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IDENTIFICATION IN NONPARAMETRIC SIMULTANEOUS
EQUATIONS MODELS

By RosA L. MATZKIN!

This paper provides conditions for identification of functionals in nonparametric si-
multaneous equations models with nonadditive unobservable random terms. The con-
ditions are derived from a characterization of observational equivalence between mod-
els. We show that, in the models considered, observational equivalence can be charac-
terized by a restriction on the rank of a matrix. The use of the new results is exemplified
by deriving previously known results about identification in parametric and nonpara-
metric models as well as new results. A stylized method for analyzing identification,
which is useful in some situations, is also presented.

KEYWORDS: Nonparametric methods, nonadditive models, nonseparable models,
identification, simultaneous equations, endogeneity.

1. INTRODUCTION

THE INTERPLAY BETWEEN ECONOMETRICS AND ECONOMIC THEORY comes to
its full force when analyzing the identification of underlying functions and dis-
tributions in structural models. Identification in structural models that are lin-
ear in variables and parameters and have additive unobservable variables has
been studied for a long time. On the other hand, identification in structural
models that do not impose parametric assumptions in the functions and dis-
tributions in the model, or do not impose additivity in the unobservable vari-
ables, has not yet been completely understood. The objective of this paper is to
provide insight into these latter cases. Starting from a characterization of ob-
servational equivalence, this paper provides new conditions that can be used
to determine the identification of the underlying functions and distributions in
simultaneous equations models.

The study of identification is a key element in the econometric analysis of
many structural models. Such study allows one to determine conditions un-
der which, from the distribution of observable variables, one can recover fea-
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tures of the primitive functions and distributions in the model. These fea-
tures are needed, for example, for the analysis of counterfactuals, where
one wants to calculate the outcomes that would result when some of the
elements in the model change. The analysis of identification dates back to
the works of H. Working (1925), E. J. Working (1927), Tinbergen (1930),
Frisch (1934, 1938), Haavelmo (1943, 1944), Hurwicz (1950a), Koopmans and
Reiersol (1950), Koopmans, Rubin, and Leipnik (1950), Wald (1950), Fisher
(1959, 1961, 1965, 1966), Wegge (1965), Rothenberg (1971), and Bowden
(1973). While the importance of identification in models with nonparametric
functions and with nonadditive unobservable random terms has been recog-
nized since the early years (see Hurwicz (1950a, 1950b)), most works at the
time concentrated on providing conditions for linear models with additive un-
observable random terms or for nonlinear parametric models.

More recently, nonparametric models with nonadditive unobservable vari-
ables have received increasing attention, with new theoretical developments
and application possibilities frequently appearing. This has motivated re-
searchers to revisit older studies armed with new tools. In the context of identi-
fication in simultaneous equations models, Benkard and Berry (2006) recently
revisited the path-breaking results by Brown (1983), and their extension by
Roehrig (1988), on the identification of nonlinear and nonparametric simulta-
neous equations, and found some arguments to be controversial. A contribu-
tion of this paper is to provide a different set of conditions for the identification
of such models.

The current literature on identification of nonparametric models with en-
dogenous regressors is very large. Within this literature, Ng and Pinske (1995),
Newey, Powell, and Vella (1999), and Pinske (2000) considered nonparamet-
ric triangular systems with additive unobservable random terms. Altonji and
Ichimura (2000) considered models with latent variables. Altonji and Matzkin
(2001, 2005) provided estimators for average derivatives in nonseparable mod-
els, using conditional independence, and for nonparametric nonseparable
functions, using exchangeability. Altonji and Matzkin (2003) extended their
2001 results to discrete endogenous regressors. Chesher (2003) considered lo-
cal identification of derivatives in triangular systems with nonadditive random
terms. Imbens and Newey (2003) studied global identification and estimation
of derivatives and average derivatives in triangular systems with nonadditive
random terms. Matzkin (2003, 2004) considered estimation under conditional
independence, with normalizations and restrictions on nonadditive functions.
Vytlacil and Yildiz (2007) studied estimation of average effects in models with
weak separability and dummy endogenous variables. For nontriangular sys-
tems, Newey and Powell (1989, 2003), Darolles, Florens, and Renault (2003),
and Hall and Horowitz (2005) considered estimation using conditional mo-
ment conditions between additive unobservables and instruments. Brown and
Matzkin (1998), Ai and Chen (2003), Chernozhukov and Hansen (2005), and
Chernozhukov, Imbens, and Newey (2007) allowed for the unobservable vari-
ables to be nonadditive. The latter two articles exploited an independence as-
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sumption between the unobservable variables and an instrument, to study iden-
tification. Matzkin (2004) considered identification using instruments and an
independence condition across the unobservable variables. Blundell and Pow-
ell (2003) analyzed several nonparametric and semiparametric models, and
provided many references. Matzkin (2007a) provided a partial survey of re-
cent results on nonparametric identification. A parallel approach has consid-
ered partial identification in structural triangular and nontriangular models
(see Chesher (2005, 2007)).

The outline of the paper is as follows. In the next section, we describe the
model and its main assumptions. In Section 3, we derive several characteri-
zations of observational equivalence. We demonstrate how these characteri-
zations can be used to determine identification in a linear and an additively
separable model, in Section 4, and how they can be used to obtain the al-
ready known results for single and triangular nonadditive models, in Section 5.
A more stylized method for analyzing identification is presented in Section 6.
Section 7 presents the main conclusions of the paper.

2. THE MODEL

We consider a system of structural equations, described as
(2.1) U=r(Y, X),

where r: R — RY is an unknown, twice continuously differentiable func-
tion, Y is a vector of G observable endogenous variables, X is a vector of
K observable exogenous variables, and U is a vector of G unobservable vari-
ables, which is assumed to be distributed independently of X. Let f; denote
the density of U, assumed to be continuously differentiable. Our objective is to
determine conditions under which the function r and the density f; are iden-
tified within a set of functions and densities to which r and f; belong. We will
assume that the vector X has a continuous, known density fx that has support
RX. Assuming that fy is known does not generate a loss of generality, for the
purpose of the analysis of identification, because X is observable.
A typical example of a system (2.1) is a demand and supply model,

(2'2) Q=D(P,17 U1)7
P= S(Q7 W: U2)7

where O and P denote the quantity and price of a commodity, I denotes con-
sumers’ income, W denotes producers’ input prices, U; denotes an unobserv-
able demand shock, and U, denotes an unobservable supply shock. If the de-
mand function, D, is strictly increasing in U; and the supply function, S, is
strictly increasing in U,, one can invert these functions and write this system
as in (2.1), with Y = (P, Q), X = (I, W), and U = (U,, U,), r; denoting the
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inverse of D with respect to Uy, and r, denoting the inverse of S with respect
to U,:

U1=7’1(Q,P,]),
U, =n(Q,P,W).

We will assume that the system of structural equations (2.1) possesses a
unique reduced form system

23)  Y=hX,U),

where h:R¥*% — R¢ is twice continuously differentiable. In particular, con-
ditional on X, r is one-to-one in Y. In the supply and demand example, this
reduced form system is expressed as

24 O=hUW, U, ),
P = hz(], W: Ula U2)7

where the values of O and P are the unique values satistying (2.2).

To determine conditions for identification, we start out from a characteriza-
tion of observational equivalence, within a set of functions and distributions
to which r and fy are, respectively, assumed to belong. We will let I" denote
the set of functions to which r belongs and let @ denote the set of densities to
which fy belongs.

The functions 7: R°*X — R¢ in the set I', satisfy the following properties.

(i) 7 is twice continuously differentiable on R*X.
(ii) For each x € RX, 7(-, x): R® — R is one-to-one and onto R°.

(iii) For each (y,x) € R*K  the Jacobian determinant |J7(y,x)/dy| is
strictly positive. N
Note that to each such 7 there corresponds a function /: R¥+*¢ — RY which
assigns to eacg value (x, u) € RE*Y the unique value y satisfying u =7(y, x).
The function / is twice continuously differentiable on R**“. For each x € R¥,
h(x,-):R% — RC is one-to-one and onto R°.

The set @ will be defined to be the set of densities fi:R® — R such that
(i) f7 is continuously differentiable on R¢ and (ii) the support of fg is R°.

The differentiability of 7 and f will allow us to express conditions in terms of
derivatives. The support conditions on f§, the density of X, and on the density
of Y conditional on X will allow us to guarantee that all densities converge to
0 as the value of one of their arguments tends to infinity. The condition on the
sign of the Jacobian determinant |J7(y, x)/dy| is a normalization.

Given fy, we can derive, for each (7, fy) € (I' x @), a unique distribution
function, Fy x(-; (7, fg)) for the vector of observable variables (Y, X). Under
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our conditions, if fy is differentiable, Fy x(-; (7, f)) is characterized by a dif-
ferentiable density fy x(-; (7, fi)), which is defined, for all y, x, by

fY,X(y’ X (7’ leJ)) == fY\X:x(y; (7, fﬁ))fX(x)

ar(y, x)
dy fx(x)-

= fo(F(y, x))

3. OBSERVATIONAL EQUIVALENCE

Following the standard definition, we will say that two elements of (I" x @)
are observationally equivalent if they generate the same distribution of the
observable variables. Formally, this is stated as follows.

DEFINITION 3.1: (7, f3), (F, fz) € (I' x @) are observationally equivalent, if
for all (y, x) € RE*K,

Fyx(y,x; (7, fo)) = Fy x(y, x; (7, fp))-

The standard, closely related, definition of identification is given by the next
statement:

DEFINITION 3.2: (r, fy) € (I' x @) is identified in (I" x ), if for all (7, fz) €
(I' x @) such that (r, fy) # (7, f5), (7, fiy) is not observationally equivalent to

(r7fU)'

More generally, we might be interested in the identification of the value of
some functional, w(r, fy). Let 2 = {uw(7, fi)|(7, f5) € (I' x @)} denote the set
of all possible values that w can attain over pairs (7, fz) in (I x @), given fy.
Then we have the following definition.

DEFINITION 3.3: The value @ € {2 is observationally equivalent to @ € () if
there exist (7, f7), (7, fr) € (I' x @) such that @ = u(7, ), @ = u(7, f7), and
(7, fo) is observationally equivalent to (7, f).

The value w of any functional u at (r, fy) is identified if all pairs (7, f7) €
(I' x @) that are observationally equivalent to (r, f;y) are assigned, by u, the
same value, w; that is, u(7, fi) = w. The formal statement follows.

DEFINITION 3.4: The value w = u(r, fy) € Q is identified within (2, with
respect to (I" x @), if for any (7, f5) € (I’ x @) and @ € (2 such that @ =
w(7, ) # u(r, fu) = o, (7, f) is not observationally equivalent to (r, fy); that
is,

Fyx (5 (F, fo)) # Frx (5 (r, fu)).

Since, in our model, the continuous marginal density fy, whose support is
RX, does not depend on (7, fg) or (7, fi), we can state that (7, f7), (7, f7) €
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(I' x @) are observationally equivalent if for all y, x,

IF(y, x) 077”()’, x)
J

31 fe@(y,x)

fU((7 ))

Note that, under our conditions, if r is identified, so is f;. This is easy to see,
since for any u,

oh
Fo() = frxer(h(x, ))‘ (¥, 1)

and if r is identified, so is A.

We will analyze the identification of functionals, w, of (r, fiy). The approach
used will be to first determine conditions for observational equivalence be-
tween (r, fy) and any (7, fi) € (I' x @), and then verify that for any such (7, f7)
that is observationally equivalent to (7, fy),

/‘L(’Faflj/):M(r’fU)

Our starting point is equation (3.1). Given the true (7, fy) and an alterna-
tive function 7 € I, this equation can be used to derive a density, fi, such
that (7, fz) is observationally equivalent to (r, f). For this, we study the re-
lationship between the mapping which assigns to any (y, x), the value @ of U,
satisfying

(3.2) u=r(y,x)
and the mapping which assigns to that same (y, x), the value u of U, satisfying
(3.3) u=r(y,x).
Since 7 € I', (3.2) implies that
y="h(x, ),

where 7 is the reduced form function corresponding to 7. Substituting in (3.3),
we get that?

u= r(ﬁ(x, ), x).
Hence, we can write (3.1) as

JF(h(x, D), x)
dy

ar(h(x, @), x)

= fu(r(h(x, ), x)) %

fo(w)

2 Brown (1983) and Roehrig (1988) used a mapping like this. They analyzed the restrictions
that independence between the observable and unobservable explanatory variables imposes on
this mapping, deriving different results than the ones we derive in this paper.
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or, after dividing both sides by the first determinant, as

-1

FF(h(x, D), x)
dy

or(h(x, i), x)

G4 @ = fu(r(h(x, @), x)) 5

Two important implications can be derived from expression (3.4). First, (3.4)
implies that f (i) is completely determined by 7, r, and fy. That is, once we
know 7, r, and fy, we can, when it exists, determine the distribution of U =
7(Y, X) such that (7, fi) is observationally equivalent to (r, fi;). Second, since
the left-hand side of (3.4) does not depend on x, the right-hand side should not
depend on x either. As we next show, the latter is a condition for independence
between U and X.

3.1. Independence

Consider deriving, for each x, the conditional density, fzx_, of U= (Y, X)
given X = x. Under our assumptions, this conditional density always exists and
belongs to @. Since U = r(h(X U) X), and % and r are one-to-one and onto,
conditional on X = x, it follows by the standard formula for transformation of
variables that

ﬁr(h(x ), x)

(B5)  foee(@ = fu(r(h(x, @), x)) =

Differentiating with respect to u the identity
i =F(h(x, ), %),

one gets that

oh(x, ) (FF(h(x, @), x)\ "
Fr Ay

Hence, the density of U conditional on X = x is given by
or(h(x, ), x)
au
ar(h(x, @), x) Oh(x, &)

Ay o
or(h(x, ), x)
ay

Forxes (@) = fu (r(h(x, @), x))

= fU(r(%(X, ZZ)’ x))

IF(h(x, 1), x)| ™"

= fu(r(h(x, ), x)) 5
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Under our assumptions, the random variable U is independent of X if and
only if for all x,

fUIX:x(ﬁ) = fU(ﬁ)-

Note that this is exactly the same condition as in (3.4). Hence, requiring ob-
servational equivalence between (7, fg) and (r, fy) is equivalent to requiring
that fzx_, in (3.5) equals, for all x, the marginal density of U. Making use of
our support and differentiability assumptions, the condition for independence
between U and X can be expressed as the condition that for all x, u,

N1 x=x (1) B
ox N

0.

3.2. Characterization of Independence

To obtain a more practical characterization of the independence condition,
we proceed to express it in terms of the derivatives of the functions 7 and r.
Let dlog fy(r(y, x))/du denote the G x 1 gradient of log(fy (1)) with respect
to u, evaluated at u = r(y, x). Since fx_, (%) > 0, the condition that for all
X, U, df g x—. (1) /dx = 0 is equivalent to the condition that for all x, 7,

alogfﬁ\X:x(’lz) _
Jx o

0.

Since

FF(h(x, ), x) |

ay

ar(h(x, @), x)
dy

b

Forx—e (@) = fu(r(h(x, @), x))

the above is equivalent to the condition that

0 (&log(fy(r(z(x, u), x)))>/
- du

[ar(ﬁ(x, ), x) dh(x, ) N ar(h(x, 'ﬁ),x)]
x ay ox ox

N ( g [1 or(h(e, @), x)| | NG, ), x) D
ox ©8 Jd °8 ady
( J |: ar(h(x, @), x) IF(h(x, ©), x) :|)/ Ih(x, 1)
+ | —|log| ———— | —log
ay Jd ay x
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or, substituting E(x, %) by y, to

(3.6) (“ng L, xD)/[ﬁr(ay);x) L0 I, ﬂ)}
y Jx
ar(y, x)

7 (, " | ))’afz(x,ﬂ)
# (0o “57) + (5 (o 57) =5

= (ilo Iy, x) ) . <i<1og Iy, x) )) Th(x, )
ox (9_)} ax

dy ay

This may be interpreted as stating that the proportional change in the condi-
tional density of Y given X, when the value of X changes and Y responds to
that change according to #, has to equal the proportional change in the value
of the determinant determined by 7 when X changes and Y responds to that
change according to 4.

To obtain an equivalent expression for (3.6) in terms of only the structural
functions, r and 7, and the density f;;, we note that differentiating the identity

ar(y, x)

y = h(x,7(y, x))

with respect to x gives

0

_ 9h(x, @) +a'/€<x,7<y, x)) (7 (y, x)
T ox I A

Using the relationship, derived above, that

oh(x, ) (F(h(x, 1), %)\
Fr Ay ’
and substituting y for h(x, i) gives an expression for the derivative with respect

to x of the reduced form function 4, in terms of derivatives with respect to y
and x, of the structural function 7:

Jh(x, @) (ﬁ(y, x))laﬂy, x)
ax ay ix

where E(x, 1) is the reduced form function of the alternative model evaluated
at  =7(y, x). Hence, a different way of writing condition (3.6), in terms of the
structural functions r and 7 of the observable variables, and the density fy, is

(37) (o”logfu(r(y,x)))/[&r(y,x) _9r(y, x) (f??(y, x))lﬁ(y, x)]
' u dx ay ay Ix
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d d Ir '

4 (ilog rgy, x| 9 I, x) )
ox ady ox dy

3 [(ilog ar(y,x)| glog Ir(y, x) )
dy dy dy dy

Iy, )\ "y, x)
(757) T

=0.

We can express condition (3.7) in a more succinct way. Define, for any y, x,
the G x K matrix A(y, x; dr, dr), the K x 1 vector b(y, x; dr, dF, *r, *F), and
the G x 1 vector s(y, x; fu, r) by

gr(y,x)  ar(y,x) (Jr‘(y, x))‘lﬁ(y, x)}

A ) 3a78~=
(¥, x: 9, Jr) [ Jx dy dy ox

b(y, x; dr, dF, 0*r, T

=_<ilog( ar(y, x) )_ glog< Jr(y, x) ))
aJx dy aJx dy
9 ar(y, x) d Ty, 0\
[ (Geel([#5) - 5 e F5)

y (a’f(y,x))‘la’f(y, x)}
ay ix |

and

dlog(fu(r(y,x)))

s(an;nyr)z (91/!

Condition (3.7) can then be expressed as stating that for all y, x,
s(y, x; fu, 1) A(y, x; dr, dF) = b(y, x; dr, dF, &*r, I°F) .

We index the G x K matrix A(y, x) by (dr, dr), the K x 1 vector b(y, x) by
(dr, dF, 3*r, 3°F), and the G x 1 vector s(y, x) by (fy, r) to emphasize that the
value of 4 depends on the first order derivatives of the functions r and 7, the
value of b depends on the first and second order derivatives of the functions
r and 7, and the value of s depends on the function f; and the value of the
function r. Our arguments above lead to the following result:
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THEOREM 3.1: Suppose that (r, fy) € (I' x @) and that 7 € I'. Define the den-
sity of U conditional on X = x as in (3.5). Then

dme:x(ﬂ)

— =0 forall x,u

if and only if for all y, x,
(3.8) sy, x; fu,r) A(y, x; dr, IF) = b(y, x; dr, IF, &*r, I°F) .

3.3. Characterization of Observational Equivalence as
an Independence Condition

Making use of the connection between independence and observational
equivalence, we can use (3.8) to provide a characterization of observational
equivalence. This is established in the next theorem.

THEOREM 3.2: Suppose that (r, fy) € I’ x @ and 7 € I'. There exists fy € ®

such that (7, f) is observationally equivalent to (r, fy) if and only if for all y, x,
(3.8) is satisfied.

The proof of Theorem 3.2 follows, again, by the previous arguments. Obser-
vational equivalence between (7, f5) and (r, fy), as in (3.1) and (3.4), implies
that fyx_, defined by (3.5) satisfies dfy x—,(u)/dx = 0 for all u, x. By The-
orem 3.1, this implies (3.8). Conversely, given (r, fyy) and 7, define fgx_, by
(3.5). The condition in (3.8) implies, by Theorem 3.1, that Jfx_, (&) /dx =0
for all @, x. Hence, U is independent of X. This together with (3.4) and (3.5)
implies that (7, fz) and (r, fy) are observational equivalent.

We next provide some intuition about condition (3.8) by means of a par-
ticular example. Note that (3.8) is a set of K restrictions on the density fy,
the function r, and the alternative function 7. These restrictions highlight the
power of the density fy; to restrict the set of observationally equivalent values
of functionals. Suppose, for example, that the model has the form

U=m(Y,Z)+ BX,

where Y is the vector of observable endogenous variables and (Z, X) € RKi+K2
is a vector of observable exogenous variables (K, > G; K; may be 0), and where
Bis a G x K, matrix of constants. Let an alternative model be

U=m(Y,Z)+ BX.

Consider determining the implications of observational equivalence for
the relationship between dm(y, z)/d(y,z) and dm(y, z)/d(y,z) at some
specified value (y,z) of (Y,Z). Assume that the range of the function
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dlog(fu(r(y, z,-)))/du:R¥2 — RC contains an open neighborhood. Note that
as y, z stay fixed and x varies, the matrix A(y, z, x; Jr, J7) and the vector
b(y, z, x; dr, dF, &*r, &°T) stay constant, since_the derlvatlves of m and m do
not depend on x, and the derivatives B and B with respect to X are constant.
On the other hand, the value of dlog(fy (r(y, z, -)))/du will, by assumption,
vary. When multiplied by nonzero elements of A(y, x; dr, J7), these different
values of dlog(fu(r(y, z,-)))/du should cause the equality in (3.8) not to be
satisfied. Hence, observational equivalence will force elements of the matrix
A(y, z, x; dr, dr) to be zero. Let a; denote the element in the ith row and
(K; + j)th column of A(y, z, x; dr, JF). It is possible to show (see, e.g., Brown
(1983), Roehrig (1988), or Matzkin (2005)) that a; # 0 if and only if the rank
of the matrix

ar(y,z,x) Ir(y,x)

a(y, z) IX;
dr(y,z,x)  Jr(y,x)
ay, z) Jx;
is G + 1, where r = (r!, ..., r%). Hence, observational equivalence together

with variation in the value of the vector dlog(fy(r(y, z, x)))/du will imply re-
strictions on the rank of matrices whose elements are derivatives of 7 and of r.
The next subsection provides a rank condition on a matrix that depends also on
the vector dlog(fu(r(y, z, x)))/du and on b(y, z, x; dr, Jr, 3*r, 3°F), and from
which all particular cases can be derived.

3.4. Rank Conditions for Observational Equivalence

The condition for independence between U and X, or alternatively, the con-
dition for observational equivalence, can be expressed in terms of a condition
about the rank of a matrix. To see this, recall the equation determining the
distribution of U conditional on X = x. By our assumptions, this distribution
always exists. Its density is defined by the condition that for all y, x,

7(y, X) r(y, x)

= fu(r(y,x))

fU|X x(r(y’ X))‘

Taking logs on both sides and differentiating the expression first with respect
to y and then with respect to x, one gets that

Iy, ) [\
dy

éjlogfﬁlX:x(7(y7 x)) /{97(.);’ x) J
ar(y, x)
g —ﬁy

_ (alog(fu(r(y,x)))) Ir(y,x) . (ilo
du dy dy

|
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and
(3.10) (ﬁlngUX—i(”(y, x))) Ty, x) < 9 1] T X) )
du ax ox ady
. (ﬁlogfm=x(t) )
Jx t=F(y,x)
:<alog(fU(r(y7x)))) &r(y,X)—F(ilOg é)r(y7x) ),
u ox ox ay

where z?logﬁ,(?(y,x))/&ﬂ and Jdlog fy(r(y, x))/du are G x 1 vectors, Jr(y,
x)/dy and dr(y,x)/dy are G x G matrices, whose i, jth entries are, re-
spectively, J7(y, x)/dy; and ar"(y,x)/o?yj; dr(y, x)/dx and dr(y,x)/dx are
G x K matrices, whose i, jth entries are, respectively, J7(y, x)/dx; and
ar'(y, x)/dx;; dlog(|dr(y, x)/dyl)/dy, dlog(|dr(y, x)/dy|)/dy are G x 1 vec-
tors, and Jdlog(|dr(y, x)/dy|)/dx, dlog(|dr(y, x)/dy|)/dx are K x 1 vectors,
where 7=, ..., 7% and r= (', ..., 7r%).

The critical term in these expressions, whose value determines the depen-
dence between U and X ,is dlog fijx—.(t)/dx. Given r, fy, and ¥, one can view
(3.9) and (3.10) as a system of equations with unknown vectors

d1og fijx=x(T(y, X)) and dlog fox—x ()

Ju ox 1=F(y,1)

‘We may ask under what conditions a solution exists and satisfies for all ¢,

alogff]lX:x(t)
Jx

=0.

t=7(y,x)

The following theorem establishes a rank condition that guarantees this, and
hence it provides an alternative characterization of observational equivalence.
Let

d d J Frd
A, (y, x; dr, 3r, dF, 9°F) = — log r(y,x) — Zlog r(y, x)
and
7 e 4 d ) d 07~ ,
A (y, x; dr, &r, oF, °F) = — log r. 0| _ 9 log r. ) .
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THEOREM 3.3: Suppose that (r, fy) € I' x @ and 7 € I'. There exists fy € ®
such that (7, fi) is observationally equivalent to (r, fy) if and only if for all y, x,
the rank of the matrix

JF( X) ' Ay(yax;(?r,HZr,[Q’f’(?z?)
( Y, ) + (&r(y,x))’alog(fu(r(y,x)))

J
y %y du
(3.11)
. 2 ~
Iy, %)\ Ay, x; ar, r, F, &°F)
Ton ) (1) 2l )
x +
dx ou
is G.
PROOF: Let

~ _ Iy, %) LIy Jr(y, x) . 9, x)

ry ’ y 5 x ) X ’

ady dy Jx Jx
'3; =(910ng\X:x(?(y7x)) =(910ng(r(y7x))
u au b u (7” b
'S; — alogfﬁlX:x(t)
' 24 t:?(y,x),
J Ir
&log( r(ﬁy, *) ) &log( 7“5’ *) )
A= 4 — 4 , and
dy dy
J I
ﬁlog( rQ, x) ) o?log< rQ, x) )
ay J
A= — .
ox ox

Equations (3.9) and (3.10) can be written as
37 =sn A,

ST+ =sr+A

or, after transposing, as

(3.12) 7;?1, =rs.+ 4y,

(3.13) TS 45 =r.s, +A.

Equation (3.12) states that rs, + A, is a linear combination of the columns of
7;, with the coefficients given by ,. Since 7, is invertible, this vector of coeffi-
cients is unique. Suppose thats, = 0. Then equation (3.13) states that 7/s, + A,
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is a linear combination of the columns of 7, and that the vector of coefficients
is’s, also. Consider the (G + K) x (G + 1) matrix

7oors,+A
(3.14) (J’ y y).
r. rs,+ A,

X

The rank of this matrix must be at least G, because 7 is invertible. When's, = 0,
the last column is a linear combination of the other G columns. Hence, when
5, =0, the rank of this matrix is G. But observational equivalence implies that
5, = 0. (This can also be seen by using (3.12) to solve for 7,, substituting the
result in (3.13), and obtaining then that

~ ~ -1 -1
Se=(r, =T, (7)) r)s + A = T.(7) A,

which is exactly the transpose of the expression in (3.7).) Hence, observational
equivalence implies that the rank of the matrix in (3.11) and (3.14) is G.

Conversely, suppose that the matrix in (3.11) and (3.14) has rank G for all
v, x. Then since 7, is invertible, it must be that the last column is a linear com-
bination of the first G columns. Let A € R“ be the vector of coefficients such
that

(315) FA=ris,+A,.

Note that A is unique. Since s, satisfies (3.12), it must be that A =7, and since
the rank of the matrix being G implies that A satisfies

(3.16) T A=ris,+A,,
it must be also that

(3.17)  Ts,=r.s,+ A,

X

This implies that s, = 0, which, as shown above, is just (3.7). Hence, if the rank
of the matrix is G, (7, fi) is observationally equivalent to (7, fy). O.E.D.

4. IDENTIFICATION IN LINEAR AND SEPARABLE MODELS

We next provide examples that use the results derived in the previous sec-
tions to determine the identification of functionals of (7, f;;). Recall that a func-
tional of (r, fy) is identified if whenever (7, fy) is observationally equivalent to
(r, fv), the value of the functional at (7, f5) equals its value at (r, fy).

4.1. A Linear Simultaneous Equations Model

Suppose that r and 7 are specified to be linear:

r(y,x)=By+ Cx and ?(y,x)=§y+5x,
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where B and B are G x G nonsingular matrices, and C and Care G x K
matrices. Since the functi~0ns are linear, for all y,x, A, = A, = 0. Let
F =[B,C] and F = [E, C] denote the matrices of all coefficients. Con-
sider identification of the first row, F;, of F. Suppose that there exists
a value of (y,x) such that the gradient of log f;, evaluated at r(y, x) is
(s:(r(y, x), . 8q(r(y, x))) =(1,0,...,0); that is, dlog fy (r(y, x))/du; # 0
and for j = , G, dlog fu(r(y, x)) /&u, = 0. Observational equivalence then
implies that the matr1x

(F F)

has rank G. Consider linear restrictions on I, denoted by ¢ F; =0, where ¢ is
a constant matrix. The rank condition for identification is then?

rank(¢pF') =G — 1.

To see this, note that since the rank of F' is G, F = F'c for some c. Then,
premultiplying by ¢ gives

PFc=¢F| =

The rank condition for F says that rank(qSF ") = G — 1. Since the first column
of ¢F is zero, this rank condition implies that the other G — 1 columns of F
must be linearly independent, so that all the elements of ¢ other than the first
element, ¢;, must be zero. Therefore,

Fl =C1ﬁ1.

By the usual normalization that one of the elements of F; and Fis equal to 1,

we have ¢ = 1. That is, we must have that F;, = F1 Hence, if I' is the set of
linear functions whose coefficients are characterized by F, the linear restric-
tions on the first row, ¢ F| = 0, satisfy rank(¢F") = G — 1, one coefficient of F;
is normalized to 1, and for some (y, x), s;(r(y, x)) # 0 while for j =2, ..., G,
s;(r(y,x)) =0, then F; is identified.

4.2. A Demand and Supply Example

Consider a demand and supply model specified as

251 :D(p’ CI) +m(l)9
Uy =38(p, q) +v(w)
3T am grateful to Whitney Newey for detailed comments on this and the example in Section 4.2,

which included the following new result with its proof. See Matzkin (2005, 2007a, 2007b, 2008)
for other sets of conditions.
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and an alternative model specified as

i =D(p, q)+m(),

i =S(p, q) +V(w),
where p and q are, respectively, price and quantity, and / and w are, respec-
tively, income and wages. Suppose that for all 7, m,;(I) = dm(l)/dI > 0, and for
all w, vy (w) = dv(w)/dw > 0. Assume that (/, w) is independent of (u;, u,)

and the supports of (m(I), v(w)) and of (D(p, q), S(p, q)) are R*. Further as-
sume that there exists (¢!, u)), and that for all ul, u3, there exist ul, u? such that

ofy(ul, ud)  afu(u, u)

0,
(9”1 071/{2
Wou, w) o Holuiw) _
(91,{1 ’ ﬁuz ’
Ify (U3, u3) —o Ify (U3, u3) 20
(91/[1 ’ (9”2 ’

We will show that the derivatives of the demand and supply functions are iden-
tified up to scale. That is, for any alternative function 7= (D + m, S + v) for
which there exists f such that (7, fz) is observationally equivalent to (r, fy),
there exists A1, A, € R such that for all p, g, I, w,

Dp(p’ Q) = /\lﬁp(pa Q)a
Dy(p,q) =MDy(p, q),
my(l) = )\1’711([)

and

S,(pr @) = AS,(p, ),

S4(ps @) = MS4(p, ),
v (w) = A0y (w).
Note that, because of the additive separability, A, and A, depend only on
(p,q), and A; = A, = 0. (We suppress arguments for simplicity.) Let p, g be

arbitrary. By our assumptions, there exists (/°, w’), and for all values I, w;,
there exist values I, and w; such that

Ifu(D(p, q) +mo), S(p, q) + v(wp)) _
(91/!1

Ifu(D(p, q) +mo), S(p, q) + v(wp)) _
(9[/!2

(4.1) 0,

0,
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fu(D(p,q) +mly),S(p, q) +v(w))

#0,

(91/!1
Ifu(D(p, q) +mU1), S(p, q) +v(wr) _
0’)u2 v
dfu(D(p, q) +m(l>),S(p, q) + v(w,)) —0
81/!1 o
Ifu(D(p,q) +mlL),S(p, q) +v(w,)) 20
07u2 '

Observational equivalence implies that for any values of (1, w),

Dy(p,q) S,(p,q@) A, +5D,(p,q)+5:5,(p,q)
D,p,q) S;(p,q) A;+s5:Dy(p,q) +55,(p,q)

rank 9 =2,
m; (1) 0 simp(1)
0 T (W) $vp (W)
where
sy =dlog fu(D(p,q) +m),S(p, q) +v(w))/du
and

s, = dlog fu(D(p, q) + m(I), S(p, q) + v(w))/du,.
Letting (1, w) = ({y, wy), we get that

D,(p,q) S,(p,q) A,
D,(p,q) S,(p,q) A,
my(Iy) 0 0
0 Uy (wy) 0

rank =2.

Since, by assumption, the matrix

<5p(p, 7 S,(p, q))
5q(p, Q) S.p,q

is invertible, the third column must be a linear combination of the first two. It
follows that for some A = A;(p, q, Iy, wy) and AS = A, (p, q, Ly, wp),

Ny (I) =0 and A%y (wy) =0.
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Since m;(Iy) # 0 and Ty (w,) # 0, it must be that AY = A} = 0. Hence,

A,(p,q)=A7,(p,q)=0.Since A,(p, q) and A,(p, q) do not depend on I, w,

it follows that for all (I, w),

D,(p.q) Sy(p,q@) $iDy(p,q)+9:5,(p,q)

Dy(p,q) S4(p,q) 51 Dy(p,q)+55,(p,q)
m;(I) 0 sim(I)

0 EW(W) SZUW(w)

rank =2.

Letting (I, w) = ({1, wy), for arbitrary /; and for w; as in (4.1), the matrix be-
comes

Dy(psq) Sy(p.q@) $iDy(p,q)

Dy(p.q) Si(p.@) s:Dy(p,q)
7’711([1) 0 S|m1(11)
0 Uy (wy) 0

Again, linear independence of the first two columns and the matrix having
rank 2 implies that the third column is a linear combination of the first two.
The zeroes in the fourth row imply that the coefficient of the second column is
zero. Hence, for some )\} =M(p,q, 11, wy),

A (p,q, L, w)D,(p,q)=D,(p,q),
A(p,q,I;,w)D,(p,q) =D,(p, q),
)\i(]?a q, 11, wym (L) =m(Iy).

Since I; was arbitrary and D and D are not functions of I, w, the first two equa-
tions imply that A} is not a function of 7, w. Likewise, reaching these equations
by fixing I;, varying (p, q) arbitrarely, and letting w; satisfy (4.1), the third
equation implies that A} is not a function of p, q. Hence, A is a constant. It
follows that the derivatives D, D,, and m, are identified up to scale.

An analogous argument can be used to show that §,, S,, and vy are also
identified up to scale.

5. IDENTIFICATION IN NONPARAMETRIC NONSEPARABLE MODELS

We next apply our results to two standard nonparametric models with non-
additive unobservable random terms. We first consider the single equation
model, with G = 1, considered in Matzkin (1999, 2003):

y=m(x, u).
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We show below that in this model, with m strictly increasing in u, application
of our theorems implies the well known result that for all u,

om(x, u)
Jx

b

the partial derivative of m with respect to x, for any fixed value of x and u, is
identified.

In Section 5.2, we consider the triangular model with nonadditive un-
observable random terms considered in Chesher (2003) and Imbens and
Newey (2003):

y=mi(n, u1),
Yo =my(X, Us).

Assuming that X is distributed independently of (u;, u,), and that m, and m,
are strictly increasing, respectively, in u; and u,, we derive the well-known re-
sult that for all uy, y,,

amy(y», uy)
(9}/’2

is identified.*

5.1. Single Equation Model

Consider the model
y=m(x, u)

with y, u € R, u and x independently distributed, f;; € @, and the inverse of m
belonging to I'. Letting r denote the inverse of m with respect to u, we have
the model

u=r(y,x)

with dr(y, x)/dy > 0. Let 7 € I" be an alternative function, so that 7 =7(y, x).
The condition for observational equivalence requires that the matrix

T, sty +A,
7. sro+A,

has rank 1, for all y, x, where s = dlog fy (r(y, x))/du. Hence, for all y, x,

STy + AT, = sy + AT,

4 See Matzkin (2008) for identification of dm; (ys, u;)/dy, when y, = my(y1, X, uz).
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or
s(ryry — rFy) = A1, — AT,
Note that
i(r_x) T Tylx
Iy \T1y Ty Ty 1y
Hence,
Ax = ry_x - ’:\}:—x
Ty Ty
Iyl TyTe n Vil (rx rx)
ry 1y ryr, dy\r, I,
and, since
Iy Ty
A =" D
Ty Ty

AT, + AT, Iy <rx rx) . 0 <rx rx)
Ty ry \ry Iy dy\ry 1

Hence, the rank condition implies that

Te Iy Fo (T Ty d (7. 1y
w(E-E) e (Eo) L (Eom)
Ty ry ry \ 7y ry ay \r, ry

Writing explicitly the arguments of all functions and multiplying both sides of
the equality by fy (r(y, x))r,(y, x) gives

F(y,x) rx(y,X))]
7y, X)) ry(y, )

d
E[fU(r(y7x))ry(y7x)(

Observational equivalence then implies that the function v defined by

a@w>_m@w»}
H(v,x)  r(y,x)

U(y7x)= |:fU(r(y9x))ry(y9x)(

is a constant function of y. Since for any x, the range of r(-, x) is R and fyr, —
0 as |y| — oo, as long as the ratios 7,/7, and r./r, are uniformly bounded,
it must be that for any y, x, v(y, x) = 0. Since r, > 0, it follows from these
conditions that for all y, x at which fy(r(y, x)) > 0,

ey, X) _ 1y, )
v, x)  r(y,x)

(5.1)
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Hence, observational equivalence implies that the ratio of the derivatives of
r is identified. Since

u=r(m(x,u),x),

it follows that

gm(x,u) _ r(y,x)
(9X B r}’(y’ X)

is identified.

5.2. A Triangular Model

Consider now the model

yi=mi(y2, u1),
Yo =my(X, U)

with y, y», Uy, U, € R, my strictly increasing in u,, and m, strictly increasing in
u,. Assume that x is distributed independently of (u;, u,) and that the density
of u belongs to @. Let r! denote the inverse of m,; with respect to u; and let 2
denote the inverse of m, with respect to u,. Hence

u = rl(YI, )’2),

Uy =r*(y, Xx).
Consider the alternative model

=7, n),

W =T(y, X).

Assume thatr = (r', ) e ' and 7= 7,7 eI
Observational equivalence implies that the rank of the matrix

~1 1

Iy, 0 siry, + Ay,

> 2 1 2

r)’z ryz slryz + s2rY2 + AYZ

0 7’12 S2F§+Ax

is 2, where
S1 = 0710ngI,U2(V] (}’17 YZ), r2(y27 x))/ﬁul

and

8 = 3108 fu, v, (r' (Y1, ¥2), I (¥, X)) /.
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Since the first two columns are linearly independent, the third column must
be a linear combination of the first two. Hence, for some A, A,,

1 ~1
~1 1 iy nn
)\ﬂ’yl =87, + P
N N
1 ~1 2 ~
~1 ~ 1 2 e Taw ny  Tnn
Alryz+/\2ryz_slryz+s2ryz+ 1 =5 T3 =
r r r r
N n » »
2 R
~_ .2 »x »x
/\zrx—szrx+—2—~z .
r
» »

Solving for A; and A, from the first two equations, and substituting them into
the third, one gets, after rearranging terms, the expression

1 >l =2 2 ~
st (2 Dy gl (e T
N rl 71 YZ'fZ r2 ;«'2

1 1 X »2 2
=2 2 = 2 2 2 =
_ ii(r_x _ r_x> _ T T (r_x _ r_x>
) ) = 2 )
e oy \r no e Ty \I, 1,

Multiplying both sides of the equality by fyr, r; gives

1 >~1
Al T
N rl ",7.’1
ur=r2(y,x) n n

1~
o 2= »
or! rt 71 rt 7l
() (5B o <
1

1 =1
1y, r %]

N
/) 2
o (5
»2 ’;2 r2
uy=rl(y1,y) » »

2
(9( _ r_x)
=2 2 ~ 2 72 2
—|—irlfU ary, o —{—ifUrlrz 5
?}% »n 72 7}% iy 19)’2

72 19fU(r1()’1, »n), Uz)
»2 (7}’1

LT (o, (9 0))
(A Y

5\3 | k\g
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or, after gathering terms,

& rl ';:’I
2 9 1 122 _ 2
Ty, n [fU(” O, 32, u2)|u2=r2(),2’x)ry] (ryll 7}1 >j|
R g 2o
»2 1 2 2 X X
+ rqryla—yz[(fu(uh r (y2, X)) ul:,.l(yl,yz))ryz <;7 - r7>:|
x »2 »
=0.

Hence, after dividing by r§2 r,,» it follows that observational equivalence implies
that

14 r,o T,
5.2 —— ! o2
(5.2) ryll n [fU(” (yl’yZ)’u2)|“2_’2‘y2’x)ryl(ryll 7’}1
19 7o
2o 7 u, r>(yy, x 2 (> _ Cx
+ ’;}2( r)2}2 &yz [(fu( 1, (y2 ))|u1:r1(y1,y2))r}’2 ;32 r)z}z
=0.

Note that the first term does not depend on x, other than through u,, and
the second term does not depend on y;, other than through ;. Since the inde-
pendence between x and (u;, u,) implies independence between x and u,, the
result, (5.1), derived in the single equation model, applied to 7%, can be used to
prove that

~2 2
I _ %
72T 2
Ty

This means that the ratio of the derivatives of the structural function > can be
identified. This also implies that the second term in (5.2) equals zero. So (5.2)
becomes

J 1 1 7;12 rylz
(7__)71|:fU(r O, 32, uz)|uz=,z(y2’x)l‘y1 <7’E - a>:| =0.
In other words, the function v defined by
7ol
VO 1) = |:fU(r1(yl, y2), u2)|uz=r2(yz,x)ry11 (7‘% - ﬁ)}

must be constant in y;. Since for any y, and wu,, fu(r'(yi, y»), uz)ryl1 — 0 as
lyi] — oo, as long as the ratios of the derivatives of r! and 7' are uniformly
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bounded, we can conclude that for all (yi, y», us), v(y1, »», u») = 0. Hence, un-
der these conditions, observational equivalence implies that

1
_'n

=T
r)’l

SH|R

This shows that the ratio of the derivatives of the structural function r! can be
identified.
Since

uy=r'(n, ) =r'(mi(y, w), y2)

and ryll # 0, the implicit function theorem implies that

ar'(my(y», uy), y») ar'(yi, y2)

omy(yo, u) 2% ____ 9»
%) ar'(my(y,, u1), y») ar'(y, y»)
y1=my(y2,u)
N N

Hence, the partial derivative of m, with respect to y, is identified.

6. OBSERVATIONAL EQUIVALENCE OF TRANSFORMATIONS OF
STRUCTURAL FUNCTIONS

A stylized way of analyzing observational equivalence can be derived by con-
sidering directly the mapping from the vectors of observable and unobservable
explanatory variables, X and U, to an alternative vector of unobservable ex-
planatory variables, U, generated by an alternative function, 7.° To define such
a relationship, we note that given the function r and an alternative function
7 e I', we can express 7 as a transformation g of U and X by defining g for all
X, uas

(6'1) g(u’ x):7(h(xa u)’x);

where h(x, u) is the reduced form function derived from the structural func-
tion r. By our assumptions on r and 7, it follows that g is invertible in u and
that

Jr(h(x, u), x)
dy

9g(u, x)
du

> 0.

(6.2) ‘

'&h(x, u)
u

5 See Brown (1983) for an earlier development of this approach.
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The representation of 7 in terms of the transformation g implies that for all
Y, X,

(6.3) Ty, x) =g, x),x).
Recall that, for any given x, (7, fix—.) generates the same distribution of Y
given X = x, as (r, fy) does, if and only if for all y,

Jr(y, x) r(y, 0|
J

64)  fox=(F(y, )

= fu(r(y, x))

Hence, using (6.1)—-(6.3), we can state that the transformation g(U, X) gener-
ates the same distribution of Y given X = x as (r, fy) generates if and only if
for all u,

dg(u, x)

(6 5) fUIX x(g(u ))‘ fu(u).

The analogous results to Theorems 3.1 and 3.3 are Theorems 6.1 and 6.2
below.

THEOREM 6.1: Suppose that (r, fy) € (I' x @) and that ¥ € I'. Define the

transformation g by (6.1) and let U =3(U, X) be such that for all x, foix=x €P.

Then Jdfx—, (1) /dx =0 for all x and W if and only if for all u and x,

g (u, x) g (u, x)\ " 98 (u, x)
u u ox

7log(fy (W) , _1 g(

u
J ag(u,
_ 7 log(‘ 98, x) )
du
THEOREM 6.2: Suppose that (r, fy) € (I' x @) and that 7 € I'. Define the
transformation g by (6.1) and let U = g(U, X). Suppose further that for all x,

ox
foix=x € D. Then (f,8(r(y, x), x)) is observationally equivalent to (r, fy) if and
only if for all u, x, the rank of the matrix

(6.6) [

1o dg(u, x)
Ig(u,x)\  dlogfy(u) B & u
u u u
dg(u, x)
~ , dl
ag(u, x) _ og' u
Jx aJx

is G.
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The proofs of Theorems 6.1 and 6.2 use arguments similar to the ones used
to derive Theorems 3.1 and 3.3, and are given in the Appendix. To provide
an example of the usefulness of these results, suppose that X € R and G = 2,
and consider evaluating the implications of observational equivalence when
the relationship between 7 and r is given by

F(y, x) = Bx)r(y, x),

where §(x) is a 2 x 2 matrix of functions. One such example for E(x) could
be®

67) Blo) = ( cos(x)  sin(x) )

—sin(x) cos(x)

Application of Theorem 6.2 yields the result that observational equivalence
implies that for all x, u, the matrix

cos(x) —sin(x) w
(91/!1
sin(x) cos(x) 7(910ng(”)
(91/{2
—u;sin(x) + upcos(x)  —uycos(x) — u,sin(x) 0

must have rank 2. This holds if and only if for all u,, u,,

Ify(ur, uy)/du, _w
Ifu(uy, u)/du, u,

Note that this condition is satisfied by the bivariate independent standard nor-
mal density. Hence, if U is distributed N (0, I), B(x) is as specified above, and

U=7ry,x)=gr(y, x),x)= E(x)”(y, x),

it follows by Theorem 6.2 that (7, f7) is observationally equivalent to (r, f).

7. CONCLUSIONS

We have developed several characterizations of observational equivalence
for nonparametric simultaneous equations models with nonadditive unobserv-
able variables.

The models that we considered can be described as

U=r(Y,X),

® This is the example in Benkard and Berry (2006, p. 1433, footnote 4).
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where U € R is a vector of unobservable exogenous variables, distributed in-
dependently of X, X € RX is a vector of observable exogenous variables, Y
is a vector of observable endogenous variables, and r is a function such that,
conditional on X, r is one-to-one.

Our characterizations were developed by considering an alternative func-

tion, 7, and analyzing the density of U =7(Y, X). We asked what restrictions
on 7, r, and the density, fy, of U are necessary and sufficient to guarantee that
U is distributed independently of X. We showed that these restrictions char-
acterize observational equivalence and we provided an expression for them in
terms of a restriction on the rank of a matrix.

The use of the new results was exemplified by deriving known results about
identification in nonadditive single equation models and triangular equations
models. An example of a separable demand and supply model provided insight
into the power of separability restrictions.

We also developed a simplified approach to characterize observational
equivalence, which is useful when the alternative function, 7, is defined as a
transformation of the function .

APPENDIX

PROOF OF THEOREM 6.1: Define the function g: R+ — RS by

u=g(,x),

where # is defined, as in Section 6, by
u=2g(u,x).

Then, since
u=g(g(u,x),x),

we get, by differentiating this expression with respect to u and with respect to
x, that

Ig(g(u, x), x) Jg(u, x)

Al I=

(A1) o u

and

(A2) 0= 38(?2 x) dg(u, x) n ag(u, x)_

u
To derive (6.6), we rewrite (6.5) as

Jx ox

(A3)  fouxed (i) = fu(g(d, >>‘ I8l )|
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Independence between U and X is equivalent to requiring that for all 7, x,

dlog fyx—_.(t)
ox B

0.

Taking logs on both sides of (A.3) and differentiating the resulting expressions
with respect to x, we get

alogfﬁl)(:x(il)

(A4) P
dg(u, x)
_ dlog fy(g(, x)) dg(i, x) N ’ Ju
u ox ax

We will get expressions for the terms in the right-hand side of (A.4) in terms of
g, u,and x. By (A.1) and (A.2),

gg(i,x) (a§<u,x))‘l(a§<u,x))
ax Ju dx '

Differentiating with respect to u the expression

u=2g(g(u,x),x)

one gets
I dg(g(, x), x) dg(u, x)
B du E
Hence,
(A5) 1:‘5g(§(u,NX),X) ﬁ?(u,X)'
u du

Taking logs and differentiating both sides of (A.5) with respect to x and with
respect to u we get

log| 8@ 1), ) 0g(g(u, x), x)
& o ag(u, x) o
0= — 4
u Jx ax
I3
Ju
_|_

ox
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and
(9 g b 9 (9~ b
Jlog g(g(MNX) x) N Jlog g(u, x)
u ag(u, x)
0= — + .
Ju du u
Hence,
9o (i
z?log‘ g(biix)
Ju
aJx
Jg(u, x) dg(u, x)
_ alog‘ Ju ag(u, x)\ g (u, x) B &log’ '
o du du ox ox
Substituting into (A.4), we get
dlog fx—. (1)
ax
‘%’(ﬁ, X)
— along(g(il’ X)) ag(iz’ X) + aa
u aJx aJx
__ dlog fu(g(l, x)) (98w, x)\ " (98 (u, x)
du du x
Jg(u, x)
flog‘ ou | (08, 0\ Fw, x)
u du x
Jg(u,
il Og‘ g(u, x)
du
x

Substituting g(it, x) by u, and setting Jlog fzx—. (%) /dx = 0, we get (6.6).
Q.E.D.

)
=g (u,x)

PROOF OF THEOREM 6.2: Let

T = (alogme—x(ﬁ) > 3: — (alogfljﬂX—x(ﬁ)
au H=F ) ox

. dlog fu(u)
u — (9u >
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~  dg(u,x) . dg(u,x)
Bu="u 0 BT T

alog< —&g((?u,x) ) o?log< —ag(au,x) )
A, = =V A= A
u ax

Taking logs of both sides of (6.5) and differentiating with respect to u and x,
we get

S8+l =5,
S 58 +A =0

or, after transposing,
(A6) gs.+A,=s,
(A7) S.+85.,+A,=0.

Using the first equality to solve for 5, and substituting the result into the
second equality, one gets

5=—8.(&) s+ 8.2 A - A,

By Theorem 6.1, U is independent of X if and only if 5, = 0. Consider the
matrix

g u_Au
(A8) (‘f” > )
g/ _Ax

X

Observational equivalence implies independence between U and X, and, by
Theorem 6.1, that 5, = 0. When 5, = 0, equations (A.6) and (A.7) imply that
s, — A, is a linear combination of the columns of g/, and that —A, is that same
linear combination, but of the columns of g’. Since g, is invertible, this im-
plies that the rank of the matrix must be G. Hence, observational equivalence
implies that the rank of (A.8) is G.

Conversely, suppose that the rank of the matrix in (A.8) is G. It follows by
the invertibility of g, that there exists a unique A € R such that

gA=s5,—A,.
By (A.6),

85 =8, — A,
Hence,

A=T,.
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Since the matrix in (A.8) has rank G, it must be that
A, =g\
By solving for A from the first equation, we get that
A= (Z) 7 (su — A
Then it follows that
A, =FA
=807 sy — A
This implies that
5 =@ (su—A) + A, =0.

By Theorem 6.1, it follows that U is independent of X. By the equivalence
between (6.4) and (6.5) and the definition of observational equivalence in (3.1),
(g(r(y, x), x), fy) is observationally equivalent to (r, fy). Q.E.D.
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