models. To avoid blurring the main insights, I analyze

the main issues on the most possible stylized models and do not detail technical assumptions. In

Section 2, I review the definition of nonparametric identification. I then proceed to analyze three

types of models. In Section 3, I deal with models with no endogenous explanatory variables.

Models with no simultaneity are analyzed in Section 4. Section 5 contains identification results

for models with simultaneity.

2. Definition of nonparametric identification

We follow Hurwicz (1950) by defining a structure as a system of equations and a distribution

of exogenous variables, which determine a distribution of endogenous variables. Hurwicz (1950)

defined as a model a set of such structures with the property that the unknown distributions

and unknown functions satisfy a set of restrictions. Two structures are said to be observationally

equivalent if they generate the same distribution of the observable variables. A feature of a structure,

such as a particular function or the value of a particular function at a particular point in its domain,

is said to be identified if among the set of observationally equivalent admissible structures, the value

of the feature does not vary. These definitions make it clear that, as Hurwicz (1950) pointed out,

identification is a property that "a model may or may not possess" and that "does not require a

parametric representation" for the structures and models.

The analysis of identification is separate from statistical issues, which are dependent on sample

size. Identification analysis assumes that the whole probability distribution of the observable

variables, rather than a sample from it, is available. When a sample is available, several methods

exist to calculate nonparametric estimators for the distribution of the observable variables that,

under corresponding assumptions, converge in probability or almost surely to the true function.

The analysis of identification starts from the ideal situation where the distribution of the observable

variables is known, and analyzes the invertibility properties of the probabilistic model that generates

such distribution of observable variables. The focus is typically on features of the distribution of

the observable variables or on features of more primitive functions than the distribution of the
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observable variables.

When one can find a known, closed form functional defined over the set of possible distributions

of the observable variables, such that when evaluated at the true distribution of the observable

variables delivers uniquely the feature of interest, it is said that identification is constructive. Con-

structive identification methods indicate in a transparent way the connection between the feature

of interest and the distribution of observable variables. They provide a way to read off the distri-

bution of the observable variables the feature of interest. Methods for constructive identification

directly lead to methods of estimation for the object of interest. Instead of evaluating the known

functional at the true distribution of the observable variables, one evaluates it at a nonparametric

estimator for the distribution of the observable variables. The result is a nonparametric estimator

for the feature of interest. When the functional is continuous on the set of distribution functions,

it is often possibly to show that such resulting estimator is consistent. The conditional expectation

of one of the observable variables given the other observable variables is an example of a feature

that can be identified constructively in an obvious way, by calculating it from the distribution of

observable variables using the definition of conditional expectation. Showing constructive identi-

fication for features of more primitive functions is often not so obvious. The latter has been the

objective of a large literature.

At the heart of the concept of identification is a system of functional equations connecting

the known distribution of the observable variables with the unknown functions and distributions

generating that known distribution. Identification of one of the unknown elements in the system

is analogous to asking whether the system has a unique solution for such unknown element.

To formalize the concepts related to identification, we let  denote the vector of observable

variables determined outside the system, referred to as the vector of observable exogenous variables

or observable inputs. The marginal distribution of  is known. We let  denote the vector of

unobservable variables determined outside the system, referred to as the vector of unobservable

exogenous variables or unobservable inputs. The true distribution of the unobservable and observ-

able exogenous variables will be denoted by  ∗  The vector  will denote the vector of observable
variables determined by the system, referred to as the vector of observable endogenous variables or

observable outputs. The system of equations, which specify how the value of  is determined by

the values of  and  will be denoted by a vector of known functions,  which depend on a vector

of unknown functions, ∗

 ( ;∗) = 0

The set of functions  that satisfy the restrictions that ∗ is known to satisfy will be denoted
by  The set of distributions  that satisfy the restrictions that  ∗ is assumed to satisfy

will be denoted by Γ One of such restrictions is that all the distributions in Γ share the same

known marginal distribution of    The system is such that given any function  in  and a

distribution  in Γ  (·;) determines a distribution  (· ·;) 

Two pairs () and
³
∗  ∗

´
are observationally equivalent if the distributions,  (· ·;)

and 

³
· ·;∗  ∗

´
 generated respectively by () and

³
∗  ∗

´
 are equal. The pair³

∗  ∗
´
is identified if no other pair () that satisfies the same restrictions that

³
∗  ∗

´
has been specified to satisfy is observationally equivalent to

³
∗  ∗

´
 We next formalize these

definitions.

Definition:
³
∗  ∗

´
∈ ( × Γ) is identified in ( × Γ) if for all () ∈ ( × Γ)
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such that () 6=
³
∗  ∗

´


 (· ·;) 6= 
¡· ·;∗  ∗¢ 

Given a feature of interest, denote by  (· ·) the mapping from ( × Γ) to the set of all possible
values, Ω that the feature of interest may attain for any () ∈ ( × Γ)  Denote by ∗ the

true value of 
³
∗  ∗

´


Definition: The feature ∗ = 
³
∗  ∗

´
of
³
∗  ∗

´
is identified if for any () ∈

( × Γ) that is observationally equivalent to
³
∗  ∗

´


 () = 
¡
∗  ∗

¢


Constructive identification of a feature 
³
∗  ∗

´
is defined by the existence of a known

functional on the set of distribution functions of the observable variables. Denote by z the set of
all distribution functions  that could be generated by a pair () ∈ ( × Γ)  Denote


³
· ·;∗  ∗

´
 the distribution of the observable variables generated by

³
∗  ∗

´
 by  ∗

. Suppose that Φ is a known functional that assigns to each element of z an element of Ω

Definition: The feature ∗ = 
³
∗  ∗

´
of
³
∗  ∗

´
is identified constructively through

the known functional Φ if


¡
∗  ∗

¢
= Φ

¡
 ∗

¢


As mentioned above, constructive identification leads naturally to the definition of a nonpara-

metric estimator. Denote a nonparametric estimator of  ∗ by b  If ∗ = 
³
∗  ∗

´
is identified constructively through the known functional Φ then an estimator for it can then be

defined by b = Φ³ b´
Usually, if b converges in probability to  ∗ and Φ is continuous, it is possible under additional
technical conditions to show that b converges in probability to ∗ Except for Section 5.2, most of
the identification results that I will review will be constructive.

3. Non-endogenous explanatory variables

In many econometric models, the explanatory variables are determined by the decisions of individ-

ual agents, or by interactions among agents. For example, the years of education of an individual

is typically used as an explanatory variable for the individual’s wage. Market equilibrium prices

are employed to estimate the effect of price changes in consumer demand. When the values of ex-

planatory observable variables are determined by unobservable explanatory variables in the model,

identifying the partial effect of a change in the value of the observable explanatory variable, when

the values of the unobservable explanatory variables stay constant, may not be possible. To see

the complications that can arise in that situation, consider the simple model

 =  ( )
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where  is an unknown function,  and  are observed,  is unobserved, and  is an unknown

function of  Denote the inverse of the later function as  =  ( )  where  is distributed

independently of  and unobservable. The distribution of () is generated then by the system

 =  (  ( )) =  ( )

for some function 

Identification of the effect in the value of  of a change in the value of  when the value of 

stays fixed requires identification of  However, the distribution of the observable variables ()

is generated by the function  Identification of requires additional information about the system

allowing to disentangle the effect on  of from the effect on  of  We review some of the existing

approaches to dealing with such situations in Sections 4 and 5. In this section, I consider models

where such problem does not exist. In the models we next consider, the value of a functional of the

distribution of the unobservable explanatory variables given the observable explanatory variables

is assumed to be fixed across the different values that the observable explanatory variable attains.

The constancy of the value of such functional allows to identify the effect of  on  when the value

of  is fixed.

3.1. Separable models

In separable models, the effect on the endogenous variables of the observable and unobservable

explanatory variables is separated into a function that depends only on the observable variables

and another function that depends on the unobservable and observable variables. The main object

of interest in these models has been usually the function that depends on the observable variables.

A simple version of a nonparametric separable model is the additive model

(31)  = () + 

where  is an unknown continuous function,  is a scalar,  is a vector, both  and  are

observed, and  is an unobserved random variable. In this model, the effect on  of a change in

the value of  is allowed to be different across different values of  In contrast, when the function

 is specified as a linear function: () =  + 0 the effect of  on  is constant across all

values of 

When one is interested in the effect of  on  at a particular value, ∗ of  imposing a

linear or other parametric specification on the function  may generate severely biased results.

A parametric specification for  imposes a particular global shape on the function , which may

impose local behavior that is very distant from the true behavior of the function. (See, for example,

the several examples documented in Hardle (1990), where local peaks of functions were discovered

empirically only once nonparametric estimation methods were used.)

A parametric specification on  also hides issues that arise due to support conditions of the

probability density of  A parametric model interpolates between the values of  at the support

points of  identifying the value of  over any upper set of the support of . The nonparametric

approach allows one to clearly distinguish between the conditions necessary to identify  on the

support of  and the stronger set of conditions necessary to identify  on a set larger than the

support of  For example, when the support of  is a discrete set of points, no particular

shape restrictions will usually be needed to identify nonparametrically the values of  on that

discrete set. Nonparametric identification of the values of  on points outside such support would

require additional shape restrictions such as, for example, monotonicity, concavity, or homogeneity

of degree. Even with additional restrictions, the value of will typically be only partially identified

outside the support of 
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The separable additive model generates the following functional equation in the unknown func-

tion  and the unknown conditional distribution | of the unobservable random term  given

 :

(32)  |=() = |= ( −())

where  | denotes the known conditional distribution of  given  The equation follows,

sequentially, by the definition of the conditional distribution of  given  = , the definition of 

and the definition of the conditional distribution of  given  = 

 |= () = Pr ( ≤ | = )

= Pr ( () +  ≤ | = )

= Pr ( ≤  −()| = )

= |= ( −())

Without additional restrictions, the functional equation (32), which contains one known func-

tion and two unknown functions, does not possess a unique solution
¡
|

¢
. For example, if we

take any  6= 0 and define 0 and  0
| as

0() = () +   0|= () = |= (+ )

we can verify that
³
0  0

|
´
also satisfies

 |=() =  0|=
¡
 −0()

¢
Nonparametric identification of requires an additional condition. Usually, the condition takes the

form of a location restriction on the distribution of  given such as the condition that a.s in  the

conditional expectation of  given  =  is zero; i.e.,  (| = ) = 0 A median independence

restriction, specifying that a.s. in   (| = ) = 0 is often also used as a location restriction.

Note that if  is identified, the functional equation becomes an equation in only the unknown

function | . This function can be identified once  is identified by the equation

|= () =  |=(() + )

With the mean independence restriction, () is identified as the conditional expectation of 

given  =  Hence, when  is continuous, the function  is identified on the support of . An

analogous argument shows that is identified on the support of from the conditional distribution

of  given =  when the median independence location restriction is adopted, since if(| =

) = 0 and  = () +  implies that  ( | = ) = () + (| = ) = ()

3.2. Nonseparable models

The separable approach has typically focused on the function of the observable explanatory variables

The terms "noise" or "disturbance", which has usually been used to denote the added unobserv-

able,  has given the impression that these were unimportant variables. And in fact, in some

models, they were added at the end as an after-thought. The analysis of these added unobservable

mostly focused on asking whether they may represent an excluded variable that is correlated with
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the vector of observable explanatory variables,  in which case a constant location restriction may

not hold, or whether the variances of | was different across different values of 

In contrast to the separable approach, in the nonseparable approach the focus is on the inter-

actions between the observable and unobservable variables. The object of interest is the original

economic model rather than a function that only relates the observable variables. When confronting

the original economic model with data, the nonseparable approach uses the data to determine which

of the variables in the original model are observable and which are unobservable, but aims at keeping

the model intact.

The identification analysis in the nonseparable approach, which proceeds by classifying the

variables in the original model as observable or unobservable and analyzing identification of such

original model, raises new issues. The number of unobservable random variables in the model

may be very large, and the unobservables often enter in the model in nonlinear, nonadditive ways.

On the other hand, because these unobservable variables correspond to economic variables in the

model, one can exploit the economic model and the implications of economic theory to learn about

the restrictions that the values of these unobservable variables must satisfy and the way in which

these variables interact with the other variables in the model. This is currently an area of active

research.

One of the simplest nonseparable nonparametric models one can consider is

(33)  = ( )

where the scalar  and the vector are observed and where the scalar  is unobserved. An example

of such model would be the production function of a typical worker, where  denotes output, 

denotes exogenously determined hours of work, and  denotes the unobserved productivity of the

worker. The unknown function  is then a production function with observable and unobservable

inputs. The model allows one to analyze the substitution between hours of work and productivity.

The model allows one also to analyze the effect on output of an exogenous change in the amount of

hours of work for each individual worker, when each worker is characterized by his or her ability 

Model (33) is consistent with the following transformed model,

(34)  = () + 

where () is the expected output for workers that work  hours. For any worker working  hours

and producing output   =  − () is the deviation of that worker’s output from the expected

output. In other words,

() =  ( | = ) =

Z
 ( ) ()

and

 =  ( )−
Z

 ( ) ()

Model (34), characterized by  and  does not provide information on how hours of work and

productivity jointly determine output. The function  can be used to determine the change in

the expected output when hours of work change, but it cannot be used to determine the change in

the output of a particular worker when the hours of work of that particular worker change. The

function  in (33) can provide an answer to the latter question, by evaluating the change in its

value when  stays fixed and  changes.

Matzkin (1999, 2003) considered identification of the nonseparable model above assuming that

 is strictly increasing in  and that  and  are independently distributed. In such case, the
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functional equation that relates the known distribution of the observable variables to the unknown

functions in the model is, for all  and 

(35)  () =  |= ( ( ))

where  is the cumulative distribution of  and  |= is the conditionally cumulative distribution
of  given  =  This equation follows by the following equalities:

 () = Pr ( ≤ ) = Pr ( ≤ | = )

= Pr ( ( ) ≤  ( ) |  = )

= Pr ( ≤  ( ) |  = ) =  |= ( ( ))

The first equality follows by the definition of the cumulative distribution function ; the second

equality follows because  is distributed independently of ; the third equality follows because 

is strictly increasing in  and therefore, conditional on  =  the event ( ≤ ) is equivalent to the

event ( ( ) ≤  ( ))  The fourth and fifth equality follow, consecutively, by the definition

of  and by the definition of the conditional cumulative distribution function of  given  = 

Equation (35) has several implications. Assume for simplicity that the distribution of  is

strictly increasing at  =  This and the strict monotonicity of  imply that the conditional

distribution of  is also increasing. Note that the left hand side of (35) does not depend on 

Hence, if we fix the value of  at  =  and vary the value of  from  to 0, we get that

 |= ( ( )) =  |=0
¡

¡
0 

¢¢
Hence, the change in the output of a worker characterized with a level of ability  when the

worker is exogenously required to work 0 hours instead of  hours is


¡
0 

¢− ( ) = −1
 |=0

¡
 |= ( ( ))

¢− ( )

While we do not observe  we do observe  and, because of the strict monotonicity of output in

ability, to each  there correspond a unique value of ability. Since the output for any particular

worker is observed, we can then establish that the change in the output of the worker that has the

(unobserved but uniquely determined) ability  which corresponds to the observed output  is

(36) 0 −  = −1
 |=0

¡
 |= ()

¢− 

The change in output due to an infinitessimal change in  is similarly obtained, assuming differen-

tiability, by differentiating (35) and solving for  ( )  The result is

(37)
 ( )


= −

µ
 |=()



¶−1 µ |=()


¶
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where  =  ( )  This is the derivative of the conditional quantile of  given  =  evaluated

at  = 

Additional conditions, such as homogeneity of degree one restrictions or separability assump-

tions, can be used to identify the value rather than the derivatives of the function  (See Matzkin

(2003).)

3.3. Multidimensional unobservables

The simple nonseparable model described in the previous section is extremely stylized and restric-

tive. Not only does it assume independence between the observable and unobservable variables,

but also it only consider a scalar unobservable variable. In the production example, unobserved

productivity may be composed of several types of productivity, each interacting in a different way

within the production function. We next review some of the methods that have been developed

to introduce multidimensional unobservable variable in the models.

Additional exogenous variables

One approach to incorporating a large number of unobservable variables in nonparametric models

has been to employ a vector of observable explanatory variables of dimension at least as large as

the number of unobservable variables in the model. Intuitively, if the effect of an unobservable 
within a vector of unobservable variables  = (1  ) is in some way connected to the value of

an observable  in a vector of observable variables  = (1 )  the conditional distribution

of the endogenous variable  when the value of  varies should provide some information about

the value of  One such particular case (see Matzkin (2003, Appendix A) is where

(38)  =

X
=1

 ( )

To show that each unknown function  can be identified from the distribution of  conditional

on  Matzkin (2003) considers this model with the requirement that for each  there exists a

value,  such that when  =  the value of 
 is fixed and known; e.g.,  ( ) = 0 for

all values of  When the value of  equals  the effect of the function  is "shut down".

Hence, when, except for  = 1, each  equals  the model becomes

 = 1 (1 1) 

the same simple model (33) whose identification was described in the previous section. Assuming

that1 is strictly increasing in 1 and that 1 2   are mutually independent, the function

1 and its derivatives can then be identified from the functional equation

 |1=12=2=

¡
1 (1 1)

¢
= 1 (1)

The rationale behind this approach is that even though the value of the observable dependent

variable is determined by a large number of unobservable variables, there is some subpopulation

where, except for  = 1, each  equals  where the value of the observable dependent variable

depends on only one unobservable variable. Matzkin (2005a) employs this method to identify

the preferences of consumers from equilibrium prices, when consumer’s demands are not observed.

Briesch, Chintagunta, and Matzkin (2010) employ a similar approach to identify an extension

of McFadden’s (1974) model where the utility functions of the attributes are nonparametric and

nonadditive in an unobservable random term. Matzkin (2012) shows how the method can be

employed in models with simultaneity and limited observability on the dependent variables.
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Repeat observations

Evdokimov (2011) proposed using panel data. One of the models he considered was

(39) 1 =  (1 ) + 1

2 =  (2 ) + 2

where (1 212) is observed and ( 1 2) is unobserved. The main assumptions that he

made were that  is strictly increasing in   is independent of (12)  the distribution of 1
given 1 is independent of (2  2)  the distribution of 2 given 2 is independent of (1  1) 

and the characteristic functions of 1 and 2 conditional, respectively, on 1 and 2 are different

from zero.

Evdokimov (2010) noted that when 1 = 2 the model (37) can be rewritten as

1 = + 1

2 = + 2

which is a system whose identification was studied by Kotlarski (1967). Kotlarski showed that

if  1 and 2 are mutually independent, each has at least one absolute moment,  (1) = 0

and 1 and 2 have nonvanishing characteristic functions, then the distributions of  1 and 2
are identified from the distribution of (1 2). Evdokimov (2010) extended this result to hold

conditional on (12)  He then obtained the identification of the distributions of 1 given 1 2
given 2 and of  given (12) = ( )  From the latter distribution, one can identify  ( ),

as in Section 3.2.

Averages

A different approach to dealing with a large number of unobserved variables is to obtain an average

measure. In such case, no monotonicity or other restrictions are needed. On the other hand,

averages do not provide information on the behavior of individual agents.

Suppose that instead of  being a scalar, as in (33)  is a vector,  = (1  )  The

nonseparable model can then be specified as

 =  ( 1  )

In this case, a particular value,  of  would correspond to a set of values, () of the vector 

instead of to a unique value of . Without further restrictions, it is not possible to identify, for

each value of  in the set () the effect on  of a change in  Hoderlein and Mammen (2007)

showed that the average derivative of  with respect to  over the set () can be identified.

Denote the −quantile of the conditional distribution of  given  =  by  (  )  Suppose that

 =  (  )  They showed that

(310) 

∙
 ( 1  )


|  =   =  (  )

¸
=

 (  )



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4. Endogenous explanatory variables in recursive systems

In nonparametric models with endogeneity, two types of distinctive systems, recursive and simul-

taneous, are usually considered. The interaction between two endogenous variables, 1 and 2 is

recursive if 2 is an explanatory variable for 1 but 1 is not an explanatory variable for 2 The

interaction between 1 and 2 is simultaneous if 2 is an explanatory variable for 1 and 1 is an

explanatory variable for 2

Consider, for example, an interaction model between two agents, such as two firms each setting

the price for its product. Denote by 1 the observable decision of agent 1 and by 2 the observable

decision of agent 2 If agent 2 chooses the value of 2 first, and given 2 agent 1 chooses 1 then

the relationship is recursive. If both agents make their decisions at the same time, each taking as

given the other’s decision, as in a Nash equilibrium, then the relationship is simultaneous.

In a labor economics example of a recursive model, 1 denotes individual lifetime earnings and

2 denotes level of education. The value of 2 is chosen first, as a function of expected but

not of realized 1 The value of 1 is determined next, as a function of 2 as well as of other

observable and unobservable variables. Imbens and Newey (2009) describe a nonseparable version

of this model, following Card (2001). In the simple version of such model, the typical individual’s

lifetime earnings is a function of the level of education and productivity, 1. While productivity is

unobserved to the agent at the time of deciding the length of education, the value of a signal, 2

correlated with productivity, 1 is known to the agent at such time. A measure, 2 determining

the cost of a unit of education is observed as well. Denote the cost of education by the value of a

function  (22)  The agent chooses 2 to maximize expected lifetime earnings given the signal,

2 and the cost of education:

2 solves 2 
£
1 (2 1) |22

¤−  (22)

The solution is then a function, 2 of 2 and 2 The recursive model becomes

1 = 1 (2 1)

2 = 2 (2 2)

(See also Heckman and Vytlacil (1998) for a similar model.) As noted in Imbens and Newey

(2009), the same structure applies to a nonadditive extension of production functions estimation,

as in Mundlak (1963). In such case, 1 is output and 2 is input.

All the results I will describe can be studied conditional on a vector of observable variables, 

However, to emphasize the endogeneity aspects of the models and not to crowd the notation, I will

consider only the stylized versions of the models, without 

4.1. Separable models

Nonparametric separable models with recursive endogeneity were analyzed by Newey, Powell and

Vella (1999). (See also Ng and Pinkse (1995) and Pinkse (2000).) A simple version of their model

is

(41) 1 = 1 (2) + 1

2 = 2 (2) + 2

They analyzed identification in this model under the assumption that 2 is mean independent of

2 and that, conditional on 2 1 is mean independent of 2 That is,

 [1|22] =  [1|2] and  [2|2] = 0
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The main object of interest in this model is the effect of an exogenous change in 2 on the value

of 1 In the labor example, this would be the effect on lifetime earning of one more unit in the

length of education, or the derivative of 1 with respect to 2 when the value of 1 is kept fixed.

Newey, Powell, and Vella (1999) showed the identification of this object in a recursive manner.

First, the function 2 is identified using the observable vector (22) and the location restriction

 [2|2] = 0 as described in Section 3.1. Specifically,

2(2) =  [2|2 = 2]

Given any value (2 2) of the vector (22)  the value of 2 corresponding to (2 2) is the

deviation of 2 from the conditional expectation of 2 when 2 = 2 :

2 = 2 −2 (2) = 2 − [2|2 = 2]

Together with the conditional mean independence restriction

 [1|22] =  [1|2]

this implies that

 [1|2 = 22 = 2] = 
£
1|2 = 2 −2 (2) 2 = 2

¤
= 

£
1|2 = 2 −2 (2)

¤
Since the distribution of 1 given 2 is unknown, the conditional expectation of 1 given 2 will

be an unknown function. Denote this function by  Then, given (2 2)   [1|2] = (2) =


¡
2 −2 (2)

¢
 Conditioning both sides of the equation

1 = 1 (2) + 1

on (22) = (2 2) then gives

 (2 2) = 1 (2) + 
¡
2 −2 (2)

¢
where  (2 2) =  [1|2 = 22 = 2] is a known function, and 

¡
2 −2 (2)

¢
=  [1|2 = 22 = 2]

is the value of the unknown function  at the known value of its argument, 2−2 (2)  The iden-

tification argument followed by Newey, Powell, and Vella (1999) proceeds by taking derivatives of

this functional equation with respect to 2 and 2 and solving the resulting linear system for the

derivative of 1 with respect to 2 Differentiating with respect to 2 and 2 gives

2 (2 2) = 1
2
(2) + 2

¡
2 −2 (2)

¢
2 (2 2) = −2

¡
2 −2 (2)

¢
2

2
(2)

When 2 is a scalar, one obtains that:

(42) 1
2
(2) = 2 (2 2) +

2 (2 2)

2
2
(2)

When 2 is a vector of dimension 2
 they let

(2) =
£
2

2
(2) 2

2
(2)

0¤−12
2
(2)

Then, multiplying 2 (2 2) by (2) and solving gives
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(43) 1
2
(2) = 2 (2 2) +(2) 2 (2 2)

Hence, the derivative of the function of interest, 1 which maps the value of its endogenous

argument, 2 into 1 is identified from the derivatives of the conditional expectation of 1 given

2 = 2 and 2 = 2 and derivatives of the conditional expectation of 2 given 2 = 2

4.2. Nonparametric Nonseparable Models

Control function approach

The nonseparable version of the recursive model is, in its simplest form:

(44) 1 = 1 (2 1)

2 = 2 (2 2)

with 2 distributed independently of (1 2)  In particular, 1 is independent of 2 conditional

on 2 If one substitutes the second equation into the first, the resulting system,

1 = 1 (2 1 2)

2 = 2 (2 2)

is triangular in the unobservable variables (1 2) 

Chesher (2003) and Imbens and Newey (2009) showed identification in this model using a control

function approach. (See Heckman and Robb (1985).) The object of interest is the derivative of

1 with respect to 2 when the value of 1 is fixed. Given the distribution of the observable vector

(1 22)  one can identify this derivatives in a way parallel to that demonstrated in Section 4.1.

The independence of 2 and (1 2) imply that conditional on 2 1 and 2 are independently

distributed. Assuming that 2 is strictly increasing in 2 it follows that for an unknown function,

2 denoting the inverse of 2 with respect to 2 we have that given (2 2)

2 = 2 (2 2)

Since 1 is independent of 2 conditional on 2 and, conditional on 2 2 is a function of only 2

it follows that 1 is independent of 2 conditional on 2 Then, 1 is a function of 2 and  where

 is independent of (2 2)

1 =  (2 ) = 
¡
2 (2 2)  

¢
Hence,

1 = 1 (2 1) = 1
¡
2 

¡
2 (2 2)  

¢¢
=  (2 2 )

Taking derivatives with respect to y2 and 2 one gets

1
2
+1

1
2 

2
2

= 2

1
1

2 
2
2

= 2

Since 2  2  
2
2
 and 22 can be identified, one can solve for

¡
1

1
1
¢
and for 1

2
 getting that

1
2
= 2 − 2

22
22
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Substituting each of the terms by their expressions in terms of the distributions of the observable

variables, one gets

(45) 1
2

= −

³
1|2=22=2 (1)

2

´
³
1|2=22=2 (1)

1

´

+

³
1|2=22=2 (1)

2

´
³
1|2=22=2 (1)

1

´
³
2|2=2(2)

2

´
³
2|2=2(2)

2

´

Hence, the derivative of the function of interest, 1 which maps the value of its endogenous

argument, 2 and 1 into 1 is identified from the derivatives of the conditional distribution

functions of 1 given 2 = 2 and 2 = 2 at 1 = 1 and the derivatives of the conditional

distribution function of 2 given 2 = 2 at 2 = 2

Exchangeability

Altonji and Matzkin (2001, 2005) considered the model

1 =  (2 1)

where  is strictly increasing in 1 and 1 is not distributed independently of 2 In one of their

models, they assumed that the distribution of 1 is exchangeable in the value of 2 and another

endogenous variable e2 Formally, their assumption was for any value  of  and any values  and
0


|2=2=0() = 

|2=02=()
An example of an empirical situation where this exchangeability may be satisfied is where 1 denotes

the educational achievement of a student in a school, 2 is the income of his family, and 1 includes

an unobservable school effect. The school effect would not be independently distributed from the

income of the students in the school. However, its distribution could be the same when the income

of two families is exchanged. Letting e2 denote the income of the family of another student in the
class, the above exchangeability condition would be satisfied. Altonji and Matzkin (2001, 2005)

employed the normalization that for some specified value 2,  (2 1) = 1 This, together with

assumptions on the density of  that implied the strict monotonicity of the conditional distribution

of 1 given
³
 2e2´  was used to show identification of  and of 1|2 

Altonji and Matzkin (2001, 2005)’s main argument was as follows. The strict monotonicity of

 in  and the exchangeability condition implies that for all   0


1|2=2=0( ( )) = 

|2=02=( ¡0 ¢)
Since  (2 ) =  letting 0 = 2 and  = 2 it follows that


1|2=22=2( (2 )) = 

|2=22=2()
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The only unknown in this equation is (2 )  Inverting the strictly increasing function 1|2=22=2 
one gets

(46)  (2 ) = −1
1|2=22=2

³

|2=22=2()

´

This shows that  (2 ) is identified. To show that that |2=2() is identified, they note that
the strict monotonicity of  implies that for all 2 and 

|2=2() = 1|2=2((2 ))

Hence,

(47) |2=2() = 1|2=2
³
−1
1|2=22=2

³

|2=22=2()

´´

4.3. Multidimensional unobservables

The models above have the drawback that the dimension of the unobservable variables is very

limited. As in the case of Section 3, one can consider also in this case more general models of un-

observed heterogeneity at the expense of only identifying average measures, rather than individual

measures.

Suppose the object of interest is

1 =  (2 1  )

where 1 2 and an external variable  are observable and where 2 and  = (1  ) are

independent, conditional on 

Altonji and Matzkin (2001, 2005) considered the local average response function, (2) defined

as the average derivative of  with respect to 2 over the distribution of  for those with 2 = 2.

Formally,

(2) =

Z
 (2 1  )

2
|2=2 (1  ) 1 · · · 

Altonji and Matzkin showed that  (2) can be constructively identified by

(48)  (2) =

Z
 (1|2 = 2 = )

2
 |2=2 () 
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Blundell and Powell (2003) considered the average structural function, (2) defined as the

average value of the function  when 2 = 2 where the average is over the marginal distribution

of  Formally,

 (2) =

Z
 (2 1  ) 1 (1 ) 1 · · · 

Blundell and Powell showed that (2) can be constructively identified by

(49)  (2) =

Z
 (1|2 = 2 = )  () 

Imbens and Newey (2009) considered the −quantile of  (2 1  )  when 2 is fixed,

denoted as  (2 ). They showed that when the support of  conditional on 2 = 2 is constant

across 2, the −quantile of  (2 ) can be constructed from the distribution of (1 2 ) by

(410)  (2 ) = −1 (  2)

where

(411)  (1 2) =

Z
1|2=2= (1)  () 

5. Simultaneity

The most general model with endogeneity is one that allows the values of all endogenous variables

to be determined simultaneously. Several identification results for nonparametric models with

simultaneity have been developed. One line of research analyzes identification using conditional

moment restrictions generated with observable variables that are excluded from the functions of

interest. Identification takes the form of asking whether one or a system of integral equations has a

unique solution. Uniqueness of the solution has been studied under assumptions on the conditional

distribution of the observable endogenous explanatory variable, given the excluded variable.

Another line of research focuses on the whole system of equations. Identification, in this

approach, has been studied under assumptions on the unknown functions in the system and on the

joint distribution of the observable and unobservable exogenous variables.

I first provide some examples of economic models where identification requires methods that

deal with simultaneity. I then review the results that have been developed to deal with simultaneity.

As in the previous section, to concentrate on presenting the main identification insights, I consider

the simplest versions of the models. The results can be easily extended to models where all the

functions depends on a vector of observable variables, 

5.1. Examples of models with simultaneity

The textbook example of a model with simultaneity is the demand and supply model. The quantity

sold in a typical market,  and the price of the product in that market,  are observed, as

well as the income of the consumers,  and the input costs of the producers,  The objects of
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interest are the demand function,  (  )  and the supply function,  ( )  The demand

function  (  ) denotes the quantity,  that consumers are willing to buy when the price of

the product is  , the consumers’ income is  and  is the value of a vector of unobserved variables

of the consumers influencing their demand. The supply function  ( ) denotes the price, 

that producers are willing to accept for producing the quantity  when the input price is  and

 is the value of a vector of unobserved variables that influence the price producers are willing to

accept. The system that determines the observed  and  is then

 =  (  )

 =  ( )

The observable values of  and  are the values that satisfy both equations. Assuming that

this system has a unique solution for (  )  the observable distribution of the vector of

endogenous variables ( )  conditional on the vector of observable exogenous variables ( ) is

generated by

 = 1 (  )

 = 2 (  )

for some functions 1 and 2 Unlike the triangular model analyzed in Section 4, in this model

all the endogenous variables are determined by the unobservable variables that enter in all the

equations in the system.

Multidimensional optimization models also generate models with simultaneity. Suppose each

member in a population chooses the value of a vector  by maximizing a function  ( )

where  is a vector representing unobservable taste or characteristics of the individual, and  is an

observable vector of characteristics of the member or of the constraints the individual faces. The

observed value of  chosen by a typical agent with unobservable  satisfies

 = argmax


 ( )

The observed  satisfies the First Order Conditions for maximization

 ( ) = 0

This is a system of simultaneous equations where the vector of unknown function  is the gradient

of the objective function  Integration of the gradient yields the object function. Hence, if the

system  and the distribution of  are identified, one can identify the distribution of value functions

over the population. Blundell, Kristensen, and Matzkin (2009, 2012) analyzed identification of

consumer demand models using this approach. In their models, the function  is the utility

function after substituting the value of one of the coordinates of  by the value determined by the

budget constraint, and  is a vector of unobservable taste for the commodities.

In markets for differentiated products, one observes the quantity sold of each of a finite number

of products and the prices of the products. The quantity demanded of each product depends on

the prices, observed characteristics, and unobserved characteristics of all products, generating a

system of demands

1 = 1 (1  1  1  )

· · ·
 =  (1  1  1  )
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where  denotes the market price of product   denotes the vector of observable character-

istics of product   denotes the unobserved characteristic of product  and  denotes the

observed quantity demanded of product  These models, which are extensions of the discrete

choice model developed by McFadden (1974), were analyzed parametrically by Berry, Levinshon

and Pakes (1995). Recently, Berry and Haile (2009) analyzed the nonparametric identification of

this system of equations, using functional restrictions and instruments for (1  ).

5.2. Conditional Moments Approach

5.2.1. A separable model

A simple version of the model considered in the Conditional Moments Approach is the separable

model

1 =  (2) + 

where the function is unknown, (1 2) is a continuously distributed random vector of observable

variables, and for some observable the conditional expectation of  given is a.s. zero,  (|) =
0 Newey and Powell (1989, 2003), Ai and Chen (2003), Darolles, Florens, and Renault (2002), and

Hall and Horowitz (2003) first considered this model. Taking conditional expectations, given 

on both sides of this equation results in the moment condition

(51)  (1| = ) =

Z
 (2) 2|= (2) 2

In this expression, the conditional expectation,  (1| = )  of 1 given  = , and the

conditional density, 2|= of 2 given  =  can be calculated from the distribution of the

observable variables (1 2)  Hence, they are identified regardless of whether the function  is

or is not identified. After substituting  (1| = ) and 2|= (2) by their expressions in terms
of the distribution of (1 2)  the integral equation (51) becomes a functional equation in only

one unknown function, . The function  is identified if (51) has a unique solution. Newey and

Powell (1989, 2003) showed that a completeness condition on 2| is necessary and sufficient for

the existence of a unique solution  to the integral equation (51) The completeness condition is

satisfied iff for all functions (2) with finite expectation,  [(2)| = ] = 0 implies that (2) =

0 Suppose for example, that the conditional density of 2 given  is of the exponential type,

i.e., 2|=(2) = (2) () exp(()(2)) with (2)  0 and (2) 1-1. Then, completeness is

satisfied. (See Newey and Powell (2003).)

Das (2004) and Newey and Powell (2003) considered identification of this model when both 2
and  are discrete. Denote the support of 2 and by, respectively, {21  2} and {1  }
Let  denote the  ×  matrix whose  −  elements is Pr (2 = 2| = )  Their necessary

and sufficient condition for identification of  on {21  2}  in this case, is that the rank of 
is .

5.2.2. A nonseparable model

When the model is nonseparable, the question of identification using an external variable,  has

also been studied as a uniqueness question of an integral equation. Chernozhukov and Hansen
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(2005), Chernozhukov, Imbens, and Newey (2005), and Chen, Chernozhukov, Lee, and Newey

(2011) provided identification results for the function  in the nonseparable model

(52) 1 =  (2 1)

where, for all values, 2 of 2  is strictly increasing in the scalar 1 They assumed that 1 is

independent of an observable  generating the nonlinear quantile restriction that for all 

Pr (1 ≤  | = ) =  

The definition of 1 and the strict monotonicity of in 1 imply the conditional moment restriction

 [1 (1 ≤  (2 ))−  | = ] = 0 

For the special case where the support of 2 is {0 1} and the support of  is {0 1}  Cher-
nozhukov and Hansen (2005, Theorem 2) showed identification under the assumption that the

matrices

(53) 0(e0e1) =
⎡⎣ 12|=0 (e0 0) 12|=0 (e1 1)

12|=1 (e00) 12|=1 (e1 1)
⎤⎦

for all (e0e1) in a set that depends on  are full rank. For the case where 2 is continuous, they

showed identification under a bounded completeness condition. (See Chernozhukov and Hansen

(2005) for details.)

5.3. Simultaneous System Approach

The simultaneous system approach focuses on the system of structural equations and analyzes

identification under restrictions on the unknown functions in the system and on the distribution of

the exogenous variables. In this approach, the identification analysis exploits the restrictions that

the economic model implies on the structural model. Hence, it is more tied up to the structural

model under consideration, and the conditions for identification are more primitive, than those that

have been used in the Conditional Moments Approach. Another difference is that the Simultaneous

System Approach is more focused on the identification of the value of  at particular points in its

domain.

In econometrics textbooks, linear simultaneous equations models are typically specified as

(54)  =  +

where, following closely the notation in the previous sections,  is a vector of  observable endoge-

nous variables, is a vector of observable exogenous variables, and  is a vector of unobservable

exogenous variables. The interactions among the endogenous variables is represented in the ×

matrix  while the effect of the observable exogenous variables, or inputs, is represented in the

 × matrix  If the matrix  is invertible, one can solve for  by premultiplying the above

equation by the inverse, ()−1  of  yielding

 = Π  + 

where Π = − ()−1 and  = ()−1  The resulting system is the reduced form system. The

identification of the true values of the matrices  and  and of the distribution of  has been
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the object of study in the works by Koopmans (1949), Koopmans, Rubin, and Leipnik (1950),

Haavelmo (1943, 1944), and Fisher (1966), among others. (See Hausman (1983) and Hsiao (1983)

for an early review.)

The nonparametric version of the model (54) is

(55)  =  ()

where  is a vector of unknown functions that map the observable vector () into the value of the

unobservable vector  in  The conditions imposed on this model, to analyze its identification,

have generalized the conditions used in linear models. In particular, it has been usually assumed

that conditional on  the relationship between  and  is 1-1, and that the vectors  and 

are independently distributed. The independence condition may be satisfied conditional on a

vector  Hence, in many situations it may not be too strong. The 1-1 restriction, however, may

be overly strong. If, for example,  is the vector of equilibrium prices in a general equilibrium

model, the restrictions guaranteeing that the relationship between  and  is 1-1 are the same as

those guaranteeing a unique equilibrium. More generally, the conditions are the same as those

guaranteeing invertibility in nonlinear equations. (See Gale and Nikaido (1965) for one set of such

conditions.)

Roehrig (1988), following Brown (1983), proposed identification results for the model (5.5)

under the two assumptions that, conditional on  the relationship between  and  is 1-1, and

that  and  are distributed independently. Following Benkard and Berry (2006) counterexamples

on Roehrig (1988), Matzkin (2008) developed a new set of identification results. Her results were

based on the transformation of variables equation

(56)  |= () = |= ( ( ))
¯̄̄̄
 ( )



¯̄̄̄


which maps the function  and the conditional density of  given  =  to a conditional density

 | of the vector of observable endogeneous variables,  given  =  Matzkin (2008) assumed

differentiability and full support assumptions on all functions and densities, in addition to the

1-1 assumption on the relationship between  and  conditional on any value  for  and the

independence between  and . The pair (  ) was defined to be observationally equivalent to

another pair
³ e  e´  when  is known, if and only if for all ( )

(57)  ( ( ))

¯̄̄̄
 ( )



¯̄̄̄
= e (e ( )) ¯̄̄̄

e ( )


¯̄̄̄

Based on this definition, Matzkin (2008) provided several characterizations of observational

equivalence in terms of only e  and 

Construcptive identification results, where a feature  ( ) of ( ) is characterized by a

completely specified functional Φ on the distribution of observable variables  ∗ were developed

in Matzkin (2007, 2010, 2011) and in Berry and Haile (2009, 2011) for particular specifications of the

model (55) These characterizations have been derived from (56) I describe two such constructive

identification results in the following sections.
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5.3.1. A special case with exclusive regressors

A particularly useful case of the model (55) is the structural model, considered in Matzkin (2005),

where:

1 = 1 () + 1

2 = 2() + 2

· · ·
 =  () + 

with  distributed independently of (1 ) and the relationship between  and  being 1-1.

The latter assumption implies that the Jacobian determinant | () | is different from zero.

A constructive method to identify the values of 1()  () in this model was stated in

Matzkin (2007, Section 2.1.4), in the context of a consumer demand model. In that result, it was

assumed that  is differentiable and is known to possess a unique mode, whose value is known.

Denote this value by ∗ The method uses the transformation of variables equation. Due to the
additivity in , and the independence between  and  the transformation equation (56) becomes

 |() =  ( () + )

¯̄̄̄
 ()



¯̄̄̄
The condition on the density  is that

 ()


= 0 ⇔  = ∗

and that ∗ is known. Differentiating the transformation of variables equations with respect to ,
one gets

 |()


=
 ( () + )



¯̄̄̄
 ()



¯̄̄̄
Since | () | 6= 0 the only way in which the derivative of the conditional density of  given

 =  can equal zero is if the derivative of  with respect to  is evaluated at the mode, 
∗ But

this implies that at the value of  for which the derivative of the conditional density of  given

 =  is zero,

() +  = ∗

Hence, given  for () is such that

 |=()()


= 0

one has that

() = ∗ − ()

In summary, the result states that when the density of  possesses only one mode and the value

of the mode is known, one can identify the value of the function  at  by finding the value ()
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at which the gradient with respect to  of  |=() () equals zero. The value of () equals the
mode minus ()

The identification of () follows from the identification of (i) () (ii)  |= () when  =

()− and of (iii) the derivatives of () When these three are identified, () can be calculated
using the transformation of variables equation:

 () =  |=()− ()
¯̄̄̄
 ()



¯̄̄̄−1

Other constructive identification results for this model were given in Berry and Haile (2009,

2011), in the context of a model of demand for differentiated products with nonparametric demand

and supply equations, and in Matzkin (2010, 2011), using average derivatives to exploit the additive

linear specification of 

5.3.2. Special cases of two equations, one-instrument models

Often, the object of interest is a function within a system, such as the function 1 in the system

(58) 1 = 1 (2 1)

2 = 2 (12 2)

Matzkin (2010, 2011) provided several identification results for the derivative of 1 with respect to

2 in this model. She assumed that 
1 is invertible in 1 and 2 is invertible in 2 The system

could then be written as

(59) 1 = 1 (1 2)

2 = 2 (1 22)

Matzkin (2010) assumed that (1 2) is distributed independently of 2 and that conditional on

2 the relationship between  and  is 1-1.

System (58) is the extension to models with simultaneity of the recursive system

1 = 1 (2 1)

2 = 2 (2 2)

specified in (42) In the recursive system (42) 1 is not an argument in 2 This allows to

identify first elements of 2 that can be employed in the identification of elements of 1 In

recursive systems, the first step does not require any knowledge of 1 or of 1  In non-recursive

systems, the inclusion of 1 as an argument in 2 does not allow, in general, to identify elements

of 2 separately from 1

If, however, in the simultaneous equations system (58), 1 and 2 were linear and additive

in, respectively, 1 and 2, the elements of 
1 could be identified recursively. Suppose

1 =  2 + 1

2 =  1 +  2 + 2

where   and  are parameters of unknown values satisfying (1− ) 6= 0 Solving this system
for 2 gives a function that is linear in 2 and additive in an unobservable  :

2 =  2 + 
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The system

1 =  2 + 1

2 =  2 + 

can be identified using, among others, the methods described in Section 4.

When the functions 1 and 2 in (58) are not linear in  solving (58) for 2 will result in a

function of three arguments, two of which are 1 and 2 :

2 = 2 (2 1 2)

5.3.2.1. Triangular Blundell and Matzkin (2010) characterized the set of systems (58) that

are observationally equivalent to (42)  They showed that for both systems to be observationally

equivalent a property, which they called "control function separability," has to be satisfied. For

(59) to satisfy control function separability it must be that for some functions  and  each

invertible in its first coordinate

2 (1 22) = 
¡
 (2)  

1 (1 2)
¢

This condition allows 1 to be an argument of the function 2 but only as long as 1 enters 
2

inside an index function equal to 1

5.3.2.2. Separable Inverse Matzkin (2010, 2011) provided several observational equivalence

results and constructive identification results for the identification of the derivatives of 1 in the

system (58) without assuming control function separability. To describe one of her results, closely

related to the one in Section 5.3.2, assume that the system (59) is of the form

1 = 1 (1 2)

2 = 2 (1 2) + 2

Let (1 2) be a specified value of  = (1 2)  Matzkin (2010) assumed that there exists two

values 02 and 002 of 2 such that

 log  (1 
0
2)

2
=

 log  (1 
00
2)

2
= 0

and
 log  (1 

0
2)

1
6=  log  (1 

00
2)

1

where 1 = 1 (1 2)  She then showed a two step procedure to constructively identify 1 (2 1) 2.

First, find any values 02 and 002 satisfying

 log  |2=
0
2
()

2
=

 log  |2=
00
2
()

2
= 0

and
 log  |2=

0
2
()

1
6=  log  |2=

00
2
()

1
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Next, read the derivative of 1 with respect to 2 off the conditional density of  given 2

when  = (1 2) and 2 = 02 
00
2 by

(510)
1 (2 1)

2
=

−
∙
 log  |2=02

()

2
−  log  |2=002

()

2

¸
∙
 log  |2=02

()

1
−  log  |2=002

()

1

¸

Matzkin (2010) provided also constructive identification of the derivative of 1 employing con-

ditions on the second order derivatives of log() and corresponding second order derivatives of

log
¡
 |2

¢


5.3.3. Identification in general models

Identification results in general models can be obtained by applying the observational equivalence

results in Matzkin (2008). Taking logs and differentiating (57) with respect to  and  one gets

e0 e + e = 
0
  + e0 e + e = 
0
  + 

where e =  log  (e ( ))   =  log  ( ( ))  e0 and  denote, respectively, the

transpose of the matrices of partial derivatives with respect to  e and  e0 and  denote, re-

spectively, the transpose of the matrices of partial derivatives with respect to  e and  and wheree ,e  and  denote the derivatives with respect to  and  of log (|e|) and log (||)  Based
on these equations, Matzkin (2008) provided several characterizations of observational equivalence

between e and 

Constructive identification results in general models can be obtained similarly from (56) Taking

logs and differentiating (56) one gets

 = 
0
  + 

 = 
0
  + 

where  =  log
¡
 |=()

¢
 and  =  log

¡
 |=()

¢
 are observable. (See Matzkin

(2010, 2013) and Berry and Haile (2011).)

6. Conclusions

I have reviewed some of the main developments on nonparametric identification in structural eco-

nomic models. I considered models with non-endogenous explanatory variables, with recursive

endogeneity, and models with simultaneity. In each case, I have described some of the main

insights that have been used to identify separable and nonseparable models. The results have

been described on very stylized models. Analyzing nonparametric identification in realistic situa-

tions requires combining and extending these results, as well as adding the insights from the large

important literature that has been left unmentioned in this article.
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