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ESTIMATION OF NONPARAMETRIC MODELS
WITH SIMULTANEITY

BY ROSA L. MATZKIN1

We introduce methods for estimating nonparametric, nonadditive models with si-
multaneity. The methods are developed by directly connecting the elements of the
structural system to be estimated with features of the density of the observable vari-
ables, such as ratios of derivatives or averages of products of derivatives of this density.
The estimators are therefore easily computed functionals of a nonparametric estima-
tor of the density of the observable variables. We consider in detail a model where to
each structural equation there corresponds an exclusive regressor and a model with
one equation of interest and one instrument that is included in a second equation. For
both models, we provide new characterizations of observational equivalence on a set, in
terms of the density of the observable variables and derivatives of the structural func-
tions. Based on those characterizations, we develop two estimation methods. In the first
method, the estimators of the structural derivatives are calculated by a simple matrix
inversion and matrix multiplication, analogous to a standard least squares estimator,
but with the elements of the matrices being averages of products of derivatives of non-
parametric density estimators. In the second method, the estimators of the structural
derivatives are calculated in two steps. In a first step, values of the instrument are found
at which the density of the observable variables satisfies some properties. In the second
step, the estimators are calculated directly from the values of derivatives of the density
of the observable variables evaluated at the found values of the instrument. We show
that both pointwise estimators are consistent and asymptotically normal.

KEYWORDS: Simultaneous equations, instrumental variables, constructive identifi-
cation, nonseparable models, kernel estimators, endogeneity, structural models.

1. INTRODUCTION

THIS PAPER PRESENTS ESTIMATORS for two nonparametric models with simul-
taneity. The estimators are shown to be consistent and asymptotically normally
distributed. They are derived from new constructive identification results that
are also presented in the paper. The nonparametric models possess nonaddi-
tive unobservable random terms. We consider a model where to each equa-
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tion there corresponds an exclusive regressor and a model with two equations
and one instrument. For both models, we develop closed form estimators of
structural derivatives, by averaging over excluded instruments. For the second
model, we develop also two-step indirect estimators.

Estimation of structural models has been one of the main objectives of
econometrics since its early times. The analyses of counterfactuals, the eval-
uation of welfare, and the prediction of the evolution of markets, among oth-
ers, require knowledge of primitive functions and distributions in the econ-
omy, such as technologies and distributions of preferences, which often can
only be estimated using structural models. Estimation of parametric struc-
tural models dates back to the early works of Haavelmo (1943, 1944), Hurwicz
(1950), Koopmans (1949), Koopmans and Reiersol (1950), Koopmans, Ru-
bin, and Leipnik (1950), Wald (1950), Fisher (1959, 1961, 1965, 1966), Wegge
(1965), Rothenberg (1971), and Bowden (1973). (See Hausman (1983) and
Hsiao (1983) for early review articles.) Hurwicz (1950) considered nonsepara-
ble econometric models, where the random terms are nonadditive.

Nonparametric structural models avoid specifying the functions and distri-
butions as known up to a finite dimensional parameter vector. Several non-
parametric estimators have been developed for models with simultaneity,
based on conditional moment restrictions. These include Newey and Powell
(1989, 2003), Darolles, Florens, and Renault (2002), Ai and Chen (2003), Hall
and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Darolles, Fan,
Florens, and Renault (2011), and for models with nonadditive random terms,
Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007),
Horowitz and Lee (2007), Chen and Pouzo (2012), and Chen, Chernozhukov,
Lee, and Newey (2014). Identification in these models has been studied in
terms of conditions on the reduced form for the endogenous regressors. The
estimators are defined as solutions to integral equations, which may suffer from
ill-posed inverse problems.

In this paper, we make assumptions and construct nonparametric estima-
tors in ways that are significantly different from those nonparametric meth-
ods for models with simultaneity. In particular, our estimators are closely tied
to pointwise identification conditions on the structural model. Our conditions
allow us to directly read off the density of the observable variables the par-
ticular elements of the structural model that we are interested in estimating.
In other words, the goal of this paper is to develop estimators that can be ex-
pressed in closed form. In this vein, estimators for conditional expectations
can be easily constructed by integrating nonparametric estimators for condi-
tional probability densities, such as the kernel estimators of Nadaraya (1964)
and Watson (1964). Conditional quantiles estimators can be easily constructed
by inverting nonparametric estimators for conditional distribution functions,
such as in Bhattacharya (1963) and Stone (1977).2 For structural functions with

2See Koenker (2005) for other quantile methods.



NONPARAMETRIC MODELS WITH SIMULTANEITY 3

nonadditive unobservable random terms, several methods exist to estimate the
nonparametric function directly from estimators for the distribution of the ob-
servable variables. These include Matzkin (1999, 2003), Altonji and Matzkin
(2001, 2005), Chesher (2003), and Imbens and Newey (2003, 2009). The set
of simultaneous equations that satisfy the conditions required to employ these
methods is very restrictive. (See Blundell and Matzkin (2014) for a characteri-
zation of simultaneous equations models that can be estimated using a control
function approach.) The goal of this paper is to fill this important gap.

Our simultaneous equations models are nonparametric and nonseparable,
with nonadditive unobservable random terms. Unlike linear models with ad-
ditive errors, each reduced form function in the nonadditive model depends
separately on the value of each of the unobservable variables in the system.

We present two estimation approaches and focus on two models. Both
approaches are developed from two new characterizations of observational
equivalence for simultaneous equations, which we introduce in this paper. The
new characterizations, expressed in terms of the density of the observable vari-
ables and ratios of derivatives of the structural functions, immediately provide
constructive methods for identifying one or more structural elements.

Our first model is a system where to each equation there corresponds an
exclusive regressor. Consider, for example, a model where the vector of ob-
servable endogenous variables consists of the Nash equilibrium actions of a set
of players. Each player chooses his or her action as a function of his or her
individual observable and unobservable costs, taking the other players’ actions
as given. In this model, each individual player’s observable cost would be the
exclusive observable variable corresponding to the reaction function of that
player. Our method allows to estimate nonparametrically the reaction func-
tions of each of the players, at each value of the unobservable costs, from the
distribution of observable equilibrium actions and players’ costs. The estima-
tor that we present for this model is an average derivative type of estimator.
The calculation of the estimator for the derivatives of the reaction functions of
the players, at any given value of the observable and unobservable arguments,
requires only a simple matrix inversion and a matrix multiplication, analogous
to the solution of linear least squares estimators. The difference is that the
elements in our matrices are calculated using nonparametric averages of prod-
ucts of derivatives. In this sense, our estimators can be seen as the extension to
models with simultaneity of the average derivative methods of Stoker (1986)
and Powell, Stock, and Stoker (1989). As in those papers, we extract the struc-
tural parameters using weighted averages of functions of nonparametrically
estimated derivatives of the densities of the observable variables.3

3Existent extensions of the average derivative methods of Stoker (1986) and Powell, Stock, and
Stoker (1989) for models with endogeneity, such as Altonji and Matzkin (2001, 2005), Blundell
and Powell (2003), Imbens and Newey (2003, 2009), and Altonji, Ichimura, and Otsu (2012),
require conditions that are generally not satisfied by models with simultaneity.
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Our second model is a two equation model with one instrument. Consider,
for example, a demand function, where the object of interest is the derivative
of the demand function with respect to price. Price is determined by another
function, the supply function, which depends on quantity produced, an unob-
servable shock, and at least one observable cost. We develop for this model
estimators based on our two approaches, the average over instruments deriva-
tive estimator, similar to the estimator developed for our first model, and indi-
rect estimators. Our indirect estimators are based on a two-step procedure. In
the first step, either one or two values of the observable cost are found where
the density of the observable variables satisfies some conditions. In the sec-
ond step, the derivative of the demand with respect to price is read off the
joint density of the price, quantity, and cost evaluated at the found values of
cost. The estimators are developed by substituting the joint density of price,
quantity, and cost, by a nonparametric estimator for it. The estimators for the
derivative of the demand, at a given price and quantity, that we develop are
consistent and asymptotically normal.

The new observational equivalence and constructive identification results
that we present do not require large support conditions on the observable ex-
ogenous regressors. They are based on the identification results in Matzkin
(2008), which start out from the transformation of variables equation for densi-
ties. Employing this equation, Matzkin (2007b, Section 2.1.4) presented a two-
step constructive identification result for an exclusive regressors model, under
the assumption that the density of the unobservable variables has a unique
known mode. (See Matzkin (2013) for a detailed development of that result.)
Other identification results that were developed using similar equations are
Berry and Haile (2009, 2011, 2014) and Chiappori and Komunjer (2009). Berry
and Haile (2009, 2011, 2014) developed alternative constructive identification
results starting out also from the transformation of variables equation for den-
sities. Their results apply to the class of exclusive regressors models where each
unobservable variable enters in the structural functions through an index. Chi-
appori and Komunjer (2009) derived generic, nonconstructive identification
results in a multinomial model, by creating a mapping between the second or-
der derivatives of the log density of the observable variables and the second
order derivatives of the log density of the unobservable variables.

We focus in this paper on the most simple models we can deal with, which
exhibit simultaneity. However, our proposed techniques can be used in models
where simultaneity is only one of many other possible features of the model.
For example, our results can be used in models with simultaneity in latent de-
pendent variables, models with large dimensional unobserved heterogeneity,
and models where the unobservable variables are only conditionally indepen-
dent of the explanatory variables. (See Matzkin (2012) for identification results
based on Matzkin (2008) in such extended models.)

Alternative estimators for nonparametric simultaneous equations can be
formulated using a nonparametric version of Manski (1983) Minimum Dis-
tance from Independence, as in Brown and Matzkin (1998). Those estimators
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are defined as the minimizers of a distance between the joint and the multipli-
cation of the marginal distributions of the exogenous variables, and typically
do not have a closed form.

The structure of the paper is as follows. In the next section, we present the
exclusive regressors model. We develop new observational equivalence results
for such model, and use those results to develop a closed form estimator for ei-
ther the derivatives or the ratios of derivatives of the structural functions in this
model. We show that the estimator is consistent and asymptotically normal. In
Section 3, we consider a model with two equations and one instrument. We
develop new observational equivalence results for such model, and use those
results to develop an estimator for the derivative of the structural function that
excludes the instrument, by averaging over the instrument. We show that the
estimator, which is given in closed form, is also consistent and asymptotically
normal. In Section 4, we present indirect, two-step estimators for the two equa-
tion, one instrument model, and show they are also consistent and asymptot-
ically normal. Section 5 presents results of simulations performed using some
of the estimators. Section 6 concludes.

2. THE MODEL WITH EXCLUSIVE REGRESSORS

2.1. The Model

We consider in this section the model

Y1 = m1(Y2�Y3� � � � �YG�Z�X1� ε1)�(2.1)

Y2 = m2(Y1�Y3� � � � �YG�Z�X2� ε2)�

· · ·
YG =mG(Y1�Y2� � � � �YG−1�Z�XG�εG)�

where (Y1� � � � �YG) is a vector of observable endogenous variables, (Z�X1�
� � � �XG) is a vector of observable exogenous variables, and (ε1� � � � � εG) is a
vector of unobservable variables. The observable vector Z has the effect of de-
creasing the rates of convergence of nonparametric estimators of model (2.1)
but does not add complications for identification, as all our assumptions and
identification conclusions can be interpreted as holding conditionally on Z.
Hence, for simplicity of exposition, we will omit Z from the model.

Since for each g, the function mg is unknown and the nonadditive εg is unob-
servable, we will at most be able to identify the values of εg up to an invertible
transformation.4 Hence, for each g, either we may normalize mg to be strictly
increasing in εg, as it is assumed in models additive in εg, or we may normalize

4See Matzkin (1999, 2003, 2007a, 2007b) for discussion of this nonidentification result in the
one equation model, Y =m(X�ε), with x and ε independently distributed.
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mg to be strictly decreasing in εg. The invertibility of mg in εg implies that, for
any fixed values, y−g and x−g, of the other arguments of the function mg, there
is a unique value of εg for each value of yg. We will denote the function that
assigns such value of εg by rg(y1� � � � � yG�xg). Our system of inverse structural
equations, denoting the mapping from the vectors of observable variables to
the vector of unobservable variables, is expressed as

ε1 = r1(Y1� � � � �YG�X1)�(2.2)

ε2 = r2(Y1� � � � �YG�X2)�

· · ·
εG = rG(Y1� � � � �YG�XG)�

The derivatives of the function mg can be calculated by substituting (2.2) into
(2.1) and differentiating with respect to the various arguments. The derivative
of mg with respect to yj , when j �= g and yg is a specified value, is

∂mg(y−g� xg� εg)

∂yj

∣∣∣∣
εg=rg(y1�����yG�xg)

= −
[
∂rg(yg� y−g� xg)

∂yg

]−1[
∂rg(yg� y−g� xg)

∂yj

]
�

The derivative of mg with respect to xg is the same expression as the derivative
for yj , except that ∂rg/∂yj is substituted by ∂rg/∂xg. The derivative of mg with
respect to εg when yg is a specified value is

∂mg(y−g� xg� εg)

∂εg

∣∣∣∣
εg=rg(y1�����yG�xg)

=
[
∂rg(yg� y−g� xg)

∂yg

]−1

�

The estimation methods we introduce are based on the assumptions that
(i) ε and X have, respectively, differentiable densities, fε and fX , (ii) the func-
tions rg (g = 1� � � � �G) are twice continuously differentiable, and (iii) for all
(y�x) in a set M in the support of (Y1� � � � �YG�X1� � � � �XG), the conditional
density of Y given X = x, evaluated at Y = y , is given by the transformation of
variables equation

fY |X=x(y)= fε
(
r(y�x)

)∣∣∣∣∂r(y�x)∂y

∣∣∣∣�(2.3)

where |∂r(y�x)/∂y| denotes the absolute value of the Jacobian determinant of
r(y�x) with respect to y . In addition, we assume that (iv) for each g, the func-
tion rg has a nonvanishing derivative with respect to its exclusive regressor, xg.
A set of sufficient conditions for (i)–(iv) is given by Assumptions 2.1–2.3 below.
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ASSUMPTION 2.1: The function r = (r1� � � � � rG) is twice continuously differen-
tiable. For each g, rg is invertible in yg and the derivative of rg with respect to xg

is bounded away from zero. Conditional on (X1� � � � �XG), the function r is 1–1,
onto RG, and as a function of x, its Jacobian determinant is positive and bounded
away from zero.

ASSUMPTION 2.2: (ε1� � � � � εG) is distributed independently of (X1� � � � �XG)
with an everywhere positive and twice continuously differentiable density, fε.

ASSUMPTION 2.3: (X1� � � � �XG) possesses a differentiable density.

For the analysis of identification, the left-hand side of (2.3) can be assumed
known. In practice, it can be estimated nonparametrically. The right-hand side
involves the structural functions, fε and r, whose features are the objects of in-
terest. The differentiability assumptions on fε, fX , and r imply that both sides
of (2.3) can be differentiated with respect to y and x. This allows us to trans-
form (2.3) into a system of linear equations with derivatives of known functions
on one side and derivatives of unknown functions on the other side. We show
in the next subsection how the derivatives of the known function can be used
to identify ratios of derivatives of the unknown functions rg.

We will develop estimators for the identified features of r. Theorem 2.1 be-
low characterizes the features of r that can be identified. Roughly, the theo-
rem states that, under appropriate conditions on the density, fε, of ε, and on
a vector of composite derivatives of log |∂r(y�x)/∂y|, the ratios of derivatives,
rgyj (y�xg)/r

g
xg
(y�xg), of each of the functions, rg, with respect to its coordinates,

are identified. The statement that the ratios of derivatives, rgyj (y�xg)/r
g
xg
(y�xg),

are identified is equivalent to the statement that for each g, rg is identified up
to an invertible transformation. This suggests considering restrictions on the
set of functions rg, which guarantee that no two different functions satisfying
those restrictions are invertible transformations of each other.5 One such class
can be defined by requiring that for each function in the class there exists a
function sg :RG → R such that, for all xg,

rg(y�xg)= sg(y)+ xg�(2.4)

and such that sg(y) = α, where y and α are specified and constant over all the
functions in the class.

5Examples of classes of nonparametric functions satisfying that no two functions in the set are
invertible transformations of each other were studied in Matzkin (1992, 1994) in the context of
threshold crossing, binary, and multinomial choice models, and in Matzkin (1999, 2003) in the
context of a one equation model with a nonadditive random term.
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2.2. Observational Equivalence

To motivate the additional restrictions that we will impose, we first present
an observational equivalence result for the exclusive regressor models. The re-
sult is obtained by specializing the observational equivalence results in Matzkin
(2008) to the exclusive regressors model, and by expressing those results in
terms of the density, fY�X , of the observable variables instead of in terms of the
density, fε, of the vector of unobservable variables, ε. We also modify Matzkin’s
(2008) results further by restricting the definition of observational equivalence
to a subset of the support of the vector of observable variables.

We first introduce some notation, which will be used throughout the pa-
per. Let fY |X=x(y) denote the conditional density of the vector of observ-
able variables. We will denote the derivative with respect to y of the log
of fY |X=x(y), ∂ log fY |X=x(y)/∂y , by gy(y�x) = (gy1(y�x)� � � � �gyG(y�x))

′. The
derivative, ∂ log fY |X=x(y)/∂x, of the log of fY |X=x(y) with respect to x, will be
denoted by gx(y�x) = (gx1(y�x)� � � � �gxG(y�x))

′. The derivative of the log of
the density, fε, of ε, with respect to ε, ∂ log fε(ε)/∂ε, will be denoted by qε(ε)=
(qε1(ε)� � � � � qεG(ε))

′. When ε = r(y�x), ∂ log fε(ε)/∂ε will be denoted by
qε(r(y�x)) or by qε(r). For each rg and each j, the ratio of derivatives of rg with
respect to yj and xg, rgyj (y�xg)/r

g
xg
(y�xg), will be denoted by rgyj (y�xg). For an

alternative function r̃, these ratios of derivatives will be denoted by r̃
g

yj
(y�xg).

The Jacobian determinants, |∂r(y�x)/∂y| and |∂̃r(y�x)/∂y|, will be denoted re-
spectively by |ry(y�x)| and |̃ry(y�x)|. The derivatives of |ry(y�x)| and |̃ry(y�x)|
with respect to any of their arguments, w ∈ {y1� � � � � yG�x1� � � � � xG}, will be de-
noted by |ry(y�x)|w and |̃ry(y�x)|w. The statement of our main observational
equivalence result in this section involves functions, dyg , defined for each g by

dyg(y�x) = |ry(y�x)|yg
|ry(y�x)| −

G∑
k=1

[ |ry(y�x)|xk
|ry(y�x)|

rkyg(y�xk)

rkxk(y�xk)

]
�(2.5)

The term dyg(y�x) can be interpreted as the effect on log |∂r(y�x)/∂y| of a
simultaneous change in yg and in (x1� � � � � xG).

Let Γ denote the set of functions r that satisfy Assumption 2.1 and let Φ
denote the set of densities that satisfy Assumption 2.2. We define observational
equivalence within Γ over a subset, M , in the interior of the support of the
vector of observable variables.

DEFINITION 2.1: Let M denote a subset of the support of (Y�X), such that
for all (y�x) ∈ M , fY�X(y�x) > δ, where δ is any positive constant. A function
r̃ ∈ Γ is observationally equivalent to r ∈ Γ on M if there exist densities fε and
fε̃ satisfying Assumption 2.2 and such that, for all (y�x) ∈ M ,

fε
(
r(y�x)

)∣∣∣∣∂r(y�x)∂y

∣∣∣∣= fε̃
(̃
r(y�x)

)∣∣∣∣ ∂̃r(y�x)∂y

∣∣∣∣�(2.6)
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When (r� fε) is the pair of inverse structural function and density generat-
ing fY |X , the definition states that r̃ is observationally equivalent to r if there
is a density in Φ that together with r̃ generates fY |X . The following theorem
provides a characterization of observational equivalence on M .

THEOREM 2.1: Suppose that (r� fε) generates fY |X on M and that Assump-
tions 2.1–2.3 are satisfied. A function r̃ ∈ Γ is observationally equivalent to r ∈ Γ
on M if and only if, for all (y�x) ∈ M ,

0 = (r1
y1

− r̃
1
y1

)
gx1 + (r2

y1
− r̃

2
y1

)
gx2 + · · ·(2.7)

+ (rGy1
− r̃

G

y1

)
gxG + (dy1 − d̃y1)�

� � �

0 = (r1
y2

− r̃
1
y2

)
gx1 + (r2

y2
− r̃

2
y2

)
gx2 + · · ·

+ (rGy2
− r̃

G

y2

)
gxG + (dy2 − d̃y2)�

� � �

0 = (r1
yG

− r̃
1
yG

)
gx1 + (r2

yG
− r̃

2
yG

)
gx2 + · · ·

+ (rGyG − r̃
G

yG

)
gxG + (dyG − d̃yG)�

where for each g and j, rgyj = rgyj (y�xg) = rgyj (y�xg)/r
g
xg
(y�xg), r̃

g

yj
=

r̃
g

yj
(y�xg) = r̃

g

yj
(y�xg)/̃r

g

xg
(y�xg), dy1 = dy1(y�x), d̃yj = d̃yj (y�x), and gxj =

∂ log fY |X=x(y)/∂xj .

The proof, presented in the Appendix, uses (2.3) to obtain an expression
for the unobservable ∂ log fε(r(y�x))/∂ε in terms of the observable gx(y�x) =
∂ log fY |X=x(y)/∂x. The expression in terms of gx(y�x) is used to substitute
∂ log fε(r(y�x))/∂ε in the observational equivalence result in Matzkin (2008,
Theorem 3.2). Equation (2.7) is obtained after manipulating the equations re-
sulting from such substitution.

Theorem 2.1 can be used with (2.3) to develop constructive identification
results for features of r, and estimators for such features. Taking logs and dif-
ferentiating both sides of (2.3) with respect to yj gives

∂ log fY |X=x(y)

∂yj
=

G∑
g=1

∂ log fε(r(y�x))
∂εg

rgyj (y�x1)+ |ry(y�x)|yj
|ry(y�x)| �(2.8)

and taking logs and differentiating both sides of (2.3) with respect to xg gives

∂ log fY |X=x(y)

∂xg

= ∂ log fε(r(y�x))
∂εg

rgxg(y�x1)+ |ry(y�x)|xg
|ry(y�x)| �(2.9)
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Solving for ∂ log fε(r)/∂εg in (2.9) and substituting the result into each of the
∂ log fε(r)/∂εg terms in (2.8), we obtain

∂ log fY |X=x(y)

∂yj
=

G∑
g=1

∂ log fY |X=x(y)

∂xg

rgyj (y�xg)

rgxg(y�xg)
+ dyj (y�x)�(2.10)

where dyj (y�x) is as in (2.5). Equation (2.10) implies that (r�d) satisfies the
following system of equations:

gy1 = r1
y1

gx1 + r2
y1

gx2 + · · · + rGy1
gxG + dy1�(2.11)

� � �

gy2 = r1
y2

gx1 + r2
y2

gx2 + · · · + rGy2
gxG + dy2�

� � �

gyG = r1
yG

gx1 + r2
yG

gx2 + · · · + rGyGgxG + dyG�

Several features of this system of equations deserve mentioning. First, note
that this is a system of G equations where only the ratios of derivatives
rgyj = rgyj /r

g
xg

(g� j = 1� � � � �G) and the terms dy1� � � � � dyG are unknown. Sec-
ond, note that the unknown elements in this system are elements of only
the inverse function (r1� � � � � rG). They do not depend on the unknown den-
sity of (ε1� � � � � εG). The density fε enters the system only through the known
terms, gy1� � � � �gyG and gx1� � � � �gxG . Moreover, the values of fε depend on the
values of (r1� � � � � rG) rather than on the ratios of derivatives of (r1� � � � � rG).
Hence, the density fε has the potential to generate variation on the values of
gy1� � � � �gyG and gx1� � � � �gxG , independently of the unknown ratios of deriva-
tives rgyj = rgyj /r

g
xg

(g� j = 1� � � � �G) and of dy1� � � � � dyG . Third, each of the ra-
tios of derivatives depend on only one xg, while gy1� � � � �gyG and gx1� � � � �gxG

depend on all the vector (x1� � � � � xG). Hence, variation on the coordinates
other than xg has the potential to generate variation on the other elements
of the system, while the ratios rgyj /r

g
xg

stay fixed. This leads to the analysis
of conditions on (r� fε) guaranteeing that values of (gx1� � � � �gxG), which are
observable, can be found so that (2.11) can be solved for either the whole
vector (r�d)= (r1

y1
� � � � � r1

yG
; � � � ; rGy1

� � � � � rGyG;dy1� � � � � dyG) or for some elements
of it.

2.3. Average Derivatives Estimators for the Model With Exclusive Regressors

We next develop an estimator for the ratios of derivatives, r, based on a
characterization of r of the least squares form (X̃ ′X̃)−1(X̃ ′Ỹ ). Such character-
ization of r employs the fact that (2.11) holds for all values of (gx1� � � � �gxG)

over any subset M of M where (r�d) is constant. The elements of the matri-
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ces are obtained by averages of multiplications of derivatives of log fY |X=x(y)

over a set M where the values of (r�d) are constant. Estimation of r follows
by substituting, in the (X̃ ′X̃) and (X̃ ′Ỹ ) matrices, fY |X=x by a nonparametric
estimator for fY |X=x.

We derive our expression for r by characterizing (r�d) as the unique solution
to the minimization of an integrated square distance between the left-hand side
and the right-hand side of (2.11). The integration set must be over a subset of
the support of (Y�X) where (r�d) is constant. Hence, this set will depend on
the restrictions that one assumes on the function r. We will provide two sets of
restrictions on r, each leading to different integration sets.

Another restriction on the integration set is that it must contain in its inte-
rior G+ 1 values of the observable variables such that when gx is evaluated at
those values, the only solution to (2.7) is the vector of 0’s. This identification
condition guarantees that (r�d) is the unique minimizer of the distance func-
tion. For each of the two sets of restrictions on r, we will provide conditions on
fε guaranteeing that such G + 1 values exist. The two sets of restrictions on r
that we will consider are stated in Assumptions 2.4 and 2.4′.

ASSUMPTION 2.4: The inverse function rG is such that, for some function
sG :R→ R and all (y�xG), rG(y�xG)= sG(y)+ xG.

ASSUMPTION 2.4′: For each g = 1� � � � �G, the inverse function rg is such that,
for some function sg :R→ R and all (y�xg), rg(y�xg)= sg(y)+ xg.

Assumption 2.4 is equivalent to requiring that the units of measurement of
εG are tied to those of xG by6

−∂mG(y1� � � � � yG−1�xG�εG)

∂εG

= ∂mG(y1� � � � � yG−1�xG�εG)

∂xG

�

The sets M on which (r�d) is constant when Assumptions 2.4 and 2.4′ are
satisfied are stated in the following propositions.

PROPOSITION 2.1: Let (y�x−G) = (y�x1� � � � � xG−1) be fixed and given. When
Assumptions 2.1 and 2.4 are satisfied, (r�d) is constant over any set M ⊂
{(y�x−G� tG)|tG ∈R}.

PROPOSITION 2.2: Let y be fixed and given. When Assumptions 2.1 and 2.4′ are
satisfied, (r�d) is constant over any set M ⊂ {(y� t1� � � � � tG)|(t1� � � � � tG) ∈ RG}.

6I thank a referee for showing that Assumption 2.4 is equivalent to this restriction.
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To state our assumption on the density fε, we will denote by A(ε(1)� � � � �
ε(G+1)) the matrix of derivatives of log(fε) at G+ 1 values, ε(1)� � � � � ε(G+1), of ε,

A
(
ε(1)� � � � � ε(G+1)

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ log fε(ε(1))

∂ε1

∂ log fε(ε(1))

∂ε2
· · · ∂ log fε(ε(1))

∂εG

1

���
���

���
���

���
∂ log fε(ε(G))

∂ε1

∂ log fε(ε(G))

∂ε2
· · · ∂ log fε(ε(G))

∂εG

1

∂ log fε(ε(G+1))

∂ε1

∂ log fε(ε(G+1))

∂ε2
· · · ∂ log fε(ε(G+1))

∂εG

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

ASSUMPTION 2.5: There exist G + 1, not necessarily known, values ε(1)� � � � �
ε(G+1) of ε, such that A(ε(1)� � � � � ε(G+1)) is invertible.7

ASSUMPTION 2.6: There exist G + 1, not necessarily known, values w(1)� � � � �
w(G+1) in the set M , where (r�d) is constant, such that for each k= 1� � � � �G+ 1,
ε(k) = r(w(k)), where ε(k) is as in Assumption 2.5.

Assumptions 2.5 and 2.6 require that there exist G + 1 values of ε, each
corresponding to the value of r at one point in the set M , such that the ma-
trix A(ε(1)� � � � � ε(G+1)) is invertible. When the set M is as in Proposition 2.1,
the points in the set M can differ only by their value of xG. Since xG enters
only in rG, the G + 1 values of ε that can be used to satisfy the invertibility of
A(ε(1)� � � � � ε(G+1)) must possess the same values of ε1� � � � � εG−1. Hence, only
changes in the value of εG must generate the G+ 1 linearly independent rows
in A(ε(1)� � � � � ε(G+1)). When the set M is as in Proposition 2.2, the points in the
set M may differ in their values of (x1� � � � � xG). In this case, the G + 1 values
of ε that must satisfy the invertibility of A(ε(1)� � � � � ε(G+1)) may differ in their
values of any coordinate, not just in the value of their last coordinate. Normal
distributions can satisfy Assumption 2.5 in the latter case, where the values of
ε(1)� � � � � ε(G+1) are allowed to differ in all coordinates, but not in the former
case, where only the last coordinates of ε(1)� � � � � ε(G+1) are different.

The following propositions relate Assumptions 2.5 and 2.6 to a testable con-
dition. Let w(1)� � � � �w(G+1) denote G+ 1 points in M . For each j and k, we will
denote the values of gxj at w(k) by g(k)

xj
.

7This assumption, developed in the 2012 version of this paper, is a generalization of the as-
sumptions in Matzkin (2008, Example 4.2) and Matzkin (2010), which imposed zero values on
some of the elements of this matrix, guaranteeing invertibility. Invertibility conditions on an ex-
clusive regressor model were imposed, in previous works, on the matrix of second order deriva-
tives of log fε. (See Brown, Wegkamp, and Deb (2007) for identification in a semiparametric
version of the model in Matzkin (2007b, Section 2.1.4) and Berry and Haile (2011).)



NONPARAMETRIC MODELS WITH SIMULTANEITY 13

CONDITION I.1: There exist w(1)� � � � �w(G+1) in M such that the matrix

B
(
w(1)� � � � �w(G+1)

)=

⎛⎜⎜⎜⎝
g(1)
x1

g(1)
x2

· · · g(1)
xG

1
���

���
���

��� 1
���

���
���

���
���

g(G+1)
x1

g(G+1)
x2

· · · g(G+1)
xG

1

⎞⎟⎟⎟⎠
is invertible.

The existence of G + 1 points, w(1)� � � � �w(G+1) in M , such that B(w(1)� � � � �
w(G+1)) is invertible implies by Theorem 2.1 that, when Assumptions 2.1–2.3
are satisfied, (r�d) is identified on M . This is because, for each g, evaluating
the equation corresponding to yg in (2.7) at w(1)� � � � �w(G) and w(G+1) gener-
ates G + 1 linear independent equations in G + 1 unknowns, whose unique
solution is the vector of 0’s. Propositions 2.3 and 2.4 below show that Assump-
tions 2.5 and 2.6 imply that Condition I.1 is satisfied in models satisfying As-
sumptions 2.1–2.4 or Assumptions 2.1–2.3 and 2.4′, when M is appropriately
chosen. They also show that Condition I.1 can be employed to test Assump-
tion 2.5. Any G + 1 points w(1)� � � � �w(G+1) in M for which B(w(1)� � � � �w(G+1))
is invertible are mapped to G + 1 vectors, ε(1)� � � � � ε(G+1) in RG, such that
A(ε(1)� � � � � ε(G+1)) is invertible.

PROPOSITION 2.3: Suppose that Assumptions 2.1–2.3 and 2.4 are satisfied. Let
the set M be included in the set {(y�x−G� tG)|tG ∈ R}. Then, for all w(1)� � � � �w(G+1)

in M and ε(1)� � � � � ε(G+1) in RG such that ε(k) = r(w(k)), A(ε(1)� � � � � ε(G+1)) is
invertible if and only if B(w(1)� � � � �w(G+1)) is invertible.

PROPOSITION 2.4: Suppose that Assumptions 2.1–2.3 and 2.4′ are satisfied.
Let the set M be included in the set {(y� t1� � � � � tG)|(t1� � � � � tG) ∈ RG}. Then,
for all w(1)� � � � �w(G+1) in M and ε(1)� � � � � ε(G+1) in RG such that ε(k) = r(w(k)),
A(ε(1)� � � � � ε(G+1)) is invertible if and only if B(w(1)� � � � �w(G+1)) is invertible.

We next define a distance function such that (r�d) is the unique solution to
the minimization of this distance function. Let M denote a compact set where,
as earlier, (r�d) is constant. Let M

t
be such that M = {y�x−t} × M

t
, where

x−t is the, possibly empty, singleton corresponding to the coordinates of x that
remain fixed on M . Then, when Assumption 2.4 is satisfied, {y�x−t} = {y�x−G}
and any t ∈ M

t
is a scalar; when Assumption 2.4′ is satisfied, {y�x−t} = {y}

and any t ∈ M
t

is G-dimensional. Let μ(y�x−t � t) denote a specified differen-
tiable nonnegative function defined on R2G such that

∫
M
μ(y�x−t � t) dt = 1 and

μ(y�x−t � t) = 0 on the complement, M
c
, of M . For any vector (̃r� d̃) gener-

ated from an alternative function r̃ satisfying the same assumptions as r, but
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not necessarily observationally equivalent to r, we define the distance function
S(̃r� d̃) by

S(̃r� d̃) =
∫
M

[
G∑

g=1

(
gyg − r̃

1
yg

gx1 − r̃
2
yg

gx2 − · · · − r̃
G

yg
gxG − d̃yg

)2

]
×μ(y�x−t � t) dt�

The value of S(̃r� d̃) is the integrated square distance between the left-hand
side and the right-hand side of (2.11) when (r�d) is replaced by (̃r� d̃). Since
S(̃r� d̃) ≥ 0 and S(r�d) = 0, (r�d) is a minimizer of S(·). When μ is strictly
positive at w(1)� � � � �w(G+1) that satisfy Condition I.1, (r�d) is the unique min-
imizer of S(·). To express the first G coordinates, r, of the vector (r�d) that
solves the First Order Conditions for the minimization of S(·), we introduce
some additional notation. The average of gyg and gxg over M will be denoted,
respectively, by∫

M

gyg =
∫
M

gyg (y�x−t � t)μ(y�x−t � t) dt

=
∫
M

∂ log fY |X=(x−t �t)(y)

∂yg
μ(y�x−t � t) dt�∫

M

gxg =
∫
M

gxg(y�x−t � t)μ(y�x−t� t) dt

=
∫
M

∂ log fY |X=(x−t �t)(y)

∂xg

μ(y�x−t � t) dt�

The averaged centered cross products between gyg and gxs , and between gxj

and gxs , will be denoted respectively by

Tyg�xs =
∫
M

(
gyg (y�x−t � t)−

∫
M

gyg

)(
gxs (y�x−t � t)−

∫
M

gxs

)
×μ(y�x−t � t) dt�

Txj�xs =
∫
M

(
gxj (y�x−t � t)−

∫
M

gxj

)(
gxs (y�x−t � t)−

∫
M

gxs

)
×μ(y�x−t � t) dt�

The matrices of centered cross products, TXX and TYX , will be defined by

TXX =
⎛⎜⎝ Tx1�x1 Tx2�x1 · · · TxG�x1

���
���

���
���

Tx1�xG Tx2�xG · · · TxG�xG

⎞⎟⎠ and
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TYX =
⎛⎜⎝ Ty1�x1 Ty2�x1 · · · TyG�x1

���
���

���
���

Ty1�xG Ty2�xG · · · TyG�xG

⎞⎟⎠ �

The matrix of ratios of derivatives, R, will be defined by

R(r) =
⎛⎜⎝ r1

y1
r1
y2

· · · r1
yG

���
���

���
���

rGy1
rGy2

· · · rGyG

⎞⎟⎠ �

The solution of the First Order Conditions for r results in the expression
TXXR(r) = TYX . Since (r�d) is the unique minimizer, the matrix TXX must
be invertible. It follows that R(r) will be given by

R(r) = T−1
XXTYX�(2.12)

The following theorems establish the conditions under which (r�d) is the
unique minimizer of S(·), which imply that R(r) is given by (2.12) for the def-
initions of TXX and TYX that correspond in each case to the definition of the
set M .

THEOREM 2.2: Let (y�x−G) = (y�x1� � � � � xG−1) be given and let the compact
set M be included in the set {(y�x−G� tG)|tG ∈ R}. Suppose that Assumptions 2.1–
2.3 and 2.4–2.6 are satisfied, and that the nonnegative and continuous function
μ(y�x−G� tG) is strictly positive at least at one set of points w(1)� � � � �w(G+1) satis-
fying Condition I.1. Then, (r�d) is the unique minimizer of

S(̃r� d̃) =
∫
M

[
G∑
j=1

(
gyj − r̃

1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj

)2

]
×μ(y�x−G� tG)dtG

and R(r) is given by (2.12).

THEOREM 2.3: Let y be given and let the compact set M be included in the
set {(y� t1� � � � � tG)|(t1� � � � � tG) ∈ RG}. Suppose that Assumptions 2.1–2.3, 2.4′,
and 2.5–2.6 are satisfied, and that the nonnegative and continuous function
μ(y� t1� � � � � tG) is strictly positive at least at one set of points w(1)� � � � �w(G+1) sat-
isfying Condition I.1. Then, (r�d) is the unique minimizer of

S(̃r� d̃) =
∫
M

[
G∑
j=1

(
gyj − r̃

1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj

)2

]
×μ(y� t1� � � � � tG)d(t1� � � � � tG)

and R(r) is given by (2.12).
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To obtain the estimators for R(r), we note that each of the elements, Txj�xs

and Tyj�xs , in the matrices TXX and TYX , can be estimated from the distribution
of the observable variables, by substituting fY |X=x(y) in all the expressions by
a nonparametric estimator, f̂Y |X=x(y), for fY |X=x(y). Denote such estimators
by T̂xj�xs and T̂yg�xs , and let T̂XX and T̂YX denote the matrices whose elements
are, respectively, T̂xj�xs and T̂yg�xs . Then, the estimator for the matrix of ratios
of derivatives R(r) is defined as

R̂(r) = T̂XX

−1
T̂YX�

2.4. Asymptotic Properties of the Estimator

In this section, we develop asymptotic properties for the estimator presented
in Section 2.3, for the case when the estimator f̂Y |X=x(y) for the conditional
density of Y given X is obtained by kernel methods. We assume that, for any
t ∈M

t
, t = x ∈RG. Thus, M = {y}×M

t
. Let {Y i�Xi}Ni=1 denote N independent

and identically distributed (i.i.d.) observations generated from fY�X . The kernel
estimator is

f̂Y |X=x(y)=

N∑
i=1

K

(
Y i − y

σN

�
Xi − x

σN

)

σG
N

N∑
i=1

K

(
Xi − x

σN

) �

where K is a kernel function and σN is a bandwidth. The element in the kth
row, ith column of our estimator for TXX is∫

M

(̂
gxi(y�x)−

∫
M

ĝxi

)(̂
gxk(y�x)−

∫
M

ĝxk

)
μ(y�x)dx�

where, for k = 1� � � � �G,

ĝxk(y�x) = ∂ log f̂Y |X=x(y)

∂xk

and∫
ĝxk =

∫
M

∂ log f̂Y |X=x(y)

∂xk

μ(y�x)dx�

Similarly, the element in the kth row, ith column of our estimator for TYX is∫ (̂
gyi (y�x)−

∫
M

ĝyi

)(̂
gxk(y�x)−

∫
M

ĝxk

)
μ(y�x)dx�
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where, for g = 1� � � � �G,

ĝyg (y�x)= ∂ log f̂Y |X=x(y)

∂yg
and

∫
ĝyg (y)=

∫
M

∂ log f̂Y |X=x(y)

∂yg
μ(y�x)dx�

We will let M
y

denote a convex and compact set such that the value y at which
we estimate ry is an interior point of M

y
, and we will let M

x
be a convex and

compact set such that M
t

is strictly in the interior of M
x
. Our result uses the

following assumptions.

ASSUMPTION 2.7: The density fY�X generated by fε, fX , and r is bounded and
continuously differentiable of order d ≥ s + 2, where s denotes the order of the
kernel function. Moreover, there exists δ > 0 such that, for all (y�x) ∈ M

y ×M
x
,

fX(x) > δ and fY�X(y�x) > δ.

ASSUMPTION 2.8: The set M
t

is compact. The function μ(y� ·) is bounded and
continuously differentiable. It has strictly positive values at all x belonging to the in-
terior of M

t
, values and derivatives equal to zero when the value of any coordinate

of x lies on the boundary of M
t

and equal to zero when x belongs to the comple-
ment of M

t
. The set {y} × M

t
contains at least one set of points w(1)� � � � �w(G+1)

satisfying Condition I.1 and such that μ is strictly positive at each of those points.

ASSUMPTION 2.9: The kernel function K is of order s, where s + 2 ≤ d. It at-
tains the value zero outside a compact set, integrates to 1, is differentiable of or-
der Δ, and its derivatives of order Δ are Lipschitz, where Δ≥ 2.

ASSUMPTION 2.10: The sequence of bandwidths, σN , is such that σN → 0,
NσG+2

N → ∞,
√
Nσ(G/2)+1+s

N → 0, [Nσ2G+2
N / ln(N)] → ∞, and

√
Nσ(G/2)+1

N ×
[
√

ln(N)/Nσ2G+2
N + σs

N]2 → 0.

To describe the asymptotic behavior of our estimator, we will denote by
rr the vector in RG2 formed by stacking the columns of R(r), so that rr =
vec(R(r)) = (r1

y1
� � � � � rGy1

; r1
y2
� � � � � rGy2

; � � � ; r1
yG
� � � � � rGyG)

′. Let r̂r denote the esti-
mator for rr. Accordingly, we will denote the matrix TTXX by IG ⊗ TXX and
its estimator T̂ TXX = IG ⊗ T̂XX . The vector TTYX will be the vector formed by
stacking the columns of TYX : TTYX = (Ty1�x1� � � � � Ty1�xG;Ty2�x1� � � � �Ty2�xG; � � � ;
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TyG�x1� � � � �TyGxG)
′, with its estimator defined by substituting each coordinate

by its estimator. For each s, denote

�∂xs log fY |X=x(y)= ∂ log fY |X=x(y)

∂xs

−
∫
M

∂ log fY |X=x(y)

∂xs

μ(y�x)dx�

and for each j, k, denote

K̃Kyj�yk =
{∫ [∫ (

∂K(̃y� x̃)

∂yj

)
dx̃

][∫ (
∂K(̃y� x̃)

∂yk

)
dx̃

]
dỹ

}
�

In the proof of Theorem 2.4, which we present in the Appendix, we show
that under our assumptions√

NσG+2
N (T̂TYX − TTYX)→

d
N(0� VTYX

)�

where the element in VTYX
corresponding to the covariance between Tyjxs and

Tykxe is {∫
M

(
�∂xs log fY |X=x(y)

)(
�∂xe log fY |X=x(y)

)( μ(y�x)2

fY�X(y�x)

)
dx

}
K̃Kyj�yk �

Denote by V̂TYX
the matrix whose elements are{∫

M

(
�∂xs log f̂Y |X=x(y)

)(
�∂xe log f̂Y |X=x(y)

)( μ(y�x)2

f̂Y�X(y�x)

)
dx

}
K̃Kyj�yk �

The following theorem is proved in the Appendix.

THEOREM 2.4: Suppose that the model satisfies Assumptions 2.1–2.3, 2.4′,
2.5–2.10. Then,√

NσG+2
N (r̂r − rr)→

d
N
(
0� (TTXX)

−1VTYX
(TTXX)

−1
)

and (T̂TXX)
−1V̂TYX

(T̂TXX)
−1 is a consistent estimator for (TTXX)

−1VTYX
×

(TTXX)
−1.

If Assumption 2.4′ is substituted by Assumption 2.4, it can be shown by
adapting the assumptions and proofs of Theorems 2.4 and 3.2 that the rate

of convergence of the estimator for rr is
√
Nσ2G+1

N .



NONPARAMETRIC MODELS WITH SIMULTANEITY 19

3. THE MODEL WITH TWO EQUATIONS AND ONE INSTRUMENT

3.1. The Model

The model considered in this and the following section is

Y1 = m1(Y2� ε1)�(3.1)

Y2 = m2(Y1�X�ε2)�

where (Y1�Y2�X) is observable and (ε1� ε2) is unobservable. In this section,
we will develop an estimator for ∂m1(y2� ε1)/∂y2, analogous to the estimator
in Section 2. In the next section, we will develop a two-step procedure to esti-
mate ∂m1(y2� ε1)/∂y2. We assume that m1 is either strictly increasing or strictly
decreasing in ε1, to guarantee the existence of a function r1 such that, for all
(y1� y2), y1 = m1(y2� r

1(y1� y2)). Differentiating this expression with respect to
y1 and y2, it follows that, for any given (y1� y2),

∂m1(y2� ε1)

∂y2
= − r1

y2
(y1� y2)

r1
y1
(y1� y2)

�

where ε1 is the unknown but unique value satisfying y1 =m1(y2� ε1) and r1
y1

and
r1
y2

denote the partial derivatives of r1 with respect to y1 and y2. Similarly, we as-
sume that m2 is either strictly increasing or strictly decreasing in ε2, to guaran-
tee the existence of r2 such that, for all (y1� y2�x), y2 = m2(y1�x� r

2(y1� y2�x)).
The additional assumptions guarantee that, for all (y1� y2�x) on a set M ′ in the
support of (Y�X)= (Y1�Y2�X),

fY1�Y2|X=x(y1� y2)= fε1�ε2

(
r1(y1� y2)� r

2(y1� y2�x)
)∣∣∣∣∂r(y1� y2�x)

∂(y1� y2)

∣∣∣∣�(3.2)

ASSUMPTION 3.1: The function r1 is invertible in y1 and the function r2 is in-
vertible in y2. The vector function r is twice continuously differentiable. The deriva-
tive of r2 with respect to x is bounded away from zero. Conditional on X , the func-
tion r is 1–1, onto R2, and as a function of x, the Jacobian determinant is positive
and bounded away from zero.

ASSUMPTION 3.2: (ε1� ε2) is distributed independently of X with an everywhere
positive and twice continuously differentiable density, fε.

ASSUMPTION 3.3: X possesses a differentiable density.

3.2. Observational Equivalence

Our observational equivalence result for model (3.1) involves functions,
c(y�x) and c̃(y�x), analogous to the functions dyj and d̃yj in Section 3. These
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are defined by

c(y�x)= − |ry(y�x)|x
r1
y1
(y)r2

x(y�x)
− r1

y2
(y)

r1
y1
(y)

|ry(y�x)|y1

|ry(y�x)| + |ry(y�x)|y2

|ry(y�x)| and(3.3)

c̃(y�x)= − |̃ry(y�x)|x
r̃1
y1
(y)̃r2

x(y�x)
− r̃1

y2
(y)

r̃1
y1
(y)

|̃ry(y�x)|y1

|̃ry(y�x)| + |̃ry(y�x)|y2

|̃ry(y�x)| �

Let Γ ′ denote the set of functions r that satisfy Assumption 3.1. We define
observational equivalence within Γ ′ over a subset, M ′, of the support of the
vector of observable variables.

DEFINITION 3.1: Let M ′ denote a subset of the support of (Y�X), such that,
for all (y�x) ∈ M ′, fY�X(y�x) > δ2, where δ2 is any positive constant. Function
r̃ ∈ Γ ′ is observationally equivalent to r ∈ Γ ′ on M ′ if there exist densities fε
and fε̃ satisfying Assumption 3.2 and such that, for all (y�x) ∈M ′,

fε
(
r(y�x)

)∣∣∣∣∂r(y�x)∂y

∣∣∣∣= fε̃
(̃
r(y�x)

)∣∣∣∣ ∂̃r(y�x)∂y

∣∣∣∣�(3.4)

Our observational equivalence for the model (3.1) is given in the following
theorem.

THEOREM 3.1: Suppose that (r� fε) generates fY |X and that Assumptions 3.1–
3.3 are satisfied. A function r̃ ∈ Γ ′ is observationally equivalent to r ∈ Γ ′ on M ′ if
and only if, for all (y�x) ∈ M ′,

0 =
(
r1
y2

r1
y1

− r̃1
y2

r̃1
y1

)
gy1 +

( |ry |
r2
xr

1
y1

− |̃ry |
r̃2
x̃r

1
y1

)
gx + (c − c̃)�(3.5)

where, for g = 2 and all j, rgyj = rgyj (y�x), r̃
g
yj

= r̃gyj (y�x), r
1
yj

= r1
yj
(y), r̃1

yj
= r̃1

yj
(y),

r2
x = r2

x(y�x), r̃
2
x = r̃2

x(y�x), |ry | = |ry(y�x)|, |̃ry | = |̃ry(y�x)|, gy1 = gy1(y�x) =
∂ log fY |X=x(y)/∂y1, gx = gx(y�x) = ∂ log fY |X=x(y)/∂x, and where c = c(y�x)
and c̃ = c̃(y�x) are as defined in (3.3).

When comparing Theorem 3.1 with Theorem 2.1, note that the lack of one
exclusive regressor in the first equation has reduced the number of equations
by one. The derivative of log fY |X=x(y) with respect to y1 has taken up the place
that the derivative of log fY |X=x(y) with respect to x1 would have taken. The
ratio of derivatives of r1 appears as a coefficient of ∂ log fY |X=x(y)/∂y1. The
two ratios of derivatives of r2, which in Theorem 2.1 appeared separately, each
as a coefficient of a different derivative of log fY |X=x, appear in (3.5) in one
coefficient, of the form [((r2

y2
/r2

x)− (r2
y1
/r2

x)(r
1
y2
/r1

y1
))].

The proof of Theorem 3.1, presented in the Appendix, proceeds in a way
similar to the one used to prove Theorem 2.1. Equation (3.2) is used to obtain
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an expression for the unobservable ∂ log fε(r(y�x))/∂ε in terms of the deriva-
tives of the observable log(fY |X=x(y)). The resulting expression is used to sub-
stitute ∂ log fε(r(y�x))/∂ε in the observational equivalence result in Matzkin
(2008, Theorem 3.2). After manipulation of the equations, the resulting ex-
pression is (3.5). The main difference between both proofs is that, in the two
equations, one instrument model, the expression for ∂ log fε(r(y�x))/∂ε in-
volves not only the derivative of log(fY |X=x(y)) with respect to the exogenous
variable, X , but also the derivative of log(fY |X=x(y)) with respect to the en-
dogenous variable Y1.

Theorem 3.1 together with (3.2) can be used to develop constructive identi-
fication results for features of r. Differentiating both sides of (3.2) with respect
to y1, y2, and x gives

∂ log fY |X=x(y)

∂y1
= ∂ log fε1�ε2(r

1� r2)

∂ε1
r1
y1

+ ∂ log fε1�ε2(r
1� r2)

∂ε2
r2
y1

+ |ry |y1

|ry | �(3.6)

∂ log fY |X=x(y)

∂y2
= ∂ log fε1�ε2(r

1� r2)

∂ε1
r1
y2

+ ∂ log fε1�ε2(r
1� r2)

∂ε2
r2
y2

+ |ry |y2

|ry | �(3.7)

∂ log fY |X=x(y)

∂x
= ∂ log fε1�ε2(r

1� r2)

∂ε2
r2
x + |ry |x

|ry | �(3.8)

Equation (3.8) reflects the fact that x is exclusive to r2. Solving for
∂ log fε(r(y�x))/∂ε2 from (3.8) and substituting into (3.6) and (3.7) gives

∂ log fY |X=x(y)

∂y1
= ∂ log fε1�ε2(r

1� r2)

∂ε1
r1
y1

+ ∂ log fY |X=x(y)

∂x

r2
y1

r2
x

(3.9)

+ |ry |y1

|ry | − r2
y1

r2
x

|ry |x
|ry | �

∂ log fY |X=x(y)

∂y2
= ∂ log fY |X=x(y)

∂ε1
r1
y2

+ ∂ log fY |X=x(y)

∂x

r2
y2

r2
x

(3.10)

+ |ry |y2

|ry | − r2
y2

r2
x

|ry |x
|ry | �

Solving for ∂ log fε(r(y�x))/∂ε1 from (3.9) and substituting into (3.10) gives

∂ log fY |X=x(y)

∂y2
= r1

y2

r1
y1

∂ log fY |X=x(y)

∂y1
(3.11)

−
[
r1
y2

r1
y1

r2
y1

r2
x

− r2
y2

r2
x

]
∂ log fY |X=x(y)

∂x
+ c(y�x)�
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Rearranging terms, and substituting ∂ log fY |X=x(y)/∂yj by gyj and
∂ log fY |X=x(y)/∂x by gx, we get that

gy2(y�x) = r1
y2

r1
y1

gy1(y�x)+
[ |ry(y�x)|

r1
y1
r2
x

]
gx(y�x)+ c(y�x)�(3.12)

Equation (3.12) together with (3.5) will be referred to in later sections, to build
upon them estimators for ∂m1(y2� ε1)/∂y2 = −r1

y2
/r1

y1
.

3.3. Average Derivatives Estimator for the Two Equations,
One Instrument Model

The result of the previous subsection can be used to obtain an estimator
for the unknown values of the coefficients in equation (3.12), in analogy to
the estimator developed for the exclusive regressors model. Let y be a given
value of the endogenous variables. Suppose it is known that Assumption 2.4 is
satisfied or, more generally, that on a subset M

t
in the support of X it is the

case that |ry(y�x)|/[r1
y1
r2
x] and c(y�x) are constant over x. Suppose also that

the following condition is satisfied.

CONDITION I.2: There exist x(1), x(2), and x(3) in M
t

such that the rank of
the matrix⎛⎜⎝g(1)

y1
g(1)
x2

1

g(2)
y1

g(2)
x2

1

g(3)
y1

g(3)
x2

1

⎞⎟⎠
is 3, where for i = 1�2�3, g(i)

y1
= ∂ log fY |X=x(i)(y)/∂y1 and g(i)

x = ∂ log fY |X=x(i)(y)/
∂x.

Let μ(y1� y2� ·) be a continuous, nonnegative function with positive values
at the points x(1), x(2), and x(3) and such that

∫
M
μ(y1� y2�x)dx = 1, where

M = {(y1� y2)}×M
t
. Denote β(y)= r1

y2
(y)/r1

y1
(y), γ(y)= |ry(y�x)|/[r1

y1
r2
x], and

ν(y) = c(y�x). In analogy to the development in the previous section, and to
the proof of Theorem 2.2, the rank condition and the continuity of μ imply
that the vector (β̃� γ̃� ν̃) = (β(y)�γ(y)� ν(y)) is the unique minimizer of the
function S(β̃� γ̃� ν̃) defined by

S(β̃� γ̃� ν̃)=
∫
M

(
gy2(y�x)− β̃gy1(y�x)− γ̃gx(y�x)− ν̃

)2
μ(y�x)dx�
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The first order conditions of this minimization are given by⎡⎢⎢⎢⎢⎣

∫
gy1 gy1

∫
gy1 gx

∫
gy1∫

gy1 gx

∫
gxgx

∫
gx∫

gy1

∫
gx 1

⎤⎥⎥⎥⎥⎦
⎡⎣β(y)

γ(y)

ν(y)

⎤⎦=

⎡⎢⎢⎢⎢⎣

∫
gy2 gy1∫
gy2 gx∫
gy2

⎤⎥⎥⎥⎥⎦ �

where for w�z ∈ {y1� y2�x}, ∫
gwgz = ∫

M
gw(y�x)gz(y�x)μ(y�x)dx, and∫

gw = ∫
M

gw(y�x)μ(y�x)dx. The 3 × 3 matrix is the Hessian of the function
S, which is constant over (β̃� γ̃� ν̃). By the convexity of S and the uniqueness
of a minimizer, this matrix is positive definite and therefore invertible. Solving
for ν(y) and substituting into the first equation, we get[

Ty1�y1 Ty1�x

Ty1�x Tx�x

][
β(y)

γ(y)

]
=
[
Ty1�y2

Ty2�x

]
�

where the 2 × 2 matrix is positive definite. Solving for β(y), we get

β(y)= Ty1�y2Tx�x − Ty1�xTy2�x

Ty1�y1Tx�x − (Ty1�x)
2 �

where the denominator is strictly positive. Replacing the terms in the expres-
sion for β(y) by nonparametric estimators, we obtain the following nonpara-
metric estimator for β(y):

β̂(y)= T̂y1�y2 T̂x�x − T̂y1�xT̂y2�x

T̂y1�y1 T̂x�x − (T̂y1�x)
2
�

In the next subsection, we develop the asymptotic properties of β̂(y) when
the estimators for T̂y1�y2 , T̂x�x, T̂y1�x, T̂y2�x, T̂y1�y1 , and T̂x�x are obtained by re-
placing fY |X(y) by a kernel estimator for fY |X(y). By the relationship be-
tween the derivatives of rg and mg, shown in Section 2.1, it follows that, since
β= r1

y2
(y)/r1

y1
(y),

̂∂m1(y2� ε1)

∂y2
= −β̂(y)= − T̂y1�y2 T̂x�x − T̂y1�xT̂y2�x

T̂y1�y1 T̂x�x − (T̂y1�x)
2
�

Moreover, since m2
x(y1�x�ε2)/m

2
ε2
(y1�x�ε2) = r2

x(y1� y2�x), one can consider
restrictions on m2 guaranteeing that the coefficients γ(y) and ν(y) are constant
over x.
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If the derivative r2
x(y�x) equals 1 for all x, r2(y�x) is of the form r2(y�x) =

s(y) + x, and then the coefficients γ(y) and ν(y) are constant over x. When
r2(y�x)= s(y)+ x, m2 is of the form y2 = m2(y1� ε2 − x). In analogy to Propo-
sition 2.3, Condition I.2 is satisfied in this case if and only if, for ε1 = r1(y1� y2),
and for ε(1)

2 = s(y)+ x(1), ε(2)
2 = s(y)+ x(2), and ε(3)

2 = s(y)+ x(3)
2 , the following

matrix has rank 3:⎛⎜⎜⎜⎜⎜⎜⎝

∂ log fε1�ε2(ε1� ε
(1)
2 )

∂ε1

∂ log fε1�ε2(ε1� ε
(1)
2 )

∂ε2
1

∂ log fε1�ε2(ε1� ε
(2)
2 )

∂ε1

∂ log fε1�ε2(ε1� ε
(2)
2 )

∂ε2
1

∂ log fε1�ε2(ε1� ε
(3)
2 )

∂ε1

∂ log fε1�ε2(ε1� ε
(3)
2 )

∂ε2
1

⎞⎟⎟⎟⎟⎟⎟⎠ �

3.4. Asymptotic Properties of the Estimator

Suppose that when calculating β̂(y), T̂y1�y2 , T̂x�x, T̂y1�x, T̂y2�x, T̂y1�y1 , and T̂x�x

are obtained by replacing fY |X(y) by a kernel estimator for fY |X(y). As in Sec-
tion 2.4, define

�∂x log fY |X=x(y)= ∂ log fY |X=x(y)

∂x
−
∫
M

∂ log fY |X=x(y)

∂x
μ(y�x)dx�

and for j = 1�2, define

�∂yj log fY |X=x(y)= ∂ log fY |X=x(y)

∂yj
−
∫
M

∂ log fY |X=x(y)

∂yj
μ(y�x)dx�

Let

ω̃a(y�x) = (�∂y2 log fY |X=x(y)
)(μ(y�x)

f

)[
Tx�x

Ty1�y1Tx�x − T 2
y1�x

]
�

ω̃b(y�x) = (�∂y1 log fY |X=x(y)
)(μ(y�x)

f

)[
Tx�x

Ty1�y1Tx�x − T 2
y1�x

]
�

ω̃c(y�x)= −(�∂x log fY |X=x(y)
)(μ(y�x)

f

)[
Ty2�x

Ty1�y1Tx�x − T 2
y1�x

]
�

ω̃d(y�x) = −(�∂x log fY |X=x(y)
)(μ(y�x)

f

)[
Ty1�x

Ty1�y1Tx�x − T 2
y1�x

]
�

ω̃e(y�x)= −2
(
�∂y1 log fY |X=x(y)

)
×
(
μ(y�x)

f

)
Tx�x[Ty1�y2Tx�x − Ty1�xTy2�x]

[Ty1�y1Tx�x − T 2
y1�x

]2 �
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ω̃f (y�x)= 2
(
�∂x log fY |X=x(y)

)
×
(
μ(y�x)

f

)
Ty1�x[Ty1�y2Tx�x − Ty1�xTy2�x]

[Ty1�y1Tx�x − T 2
y1�x

]2 �

Define

ω1(x)= [ω̃a(y�x)+ ω̃c(y�x)+ ω̃e(y�x)+ ω̃f (y�x)
]
�

ω2(x)= [ω̃b(y�x)+ ω̃d(y�x)
]
�

ω(x)= (ω1(x)�ω2(x)
)
�

Define the estimator ω̂(x) = (ω̂1(x)� ω̂2(x)) for ω(x) by substituting f by f̂
and T by T̂ in the definitions of ω̃a� ω̃b� � � � � ω̃f , For u= (u1�u2), denote

Ky =
[∫ [∫ (

∂K(u�x)

∂u

)
dx

][∫ (
∂K(u�x)

∂u

)
dx

]′
du

]
�

Vβ(y)=
[∫

M

ω(x)Kyω(x)′f (y�x)dx
]
� and

V̂β(y)=
∫
M

ω̂(x)Kyω̂(x)′f̂ (y�x)dx�

We will make the following assumptions:

ASSUMPTION 3.4: There exists a known convex and compact set M
t

in the in-
terior of the support of X on which the values of |ry(y�x)|/[r1

y1
(y)r2

x(y�x)] and
c(y�x) are constant.

ASSUMPTION 3.5: There exist at least one set of points x(1), x(2), x(3) in M
t

satisfying Condition I.2. The function μ(y�x)= μ(y1� y2�x) is bounded and con-
tinuously differentiable, with values and derivatives equal to zero when x is on the
boundary and on the complement of M

t
and with strictly positive values at x(1),

x(2), x(3).

The asymptotic behavior of β̂(y) defined in the previous section is estab-
lished in the following theorem.

THEOREM 3.2: Suppose that model (3.1) satisfies Assumptions 3.1–3.5, 2.7,
2.9, and 2.10. Then√

Nσ4
N

(
β̂(y)−β(y)

)→
d
N
(
0� Vβ(y)

)
and V̂β(y)→ Vβ(y) in probability.
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4. INDIRECT ESTIMATORS

The estimators developed in Sections 2 and 3 averaged the information pro-
vided by the conditional density over a set of values of the exogenous observ-
able variables. In contrast, the indirect estimators developed in this section
focus only on one or two values of the exogenous variables. Those values are
such that when the conditional density of the endogenous variables is evaluated
at those values, one can directly read off the value of the elements of interest.
Since the conditions for identification are not be necessarily the same, indirect
estimators may provide in some cases a useful alternative to the minimum dis-
tance estimators developed in Sections 2 and 3. In addition, by focusing on the
particular values of the observable exogenous variables at which one can read
off a structural element of interest, the estimators developed here allow one to
obtain more insight into the relation between both the exogenous and endoge-
nous variables. Although we develop indirect estimators for the two equations,
one instrument model, analogous two-step indirect estimators can be obtained
for the exclusive regressors model of Section 2, employing (2.11).

4.1. Indirect Estimators for the Two-Equations, One Instrument Model

We develop in this section two indirect estimators, one based on first deriva-
tives and a second based on second derivatives, for the two equations, one
instrument model,

Y1 = m1(Y2� ε1)�

Y2 = m2(Y1�X�ε2)�

where interest lies on the derivative ∂m1(y2� ε1)/∂y2, for the value of ε1 =
r1(y1� y2). Both estimators are derived from equation (3.12). The estimators
are based on two steps. In the first step, the value or values of the exoge-
nous variables are found, where the density of the observable variables sat-
isfies some conditions. In the second step, the objects of interest are read off
the density of the observable variables at the found values of the exogenous
variables. We will assume, as in Section 3, that Assumption 2.4 is satisfied. This
implies that the value of the vector b = (b1� b2� b3), with b1 = (r1

y2
(y)/r1

y1
(y)),

b2 = |ry(y�x)|/(r1
y1
(y�x)r2

x(y�x)), and b3 = c(y�x), is constant over the set

M
′ ⊂ {(y� t)|t ∈R}, where c(y�x) is as defined in (3.3). (The proof is as that of

Proposition 2.1 after substituting (y�x−G) in that proposition by y .) We will
consider two sets of assumptions, which substitute for Assumption 2.5. As-
sumption 4.5 implies invertibility of a 2 × 2 matrix whose two rows are the
gradients of log fε at two points (ε1� ε

∗
2) and (ε1� ε

∗∗
2 ). Assumption 4.5′ imposes

a condition on the second order derivatives of log fε at one point (ε1� ε
∗
2).

Assumptions 4.6 and 4.6′ guarantee that there exist points, x∗ and x∗∗, with
fY |X=x∗(y) > 0 and fY |X=x∗∗(y) > 0 and such that the value of r2 at those values
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of x are mapped into the values ε satisfying Assumptions 4.5 or 4.5′. In Proposi-
tions 4.1 and 4.2, we provide characterizations of these assumptions in terms of
conditions on the observable density fY |X=x. We next employ these characteri-
zations together with Theorem 3.1 to obtain expressions for ∂m1(y2� ε1)/∂y2 in
terms of the values of the derivatives or second order derivatives of log fY |X=x

at particular values of x.

ASSUMPTION 4.5: Let y be given and fixed and let ε1 = r1(y1� y2). There exist
two distinct values ε∗

2(ε1) and ε∗∗
2 (ε1) of ε2 such that

∂ log fε(ε1� ε
∗
2(ε1))

∂ε2
= ∂ log fε(ε1� ε

∗∗
2 (ε1))

∂ε2
and(4.1)

∂ log fε(ε1� ε
∗
2(ε1))

∂ε1
�= ∂ log fε(ε1� ε

∗∗
2 (ε1))

∂ε1
�(4.2)

ASSUMPTION 4.5′: Let y be given and fixed and let ε1 = r1(y1� y2). There exists
a value ε∗

2(ε1) of ε2 such that

∂2 log fε(ε1� ε
∗
2(ε1))

∂ε2
2

= 0 and
∂2 log fε(ε1� ε

∗
2(ε1))

∂ε2 ∂ε1
�= 0�(4.3)

ASSUMPTION 4.6: Let y be given and fixed and let ε1 = r1(y1� y2). There exist
distinct values x∗ and x∗∗ such that (y�x∗)� (y�x∗∗) ∈ M

′
and such that, for ε∗

2(ε1)
and ε∗∗

2 (ε1) as in Assumption 4.5, ε∗
2 = r2(y1� y2�x

∗) and ε∗∗
2 = r2(y1� y2�x

∗∗).

ASSUMPTION 4.6′: Let y be given and fixed and let ε1 = r1(y1� y2). There exists
a value x∗ such that (y�x∗) ∈ M

′
and such that, for ε∗

2(ε1) as in Assumption 4.5′,
ε∗

2 = r2(y1� y2�x
∗).

The following propositions provide characterizations of Assumptions 4.5–
4.6 and 4.5′–4.6′ in terms of conditions on fY |X=x.

PROPOSITION 4.1: Let y be given and fixed and let ε1 = r1(y1� y2). Suppose
that Assumptions 3.1–3.3 and 2.4 are satisfied. Assumptions 4.5–4.6 are satisfied
if and only if there exist x∗ and x∗∗ such that (y�x∗)� (y�x∗∗) ∈ M

′
,

∂ log fY |X=x∗(y)

∂x
= ∂ log fY |X=x∗∗(y)

∂x
and(4.4)

∂ log fY |X=x∗(y)

∂y1
�= ∂ log fY |X=x∗∗(y)

∂y1
�
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PROPOSITION 4.2: Let y be given and fixed and let ε1 = r1(y1� y2). Suppose
that Assumptions 3.1–3.3 and 2.4 are satisfied. Assumptions 4.5′–4.6′ are satisfied
if and only if there exists x∗ such that (y�x∗) ∈M

′
,

∂2 log fY |X=x∗(y)

∂x2 = 0 and
∂2 log fY |X=x∗(y)

∂x∂y1
�= 0�(4.5)

We next employ the implications of Propositions 4.1 and 4.2, together with
Theorem 3.1 and equation (3.12), to obtain expressions for ∂m1(y2� ε1)/∂y2 in
terms of ratios of differences of derivatives of log fY |X=x or in terms of ratios
of second order derivatives of log fY |X=x. We state these expressions in Theo-
rems 4.1 and 4.2.

THEOREM 4.1: Let y be given and fixed and let ε1 = r1(y1� y2). Suppose that
Assumptions 3.1–3.3 and 2.4 are satisfied. Let x∗ and x∗∗ be any distinct values of
X such that (y�x∗)� (y�x∗∗) ∈ M

′
,

∂ log fY |X=x∗(y)

∂x
= ∂ log fY |X=x∗∗(y)

∂x
and(4.6)

∂ log fY |X=x∗(y)

∂y1
�= ∂ log fY |X=x∗∗(y)

∂y1

hold. Then,

∂m1(y2� ε1)

∂y2
= −r1

y2
(y)

r1
y1
(y)

=
∂ log fY |X=x∗∗(y)

∂y2
− ∂ log fY |X=x∗(y)

∂y2

∂ log fY |X=x∗(y)

∂y1
− ∂ log fY |X=x∗∗(y)

∂y1

�(4.7)

PROOF: Let b = (b1� b2� b3), where b1 = r1
y2
(y)/r1

y1
(y), b2 = |ry(y�x)|/

(r1
y1
(y)r2

x(y�x)), and where b3 = c(y�x), is as defined in (3.3). By Assump-
tions 3.1–3.3, b satisfies (3.12). By Assumption 2.4, b is constant over the
set {(y� t)|t ∈ R}, since Assumption 2.4 implies that for all x, r2

x(y�x) = 1
and |ry(y�x)| is not a function of x. For any two values x(1) and x(2) of
x, such that (y�x(1))� (y�x(2)) ∈ M

′
, let g(k)

y2
= ∂ log fY |X=x(k)(y)/∂y2, g(k)

y1
=

∂ log fY |X=x(k)(y)/∂y1, and g(k)
x = ∂ log fY |X=x(k)(y)/∂x for k= 1�2. By (3.12),

g(1)
y2

= b1g(1)
y1

+ b2g(1)
x + b3 and

g(2)
y2

= b1g(2)
y1

+ b2g(2)
x + b3�

Subtracting one from the other, we get that(
g(1)
y2

− g(2)
y2

)= b1

(
g(1)
y1

− g(2)
y1

)+ b2

(
g(1)
x − g(2)

x

)
�
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If (g(1)
x − g(2)

x )= 0, the equation becomes(
g(1)
y2

− g(2)
y2

)= b1

(
g(1)
y1

− g(2)
y1

)
�

If, in addition, (g(1)
y1

− g(2)
y1
) �= 0, we have that

b1 = (g(1)
y1

− g(2)
y1

)−1(
g(1)
y2

− g(2)
y2

)
�

Note that b1 = r1
y2
(y)/r1

y1
(y)= −∂m1(y2� ε1)/∂y2. Hence,

∂m1(y2� ε1)

∂y2
= −

(
r1
y2

r1
y1

)
= −(g(1)

y2
− g(2)

y2
)

(g(1)
y1

− g(2)
y1
)
�

Replacing x(1) by x∗ and x(2) by x∗∗, equation (4.7) follows. This completes the
proof of Theorem 4.1. Q.E.D.

THEOREM 4.2: Let y be given and fixed and let ε1 = r1(y1� y2). Suppose that
Assumptions 3.1–3.3 and 2.4 are satisfied. Let x∗ be a value of X such that
(y�x∗) ∈ M

′
,

∂2 log fY |X=x∗(y)

∂x2 = 0 and
∂2 log fY |X=x∗(y)

∂x∂y1
�= 0�(4.8)

Then,

∂m1(y2� ε1)

∂y2
=

−∂2 log fY |X=x∗(y)

∂x∂y2

∂2 log fY |X=x∗(y)

∂x∂y1

�(4.9)

PROOF: As in the proof of Theorem 4.1, we let b = (b1� b2� b3), where
b1 = r1

y2
(y)/r1

y1
(y), b2 = |ry(y�x)|/(r1

y1
(y)r2

x(y�x)), and where b3 = c(y�x), is as
defined in (3.3). We note that Assumption 2.4 implies that b is constant over
the set {(y� t)|t ∈ R}. Hence by Assumptions 3.1–3.3 and 2.4, it follows by (3.12)
that for any value x(1) such that (y�x(1)) ∈ M

′
,

g(1)
y2

= b1g(1)
y1

+ b2g(1)
x + b3�

where for k = 1, g(k)
y2

= ∂ log fY |X=x(k)(y)/∂y2, g(k)
y1

= ∂ log fY |X=x(k)(y)/∂y1, and
g(k)
x = ∂ log fY |X=x(k)(y)/∂x. Since b is constant over x, taking derivatives of this

equation with respect to x gives

g(1)
x�y2

= b1g(1)
x�y1

+ b2g(1)
x�x�
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where g(k)
x�y2

= ∂2 log fY |X=x(k)(y)/∂x∂y2, g(k)
x�y1

= ∂ log fY |X=x(k)(y)/∂x∂y1, and
g(k)
x�x = ∂2 log fY |X=x(k)(y)/∂x∂x.
If g(1)

x�x = 0 and g(1)
x�y1

�= 0, we have that

b1 = (g(1)
x�y1

)−1(
g(1)
x�y2

)
�

Since b1 = r1
y2
(y)/r1

y1
(y)= −∂m1(y2� ε1)/∂y2, it follows that

∂m1(y2� ε1)

∂y2
= −

(
r1
y2

r1
y1

)
= −g(1)

x�y2

g(1)
x�y1

�

Replacing x(1) by x∗, equation (4.9) follows. This completes the proof of The-
orem 4.2. Q.E.D.

Our estimation methods for ∂m1(y2� ε1)/∂y2, under either Assumption 4.5
or 4.5′, are closely related to our proofs of identification. When Assump-
tions 3.1–3.3, 2.4, and 4.5′–4.6′ are satisfied, the estimator for ∂m1(y2� ε1)/∂y2 is
obtained by first estimating nonparametrically the derivatives ∂2 log fY |X=x(y)/
∂x∂y1, ∂2 log fY |X=x(y)/∂x∂y2, and ∂2 log fY |X=x(y)/∂x∂x at the particular value
of (y1� y2) at which we want to estimate ∂m1(y2� ε1)/∂y2. The next step consists
of finding a value x̂∗ of x satisfying

̂∂2 log fY |X=x̂∗(y)

∂x2 = 0�

The estimator for ∂m1(y2� ε1)/∂y2 is then defined by

̂∂m1(y2� ε1)

∂y2
=

−
̂∂2 log fY |X=x̂∗(y)

∂x∂y2

̂∂2 log fY |X=x̂∗(y)

∂x∂y1

�(4.10)

We show below that when ∂2 log fY |X=x(y)/∂x∂y1, ∂2 log fY |X=x(y)/∂x∂y2, and
∂2 log fY |X=x(y)/∂x

2 are estimated using kernel methods, the asymptotic distri-
bution of the estimator for ∂m1(y2� ε1)/∂y2 defined in this way is consistent and
asymptotically normal.

When instead of Assumptions 4.5′–4.6′, we make Assumptions 4.5–4.6, our
estimator for ∂m1(y2� ε1)/∂y2 is obtained by first estimating nonparametrically
∂ log fY |X=x(y)/∂x, ∂ log fY |X=x(y)/∂y1, and ∂ log fY |X=x(y)/∂y2 at the particular
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value of (y1� y2) for which we want to estimate ∂m1(y2� ε1)/∂y2. The next step
consists of finding values x̂∗ and x̂∗∗ of x satisfying

̂∂ log fY |X=x̂∗(y)

∂x
=

̂∂ log fY |X=x̂∗∗(y)

∂x
�

Our estimator for ∂m1(y2� ε1)/∂y2 is then defined by

̂∂m1(y2� ε1)

∂y2
=

̂∂ log fY |X=x̂∗∗(y)

∂y2
−

̂∂ log fY |X=x̂∗(y)

∂y2

̂∂ log fY |X=x̂∗(y)

∂y1
−

̂∂ log fY |X=x̂∗∗(y)

∂y1

�(4.11)

We develop below the asymptotic behavior of this estimator when the values
of x∗ and x∗∗ are known to be such that ∂ log fY |X=x∗(y)/∂x = ∂ log fY |X=x∗∗(y)/
∂x = 0. These correspond to values ε∗

2 and ε∗∗
2 at which ∂ log fε(ε1� ε

∗
2)/∂ε2 =

∂ log fε(ε1� ε
∗∗
2 )/∂ε2 = 0. We show that the indirect estimator defined in this

way is consistent and asymptotically normal.

4.2. Asymptotic Properties of the Indirect Estimators for the Two Equations,
One Instrument Model

To derive the asymptotic properties of the estimator defined in (4.10), we
make the following assumptions.

ASSUMPTION 4.7: The density fε and the density fY�X generated by fε, fX , and
r are bounded and continuously differentiable of order d, where d ≥ 5 + s and s
denotes the order of the kernel function K(·), specified below in Assumption 4.10.

ASSUMPTION 4.8: For any x′ such that ∂2 log fε(r1(y1� y2)� r
2(y1� y2�x

′))/∂ε2
2 =

0, there exist neighborhoods B′
y�x of (y1� y2�x

′) and B′
x of x′ such that the density

fX(x) and the density fY�X(y�x) = fε(r
1(y1� y2)� r

2(y1� y2�x))|ry(y1� y2�x)|fX(x)
are uniformly bounded away from zero on, respectively, B′

x and B′
y�x and

∂3 log fε(r1(y1� y2)� r
2(y1� y2�x))/∂ε

3
2 is bounded away from zero on those neigh-

borhoods.

ASSUMPTION 4.9: For any x′ such that ∂2 log fε(r1(y1� y2)� r
2(y1� y2�x

′))/
∂ε2

2 = 0, ∂2 log fε(r1(y1� y2)� r
2(y1� y2�x

′))/∂ε1∂ε2 is uniformly bounded away
from 0 on the neighborhood B′

y�x defined in Assumption 4.8.

ASSUMPTION 4.10: The kernel function K attains the value zero outside a com-
pact set, integrates to 1, is of order s where s + 5 ≤ d, is differentiable of order Δ,
and its derivatives of order Δ are Lipschitz, where Δ≥ 5.
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ASSUMPTION 4.11: The sequence of bandwidths, σN , is such that

σN → 0,
√
Nσ7+2s

N → 0,
√
Nσ7

N → ∞, [Nσ9
N/ ln(N)] → ∞, and

√
Nσ7

N ×
[√ln(N)/Nσ9

N + σs
N]2 → 0.

Assumptions 4.7, 4.10, and 4.11 are standard for derivations of asymp-
totic results of kernel estimators. Assumptions 4.8 are 4.9 are made to
guarantee appropriate asymptotic behavior of the estimator for the value
x∗ at which ̂∂m1(y2� ε1)/∂y2 is calculated. Define Ky1�x(̃y1� ỹ2�x) = ∂2K(̃y1 �̃y2�x)

∂y1 ∂x
,

Ky2�x(̃y1� ỹ2�x)= ∂2K(̃y1 �̃y2�x)

∂y2 ∂x
, and Kx�x(̃y1� ỹ2�x) = ∂2K(̃y1 �̃y2�x)

∂x2 . Let K(̃y1� ỹ2�x) de-

note the 3 × 1 vector (Ky1�x(̃y1� ỹ2�x)�Ky2�x(̃y1� ỹ2�x)�Kx�x(̃y1� ỹ2�x))
′. Define

the vector ω(y�x∗)= (ω1�ω2�ω3)
′, where

ω1 =
∂2 log fY |X=x∗(y)

∂y2 ∂x[
∂2 log fY |X=x∗(y)

∂y1 ∂x

]2

fY�X(y�x
∗)

;

ω2 = −1
∂2 log fY |X=x∗(y)

∂y1 ∂x
fY�X(y�x

∗)

;

ω3 =
∂

∂x

(
∂2 log fY |X=x∗(y)/∂y2 ∂x

∂2 log fY |X=x∗(y)/∂y1 ∂x

)
fY�X(y�x

∗)
(
∂3 log fY |X=x∗(y)

∂x3

) �
Let

Ṽ = ω
(
y�x∗)′[∫ K(̃y1� ỹ2�x)K(̃y1� ỹ2�x)

′ d(̃y1� ỹ2�x)

]
×ω

(
y�x∗)fY�X(y�x∗)�

and let

̂̃V = ω̂
(
y� x̂∗)′[∫ K(̃y1� ỹ2�x)K(̃y1� ỹ2�x)

′ d(̃y1� ỹ2�x)

]
× ω̂

(
y� x̂∗)f̂Y�X(y� x̂∗)

be an estimator for Ṽ , obtained by substituting f by f̂ in the definitions of ω1,
ω2, and ω3, and substituting x∗ by x̂∗. In the Appendix, we prove the following.
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THEOREM 4.3: Suppose that the model satisfies Assumptions 3.1–3.3, 2.4, 4.5′–
4.6′, and 4.7–4.11. Let the estimator for ∂m1(y2� ε1)/∂y2 be as defined in (4.10).
Then, √

Nσ7
N

(
̂∂m1(y2� ε1)/∂y2 − ∂m1(y2� ε1)/∂y2

)→
d
N(0� Ṽ )�

and ̂̃V is a consistent estimator for Ṽ .

To derive the asymptotic properties of the estimator defined in (4.11) under
the additional assumption that ∂ log fY |X=x∗(y)/∂x = ∂ log fY |X=x∗∗(y)/∂x = 0,
we make the following assumptions.

ASSUMPTION 4.7′: The density fε and the density fY�X generated by fε, fX , and
r are bounded and continuously differentiable of order d, where d ≥ 4 + s and s
is the order of the kernel function K(·) in Assumption 4.10′.

ASSUMPTION 4.8′: For any x′�x′′ such that ∂ log fε(r1(y1� y2)� r
2(y1� y2�x

′))/
∂ε2 = 0 and ∂ log fε(r1(y1� y2)� r

2(y1� y2�x
′′))/∂ε2 = 0, there exist neighborhoods

B′
y�x of (y1� y2�x

′), B′′
y�x of (y1� y2�x

′′), B′
x of x′, and B′′

x of x′′ such that the density
fX(x) and the density fY�X(y�x) = fε(r

1(y1� y2)� r
2(y1� y2�x))|ry(y1� y2�x)|fX(x)

are uniformly bounded away from zero on, respectively, B′
x and B′′

x, and on B′
y�x

and B′′
y�x. Moreover, ∂2 log fε(r1(y1� y2)� r

2(y1� y2�x))/∂ε
2
2 is bounded away from

zero on those neighborhoods.

ASSUMPTION 4.9′: For any two values x′�x′′ such that ∂ log fε(r1(y1� y2)�
r2(y1� y2�x

′))/∂ε2 = 0, and ∂ log fε(r1(y1� y2)� r
2(y1� y2�x

′′))/∂ε2 = 0,
(∂ log fε1�ε2(r

1� r2′)/∂ε1 − ∂ log fε1�ε2(r
1� r2′′

)/∂ε1) is uniformly bounded away
from 0 on the neighborhoods B′

y�x, B′′
y�x, B′

x, and B′′
x defined on Assumption 4.8′.

ASSUMPTION 4.10′: The kernel function K attains the value zero outside a
compact set, integrates to 1, is of order s, where s + 4 ≤ d, is differentiable of
order Δ, and its derivatives of order Δ are Lipschitz, where Δ≥ 4.

ASSUMPTION 4.11′: The sequence of bandwidths, σN , is such that
√
Nσ5

N →
∞,

√
Nσ5

Nσ
s → 0, [√ln(N)/Nσ7

N + σs
N] → 0, and

√
Nσ5

N[√ln(N)/Nσ7
N +

σs
N]2 → 0.

DefineKy1 (̃y1� ỹ2�x)= ∂K(̃y1 �̃y2�x)

∂y1
,Ky2 (̃y1� ỹ2�x)= ∂K(̃y1 �̃y2�x)

∂y2
, andKx(̃y1� ỹ2�x)=

∂K(̃y1 �̃y2�x)

∂x
. Let K̃(̃y1� ỹ2�x) denote the 3 × 1 vector (Ky1 (̃y1� ỹ2�x)�Ky2 (̃y1� ỹ2�x)�
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Kx(̃y1� ỹ2�x))
′. Define the vectors ω1 = (ω1

1�ω
1
2�ω

1
3) and ω2 = (ω2

1�ω
2
2�ω

2
3) by

ω1
1 =

−
[
∂fY�X(y�x∗∗)

∂y2
fY�X(y�x∗)− ∂fY�X(y�x∗)

∂y2
fY�X(y�x∗∗)

]
fY�X(y�x∗∗)[

∂fY�X(y�x∗)
∂y1

fY�X(y�x∗∗)− ∂fY�X(y�x∗∗)
∂y1

fY�X(y�x∗)
]2

;

ω1
2 = −fY�X(y�x∗∗)[

∂fY�X(y�x∗)
∂y1

fY�X(y�x∗∗)− ∂fY�X(y�x∗∗)
∂y1

fY�X(y�x∗)
] ;

ω1
3 =

− ∂

∂x1

(
∂ log fY |X=x∗∗(y)/∂y2 − ∂ log fY |X=x1(y)/∂y2
∂ log fY |X=x1(y)/∂y1 − ∂ log fY |X=x∗∗(y)/∂y1

)∣∣∣∣
x1=x∗(

∂2 log fY |X=x∗(y)

∂x2

)
fY�X(y�x∗)

;

ω2
1 =

[
∂fY�X(y�x∗∗)

∂y2
fY�X(y�x∗)− ∂fY�X(y�x∗)

∂y2
fY�X(y�x∗∗)

]
fY�X(y�x∗)[

∂fY�X(y�x∗)
∂y1

fY�X(y�x∗∗)− ∂fY�X(y�x∗∗)
∂y1

fY�X(y�x∗)
]2

;

ω2
2 = fY�X(y�x∗)[

∂fY�X(y�x∗)
∂y1

fY�X(y�x∗∗)− ∂fY�X(y�x∗∗)
∂y1

fY�X(y�x∗)
] ; and

ω2
3 =

− ∂

∂x2

(
∂ log fY |X=x2(y)/∂y2 − ∂ log fY |X=x∗(y)/∂y2
∂ log fY |X=x∗(y)/∂y1 − ∂ log fY |X=x2(y)/∂y1

)∣∣∣∣
x2=x∗∗(

∂2 log fY |X=x∗∗(y)

∂x2

)
fY�X(y�x∗∗)

�

Define

V = ω1′
[∫

K̃(̃y1� ỹ2�x)K̃(̃y1� ỹ2�x)
′ d(̃y1� ỹ2�x)

]
ω1fY�X

(
y�x∗)

+ω2′
[∫

K̃(̃y1� ỹ2�x)K̃(̃y1� ỹ2�x)
′ d(̃y1� ỹ2�x)

]
ω2fY�X

(
y�x∗∗)�

and define an estimator for V by

V̂ = ω̂1′
[∫

K̃(̃y1� ỹ2�x)K̃(̃y1� ỹ2�x)
′ d(̃y1� ỹ2�x)

]
ω̂1f̂Y�X

(
y� x̂∗)

+ ω̂2′
[∫

K̃(̃y1� ỹ2�x)K̃(̃y1� ỹ2�x)
′ d(̃y1� ỹ2�x)

]
ω̂2f̂Y�X

(
y� x̂∗∗)�
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which is obtained by substituting f by f̂ , x∗ by x̂∗, and x∗∗ by x̂∗∗ in the defini-
tions of ω1, ω2, and ω3. In the Appendix, we prove the following.

THEOREM 4.4: Suppose that Assumptions 3.1–3.3, 2.4, 4.5–4.6, and 4.7′–
4.11′ are satisfied. Define ̂∂m1(y1� ε1)/∂y2 as in (4.11), for x̂∗ and x̂∗∗ satisfying
∂ log f̂Y |X=x̂∗(y)/∂x= ∂ log f̂Y |X=x̂∗∗(y)/∂x= 0. Then,√

Nσ5
N

(
̂∂m1(y2� ε1)/∂y2 − ∂m1(y2� ε1)/∂y2

)→
d

N(0� V )�

and V̂ is a consistent estimator for V .

5. SIMULATIONS

In this section, we report our best results of limited experiments with the
estimators developed in the previous sections. The estimators involve choosing
many parameters, such as the bandwidths, the kernel functions, and the weight
functions in Sections 2 and 3. In addition, trimming is often desirable to avoid
random denominators whose values are close to zero. The results are sensitive
to the values of all these parameters; we chose only rudimentary ones. Further
studies are needed to determine how to select these optimally.

5.1. Simulations for the Average Derivative Estimator for the Exclusive
Regressors Model

To obtain some indication of the performance of the estimator for the exclu-
sive regressors model in Section 2, we generated simulated data from a linear
and from a nonlinear model. The linear model was specified as

y1 = 0�75y2 − x1 + ε1�

y2 = −0�5y1 − x2 + ε2�

The inverse functions r1 and r2 were then

ε1 = r1(y1� y2�x1)= y1 − 0�75y2 + x1�

ε2 = r2(y1� y2�x2)= 0�5y1 + y2 + x2�

For each of 500 simulations, we obtained samples for (Xi
1�X

i
2) and for (εi

1� ε
i
2)

from a Normal distribution with mean (0�0) and with variance matrix equal to
the identity matrix. We used the estimator developed in Section 2 to estimate
the derivatives of the functions r1 and r2 with respect to y1 and y2 at (y1� y2) =
(0�0). The derivatives of the inverse functions at (y1� y2) = (0�0) are, for all
values of (x1�x2),

r1
y1

= 1; r1
y2

= −0�75; r2
y1

= 0�5; r2
y2

= 1�
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The weight function μ(y� ·) employed was the Normal density with mean
(0�0), diagonal variance matrix, and standard deviation for each coordinate
equal to 1/3 of the standard deviation of, respectively, x1 and x2. We used a
Gaussian kernel of order 8, and bandwidths

hk = σkN
−1/(L+2order+2j)�

where hk denotes the bandwidth for coordinate k, σk denotes standard devia-
tion of the sample, order denotes the order of the kernel, L denotes the number
of coordinates of the density; j = 0 if the bandwidth is used in the estimation
of a density, and j = 1 if the bandwidth is used in the estimation of a derivative
of a density.

The results are presented in Table I. For the part of Table I presenting the re-
sults for r̂1

y1
, the column r̂1

y1
denotes the average over simulations of the value of

r̂1
y1

, ŝtd denotes the average over simulations of the estimated standard devia-
tion of r̂1

y1
, std denotes the empirical standard deviation of r̂1

y1
. The 0.95 column

denotes the percentage of the simulations where the true value of r1
y1

was within
the estimated 95% confidence interval. The other parts of Table I report the
analogous results for the estimators of the other derivatives. In general, the
average of the estimated standard errors, calculated with the equation for the
variance stated in Theorem 2.4, was close to the empirical standard deviation
of the estimates. As expected, both the bias and the estimated standard errors
decreased with sample size.

TABLE I

TWO EQUATIONS–TWO INSTRUMENTS; LINEAR MODEL
AVERAGE OVER INSTRUMENTS ESTIMATOR

r1
y1

= 1 r1
y2

= −0�75

N r̂1
y1

std ŝtd 0�95 r̂1
y1

std ŝtd 0�95

500 0.54 0.52 0.78 0.96 −0.40 0.57 0.87 0.98
1,000 0.72 0.43 0.61 0.97 −0.56 0.49 0.68 0.98
2,000 0.90 0.39 0.47 0.98 −0.68 0.42 0.52 0.99
5,000 1.01 0.30 0.30 0.95 −0.75 0.30 0.34 0.98

10,000 1.03 0.25 0.22 0.93 −0.77 0.25 0.25 0.97

r2
y1

= 0�5 r2
y2

= 1

N r̂1
y2

std ŝtd 0�95 r̂1
y2

std ŝtd 0�95

500 0.26 0.47 0.80 1.0 0.50 0.63 0.89 0.96
1,000 0.36 0.40 0.61 1.0 0.76 0.54 0.68 0.97
2,000 0.46 0.33 0.46 1.0 0.93 0.44 0.51 0.97
5,000 0.50 0.26 0.30 0.97 1.01 0.31 0.33 0.98

10,000 0.52 0.22 0.22 0.97 1.03 0.26 0.25 0.95
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The nonlinear model was specified by

y1 = 10
[
1 + exp

(
2(y2 − x1 − 5 + ε1)

)]−1
�

y2 = 4�5 + 0�1y1 − x2 + ε2�

The corresponding inverse functions are

ε1 = r1(y1� y2�x1)= 1
2

log
(

10
y1

− 1
)

− y2 + x1 + 5�

ε2 = r2(y1� y2�x1)= −0�1y1 + y2 − 4�5 + x2�

The derivatives of (r1� r2) were estimated at (y1� y2)= (5�5). At this point,

r1
y1

= −0�2; r1
y2

= −1�0; r2
y1

= −0�1; r2
y2

= 1�0�

As with the linear model, for each of 500 simulations, we obtained samples
for (Xi

1�X
i
2) and for (εi

1� ε
i
2) from a Normal distribution with mean (0�0) and

with variance matrix equal to the identity matrix. The results are presented in
Table II. The average values of the estimated standard errors were again in
this model close to the standard deviation of the estimates. It is worth notic-
ing the difference between our nonparametric estimator for −r1

y2
/r1

y1
and the

corresponding least squares estimator, −(̃r1
y2
)LS = −2�07, calculated assuming

TABLE II

TWO EQUATIONS–TWO INSTRUMENTS; NONLINEAR MODEL
AVERAGE OVER INSTRUMENTS ESTIMATOR

r1
y1

= −0�2 r1
y2

= −1

N r̂1
y1

std ŝtd 0�95 r̂1
y1

std ŝtd 0�95

500 −0.12 0.15 0.25 0.98 −0.37 0.58 0.75 0.87
1,000 −0.14 0.15 0.21 0.98 −0.51 0.50 0.65 0.92
2,000 −0.16 0.12 0.17 0.98 −0.70 0.47 0.51 0.92
5,000 −0.17 0.09 0.11 0.98 −0.90 0.33 0.34 0.92

10,000 −0.16 0.07 0.08 0.94 −0.98 0.26 0.25 0.94

r2
y1

= −0�1 r2
y2

= 1

N r̂1
y2

std ŝtd 0�95 r̂1
y2

std ŝtd 0�95

500 −0.06 0.16 0.27 1 0.29 0.54 0.82 0.90
1,000 −0.08 0.15 0.24 1 0.41 0.51 0.72 0.92
2,000 −0.08 0.12 0.19 1 0.62 0.49 0.58 0.93
5,000 −0.11 0.09 0.13 0.99 0.85 0.38 0.40 0.92

10,000 −0.11 0.08 0.10 0.99 0.95 0.31 0.30 0.93
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that the model is linear. The value −2�07 corresponds to the 0.987 quantile of
the empirical distribution of −̂r1

y2
/̂r1

y1
when N = 10,000.

5.2. Simulations for the Average Derivative Estimator for the Two Equations,
One Instrument Model

We considered the same linear and nonlinear models as in the previous sub-
section, except that here the first equation has no exogenous regressor. So, the
linear and nonlinear models were, respectively,

y1 = 0�75y2 + ε1�

y2 = −0�5y1 − x2 + ε2�

and

y1 = 10
[
1 + exp

(
2(y2 − 5 + ε1)

)]−1
�

y2 = 4�5 + 0�1y1 − x2 + ε2�

For both the linear and nonlinear models, the distribution of (ε1� ε2) was such
that the marginal density of ε1 was Normal with mean 0 and standard deviation
0.5, and conditional on ε1, the density of ε2 was a mixture of two normal distri-
butions. The first of these normal distributions had mean μ1 = −(1 + 0�1ε1)

2

and standard deviation σ1 = 0�1(1 + 0�5ε1)
2, while the second had mean

μ2 = (1 + 0�2ε1)
2 and standard deviation σ2 = 0�1(1 + 2ε1)

2. The variance of
ε2 generated this way was 1.09. X was sampled from a Uniform(−1�5�1�5).

The derivative with respect to y2 in the first structural equation was estimated
for 500 simulations. The derivative was estimated at y1 = y2 = 0 for the linear
model and at y1 = y2 = 5 for the nonlinear model. The nonparametric densities
and derivatives were estimated using again a Gaussian kernel of order 8 and
for each coordinate, bandwidths hk = σkN

−1/(L+2order+2j). For both models and
all samples, the weight to any value of x was assigned the value of zero when at
(y1� y2�x), the estimated value of either the joint density, or the marginal den-
sity of X , or the conditional density was below 0.001. Lowering this trimming
value increased coverage. The weight function μ(y� ·) was otherwise uniform.
The results are presented in Table III.

For the data generated by the nonlinear model, the derivative with respect
to y2 has true value −5, while the least squares estimate for this derivative is
−2�75. This value corresponds to the 0.93 quantile of the empirical distribution
of the estimator when N = 10,000, to the 0.992 quantile when N = 25,000 and
it is above the 1.0 quantile when N = 50,000.

5.3. Simulations for an Indirect Estimator

We performed simulations for the estimator that is based on first order
derivatives. For each of 500 simulations, we generated εi

1 from a uniform dis-
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TABLE III

TWO EQUATIONS–ONE INSTRUMENT;
AVERAGE OVER INSTRUMENT ESTIMATOR

Linear Model Nonlinear Model
∂m1(y2�ε1)

∂y2
= 0�75

∂m1(y2�ε1)
∂y2

= −5

N m̂1
y1

std ŝtd 0.95 m̂1
y1

std ŝtd 0.95

10,000 0.76 0.30 0.32 0.93 −5.05 1.89 2.17 0.94
25,000 0.74 0.17 0.21 0.98 −4.95 1.06 1.48 0.96
50,000 0.73 0.12 0.16 0.98 −4.90 0.77 1.09 0.98

tribution with support (−1�1), and for each εi
1, we generated εi

2 from a condi-
tional density satisfying

log
(
fε2|ε1(ε2)

)= (1/4)(ε2)
2 − (1/2)(ε2)

4 + ε1 + ε1ε2 + ε1(ε2)
2�

When ε1 = 0, the derivative of log(fε2|ε1(ε2)) with respect to ε2 equals zero at
ε2 = −0�5, ε2 = 0, and ε2 = 0�5. X was generated from a Uniform(−1�1) dis-
tribution. The object of interest, ∂m1(y2� ε1)/∂y2, was estimated at y1 = y2 = 0
for the linear model, and at y1 = y2 = 5 for the nonlinear model. The results
reported in Table IV were obtained with kernels of order 4 and bandwidths
of size 3/4 of those determined as in the previous two subsections. Larger
bandwidths generated a larger bias for both the linear and the nonlinear es-
timators. A higher order kernel made it difficult finding values of X at which
∂ log fY |X=x(y)/∂x = 0. Even with a kernel of order 4, for some simulations,
such values were not always found. Moreover, even when such values were
found, it was also possible that the estimator had values of different sign than
the correct one, or that the random denominators in the calculation of the
estimates or its variance were too low. The numbers in Table IV are calcu-
lated using only the simulations where such situations did not arise. Out of
500 simulations, Ñ denotes the number of simulations so obtained. The lower

TABLE IV

TWO EQUATIONS–ONE INSTRUMENT; INDIRECT ESTIMATOR

Linear Model Nonlinear Model
∂m1(y2�ε1)

∂y2
= 0�75

∂m1(y2�ε1)
∂y2

= −5

N m̂1
y2

std ŝtd 0.95 Ñ m̂1
y2

std ŝtd 0.95 Ñ

5,000 0.84 0.38 0.61 0.99 452 −5.51 2.27 2.78 0.98 445
10,000 0.76 0.27 0.35 0.98 471 −5.32 1.80 2.12 0.98 474
25,000 0.74 0.22 0.27 0.97 488 −5.00 1.18 1.33 0.97 492
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bound allowed on the denominators was 10−6. For the simulations where more
than two values x of X at which ∂ log fY |X=x(y)/∂x = 0 were found, the esti-
mate was calculated using the smallest and largest values of such x values. For
the data generated from the nonlinear model, the least squares estimate for
∂m1(y2� ε1)/∂y2 is −3�1, which corresponds to the 0.93 quantile of the empiri-
cal distribution of the indirect estimator when N = 25,000.

6. CONCLUSIONS

In this paper, we have developed two new approaches for estimation of non-
parametric simultaneous equations models. Both approaches were based on
new identification results that were developed in this paper for two models,
the exclusive regressors model and the two equations, one instrument model.
In the exclusive regressors model, to each structural equation there corre-
sponds an exclusive observable exogenous variable. In the two equations, one
instrument model, the object of interest is the equation where the instrument
is excluded. For each model, we developed estimators that are calculated by
a simple matrix inversion and a matrix multiplication, where the elements in
each matrix are calculated by averages of products of nonparametrically esti-
mated derivatives of the conditional density of the observable variables. For
the two equations, one instrument model, we developed also two-step indirect
estimators. In the first step, values of the observable exogenous variable are
found where the nonparametric estimator of the conditional density of the ob-
servable variables satisfies some conditions. In the second step, the value of
the object of interest is read off the estimated conditional density evaluated
at those values. We developed two such two-step indirect estimators, one us-
ing first order derivatives and a second one using second order derivatives. We
have shown that all the new estimators are asymptotically normal. Although
we only developed two estimation approaches, the new identification results
can be used to develop many other approaches.

APPENDIX

PROOF OF THEOREM 2.1: We first introduce some notation and a lemma.
Let ry denote the G×G matrix whose element in the ith row and jth column
is riyj (y�xi). Let rx denote the G×G diagonal matrix whose element in the ith
diagonal place is rixi (y�xi). The G×G matrix ry whose element in the ith row
and jth column is the ratio riyj (y�xi)/r

i
xi
(y�xi) will then be equal to (rx)

−1ry . We
will denote by qε the G×1 vector whose ith element is ∂ log fε(r(y�x)/∂εi. The
G×1 vectors γy and γx will be the vectors whose ith elements are, respectively,
∂ log |ry(y�x)|/∂yi and ∂ log |ry(y�x)|/∂xi. For any function r̃ and any density
fε̃, the matrices r̃y , r̃x, and r̃y and the vectors q̃ε, γ̃y , and γ̃x will be defined
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analogously. We will denote the G×1 vectors (gy1� � � � �gyG)
′ and (gx1� � � � �gxG)

′

by, respectively, gy and gx. We will make use of the following lemma.

LEMMA M—Matzkin (2008): Let M denote a convex set in the interior of the
support of (Y�X). Suppose that (r� fε) ∈ (Γ ×Φ) generate fY |X on M and r̃ ∈ Γ .
Then, there exists fε̃ ∈Φ such that (̃r� fε̃) generate fY |X on M if and only if, for all
(y�x) ∈ M ,(

r ′
x − r̃ ′

x

(̃
r ′
y

)−1
r ′
y

)
qε = −(γx − γ̃x)+ r̃ ′

x

(̃
r ′
y

)−1
(γy − γ̃y)�(L.1)

PROOF: First, restrict the definition of observational equivalence in Matzkin
(2008) to observational equivalence on M . Then, the lemma follows by the
same arguments used in Matzkin (2008) to prove her Theorems 3.1 and 3.2.
The expression in (L.1) is the transpose of (2.8) in the statement of Theo-
rem 3.1 in Matzkin (2008). Q.E.D.

We will next show that in the exclusive regressors model, when fε and r gen-
erate fY |X , and when rx and r̃x are invertible, diagonal, G×G matrices, on M ,
(2.7) is equivalent to (L.1). Hence, by Lemma M, it will follow that r̃ is obser-
vationally equivalent to r on M if and only if (2.7) is satisfied. For this, we first
note that since (r� fε) generate fY |X on M , for all (y�x) ∈ M ,

fY |X=x(y)= fε
(
r(y�x)

)∣∣ry(y�x)∣∣�
Taking logs and differentiating both sides with respect to x, without writing the
arguments of the functions explicitly, we get

gx = r ′
xqε + γx�

Since by assumption rx is invertible, we can solve uniquely for qε, getting(
r ′
x

)−1
(gx − γx)= qε�(T.2.1)

Replacing qε in (L.1) by the expression for qε in (T.2.1), we get[
r ′
x − r̃ ′

x

(̃
r ′
y

)−1
r ′
y

](
r ′
x

)−1
(gx − γx)= −(γx − γ̃x)+ [̃r ′

x

(̃
r ′
y

)−1]
(γy − γ̃y)�(T.2.2)

Since r ′
x(r

′
x)

−1 = I, the left-hand side of (T.2.2) can be expressed as[
r ′
x − r̃ ′

x

(̃
r ′
y

)−1
r ′
y

](
r ′
x

)−1
(gx − γx)

= [I − r̃ ′
x

(̃
r ′
y

)−1
r ′
y

(
r ′
x

)−1]
gx − [I − r̃ ′

x

(̃
r ′
y

)−1
r ′
y

(
r ′
x

)−1]
γx�
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Hence, premultiplying both sides of (T.2.2) by −̃r ′
y (̃r

′
x)

−1, we get[
r ′
y

(
r ′
x

)−1 − r̃ ′
y

(̃
r ′
x

)−1]
gx − [r ′

y

(
r ′
x

)−1 − r̃ ′
y

(̃
r ′
x

)−1]
γx

= [̃r ′
y

(̃
r ′
x

)−1]
(γx − γ̃x)− (γy − γ̃y)�

Subtracting [̃r ′
y (̃r

′
x)

−1]γx from both sides of the equality sign, and rearranging
terms, the last expression can be written as[

r ′
y

(
r ′
x

)−1 − r̃ ′
y

(̃
r ′
x

)−1]
gx + [γy − r ′

y

(
r ′
x

)−1
γx

]− [γ̃y − r̃ ′
y

(̃
r ′
x

)−1
γ̃x

]= 0�

Note that the vector dy = (dy1� � � � � dyG)
′ = γy − r ′

y(r
′
x)

−1γx and d̃y = (d̃y1� � � � �

d̃yG)
′ = γ̃y − r̃ ′

y (̃r
′
x)

−1γ̃x. Hence, we have obtained that in the exclusive regres-
sors model, (L.1) is equivalent to[

r ′
y

(
r ′
x

)−1 − r̃ ′
y

(̃
r ′
x

)−1]
gx + dy − d̃y = 0�

This is exactly (2.7) in Section 2. Q.E.D.

PROOF OF PROPOSITIONS 2.1 AND 2.2: By the definition of the model in
(2.2), for each g, the ratios of derivatives, rgyj (y�xg)/r

g
xg
(y�xg) (j = 1� � � � �G),

depend only on y and xg. When Assumption 2.4 is satisfied, the ratios of
derivatives of rG are given by sGyj (y) since the derivative of rG with respect
to xG is 1. Hence, r is constant over {(y�x−G� tG)|tG ∈ R}. Moreover, the Ja-
cobian determinant |ry |, which is a function of the derivatives of the rg func-
tions with respect to y , does not depend on xG either, since xG only affects
rG and the derivative of rG with respect to yj is not a function of xG. Hence,
for each g, all the terms in dyg , defined in (2.5), are constant over xG. It then
follows that (dy1� � � � � dyG) is constant over {(y�x−G� tG)|tG ∈ R}. A similar rea-
soning shows that when Assumption 2.4′ is satisfied, (r�d) is constant over
{(y� t1� � � � � tG)|(t1� � � � � tG) ∈RG}. Q.E.D.

PROOF OF PROPOSITION 2.3: Let x(1)
G � � � � � x(G+1)

G be such that w(1) =
(y�x−G�x

(k)
G )� � � � �w(G+1) = (y�x−G�x

(G+1)
G ) ∈ M and let ε(1)� � � � � ε(G+1) be such

that, for each k= 1� � � � �G+ 1,

ε(k) = (r1(y�x1)� � � � � r
G−1(y�xG−1)� r

G
(
y�x(k)

G

))
�

We will show that

A
(
ε(1)� � � � � ε(G+1)

)
is invertible

⇐⇒ B
(
w(1)� � � � �w(G+1)

)
is invertible.
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Note that the relationship between the element in the jth row and kth
column of B(w(1)� � � � �w(G+1)) and the jth row and kth column of A =
A(ε(1)� � � � � ε(G+1)) for k ∈ {1� � � � �G} is given by

gxk

(
y�x−G�x

(j)
G

)= ∂ log fε(ε−G� r
G(y�x−G�x

(j)
G ))

∂εk

rkxk(y�xk)

+ ∂ log |ry(y�x)|
∂xk

�

where ε−G = (r1(y�x1)� � � � � r
G−1(y�xG−1)). Suppose that A = A(ε(1)� � � � �

ε(G+1)) is invertible. The value of ∂ log |ry(y�x)|/∂xk is constant across the kth
column, because |ry(y�x)| is constant over w(j) (j = 1� � � � �G+ 1). Multiplying
the G + 1 column of B, which is a column of 1’s, by ∂ log |ry(y�x)|/∂xk and
subtracting it from the kth column will result in a matrix of the same rank
as B. Since rkxk(y�xk) is also constant across the kth column, dividing the re-
sulting column k by rkxk(y�xk) will not affect the rank as well. Repeating the
analogous operations in each of the first G columns of B results in the matrix
A = A(ε(1)� � � � � ε(G+1)). Hence, B and A must have the same rank. Since A
is invertible, B must be invertible. Conversely, starting from the matrix B and
performing the same operations in reverse order, we end up with the matrix
A, which will be invertible if B is invertible. Q.E.D.

PROOF OF PROPOSITION 2.4: By Assumption 2.4′, for each k = 1� � � � �G,
the derivative of rk with respect to xk is 1 and the derivative of the Jacobian
determinant |ry(y�x)| with respect to xk is zero. Then, for each k = 1� � � � �G
and all x,

gxk(y�x) = ∂ log fε(r(y�x))
∂εk

rkxk(y�xk)+ |ry(y�x)|xk
|ry(y�x)|

= ∂ log fε(r(y�x))
∂εk

�

Let w(j) = (y�x(j)) ∈ M (j = 1� � � � �G + 1) and ε(j) = (r1(y�x
(j)
1 )� � � � �

rG−1(y�x
(j)
G−1)� r

G(y�x
(j)
G )). Since gxk(y�x

(j)) = ∂ log fε(r(y�x(j)))/∂εk, B(w(1)�
� � � �w(G+1))= A(ε(1)� � � � � ε(G+1)). Hence, A(ε(1)� � � � � ε(G+1)) is invertible if and
only if B(w(1)� � � � �w(G+1)) is invertible. Q.E.D.

PROOF OF THEOREM 2.2: Let t(1)G � � � � � t(G+1)
G denote the values of tG cor-

responding to the points w(1)� � � � �w(G+1) satisfying Condition I.1. Since μ is
strictly positive and continuous at (y�x−G� t

(1)
G )� � � � � (y�x−G� t

(G+1)
G ), there ex-

ist δ > 0 neighborhoods B((y�x−G� t
(k)
G )�δ) (k = 1� � � � �G + 1), such that μ

is strictly positive on those neighborhoods. Let U denote the union of those
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neighborhoods. For any j,∫
M

(
gyj − r̃

1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj

)2
μ(y�x−G� t)dt

=
∫
M∩U

(
gyj − r̃

1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj

)2
μ(y�x−G� t)dt

+
∫
M∩Uc

(
gyj − r̃

1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj

)2

×μ(y�x−G� t)dt�

When (̃ryj � d̃yj ) = (̃r
1
yj
� r̃

2
yj
� � � � � r̃

G

yj
� d̃yj ) = (r1

yj
� r2

yj
� � � � � rGyj � dyj ), both terms are

zero. When (̃ryj � d̃yj ) �= (r1
yj
� r2

yj
� � � � � rGyj � dyj ), Condition I.1 implies that for at

least one w(s), (gyj − r̃
1
yj

gx1 − r̃
2
yj

gx2 − · · · − r̃
G

yj
gxG − d̃yj )

2 �= 0. The continu-
ity of gyj and gxjon t, which is implied by Assumptions 2.1–2.3, implies then
that the integral over U is strictly positive. Hence, S(̃r� d̃) is uniquely mini-
mized at (̃ryj � d̃yj ) = (r1

yj
� r2

yj
� � � � � rGyj � dyj ). Since S is a convex and differentiable

function, its matrix of second order derivatives must be positive semidefinite
at the minimizer (r�d). Denote

∫
M

gxjgxsμ(y�x−G� t)dt by
∫

gxjgxs and de-
note

∫
M

gxjμ(y�x−G� t)dt by
∫

gxj . The first order conditions for any subvector
(r1

yj
� r2

yj
� � � � � rGyj � dyj ) are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
gx1gx1

∫
gx1gx2 · · ·

∫
gx1gxG

∫
gx1

���
���

���
���

∫
gx2

���
���

���
���

���∫
gxGgx1

∫
gxGgx2 · · ·

∫
gxGgxG

∫
gxG∫

gx1

∫
gx2 · · ·

∫
gxG 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1
yj

r2
yj

���

rGyj
dyj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
gyjgx1

���∫
gyjgxG∫

gyj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

and the (G + 1) × (G + 1) matrix in this expression is the matrix of second
order derivatives of S with respect to (̃rg� d̃g), which is constant over (̃ryj � d̃yj ).
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If this matrix were not invertible, the solution would not be unique. Hence,
since the matrix is positive semidefinite and invertible, it is positive definite.
Solving for dyj using the last equation and substituting the resulting expression
into the other equations, we get

⎡⎢⎣ Tx1x1 Tx1x2 · · · Tx1xG
���

���
���

���

TxGx1 TxGx2 · · · TxGxG

⎤⎥⎦
⎡⎢⎢⎢⎢⎣
r1
yj

r2
yj

���

rGyj

⎤⎥⎥⎥⎥⎦=
⎡⎢⎣ Tyjx1

���

TyjxG

⎤⎥⎦ �

where the G × G matrix is also positive definite, by properties of partitioned
matrices, and therefore invertible. Q.E.D.

PROOF OF THEOREM 2.3: The arguments are almost identical to those in
the proof of Theorem 2.2. Q.E.D.

PROOF OF THEOREM 2.4: Let F denote the set of bounded and continuously
differentiable functions g on the extension of the support of (Y�X) to the
whole space and such that the function g̃ defined by g̃(x) = ∫

g(y�x)dy is
bounded and continuously differentiable. For all functions g in F, denote by
‖g‖ the sum of the sup norms of the values and derivatives of g and of g̃ on
M

y ×M
x
. By Assumption 2.7, the density fY�X belongs to F and it is such that,

for δ > 0 and all (y�x) ∈ M
y × M

x
, fY�X(y�x) > δ and fX(x) > δ. Define the

functionals αyj (·) and βxs(·) on F by αyj (g) = ∂ loggY |X=x(y)/∂yj and βxs(g) =
∂ loggY |X=x(y)/∂xs. For simplicity we leave the argument (y�x) implicit. For
each j� s, define the functional Φyj�xs (g) by

Φyj�xs (g) =
∫
M

αyj (g)βxs(g)μ(y�x)dx

−
(∫

M

αyj (g)μ(y�x)dx

)(∫
M

βxs(g)μ(y�x)dx

)
�

Then, T̂yjxs = Φyjxs (f̂ ) and Tyjxs = Φyjxs (f ). By Lemma A.2 in the Supplemen-
tal Material (Matzkin (2015)) and Assumptions 2.7 and 2.9, there exist finite
b1� δ̃1 > 0, a linear functional DΦyjxs , and a functional RΦyjxs such that, when
‖f̂ − f‖ ≤ δ̃1,

Φyjxs (f̂ )−Φyjxs (f )= DΦyjxs (f ; f̂ − f )+RΦyjxs (f ; f̂ − f )�∣∣DΦyjxs (f ; f̂ − f )
∣∣≤ b1‖f̂ − f‖� and∣∣RΦyjxs (f ; f̂ − f )
∣∣≤ b1‖f̂ − f‖2�



46 ROSA L. MATZKIN

By Lemma A.5 in the Supplemental Material and Assumptions 2.7, 2.9,
and 2.10,

√
NσG+2‖f̂ − f‖2 = op(1). Hence,

√
NσG+2

(
Φyjxs (f̂ )−Φyjxs (f )

)
= √

NσG+2DΦyjxs (f ; f̂ − f )+ √
NσG+2RΦyjxs (f ; f̂ − f )

= √
NσG+2DΦyjxs (f ; f̂ − f )+ op(1)�

Also by Lemma A.5 in the Supplemental Material,
√
NσG+2DΦyjxs (f ; f̂ − f )

= √
NσG+2

∫
M

(
f̂yj (y�x)− fyj (y�x)

)

×
[(βxs(f )−

∫
M

βxs(f )μdx

)
μ

f

]
dx+ op(1)�

Let ω(x) denote the G2 × G matrix whose rows correspond in order to
Φy1�x1�Φy1�x2� � � � �Φy1�xG� � � � �ΦyGx1�ΦyGx2� � � � �ΦyG�xG and whose columns cor-
respond in order to y1� y2� � � � � yG. Let the entry corresponding to (Φygxs � yj)

equal to 0 if g �= j and equal to (βxs(f ) − ∫
M
βxs(f )μ(x)dx)μ(x)/f other-

wise. Assumptions 2.7 and 2.8 imply that each entry is bounded and continuous
and equal to zero on the complement of M . Hence, Assumption 5.1 in Newey
(1994) is satisfied. Our Assumptions 2.7 and 2.9 imply that Assumptions K, H,
and Y in Newey (1994) are also satisfied. Hence, it follows by Assumption 2.10
and Lemma 5.3 in Newey (1994) that√

NσG+2
N (T̂T yx − TTyx)

d→N(0� VTYX
)�(T.3)

where VTYX
is as defined in Section 2. Define

Φxj�xs (g) =
∫
M

βyj (g)βxs(g)μ(y�x)dx

−
(∫

M

βyj (g)μ(y�x)dx

)(∫
M

βxs(g)μ(y�x)dx

)
�

Then, T̂xjxs = Φxjxs (f̂ ) and Txjxs = Φxjxs (f ). By Lemma A.3 in the Supplemen-
tal Material, for a finite b3 > 0, all j� s, and all f̂ such that ‖f̂ − f‖ ≤ δ̃3,

|T̂xjxs − Txjxs | = ∣∣Φxjxs (f̂ )−Φxjxs (f )
∣∣

≤ ∣∣DΦxjxs (f ; f̂ − f )
∣∣+ ∣∣RΦxjxs (f ; f̂ − f )

∣∣
≤ b3‖f̂ − f‖ + b3‖f̂ − f‖2�
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By Assumption 2.10 and Lemma A.5 in the Supplemental Material,
‖f̂ − f‖ → 0 in probability, and

√
NσG+2|T̂xjxs − Txjxs | → 0 in probability.

Hence, T̂ TXX converges op(N
−1/2σ−G/2−1) to the matrix TTXX , which is pos-

itive definite by Theorem 2.3. This together with (T.3) implies by Slutsky’s
theorem that√

NσG+2
N (r̂r − rr)→

d
N
(
0� (TTXX)

−1VTYX
(TTXX)

−1
)
�

To show that (T̂TXX)
−1V̂TYX

(T̂TXX)
−1 is a consistent estimator for

(TTXX)
−1VTYX

(TTXX)
−1, it remains to show that, for all j, s,∫

M

[(
�∂xj log f̂Y |X=x(y)

)(
�∂xs log f̂Y |X=x(y)

)μ(y�x)2

f̂ (y�x)

]
dx

p→
∫
M

[(
�∂xj log fY |X=x(y)

)(
�∂xs log fY |X=x(y)

)μ(y�x)2

f (y�x)

]
dx�

By Lemma A.6 in the Supplemental Material, the term inside the first integral
converges in probability, uniformly over x ∈ M , to the term inside the second
integral. Since by Assumption 2.7 this expression is bounded from above and
below, and since M is compact, it follows that the first integral converges in
probability to the second integral. Q.E.D.

PROOF OF THEOREM 3.1: We will show that in the model with two equations
and one instrument, (3.5) is equivalent to (L.1). As in the proof of Theorem 2.1,
we note that since (r� fε) generate fY |X on M , for all (y�x) ∈ M ,

fY |X=x(y)= fε
(
r(y�x)

)∣∣ry(y�x)∣∣�
Specifically, for the two equation, one instrument model,

fY1�Y2|X=x(y1� y2)= fε1�ε2

(
r1(y1� y2)� r

2(y1� y2�x)
)∣∣ry(y1� y2�x)

∣∣�(T.3.1)

By Lemma B.1 in the Supplemental Material, Assumptions 3.1–3.3 together
with (T.3.1) imply that(

r ′
x − r̃ ′

x

(̃
r ′
y

)−1
r ′
y

)
qε

=
[

1 − r̃1
y1

(
r̃2
x

|̃ry |
)( |ry |

r1
y1
r2
x

)]
(gx − γx)

−
[̃
r1
y1

(
r̃2
x

|̃ry |
)(

r1
y2

r1
y1

)
− r̃1

y2

(
r̃2
x

|̃ry |
)]

(gy1 − γy1)�
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and that

−(γx − γ̃x)+ r̃ ′
x

(̃
r ′
y

)−1
(γy − γ̃y)

= −(γx − γ̃x)− r̃1
y2

(
r̃2
x

|̃ry |
)
(γy1 − γ̃y1)+ r̃1

y1

(
r̃2
x

|̃ry |
)
(γy2 − γ̃y2)�

Hence, (L.1) can be expressed as[
1 − r̃1

y1

(
r̃2
x

|̃ry |
)( |ry |

r1
y1
r2
x

)]
(gx − γx)(T.3.2)

−
[̃
r1
y1

(
r̃2
x

|̃ry |
)(

r1
y2

r1
y1

)
− r̃1

y2

(
r̃2
x

|̃ry |
)]

(gy1 − γy1)

= −(γx − γ̃x)− r̃1
y2

(
r̃2
x

|̃ry |
)
(γy1 − γ̃y1)+ r̃1

y1

(
r̃2
x

|̃ry |
)
(γy2 − γ̃y2)�

Multiplying both sides of (T.3.2) by [−|̃ry |/(̃r2
x̃r

1
y1
)], we get[( |ry |

r1
y1
r2
x

)
−
( |̃ry |
r̃2
x̃r

1
y1

)]
(gx − γx)+

[(
r1
y2

r1
y1

)
−
(
r̃1
y2

r̃1
y1

)]
(gy1 − γy1)(T.3.3)

=
[ |̃ry |
r̃2
x̃r

1
y1

]
(γx − γ̃x)+

[
r̃1
y2

r̃1
y1

]
(γy1 − γ̃y1)− (γy2 − γ̃y2)�

Subtracting [|̃ry |/(̃r2
x̃r

1
y1
)]γx + [̃r1

y2
/̃r1

y1
]γy1 from both sides of (T.3.3), we get[( |ry |

r1
y1
r2
x

)
−
( |̃ry |
r̃2
x̃r

1
y1

)]
gx −

[ |ry |
r1
y1
r2
x

]
γx(T.3.4)

+
[(

r1
y2

r1
y1

)
−
(
r̃1
y2

r̃1
y1

)]
gy1 −

[
r1
y2

r1
y1

]
γy1

= −
[ |̃ry |
r̃2
x̃r

1
y1

]
γ̃x −

[
r̃1
y2

r̃1
y1

]
γ̃y1 − (γy2 − γ̃y2)�

By (3.3) in Section 3.2,

c(y�x)= γy2 −
[
r1
y2

r1
y1

]
γy1 −

[ |ry |
r1
y1
r2
x

]
γx and

c̃(y�x)= γ̃y2 −
[
r̃1
y2

r̃1
y1

]
γ̃y1 −

[ |̃ry |
r̃1
y1̃
r2
x

]
γ̃x�
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Hence, (T.3.4) can be expressed, after rearranging it, as

0 =
[(

r1
y2

r1
y1

)
−
(
r̃1
y2

r̃1
y1

)]
gy1 +

[( |ry |
r1
y1
r2
x

)
−
( |̃ry |
r̃2
x̃r

1
y1

)]
gx(T.3.5)

+ [c(y�x)− c̃(y�x)
]
� Q.E.D.

PROOF OF THEOREM 3.2: Let F be defined as in the proof of Theorem 2.4,
let the functionals Φy1�x and Φy2�x on F be as defined also in the proof of The-
orem 2.4, and let Φy1�y2�Φx�x�Φy1�y1 be defined analogously. Define the func-
tional Ξ on F by

Ξ(g)= Φy1�y2(g)Φx�x(g)−Φy1�x(g)Φy2�x(g)

Φy1�y1(g)Φx�x(g)−Φ2
y1�x

(g)
�

By Lemma A.4 in the Supplemental Material, there exist finite c > 0 and δ̃ > 0
such that, for all h ∈ F with ‖h‖ ≤ δ̃,

Ξ(f + h)−Ξ(f)= DΞ(f ;h)+RΞ(f ;h)�
where

DΞ(f ;h) = [DΦy1�y2(f ;h)Φx�x(f )−DΦy1�x(f ;h)Φy2�x(f )]
Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )

+ [Φy1�y2(f )DΦx�x(f ;h)−Φy1�x(f )DΦy2�x(f ;h)]
Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )

− [Φy1�y2(f )Φx�x(f )−Φy1�x(f )Φy2�x(f )
]

× [DΦy1�y1(f ;h)Φx�x +Φy1�y1(f )DΦx�x(f ;h)]
[Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )]2

+ [2DΦy1�x(f ;h)Φy1�x(f )
]

× [Φy1�y2(f )Φx�x(f )−Φy1�x(f )Φy2�x(f )]
[Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )]2

and ∣∣DΞ(f ;h)∣∣≤ c‖h‖ and
∣∣RΞ(f ;h)∣∣≤ c‖h‖2�

Letting h= f̂ − f , it follows that, for G= 2,
√
NσG+2DΞ(f ; f̂ − f )

= √
NσG+2DΦy1�y2(f ; f̂ − f )

[
Φx�x(f )

Φy1�y1(f )Φx�x(f )−Φ2
y1�x

(f )

]
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− √
NσG+2DΦy1�x(f ; f̂ − f )

[
Φy2�x(f )

Φy1�y1(f )Φx�x(f )−Φ2
y1�x

(f )

]

+ √
NσG+2DΦx�x(f ; f̂ − f )

[
Φy1�y2(f )

Φy1�y1(f )Φx�x(f )−Φ2
y1�x

(f )

]

− √
NσG+2DΦy2�x(f ; f̂ − f )

[
Φy1�x(f )

Φy1�y1(f )Φx�x(f )−Φ2
y1�x

(f )

]
− √

NσG+2DΦy1�y1(f ; f̂ − f )

× Φx�x[Φy1�y2(f )Φx�x(f )−Φy1�x(f )Φy2�x(f )]
[Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )]2

− √
NσG+2DΦx�x(f ; f̂ − f )

× Φy1�y1[Φy1�y2(f )Φx�x(f )−Φy1�x(f )Φy2�x(f )]
[Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )]2

+ √
NσG+2DΦy1�x(f ; f̂ − f )

× 2Φy1�x(f )[Φy1�y2(f )Φx�x(f )−Φy1�x(f )Φy2�x(f )]
[Φy1�y1(f )Φx�x(f )−Φ2

y1�x
(f )]2 �

By Lemma A.5 in the Supplemental Material, for all j, s,

√
NσG+2DΦyj�xs (f� f̂ − f )

= √
NσG+2

∫
M

(
f̂yj (y�x)− fyj (y�x)

)

×
[μ(βxs(f )−

∫
M

x
βxs(f )μdx

)
f

]
dx+ op(1)�

√
NσG+2

[
Φxj�xs (f̂ )−Φxj�xs (f )

]
= √

NσG+2DΦxx�xs (f� f̂ − f )+ √
NσG+2RΦxx�xs (f� f̂ − f )

= op(1)�√
NσG+2DΦyj�ys (f ; f̂ − f )

= √
NσG+2

∫
M

(
f̂yj (y�x)− fyj (y�x)

)
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×
[μ(αys (f )−

∫
αys(f )μdx

)
f

]
dx

+ √
NσG+2

∫
M

(
f̂ys (y�x)− fys (y�x)

)

×
[μ(αyj (f )−

∫
αyj (f )μdx

)
f

]
dx+ op(1)�

and
√
NσG+2‖f̂ − f‖2 → 0 in probability,

where αyj and βxs are as defined in the proof of Theorem 2.4. Hence,

√
NσG+2DΞ(f ; f̂ − f )

= √
NσG+2

∫
M

(f̂y1 − fy1)ω̃a(y�x)dx

+ √
NσG+2

∫
M

(f̂y2 − fy2)ω̃b(y�x)dx

+ √
NσG+2

∫
M

(f̂y1 − fy1)ω̃c(y�x)dx

+ √
NσG+2

∫
M

(f̂y2 − fy2)ω̃d(y�x)dx

+ √
NσG+2

∫
M

(f̂y1 − fy1)ω̃e(y�x)dx

+ √
NσG+2

∫
M

(f̂y1 − fy1)ω̃f (y�x)dx+ op(1)�

where ω̃a� � � � � ω̃f are as defined in Section 3. Thus,

√
NσG+2DΞ(f ; f̂ − f )

= √
NσG+2

∫
M

(f̂y1 − fy1)

× [ω̃a(y�x)+ ω̃c(y�x)+ ω̃e(y�x)+ ω̃f (y�x)
]
dx

+ √
NσG+2

∫
M

(f̂y2 − fy2)
[
ω̃b(y�x)+ ω̃d(y�x)

]
dx+ op(1)�
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Let

ω1(x)= [ω̃a(y�x)+ ω̃c(y�x)+ ω̃e(y�x)+ ω̃f (y�x)
]
�

ω2(x)= [ω̃b(y�x)+ ω̃d(y�x)
]
�

and

ω(x)= (ω1(x)�ω2(x)
)
�

By Lemma 5.3 in Newey (1994), with k1 = G = 2, k2 = 1, l = 1, and m(ĥ) −
m(h0)=DΞ(f ; f̂ − f ), it follows that

√
NσG+2DΞ(f ; f̂ − f )→ N(0� Vβ)�

where

Vβ =
[∫

M

ω(x)Kyω(x)′f (y�x)dx
]
�

and where for u= (u1�u2),

Ky =
[∫ [∫ (

∂K(u�x)

∂u

)
dx

][∫ (
∂K(u�x)

∂u

)
dx

]′
du

]
�

Since by Lemma A.5,

√
NσG+2

∣∣RΞ(f ; f̂ − f )
∣∣≤ (√NσG+2

)
b1‖f̂ − f‖2 p→ 0�

it follows that
√
NσG+2

(
Ξ(f̂ )−Ξ(f)

)
= √

NσG+2
(
DΞ(f ; f̂ − f )+RΞ(f ; f̂ − f )

)
= √

NσG+2DΞ(f ; f̂ − f )+ op(1)�

Hence,

√
NσG+2

(
Ξ(f̂ )−Ξ(f)

)→N(0� Vβ)�

To show that V̂β is a consistent estimator for Vβ, we note that by Lemma A.6
in the Supplemental Material, for all j� s and all w�z ∈ {yj� ys� xj� xs}, for finite
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c > 0, and for ‖f̂ − f‖ sufficiently small,∣∣∣∣(�∂w log f̂Y |X=x(y)
)(
�∂z log f̂Y |X=x(y)

)μ(y�x)2

f̂ (y�x)

− (�∂w log fY |X=x(y)
)(
�∂z log fY |X=x(y)

)μ(y�x)2

f (y�x)

∣∣∣∣
is uniformly bounded on M by c‖f̂ − f‖. By Lemma A.5, for all j� s and all
w�z ∈ {yj� ys� xj� xs}, Φwz(f̂ )

p→ Φwz(f ). It then follows that for some finite c
and each k ∈ {a�b� � � � � f },

sup
(y�x)∈M

∣∣̂̃ωk(y�x)− ω̃k(y�x)
∣∣≤ c‖f̂ − f‖�

Since M is compact and ‖f̂ − f‖ p→ 0, it follows that[∫
M

ω̂(x)Kyω̂(x)′f̂ (y�x)dx
]

p→
[∫

M

ω(x)Kyω(x)′f (y�x)dx
]
�

Hence, V̂β(y)
p→ Vβ(y). Q.E.D.

PROOF OF THEOREM 4.3: Let � denote the set of functions g that satisfy
Assumption 4.7 with s = 0. Let ‖g‖ denote the maximum of the supremum
of the values and derivatives up to the third order of g over the compact
set defined as the closure of the neighborhood defined in Assumption 4.8.
We first analyze the functional that, for any g, assigns the value of x at
which ∂2 loggY |X=x(y)/∂x

2 = 0. Define the functional Υ(g�x) by Υ(g�x) =
∂2 loggY |X=x(y)/∂x

2. We will show that there exists a functional κ(g) on a
neighborhood of f which is defined implicitly by Υ(g�κ(g)) = 0 and satis-
fies a Taylor expansion of the form κ(f + h) = κ(f ) + Dκ(f ;h) + Rκ(f ;h)
with |Rκ(f ;h)| of the order ‖h‖2. We then use this to analyze the functional
defining our estimator. We will denote gY�X(y�x) by g(x) and gX(x) by g̃(x),
with similar notation for other functions in �. By Assumption 4.8, the density
functions fY�X and fX are uniformly bounded away from zero on the closure of
any neighborhood defined in Assumption 4.8. It then follows by the definition
of ‖ · ‖ that there exist ν1 > 0 small enough and ν3 > 0 such that, for all g in
� with ‖g − f‖ ≤ ν1 and all h in � with ‖h − f‖ ≤ ν1, g(x) + h(x) > ν3 and
g̃(x) + h̃(x) > ν3 for all x in a neighborhood B(x∗� δ) for some δ > 0 small
enough. For any such g, h and x, δ

Υ(g + h�x)−Υ(g�x)

=
∂2g(x)

∂x2 + ∂2h(x)

∂x2

g(x)+ h(x)
−

[
∂g(x)

∂x
+ ∂h(x)

∂x

]2

[g(x)+ h(x)]2
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−
∂2g̃(x)

∂x2 + ∂2h̃(x)

∂x2

g̃(x)+ h̃(x)
+

[
∂g̃(x)

∂x
+ ∂h̃(x)

∂x

]2

[̃g(x)+ h̃(x)]2

−
( ∂2g(x)

∂x2

g(x)
−

[
∂g(x)

∂x

]2

[g(x)]2 −
∂2g̃(x)

∂x2

g̃(x)
+

[
∂g̃(x)

∂x

]2

[̃g(x)]2

)
and

Υ(g�x+ δ)−Υ(g�x)

=
∂2g(x+ δ)

∂x2

g(x+ δ)
−

[
∂g(x+ δ)

∂x

]2

[g(x+ δ)]2 −
∂2g̃(x+ δ)

∂x2

g̃(x+ δ)
+

[
∂g̃(x+ δ)

∂x

]2

[̃g(x+ δ)]2

−
( ∂2g(x)

∂x2

g(x)
−

[
∂g(x)

∂x

]2

[g(x)]2 −
∂2g̃(x)

∂x2

g̃(x)
+

[
∂g̃(x)

∂x

]2

[̃g(x)]2

)
�

Define

DgΥ(g�x;h)

=
(
∂2h(x)

∂x2 g(x)2 − ∂2g(x)

∂x2 h(x)g(x)

− 2
∂h(x)

∂x

∂g(x)

∂x
g(x)+ 2

(
∂g(x)

∂x

)2

h(x)

)/[
g(x)

]3

−
(
∂2h̃(x)

∂x2 g̃(x)2 − ∂2g̃(x)

∂x2 h̃(x)g̃(x)

− 2
∂h̃(x)

∂x

∂g̃(x)

∂x
g̃(x)+ 2

(
∂g̃(x)

∂x

)2

h̃(x)

)/[
g̃(x)

]3
and

DxΥ(g�x;δ) = ∂3 loggY |X=x(y)

∂x3 δ�

RgΥ(g�x;h) = Υ(g + h�x)−Υ(g�x)−DgΥ(g�x;h) and

RxΥ(g�x;δ) = Υ(g�x+ δ)−Υ(g�x)−DxΥ(g�x;δ)�
The definition of � and Assumptions 4.7 and 4.8 imply that there exists a < ∞
such that, for all (g�x) in a neighborhood of (f�x∗),∥∥DxΥ(g�x;δ)∥∥≤ a|δ|; ∥∥RxΥ(g�x;δ)∥∥≤ a|δ|2;∥∥DgΥ(g�x;h)∥∥≤ a‖h‖; and

∥∥RgΥ(g�x;h)∥∥≤ a‖h‖2�
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Moreover, it can be verified that on a neighborhood of (f�x∗), DxΥ(g�x;δ)
and DgΥ(g�x;h) are also Fréchet differentiable on (g�x) and their derivatives
are continuous on (g�x). Assumption 4.8 and the definition of � imply that,
for all (g�x) in a neighborhood of (f�x∗), DxΥ(g�x;δ) is invertible. It then
follows by the Implicit Function theorem on Banach spaces that there exists a
unique functional κ such that, for all g in a ν4 neighborhood of f (ν4 < ν1),

Υ
(
g�κ(g)

)= 0�

The Fréchet derivative at g is given by

Dκ(g;h)=
(
∂3 loggY |X=x(y)

∂x3

)−1[−DgΥ(g�x;h)]�
Since Υ is a C2 map on a neighborhood of (f�x∗) and its second order deriva-
tives are uniformly bounded on such neighborhood, κ is a C2 map with uni-
formly bounded second derivatives on a neighborhood of f . Hence, by Taylor’s
theorem on Banach spaces, it follows that there exists c < ∞ such that, for
sufficiently small ‖h‖, |κ(f + h)− κ(f )−Dκ(f ;h)| ≤ c‖h‖2.

We now analyze the functional of f that defines our estimator. This func-
tional uses κ as an input. Define the functional Ψ(g�κ(g)) by

Ψ
(
g�κ(g)

)= −
[
∂2gY�X(y�κ(g))

∂y2 ∂x
gY�X

(
y�κ(g)

)
− ∂gY�X(y�κ(g))

∂y2

∂gY�X(y�κ(g))

∂x

]
/[∂2gY�X(y�κ(g))

∂y1 ∂x
gY�X

(
y�κ(g)

)
− ∂gY�X(y�κ(g))

∂y1

∂gY�X(y�κ(g))

∂x

]
�

Then, Ψ(f�κ(f )) = ∂m1(y2� ε1)/∂y2 and Ψ(f̂ �κ(f̂ )) = ̂∂m1(y2� ε1)/∂y2. For h
and δ such that ‖h‖ and |δ| are small enough, define

DgΨ
(
g�x∗;h)

= −
[
∂2h(x∗)
∂y2 ∂x

g
(
x∗)+ ∂2g(x∗)

∂y2 ∂x
h
(
x∗)

− ∂h(x∗)
∂y2

∂g(x∗)
∂x

− ∂g(x∗)
∂y2

∂h(x∗)
∂x

]
/[∂2g(x∗)

∂y1 ∂x
g
(
x∗)− ∂g(x∗)

∂y1

∂g(x∗)
∂x

]



56 ROSA L. MATZKIN

+
[
∂2g(x∗)
∂y2 ∂x

g
(
x∗)− ∂g(x∗)

∂y2

∂g(x∗)
∂x

]
×
[
∂2h(x∗)
∂y1 ∂x

g
(
x∗)+ ∂2g(x∗)

∂y1 ∂x
h
(
x∗)

− ∂h(x∗)
∂y1

∂g(x∗)
∂x

− ∂g(x∗)
∂y1

∂h(x∗)
∂x

]
/[∂2g(x∗)

∂y1 ∂x
g
(
x∗)− ∂g(x∗)

∂y1

∂g(x∗)
∂x

]2

�

DxΨ
(
g�x∗;δ)=

∂

(−∂2 loggY |X=x∗(y)/∂y2 ∂x

∂2 loggY |X=x∗(y)/∂y1 ∂x

)
∂x

δ�

Then,

DΨ
(
f�κ(f );h)= DfΨ

(
f�x∗;h)+DxΨ

(
f�x∗;Dκ(f ;h)) and

RΨ
(
f�κ(f );h)=Ψ

(
f + h�κ(f + h)

)−Ψ
(
f�κ(f )

)
−DΨ

(
f�κ(f );h)�

The properties we derived on Dκ and Rκ and Assumptions 4.7–4.9 imply that,
for some b < ∞, |DΨ(f�κ(f );h)| ≤ b‖h‖ and |RΨ(f�κ(f );h)| ≤ b‖h‖2. By
applying Lemma 5.3 in Newey (1994) repeatedly, as we did in Lemma A.5, it
follows by Assumptions 4.10 and 4.11 that when h= f̂ − f ,√

Nσ7
NDΨ

(
f�κ(f );h)

=
√
Nσ7

N

−[f (x∗)][
∂2f (x∗)
∂y1 ∂x

f (x∗)− ∂f (x∗)
∂y1

∂f (x∗)
∂x

] ∂2h(x∗)
∂y2 ∂x

+
√
Nσ7

N

[
∂2f (x∗)
∂y2 ∂x

f (x∗)− ∂f (x∗)
∂y2

∂f (x∗)
∂x

]
[f (x∗)][

∂2f (x∗)
∂y1 ∂x

f (x∗)− ∂f (x∗)
∂y1

∂f (x∗)
∂x

]2

∂2h(x∗)
∂y1 ∂x

+
√
Nσ7

N

∂

(−∂2 log fY |X=x∗(y)/∂y2 ∂x

∂2 log fY |X=x∗(y)/∂y1 ∂x

)
∂x

×
(
∂3 log fY |X=x∗(y)

∂x3

)−1[ −1
f (x∗)

]
∂2h(x∗)

∂x2 + op(1)�
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Hence, when h= f̂ − f ,√
Nσ7

NDΨ
(
f�κ(f );h)

=
√
Nσ7

N

∂2 log fY |X=x∗(y)

∂y2 ∂x[
∂2 log fY |X=x∗(y)

∂y1 ∂x

]2

fY�X(y�x
∗)

∂2h(x∗)
∂y1 ∂x

+
√
Nσ7

N

−1
∂2 log fY |X=x∗(y)

∂y1 ∂x
fY�X(y�x

∗)

∂2h(x∗)
∂y2 ∂x

+
√
Nσ7

N

− ∂

∂x

(−∂2 log fY |X=x∗(y)/∂y2 ∂x

∂2 log fY |X=x∗(y)/∂y1 ∂x

)
fY�X(y�x

∗)
(
∂3 log fY |X=x∗(y)

∂x3

) ∂2h(x∗)

∂x2 + op(1)�

By Lemma 5.3 in Newey (1994), with l = 2, k1 = 3, k2 = 0, it follows that√
Nσ7

NDΨ
(
f�κ(f ); f̂ − f

)→
d
N(0� Ṽ )�

where Ṽ is as defined prior to the statement of Theorem 4.3. Assumptions 4.7,
4.10, and 4.11 together with Lemma B.3 in Newey (1994) imply that ‖f̂ − f‖ =
Op(

√
ln(N)/(Nσ9) + σs). By Assumption 4.11,

√
Nσ7(

√
ln(N)/(Nσ9) +

σs)2 → 0. Hence, since |RΨ(f�κ(f ); f̂ − f )| ≤ b‖f̂ − f‖2, it follows that√
Nσ7RΨ(f�κ(f ); f̂ − f )= op(1). Hence,√

Nσ7
N

[
̂∂m1(y2� ε1)/∂y2 − ∂m1(y2� ε1)/∂y2

]
= √

Nσ7
(
Ψ
(
f̂ � κ(f̂ )

)−Ψ
(
f�κ(f )

))
= √

Nσ7DΨ
(
f�κ(f ); f̂ − f

)+ √
Nσ7RΨ

(
f�κ(f ); f̂ − f

)
= √

Nσ7DΨ
(
f�κ(f ); f̂ − f

)+ op(1)

→ N(0� Ṽ ) in distribution.

To show that ̂̃V converges to Ṽ in probability, we first note that, as shown
above, ∣∣̂x∗ − x∗∣∣= ∣∣κ(f̂ )− κ(f )

∣∣≤ ∣∣Dκ(f ; f̂ − f )
∣∣+ ∣∣Rκ(f ; f̂ − f )

∣∣
≤ c‖f̂ − f‖ + c‖f̂ − f‖2 → 0 in probability.
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Define the functionals

Ω1(g) =

[
∂2g(κ(g))

∂y2 ∂x
g(κ(g))− ∂g(κ(g))

∂y2

∂g(κ(g))

∂x

]
[g(κ(g))][

∂2g(κ(g))

∂y1 ∂x
g(κ(g))− ∂(κ(g))

∂y1

∂g(κ(g))

∂x

]2 �

Ω2(g) = −[g(κ(g))][
∂2g(κ(g))

∂y1 ∂x
g(κ(g))− ∂g(κ(g))

∂y1

∂g(κ(g))

∂x

] � and

Ω3(g) =
∂

(−∂2 loggY |X=κ(g)(y)/∂y2 ∂x

∂2 loggY |X=κ(g)(y)/∂y1 ∂x

)
∂x

×
(
∂3 loggY |X=κ(g)(y)

∂x3

)−1[ −1
g(κ(g))

]
�

Following steps analogous to those in the proof of Lemma A.1 in the Supple-
mental Material, it can be shown that there exist a finite c > 0 and functionals
DΩ1, RΩ1, DΩ2, RΩ2, DΩ3, and RΩ3 such that, for all f̂ in a neighborhood of
f , and for j = 1�2�3,∣∣Ωj(f̂ )−Ωj(f )

∣∣= ∣∣DΩj(f ; f̂ − f )+RΩj(f ; f̂ − f )
∣∣

≤ ∣∣DΩj(f ; f̂ − f )
∣∣+ ∣∣RΩj(f ; f̂ − f )

∣∣
≤ c‖f̂ − f‖ + c‖f̂ − f‖2�

Hence, since ‖f̂ −f‖ p→ 0, it follows that |Ωj(f̂ )−Ωj(f )| p→ 0. By the definition
of Ṽ , this implies that ̂̃V → Ṽ in probability. Q.E.D.

PROOF OF THEOREM 4.4: The proof is similar to the proof of Theorem 4.3.
Let � denote the set of functions g that satisfy Assumption 4.7′ with s = 0.
Let ‖g‖ denote the maximum of the supremum of the values and derivatives
up to the second order of g over a compact set that is defined by the union
of the closures of the neighborhoods defined in Assumption 4.8′. We first ana-
lyze the functionals that, for any g, assign different values x1 and x2, at which
∂ loggY |X=x1(y)/∂x = 0 and ∂ loggY |X=x2(y)/∂x = 0. When g = f , x1 = x∗ and
x2 = x∗∗ in the definition of the estimator for ∂m1(y2� ε1)/∂y2. As in the proof
of Theorem 4.3, we will denote gY�X(y�x) by g(x) and gX(x) by g̃(x), with sim-
ilar notation for other functions in �. Since x1 �= x2, the asymptotic covariance
of our kernel estimators for the values of x1 and x2 is zero. Define the func-
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tional Υ(g�x1�x2) = (∂ loggY |X=x1(y)/∂x�∂ loggY |X=x2(y)/∂x)
′. We first show

that there exists a functional κ(g) = (κ1(g)�κ2(g)) satisfying κ(f ) = (x∗�x∗∗)
which is defined implicitly in a neighborhood of f by

Υ
(
g�κ1(g)�κ2(g)

)= 0�

By Assumption 4.8′, the density functions fY�X and fX are uniformly bounded
away from zero on the closure of the neighborhood defined in Assumption 4.8′.
It then follows by the definition of ‖ · ‖ that there exist ν1� ν2� ν3 > 0 small
enough such that, for all g in � with ‖g−f‖ ≤ ν1, all h in � with ‖h‖ ≤ ν2, all x1

in a δ1 neighborhood of x∗, and all x2 in a δ2 neighborhood x∗∗, g(xj)+h(xj) >

ν3 and g̃(xj)+ h̃(xj) > ν3 (j = 1�2). Hence, by Assumptions 4.7′ and 4.8′,

Υ(g + h�x1�x2)−Υ(g�x1�x2)

=

⎛⎜⎜⎜⎜⎜⎜⎝

∂g(x1)

∂x
+ ∂h(x1)

∂x
g(x1)+ h(x1)

−
∂g̃(x1)

∂x
+ ∂h̃(x1)

∂x

g̃(x1)+ h̃(x1)
−

∂g(x1)

∂x
g(x1)

+
∂g̃(x1)

∂x
g̃(x1)

∂g(x2)

∂x
+ ∂h(x2)

∂x
g(x2)+ h(x2)

−
∂g̃(x2)

∂x
+ ∂h̃(x2)

∂x

g̃(x2)+ h̃(x2)
−

∂g(x2)

∂x
g(x2)

+
∂g̃(x2)

∂x
g̃(x2)

⎞⎟⎟⎟⎟⎟⎟⎠ �

Υ(g�x1 + δ1�x2)−Υ(g�x1�x2)

=
⎛⎜⎝

∂g(x1 + δ1)

∂x
g(x1 + δ1)

−
∂g̃(x1 + δ1)

∂x
g̃(x1 + δ1)

−
∂g(x1)

∂x
g(x1)

+
∂g̃(x1)

∂x
g̃(x1)

�0

⎞⎟⎠
′

� and

Υ(g�x1�x2 + δ2)−Υ(g�x1�x2)

=
⎛⎜⎝0�

∂g(x2 + δ2)

∂x
g(x2 + δ2)

−
∂g̃(x2 + δ2)

∂x
g̃(x2 + δ2)

−
∂g(x2)

∂x
g(x2)

+
∂g̃(x2)

∂x
g̃(x2)

⎞⎟⎠
′

�

Define

DgΥ(g�x1�x2;h)

=

⎛⎜⎜⎜⎜⎜⎜⎝

∂h(x1)

∂x
g(x1)

−
∂g(x1)

∂x
h(x1)

(g(x1))
2 −

∂h̃(x1)

∂x
g̃(x1)

+
∂g̃(x1)

∂x
h̃(x1)

(g̃(x1))
2

∂h(x2)

∂x
g(x2)

−
∂g(x2)

∂x
h(x2)

(g(x2))
2 −

∂h̃(x2)

∂x
g̃(x2)

+
∂g̃(x2)

∂x
h̃(x2)

(g̃(x2))
2

⎞⎟⎟⎟⎟⎟⎟⎠ �
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Dx1Υ(g�x1�x2;δ1) = ∂2 loggY |X=x1(y)

∂x2 δ1�

Dx2Υ(g�x1�x2;δ2) = ∂2 loggY |X=x2(y)

∂x2 δ2�

RgΥ(g�x1�x2)= Υ(g + h�x1�x2)−Υ(g�x1�x2)

−DgΥ(g�x1�x2;h)�
Rx1Υ(g�x1�x2;δ1)= Υ(g�x1 + δ1�x2)−Υ(g�x1�x2)

−Dx1Υ(g�x1�x2;δ1)� and

Rx2Υ(g�x1�x2;δ2)= Υ(g�x1�x2 + δ2)−Υ(g�x1�x2)

−Dx2Υ(g�x1�x2;δ2)�

The definition of � and Assumptions 4.7′ and 4.8′ imply that, for some a < ∞,∥∥DxjΥ(g�x1�x2;δj)
∥∥≤ a|δj| and∥∥RxjΥ(g�x1�x2;δj)
∥∥≤ a|δj|2 (for j = 1�2),∥∥DgΥ(g�x1�x2;h)
∥∥≤ a‖h‖ and

∥∥RgΥ(g�x1�x2;h)
∥∥≤ a‖h‖2�

Hence, DxΥ(g�x1�x2;δ) is the Fréchet derivative of Υ with respect to x and
DgΥ(g�x1�x2;h) is the Fréchet derivative of Υ with respect to g. By their
definitions and Assumptions 4.7′ and 4.8′, it follows that both Fréchet deriva-
tives are themselves Fréchet differentiable and their derivatives are continu-
ous and uniformly bounded on a neighborhood of (f�x∗�x∗∗). Moreover, each
DxjΥ(g�x1�x2;δj) (j = 1�2) has a continuous inverse on a neighborhood of
(f�x∗�x∗∗). It then follows by the Implicit Function theorem on Banach spaces
that there exist unique functionals κ1 and κ2 such that κ1(f )= x∗, κ2(f )= x∗∗,
for all g in a neighborhood of f ,

Υ
(
g�κ1(g)�κ2(g)

)= 0�

κ1 and κ2 are differentiable on a neighborhood of f and their Fréchet deriva-
tives are given by, for j = 1�2,

Dκj(g;h) =
(
∂2 loggY |X=xj (y)

∂x2

)−1[−DgΥ(g�x1�x2;h)
]
j
�

Moreover, κ1 and κ2 satisfy a first order Taylor expansion around f with re-
mainder term for (κj(f +h)−κj(f )) bounded by c‖h‖2 for a constant c < ∞.
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Define the functional Ψ(g�x1�x2) by

Ψ(g�x1�x2) =
[ ∂gY�X(y�x2)

∂y2

gY�X(y�x2)
−

∂gY�X(y�x1)

∂y2

gY�X(y�x1)

]

×
[ ∂gY�X(y�x1)

∂y1

gY�X(y�x1)
−

∂gY�X(y�x2)

∂y1

gY�X(y�x2)

]−1

�

Then, Ψ(f̂ �κ1(f̂ )�κ2(f̂ )) = ̂∂m1(y2� ε1)/∂y2 and Ψ(f�κ1(f )�κ2(f )) =
∂m1(y2� ε1)/∂y2. Denote fY�X(y�xj) by f (xj) and hY�X(y�xj) by h(xj) (j = 1�2).
Then, for ‖h‖, |δ1|, and |δ2| in a neighborhood of 0,

Ψ
(
f + h�x∗�x∗∗)−Ψ

(
f�x∗�x∗∗)

=
([

∂f (x∗∗)
∂y2

+ ∂h(x∗∗)
∂y2

][
f
(
x∗)+ h

(
x∗)]

−
[
∂f (x∗)
∂y2

+ ∂h(x∗)
∂y2

][
f
(
x∗∗)+ h

(
x∗∗)])

/([∂f (x∗)
∂y1

+ ∂h(x∗)
∂y1

][
f
(
x∗∗)+ h

(
x∗∗)]

−
[
∂f (x∗∗)
∂y1

+ ∂h(x∗∗)
∂y1

][
f
(
x∗)+ h

(
x∗)])

−
∂f (x∗∗)
∂y2

f (x∗)− ∂f (x∗)
∂y2

f (x∗∗)

∂f (x∗)
∂y1

f (x∗∗)− ∂f (x∗∗)
∂y1

f (x∗)
�

Ψ
(
f�x∗ + δ1�x

∗∗)−Ψ
(
f�x∗�x∗∗)

=
∂f (x∗∗)
∂y2

f (x∗ + δ1)− ∂f (x∗ + δ1)

∂y2
f (x∗∗)

∂f (x∗ + δ1)

∂y1
f (x∗∗)− ∂f (x∗∗)

∂y1
f (x∗ + δ1)

−
∂f (x∗∗)
∂y2

f (x∗)− ∂f (x∗)
∂y2

f (x∗∗)

∂f (x∗)
∂y1

f (x∗∗)− ∂f (x∗∗)
∂y1

f (x∗)
� and
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Ψ
(
f�x∗�x∗∗ + δ2

)−Ψ
(
f�x∗�x∗∗)

=
∂f (x∗∗ + δ2)

∂y2
f (x∗)− ∂f (x∗)

∂y2
f (x∗∗ + δ2)

∂f (x∗)
∂y1

f (x∗∗ + δ2)− ∂f (x∗∗ + δ2)

∂y1
f (x∗)

−
∂f (x∗∗)
∂y2

f (x∗)− ∂f (x∗)
∂y2

f (x∗∗)

∂f (x∗)
∂y1

f (x∗∗)− ∂f (x∗∗)
∂y1

f (x∗)
�

Define

DfΨ
(
f�x∗�x∗∗;h)

=

[
∂h(x∗∗)

∂y2
f
(
x∗)− ∂h(x∗)

∂y2
f
(
x∗∗)+ ∂f (x∗∗)

∂y2
h
(
x∗)− ∂f (x∗)

∂y2
h
(
x∗∗)][

∂f (x∗)
∂y1

f
(
x∗∗)− ∂f (x∗∗)

∂y1
f
(
x∗)]

−
[
∂f (x∗∗)
∂y2

f
(
x∗)− ∂f (x∗)

∂y2
f
(
x∗∗)]

×

[
∂h(x∗)
∂y1

f
(
x∗∗)− ∂h(x∗∗)

∂y1
f
(
x∗)+ ∂f (x∗)

∂y1
h
(
x∗∗)− ∂f (x∗∗)

∂y1
h
(
x∗)]

[
∂f (x∗)
∂y1

f
(
x∗∗)− ∂f (x∗∗)

∂y1
f
(
x∗)]2 �

RfΨ
(
f�x∗�x∗∗;h)= Ψ

(
f + h�x∗�x∗∗)−Ψ

(
f�x∗�x∗∗)

−DfΨ
(
f�x∗�x∗∗;h)�

Dx1Ψ
(
f�x∗�x∗∗;δ1

)
= ∂

∂x1

(
∂ log fY |X=x∗∗(y)/∂y2 − ∂ log fY |X=x1(y)/∂y2

∂ log fY |X=x1(y)/∂y1 − ∂ log fY |X=x∗∗(y)/∂y1

)∣∣∣∣
x1=x∗

δ1�

Dx2Ψ
(
f�x∗�x∗∗;δ2

)
= ∂

∂x2

(
∂ log fY |X=x2(y)/∂y2 − ∂ log fY |X=x∗(y)/∂y2

∂ log fY |X=x∗(y)/∂y1 − ∂ log fY |X=x2(y)/∂y1

)∣∣∣∣
x2=x∗∗

δ2�

DΨ
(
f�x∗�x∗∗;h)= DfΨ

(
f�x∗�x∗∗;h)+Dx1Ψ

(
f�x∗�x∗∗;Dκ1(f ;h))

+Dx2Ψ
(
f�x∗�x∗∗;Dκ2(f ;h))� and

RΨ
(
f�x∗�x∗∗;h)=Ψ

(
f + h�κ1(f + h)�κ2(f + h)

)−Ψ
(
f�x∗�x∗∗)

−DΨ
(
f�x∗�x∗∗;h)�
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Assumptions 4.7′ and 4.8′ imply that

∣∣DΨ
(
f�x∗�x∗∗;h)∣∣≤ a‖h‖ and

∣∣RΨ (f�x∗�x∗∗;h)∣∣≤ a‖h‖2�

Assumptions 4.10′ and 4.11′ imply, following steps as in the proof of Lem-
ma A.5 in the Supplemental Material, that for f̂ − f = h,

√
Nσ5

NDΨ
(
f�x∗�x∗∗;h)

=
√
Nσ5

N

[
∂h(x∗∗)

∂y2
f (x∗)− ∂h(x∗)

∂y2
f (x∗∗)

]
[
∂f (x∗)
∂y1

f (x∗∗)− ∂f (x∗∗)
∂y1

f (x∗)
]

−
√
Nσ5

N

×

[
∂f (x∗∗)
∂y2

f (x∗)− ∂f (x∗)
∂y2

f (x∗∗)
][

∂h(x∗)
∂y1

f (x∗∗)− ∂h(x∗∗)
∂y1

f (x∗)
]

[
∂f (x∗)
∂y1

f (x∗∗)− ∂f (x∗∗)
∂y1

f (x∗)
]2

+
√
Nσ5

N

×
∂

∂x1

(
∂ log fY |X=x∗∗(y)/∂y2 − ∂ log fY |X=x1(y)/∂y2

∂ log fY |X=x1(y)/∂y1 − ∂ log fY |X=x∗∗(y)/∂y1

)∣∣∣∣
x1=x∗(

∂2 log fY |X=x∗(y)

∂x2

)
f (x∗)

(−∂h(x∗)
∂x

)

+
√
Nσ5

N

×
∂

∂x2

(
∂ log fY |X=x2(y)/∂y2 − ∂ log fY |X=x∗(y)/∂y2

∂ log fY |X=x∗(y)/∂y1 − ∂ log fY |X=x2(y)/∂y1

)∣∣∣∣
x2=x∗∗(

∂2 log fY |X=x∗∗(y)

∂x2

)
f (x∗∗)

(−∂h(x∗∗)
∂x

)

+ op(1)�

By Lemma 5.2 in Newey (1994), it follows by Assumptions 4.7′, 4.8′, 4.10′,
and 4.11′ that

√
Nσ5

NDΨ(f�x∗�x∗∗;h) → N(0�V ), where V is as defined
prior to the statement of Theorem 4.4. Since

√
Nσ5

N |RΨ(f�x∗�x∗∗; f̂ − f )| ≤√
Nσ5

Na‖f̂ − f‖2 = op(1), by Assumption 4.10′ and Lemma B.2 in Newey
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(1994), we can conclude that

√
Nσ5

N

( ̂∂m1(y2� ε1)

∂y2
− ∂m1(y2� ε1)

∂y2

)
=
√
Nσ5

N

(
Ψ
(
f̂ � κ1(f̂ )�κ2(f̂ )

)−Ψ
(
f�x∗�x∗∗)) d→ N(0�V )�

Following steps analogous to those used in the proof of Theorem 4.3, as in
the proof of Lemma A.1, it can be shown that the estimators for each ωi

j

defined before the statement of Theorem 4.4 converge in probability to ωi
j .

Similarly, f̂Y�X(y� x̂
∗)

p→ fY�X(y�x
∗), and f̂Y�X(y� x̂

∗∗)
p→ fY�X(y�x

∗∗). Hence,
V̂

p→ V . Q.E.D.
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