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NONPARAMETRIC ESTIMATION OF
NONADDITIVE RANDOM FUNCTIONS

BY ROSA L. MATZKIN1

We present estimators for nonparametric functions that are nonadditive in unob-
servable random terms. The distributions of the unobservable random terms are as-
sumed to be unknown. We show that when a nonadditive, nonparametric function is
strictly monotone in an unobservable random term, and it satisfies some other prop-
erties that may be implied by economic theory, such as homogeneity of degree one or
separability, the function and the distribution of the unobservable random term are
identified. We also present convenient normalizations, to use when the properties of
the function, other than strict monotonicity in the unobservable random term, are un-
known. The estimators for the nonparametric function and for the distribution of the
unobservable random term are shown to be consistent and asymptotically normal. We
extend the results to functions that depend on a multivariate random term. The results
of a limited simulation study are presented.

KEYWORDS: Nonparametric estimation, nonadditive random term, shape restric-
tions, monotonicity, homogeneity, conditional distributions, nonseparable models, con-
ditional quantiles.

1. INTRODUCTION

A COMMON PRACTICE when estimating many economic models proceeds by
first specifying the relationship between a vector of observable exogenous
variables, X , and a dependent variable, Y , and then, adding a random un-
observable term, ε, to the relationship. In the resulting model, ε is typically
interpreted as the difference between the observed value of the dependent
variable, Y , and the conditional expectation of Y given X . This procedure has
been criticized on the grounds that instead of adding an unobservable random
term to the relationship, as an after-thought, one should be able to generate
an unobservable random term from within the model. When approaching the
random relationship in the latter way, ε may represent a heterogeneity para-
meter in a utility function, some productivity shock in a production function, a
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raszelski and Elie Tamer, and from the comments of José Sheinkman, Christopher Taber, and
seminar participants at Hanyang University (Korea), McGill University, Michigan State Univer-
sity, New York University, Northwestern University, Universidad de San Andrés (Argentina),
Universidad Di Tella (Argentina), University of Michigan, University of Wisconsin, the 1999
Summer Meeting of the Econometric Society, the 1999 Latin American Meeting of the Econo-
metric Society, the Conference in Honor of Rolf Mantel (June, 2000), and the 2000 Midwest
Econometrics Group Conference.
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utility value for some unobserved attributes, or some other relevant unobserv-
able variable (see, for example, Heckman (1974), Heckman and Willis (1977),
McFadden (1974), and Lancaster (1979)). When using this approach, the ran-
dom term ε rarely appears in the model as a term added to the conditional
expectation of Y given X (McElroy (1981, 1987), Brown and Walker (1989,
1995), Lewbel (1996).) In general, unless one specifies very restrictive paramet-
ric structures for the functions in the economic model, the function by which
the values of Y are determined from X and ε is nonadditive in ε.

Most nonparametric methods that are currently used to specify the relation-
ship between a vector of observable exogenous variables, X , an unobservable
term, and an observable dependent variable, Y , define the unobservable ran-
dom term as being the difference between Y and the conditional expectation.
The resulting model is then one where the unobservable random term is added
to the relationship. Although one could interpret this added unobservable ran-
dom term as being a function of the observable and some other unobservable
variables, the existent methods do not provide a way of studying this function,
which has information about the important interactions between the observ-
able and unobservable variables.

In this paper, we present a nonparametric method for estimating a nonpara-
metric, not necessarily additive function of a vector of exogenous variables, X ,
and an unobservable vector of variables, ε. The value of a dependent variable,
Y , is assumed to be determined by this nonparametric function. The distribu-
tion of ε is not parametrically specified and it is also estimated.

We first consider the model Y =m(X�ε), where ε is a random variable, m is
strictly increasing in ε, and both the function m and the distribution of ε are un-
known. We characterize the set of functions that are observationally equivalent
to m, when ε is independent of X , and provide three different specifications
for the function m, which allow one to identify the distribution of ε and the
function m. The first specification is just a convenient normalization. It speci-
fies the value of m(X�ε) at a particular value of X , or a subvector of X . The
second specification imposes a homogeneity of degree one condition, along a
given ray, on some coordinates of X and on ε. This condition, together with
the specification of the value of m at only one point of the ray, is shown to
be sufficient to identify the distribution of ε and the function m. This second
specification is particularly useful, for example, when the function m is either a
cost or profit function, since economic theory implies that these functions are
homogenous of degree one in some or all of their arguments. The third specifi-
cation can be seen as a nonparametric generalization of semiparametric trans-
formation models where neither the transformation function nor the distrib-
ution of the unobservable random term are parametrically specified. Instead
of specifying that Y = Λ(β′X + ε), where Λ is a strictly increasing, unknown
function, and where both the absolute value of one of the coordinates of β and
the value of Λ at one point are given (see, for example, Horowitz (1996)), we
specify that Y = s(X1� ε−X2), for some unknown function s, which is strictly
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increasing in the last coordinate and whose value is given at one point. In the
latter specification, X = (X1�X2) and X2 ∈R.

For each of the three specifications, we extend the identification results to
the case where ε is independent of only some coordinates of X , conditional on
the other coordinates. A special case of this is, of course, when ε is independent
of X , conditional on some vector Z, which is not an argument of m, since we
can consider functions m that are constant as Z varies. We also extend the
results to the case where the variable Y depends on a vector of unobservable
variables, (ε1� ε2�    � εK).

For each of the specifications and assumptions on the distribution of ε, we
show that the value of the distribution of ε at any particular value, e, can be
obtained from the value of the conditional distribution function of Y given X ,
evaluated at particular values of X and Y . The estimator for the value of the
function m at any particular vector, (x� e), is then defined as an estimator for
a quantile of the conditional distribution function of Y , given X = x, where
the quantile is the value of the estimator for the distribution of ε, at ε = e.
The estimator for the quantile is based on the quantile estimator of Nadaraya
(1964a, 1964b) (see also Azzalini (1981)).

The estimators for the distribution of ε and for the function m are shown
to be consistent and asymptotically normal. Each of these estimators is a non-
linear functional of a kernel estimator for the density function of (Y�X). We
derive their asymptotic distributions using a Delta method of the type devel-
oped in Ait-Sahalia (1994) and Newey (1994). This method proceeds by first
obtaining a first order Taylor expansion of each nonlinear functional around
its true value, and then deriving the asymptotic distribution of the linear part
of the expansion.

Some other papers that have considered nonparametric models where
the random terms do not enter in an additive form are Roehrig (1988),
Matzkin (1991), Brown and Matzkin (1996), Olley and Pakes (1996), Altonji
and Ichimura (1997), Altonji and Matzkin (1997), Briesch, Chintagunta, and
Matzkin (1997), Heckman and Vytlacil (1999, 2001), Vytlacil (2000), and Blun-
dell and Powell (2001b). Roehrig (1988) provides a general condition for the
identification of nonparametric systems of equations. Matzkin (1991) consid-
ers a model where the dependent variable is monotone in an unobservable
random term and on a function of observable exogenous variables. Brown and
Matzkin (1996) extend Roehrig’s (1988) conditions and provide an extremum
estimator for estimating nonparametric simultaneous equations of the form
studied in Roehrig (1988). Olley and Pakes (1996) consider a dynamic model
where a firm’s investment at time t depends in a nonadditive, strictly monotone
way on an unobservable productivity variable. They use the monotonicity to
express the unobservable variable in terms of the observable variables. Al-
tonji and Ichimura (1997) consider models with a latent nonadditive func-
tion, and estimate its average derivative. Altonji and Matzkin (1997) provide
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methods to estimate functions, distributions, and average derivatives in non-
parametric, nonadditive models with endogenous regressors. They use a con-
ditional independence assumption to estimate the average derivative of the
nonparametric function with respect to the endogenous regressors, and they
use monotonicity and exchangeability assumptions to estimate the nonpara-
metric function and the distribution of the unobservable random term. Briesch,
Chintagunta, and Matzkin (1997) consider estimation of discrete choice mod-
els where an unobserved heterogeneity variable enters nonparametric subu-
tility functions in a nonadditive way. Heckman and Vytlacil (1999, 2001) and
Vytlacil (2000) consider models where potential outcomes are nonadditive in
unobservable random terms. Blundell and Powell (2001a) consider a nonad-
ditive structural function, and estimate its average. In semiparametric index
models, Han (1987), Cavanagh and Sherman (1998), Abrevaya (2000), Blun-
dell and Powell (2001b), and Das (2001), among others, consider models with
nonadditive unobservable random terms.

In more recent work, some of the identification ideas presented in the first
version of this paper (Matzkin (1999)) have been either applied or extended
to develop methods for estimation of hedonic prices (Bajari and Benkard
(2001)), identification and estimation of triangular simultaneous equation
models (Chesher (2001, 2002a, 2002b) and Imbens and Newey (2001)), estima-
tion of dynamic optimization models (Hong and Shum (2001)), estimation of
nonlinear difference in difference models (Athey and Imbens (2002)), identifi-
cation and estimation of nonadditive marginal utility and nonadditive marginal
production functions from equilibrium conditions in hedonic markets (Heck-
man, Matzkin, and Nesheim (2002)), and estimation of models in which endo-
geneity is handled with functional restrictions (Matzkin (2003)).

In nonparametric models where the unobservable random term is addi-
tive, shape restrictions have been used in previous work to identify otherwise
unidentified nonparametric functions and to estimate nonparametric models
(see, for example, Matzkin (1992)). Matzkin (1994) provides a review of some
of the existent literature for limited dependent variable models and nonpara-
metric regression functions.

Other related literatures are the one, which started with Heckman and
Singer (1984a), on models that incorporate an unobservable random term,
which is interpreted as a heterogeneity parameter, and whose distribution is
nonparametric, the literature on nonparametric conditional quantiles (Stone
(1977)), and the literature on quantile regression, which started with Koenker
and Bassett (1978). (See Chernozhukov and Hansen (2001) for recent work on
the latter literature, related to this paper.)

The outline of the paper is as follows. In the next section, we present the
basic model and study its identification. In Section 3, we present estimators
for the function m and the distribution of ε, together with their asymptotic
properties. The results are extended in Appendix A to functions that depend
on a multidimensional random term ε. Section 4 presents the results of some
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simulations. A short summary is presented in Section 5. Appendix B contains
the proofs of the main theorems.

2. THE MODEL

The building block for the models that we will study can be described by the
basic model

Y =m(X�ε)(2.1)

where m : A × E → R is continuous in (X�ε) and strictly increasing in ε,
A⊂RL is the support of X , E ⊂R is the support of ε� Y and X are observable,
X has a continuous density fX , and ε is an unobservable random term that is
distributed, with a distribution Fε, independently of X . (The model extends im-
mediately to the case where ε is conditionally independent of X .) Many widely
used types of models fall into this category. Models where ε represents unob-
served heterogeneity or a technological shock may satisfy model (2.1). Models
that are expressed in terms of an unobservable variable that is not indepen-
dent of X may be rewritten as models with an unobservable random term that
is independent of X . If Y = r(X�η), where η is not independent of X , but
η= s(X�ε) where ε is independent of X , then Y = r(X� s(X�ε))=m(X�ε).
Suppose, for example, that we represent the relationship Y = m(X�ε) by
Y = v(X) + η, where v(X) = E(Y |X). Then, η = Y − v(X) is mean inde-
pendent of X , but will, in general, depend on X . The conditional expectation
function v is useful to predict Y . However, this function is not as useful when
one is interested in studying the structural random relationship between Y
and X� which gives information about the interaction between the observable
X and the unobservable ε. In fact, estimating m(X�ε) is analogous to estimat-
ing the function η= s(X�ε)= Y − v(X).

Some transformation models satisfy (2.1), such as the one presented in
Box and Cox (1964) and the semiparametric generalized regression model in
Han (1987), when the transformation is strictly increasing. All the transfor-
mation models studied in Horowitz (1996), of the type Y = Λ−1(β′X + ε),
where Λ is an unknown, strictly increasing function and ε is distributed inde-
pendently of X with an unknown distribution, satisfy model (2.1).

Duration models, where Y denotes time in a state and ε is the log-integrated
hazard function, fall into the category of model (2.1), even when the haz-
ard function is not separable in any of its arguments. In this case, −ε is
distributed extreme value, independently of X , and m(X�ε) = Λ−1(X�eε),
where Λ(X�Y) is the integrated hazard up to time Y , conditional on X , and
Λ−1(X� ·) denotes the inverse of Λ(X�Y) with respect to Y .

Duration models with unobserved heterogeneity also satisfy model (2.1),
when the conditional hazard function is multiplicative in the unobserved het-
erogeneity variable. Let θ denote the unobserved heterogeneity variable, as-
sumed to be distributed independently of X . Let h(s|X�θ) denote the con-
ditional hazard function, and suppose that it can be written as h(s|X�θ) =
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r(s�X)e−θ, for some unknown, positive function r. Let ε = u + θ, where
u is the negative of the log of the integrated conditional hazard function.
Then, −u is distributed extreme value, independently of (X�θ), and, hence,
ε is independent of X . In this model m(X�ε)= Λ−1(X�eε), with Λ(X�Y)=∫ Y

s=0 r(s�X)ds. The identification of this model, with r possessing no partic-
ular structure, was studied in Heckman (1991). The case where r(s�X) =
r1(s)r2(X), for some r1 and r2, was studied by Elbers and Ridder (1982), Heck-
man and Singer (1984a, 1984b), Barros and Honoré (1988), and Ridder (1990).
(See Barros (1986) for the case where r(s�X) is a known function of r1(s) and
r2(X).)

In many situations, the value of Y is determined by a vector, (ε1�    � εK), of
unobservable variables, instead of by a single variable. In Appendix A, we deal
with this important case.

The first question that arises when specifying the model in (2.1) is whether
one can identify the function m and the distribution of ε. Following the stan-
dard definition of identification, we say that (m�Fε), is identified if we can
uniquely recover it from the distribution of the observable variables. More
specifically, let M denote a set to which the function m belongs, and let Γ
denote a set to which Fε belongs. Let FY�X(·;m′�F ′ε) denote the joint cdf of the
observable variables when m=m′ and Fε = F ′ε.

DEFINITION: The pair (m�Fε) is identified in the set (M×Γ ) if (i) (m�Fε) ∈
(M × Γ ), and (ii) for all (m′�F ′ε), in (M × Γ ),[

FY�X(·;m�Fε)= FY�X(·;m′�F ′ε)
]⇒ (m�Fε)= (m′�F ′ε)

If for any two functions, m′ and m′′ in M , we can find distributions F ′ε and F ′′ε
in Γ such that the pairs (m′�F ′ε) and (m′′�F ′′ε ) generate the same distribution
of observable variables, m′ and m′′ are said to be observationally equivalent.

DEFINITION: Any two functions, m′ and m′′ in M , are said to be ob-
servationally equivalent if there exist F ′ε�F

′′
ε in Γ such that for all (y�x),

Fy�x(y�x;m′�F ′ε)= Fy�x(y�x;m′′�F ′′ε ).

To analyze the identification of (m�Fε) in model (2.1), we first note that,
since m is strictly increasing in ε, there exists a function v such that for all
x ∈A, ε ∈ E, and y ∈m(A�E), v(x� y)= ε if and only if y =m(x�ε). Hence,
the function v is the inverse of m, conditional on X . Clearly, (v�Fε) is identified
if and only if (m�Fε) is identified. Let Γ denote a set of continuous, strictly
increasing distribution functions. Let V denote a set of continuous functions
to which v belongs. The next lemma shows what properties V has to satisfy to
guarantee the identification of (v�Fε) in V ×Γ . If the function v were assumed
to be differentiable, we could present a different proof for this lemma, using
the results in Brown (1983) and Roehrig (1988).
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LEMMA 1: v� ṽ ∈ V are observationally equivalent if and only if there exists a
strictly increasing function g :v(A�R)→R such that ṽ= g ◦ v on A×R.

PROOF OF LEMMA 1: Note that, by the definition of v and the independence
between ε and X , for all x such that fX(x) > 0 and all y

Pr(Y ≤ y|X = x)= Pr(m(X�ε)≤ y|X = x)

= Pr(ε≤ v(x� y)|X = x)= Fε(v(x� y))

Hence, FY |X=x(y)= Fε(v(x� y)).
If v and ṽ are observationally equivalent, there exist F̃ε and Fε in Γ such that

for all (x� y) ∈A×R, Fε(v(x� y))= F̃ε(ṽ(x� y)). Since F̃ε is strictly increasing,
ṽ(x� y)= (F̃ε)

−1 ◦Fε(v(x� y)). Let g= (F̃ε)
−1 ◦Fε. Then, g is strictly increasing

and ṽ= g ◦ v.
On the other side, suppose that ṽ = g ◦ v, for some strictly increasing func-

tion g. Let F̃ε = Fε ◦ g−1. It then follows that for all x such that fX(x) > 0 and
all y

FY |X=x(y;v�Fε)= Fε(v(x� y))= F̃ε(ṽ(x� y))= FY |X=x(y; ṽ� F̃ε)

Hence, v and ṽ are observationally equivalent. This completes the proof.

The lemma states that the function v is identified up to a monotone trans-
formation, g. One implication of this is that ratios of derivatives of v are iden-
tified, without requiring any normalization. Another implication is that for any
monotone transformation g, (g◦v�Fε ◦g−1) and (v�Fε) generate the same dis-
tribution of (Y�X). To see what this means in terms of the inverse function m,
suppose that m∗ and F∗ε are the true function and distribution, and let v∗ de-
note the inverse function of m∗, conditional on X = x. Then, ε = v∗(x� y) is
distributed with F∗ε and y =m∗(x�ε). Let g be a strictly increasing transforma-
tion. Let ε̃= g(ε) and ṽ(x� y)= g(v∗(x� y)). The lemma implies that the model
ε̃= g(ε)= g(v∗(x� y))= ṽ(x� y) generates the same distribution of the observ-
able variables as the model ε= v∗(x� y). Let m̃ denote the inverse function of
ṽ, conditional on X = x. Then, for any value e, m̃(x� e) denotes the value of y
that satisfies e= ṽ(x� y). Then let ε̃ and x be given. To find such a value of y , we
note that since ε̃= ṽ(x� y)= g(v∗(x� y)), v∗(x� y)= g−1(ε̃). Hence, since m∗ is
the inverse of v∗, conditional on X = x� y = m∗(x�g−1(ε̃)). This shows that
m̃(x� ε̃)=m∗(x�g−1(̃ε)), or, since ε̃= g(ε), m̃(x�g(ε))=m∗(x�ε). Hence, m̃
and m∗ are observationally equivalent if and only if m̃ equals m∗ with ε substi-
tuted by g(ε), for some strictly increasing function g; that is,

m̃(x�g(ε))=m∗(x�ε)(2.2)
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The discussion in the above paragraph shows that, for normalization pur-
poses, we are free to choose the function g in (2.2). One convenient normal-
ization is given by the function g, such that, for some given value x̄ of X ,

g(v(x̄� y))= y(2.3)

The function m, which is the inverse function of g ◦ v in (2.3) is the function
that satisfies

m(x̄�ε)= ε(2.4)

Hence, normalization (2.3) amounts to fixing the values of the function m at
some value of the vector X . Note that a normalization of this type is implicitly
assumed when specifying a linear random coefficient model where m(x�ε)=
ε · x, in which case (2.4) is satisfied for x̄= 1. An implication of this is that the
linear random coefficient model is too restrictive. There is no need to specify
a multiplicative structure between ε and x. One only needs the property that
m(1� ε)= ε in order to identify the distribution of ε and the function m. Note
also that the linear specification m(x�ε)= β ·x+ε satisfies this normalization
with x̄= 0. Somewhat more generally, we could require that

m(x0� x̄1� ε)= ε�(2.5)

for all x0 and some given x̄1, where X = (X0�X1). If, for example,
m(x0� x̄1� ε) = ε · x̄1 + r(x0� x̄1), where r(x0� x1) = 0 when x1 = x̄1, then m
would satisfy (2.5). Note that the additive structure would not need to be main-
tained when X1 �= x̄1.

When using a normalization of the type (2.4) in estimating a random demand
or supply function, it may become important to know the implied normaliza-
tion in the generating utility or production function. Suppose, for example,
that m(x�ε) represents the demand for a single input by a perfectly competi-
tive firm, where X = w is the input price, in terms of the output price, and ε
is a productivity shock. Denote the random production function of the firm by
p(y�ε), where y denotes the quantity of the input. Then, the value y =m(w�ε)
that satisfies the first order condition for profit maximization is that for which
p1(y� ε)=w, where p1 denotes the derivative of p with respect to its first co-
ordinate. The condition that m(w�ε)= ε for some w can be restated in terms
of the production function p, by requiring that for each t, p1(t� t) = w. This
condition states that along the isoprofit defined by w, the value of the pro-
ductivity shock ε that corresponds to a firm whose production function is tan-
gent to the isoprofit at Y = y is ε= y . Examples of random production func-
tions where the productivity shock enters in this way are those that, for some
α ∈ (0�1) and all ε > 0, coincide on the ray where y = ε with functions of the
type p(y�ε)= yαε1−α or p(y�ε)= (yα+ εα)1/α. For the first type, w= α, while
for the second w = (2)(1−α)/α. (For the use of this normalization in hedonic
models, see Heckman, Matzkin, and Nesheim (2002).)
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An alternative route to choosing a normalization is to see whether the re-
strictions of economic theory that are implied on the function m could be used
to restrict the set of functions v in such a way that no two different functions
that satisfy those restrictions can be strictly increasing transformations of each
other. Suppose, for example, that the function m is homogeneous of degree
one in ε and some other of its arguments, on some given ray from the origin.
More specifically, suppose that, for some X = (x̄0� x̄1), some α ∈ R, some ε,
and all λ≥ 0,

m(x̄0�λx̄1�λε)= λα where m(x̄0� x̄1� ε)= α(2.6)

Then, using arguments as those in Matzkin (1992, 1994), one can show that for
any two conditional inverse functions v, corresponding to two different func-
tions m satisfying (2.6), it is not possible to write one of those v functions as a
strictly increasing transformation of the other. One can obtain the same effect
if the function m is such that for some x̄1, some α ∈R, all x0 and all λ≥ 0,

m(x0�λx̄1�λε)= λα where m(x0� x̄1� ε)= α(2.7)

When m is a profit function or a cost function, m is homogeneous of de-
gree one in all or some of its arguments, and hence it may satisfy either (2.6)
or (2.7). Thus, in these cases, identification requires only a location normal-
ization, which can be imposed by fixing the value of the function at one point.
Suppose, for example, that X0 denotes a vector of observable characteristics
of a typical firm, (X1� ε) denotes the vector of output and input prices, and m
denotes the profit of the firm. If the firm chooses its output and input quan-
tities taking prices as given, m will be homogenous of degree one in (X1� ε).
As another example, suppose that X0 denotes the output quantity of a typical
firm, (X1� ε) denotes a vector of input prices, and m denotes the cost function
of the firm. Then, if the firm minimizes costs taking input prices as given, m
will be homogenous of degree one in (X1� ε).

If it is reasonable to assume that the v function is additive in one of its ar-
guments, then, again one can show that no two different functions v can be
written as strictly increasing transformations of each other (see Matzkin (1992,
1994)). More explicitly, suppose that X = (X0�X11�X12) is such that X12 ∈R,
and that

v(x0� x11� x12� y)= r(x0� x11� y)+ x12 where r(x̄0� x̄11� y)= α(2.8)

for some (x̄0� x̄11� y) and α. The inverse function m corresponding to v in (2.8)
has the form

m(x0� x11� x12� ε)= s(x0� x11� ε− x12) where s(x̄0� x̄11�α)= y(2.9)

Specification (2.9) can be seen as a nonparametric, partially nonadditive gen-
eralization of the transformation model studied in Horowitz (1996), where
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Y =Λ−1(β′X+ε), Λ−1 is unknown and strictly increasing, and the distribution
of ε is unknown. In Horowitz (1996), the value of Λ is specified at one point
and the absolute value of the coefficient of one coordinate of X is set to 1. In
our specification, we specify the value of s at the point (x̄0� x̄11�α) and set the
coefficient of X12 equal to −1. (Note also the resemblance with the parametric,
random production function specified in McElroy (1987).) The identification
here can also be achieved if

m(x0� x11� x12� ε)= s(x0� x11� ε− x12) where s(x0� x̄11�α)= y(2.10)

for some x̄11 and all x0. Specification (2.10) would be satisfied, for example, if
the function m were such that m(x0� x̄11� x12� ε)= n1(x̄11� x12−ε)+n2(x0� x̄11),
for some unknown functions n1 and n2 such that n2(x0� x̄11)= 0 for all x0. Note
that this function need not be additively separable in the n1 and n2 functions
when X11 �= x̄11.

To see how this specification may arise, for example, in a demand function,
suppose that the preferences of a typical consumer for commodities Z and Y
are represented by a twice continuously differentiable, strictly increasing, and
strictly concave utility function U(z − ε� y), with strictly positive cross partial
derivative, U12. Then, the solution to the maximization of U subject to the
budget constraint z+py = I, which is obtained by maximizing U(I−ε+py� y)
over y , is given by a function of the form Y = m(p� I − ε), which is strictly
increasing in its last coordinate. If the utility function U depends also on some
vector, w, of observable characteristics of the consumer, then we will have that
Y =m(w�p� I − ε).

An additional implication of Lemma 1 is that, instead of studying various
specifications for the function m, one can achieve identification by specify-
ing the distribution function Fε. Suppose that the utility function of a typi-
cal consumer is a function U(z� y�ε), which is strictly increasing and strictly
concave with respect to its first two arguments and twice continuously differ-
entiable with respect to its three arguments. The first and second order con-
ditions for utility maximization subject to the budget constraint z + py = I
together with the Implicit Function Theorem imply that the demand func-
tion Y = m(p� I�ε) will be strictly increasing with respect to ε if for all p,
U13p − U23 < 0. This is satisfied, for example, if for some functions v and ṽ,
U(z� y�ε) = v(z� y)+ ṽ(y� ε), where ṽ12 > 0. (See Brown and Matzkin (1996)
and Heckman, Matzkin, and Nesheim (2002) for methods to estimate the util-
ity functions in a particular case and in hedonic models, respectively.) It follows
by Lemma 1 that if the distribution of ε is specified, the demand function m
will be identified.

In some cases, one may even know the distribution of ε. Consider, for ex-
ample, a duration model with a nonparametric hazard function λ(X� t) > 0.
Let ε = ln

∫ T

−∞ λ(X� t)dt. Then, it is well known that η = −ε is distributed
independently of X and, for all e, Fη(e) = exp(−exp(−e)). Hence, Fε(e) =
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1− exp(−exp(e)). Let Y = T . Then, using Lemma 1, we get the well known
result that the function v(x� y)= ln

∫ y

−∞ λ(x� t)dt is nonparametrically identi-
fied, since FY |X=x(y)= 1− exp(−exp(v(x� y))).

3. ESTIMATION OF THE BASIC MODEL

To develop estimators for the function m and the distribution of ε in the
basic model (2.1), we will derive expressions for these, in terms of the distri-
bution of the vector of the observable variables. We will do this for the three
basic specifications described in Section 2. Analogous expressions could be ob-
tained for other specifications of the function m. Once the unknown functions
and distributions are expressed in terms of the distribution of (Y�X), we will
derive estimators for these unknown functions and distributions by substitut-
ing the distribution of the observable variables with a nonparametric estimator
of it. While we could consider using any type of nonparametric estimator for
this distribution, we present here the details and asymptotic properties for the
case in which the conditional cdf’s are estimated using the method of kernels.
To express the unknown functions and distributions in terms of the distribu-
tion of the observable variables, let X = (X0�X1). We will make the following
assumptions:

ASSUMPTION I. 1: ε is independent of X1, conditional on X0.

ASSUMPTION I. 2: For all values x of X , m(x�ε) is strictly increasing in ε.

Assumption I.1 guarantees that, conditional on X0, the distribution of ε is
the same for all values of X1. Although we explicitly write X0 as an argument of
the function m, this is not necessary. The vector X0 may be such that the func-
tion m is not a function of it. Assumption I.2 guarantees that the distribution
of ε can be obtained from the conditional distribution of Y given X .

Under these assumptions, the mapping between the unknown functions m
and Fε|X and the distribution of the observable variables FY�X is given by

Fε|X0=x0(e)= FY |X=x(m(x� e))(3.1)

for all e ∈ E and x = (x0� x1) such that fX(x) > 0. This is because
Fε|X0=x0(e) = Pr(ε ≤ e|X0 = x0) = Pr(ε ≤ e|X0 = x0�X1 = x1) =
Pr(m(X�ε) ≤ m(x�e) | X = (x0� x1)) = Pr(Y ≤ m(x�e) | X = x) =
FY |X=x(m(x� e)). The first equality follows by the definition of Fε, the second
follows by the conditional independence between ε and X1, the third follows
by the monotonicity of m(x� ·) in its last argument, the fourth follows by the
definition of Y , and the fifth equality follows by the definition of FY |X .

Equation (3.1) provides an easy interpretation of m(x�e). From these equa-
tions it follows that m(x�e) is the same quantile of the distribution of Y given
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X = x as the quantile that e is of the distribution of ε conditional on X0. In
other words, let q be such that e is the qth quantile of Fε|X0; then, by (3.1),
m(x�e) must be the qth quantile of the conditional distribution, FY |X=x, of Y
given X = x. The set {m(x�e) | x ∈A} then represents the set of the condi-
tional qth quantiles of the distribution of Y given X . So, for example, if the
median of ε, conditional on X0 = x0, is zero, then for all x= (x0� x1)� m(x�0)
is the median of Y conditional on X = x.

3.1. Specification I
Consider first the case where for all ε ∈ E, some x̄1 and all x0 such that

fX(x0� x̄1) > 0,

m(x0� x̄1� ε)= ε� and Assumptions I.1 and I.2 are satisfied(I.1)

Letting X1 = x̄1 in (3.1), it follows that for all x0 such that fX(x0� x̄1) > 0, and
all e ∈E,

Fε|X0=x0(e)= FY |X=(x0�x̄1)(e)(3.2)

Hence, the conditional distribution of ε given X0 = x0 equals the conditional
distribution of Y when X = (x0� x̄1). To derive an expression for the func-
tion m, we note that since Y = m(X�ε) and m(x� ·) is strictly increasing
on E, for x ∈ A the conditional cdf of Y given X = x is strictly increasing
on the set m(x�E) = {y|y = m(x�ε)� ε ∈ E}; hence FY |X has an inverse on
m(x�E). From (3.1) and (3.2), it then follows that for all (x0� x1) such that
fX(x0� x1) > 0,

m(x�e)= F−1
Y |X=(x0�x1)

(
FY |X=(x0�x̄1)(e)

)
(3.3)

Suppose, next that for all ε ∈E, some x̄1 and all x0 such that fX(x0� x̄1) > 0,

m(x0� x̄1� ε)= ε� and Assumptions I.1′ and I.2 are satisfied�(I.2)

where Assumption I.1′ is as follows.

ASSUMPTION I.1′: ε is independent of (X0�X1).

Then, we have that for all e ∈E and x such that fX(x) > 0,

Fε(e)= FY |X=x(m(x� e))(3.1′)

Expression (3.1′) follows because Fε(e) = Pr(ε ≤ e|X = x) = Pr(m(X�ε) ≤
m(x�e) | X = x) = Pr(Y ≤ m(x�e) | X = x) = FY |X=x(m(x� e)). This expres-
sion implies, in particular, that for all e ∈E and all x̃0 such that fX(x̃0� x̄1) > 0,

Fε(e)= FY |X=(x̃0�x̄1)(e) and(3.2′)

m(x�e)= F−1
Y |X=(x0�x1)

(
FY |X=(x̃0�x̄1)(e)

)
(3.3′)
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The overidentification of Fε(e) and m(x�e), in this case, is the result of
strengthening the conditional independence assumption I.1 to the stronger in-
dependence assumption I.1′. Since

∫
fX0|X1=x̄1(x̃0)dx̃0 = 1, it follows

from (3.2′) that

Fε(e)=
∫

Fε(e)fX0|X1=x̄1(x̃0)dx̃0

=
∫

FY |X=(x̃0�x̄1)(e)fX0|X1=x̄1(x̃0)dx̃0

=
∫ ∫ e

−∞

f (s� x̃0� x̄1)

f (x̃0� x̄1)

f (x̃0� x̄1)

f (x̄1)
dsdx̃0

=
∫ e

−∞

f (s� x̄1)

f (x̄1)
ds

= FY |X1=x̄1(e)

Hence, under (I.2) we also have that

Fε(e)= FY |X1=x̄1(e) and(3.2′′)

m(x�e)= F−1
Y |X=(x0�x1)

(
FY |X1=x̄1(e)

)
(3.3′′)

When X0 is not an argument of m, (3.3′′) implies that

m(x�e)= F−1
Y |X1=x1

(
FY |X1=x̄1(e)

)
(3.3′′′)

3.2. Specification II

Consider next the case where for some ε ∈E, some α�y ∈R, some x̄1, all x0

such that fX(x0� x̄1) > 0, and all λ ∈R such that λε ∈E and fX(x0�λx̄1) > 0,

m(x0� x̄1� ε)= α� m(x0�λx̄1�λε)= λα�(II.1)

and Assumptions I.1 and I.2 are satisfied.

Then, given any λ and letting x1 = λx̄1 and e = λε, we have, from (3.1),
that for all such x0, Fε|X0=x0(λε) = FY |X=(x0�λx̄1)(m(x0�λx̄1�λε)) =
FY |X=(x0�λx̄1)(λα), where the second equality follows because m(x0�λx̄1�
λε) = λm(x0� x̄1� ε) = λα. In particular, for any e ∈ E such that fX(x0�
(e/ε)x̄1) > 0,

Fε|X0=x0(e)= FY |X=(x0�(e/ε)x̄1)((e/ε)α)�(3.4)

by letting λ = (e/ε). Hence, Fε|X0=x0(e) can be recovered from the conditional
cdf of Y given X , when y = (e/ε)α and x = (x0� (e/ε)x̄1). Since the strict
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monotonicity of m(x� ·) implies that FY |X has an inverse on m(x�E), it follows
from (3.1) and (3.4) that

m(x�e)= F−1
Y |X=x

(
FY |X=(x0�(e/ε)x̄)((e/ε)α)

)
�(3.5)

which provides the mapping between m(x�e) and the distribution of the ob-
servable variables.

Next, suppose that for some ε ∈ E, some α�y ∈ R, some x̄1, all x0 such that
fX(x0� x̄1) > 0, and all λ ∈R such that λε ∈E and fX(x0�λx̄1) > 0,

m(x0� x̄1� ε)= α� m(x0�λx̄1�λε)= λα(II.2)

and Assumptions I.1′ and I.2 are satisfied

Then, using the same reasoning as used for the case where m(x0� x̄1� ε) = ε,
we have that (3.1′) is satisfied, and we obtain the overidentification result that
for all x̃0 such that fX(x̃0� (e/ε)x̄1) > 0,

Fε(e)= FY |X=(X0�X1)=(x̃0�(e/ε)x̄1)((e/ε)α) and(3.4′)

m(x�e)= F−1
Y |X=(x0�x1)

(
FY |X=(X0�X1)=(x̃0�(e/ε)x̄1)((e/ε)α)

)
(3.5′)

Using, analogously to the derivation of (3.2′′), the fact that
∫
fX0|X1=(e/ε)x̄1(x̃0)×

dx̃0 = 1, we get that

Fε(e)= FY |X1=((e/ε)x̄1)((e/ε)α) and(3.4′′)

m(x0� x1� e)= F−1
Y |X=(x0�x1)

(
FY |X1=((e/ε)x̄1)((e/ε)α)

)
(3.5′′)

As in specification (I.2), when X0 is not an argument of m, (3.5′′) can be sub-
stituted by

m(x1� e)= F−1
Y |X1=x1

(
FY |X1=((e/ε)x̄1)((e/ε)α)

)
(3.5′′′)

3.3. Specification III

Finally, we consider the case where for some unknown function s(·), all
ε ∈E, some α�y ∈R, some x̄11 and all x0� x12 such that fX(x0� x̄11� x12) > 0,

m(x0� x11� x12� ε)= s(x0� x11� ε− x12)� s(x0� x̄11�α)= y(III.1)

and Assumptions I.3 and I.4 are satisfied�

where Assumptions I.3 and I.4 are as follows:

ASSUMPTION I. 3: ε is independent of X1 = (X11�X12), conditional on X0.
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ASSUMPTION I. 4: For all values (x0� x11) of (X0�X11), s(x0� x11� t) is strictly
increasing in t.

Then, for all e ∈E and x= (x0� x11� x12) such that fX(x) > 0,

Fε|X0=x0(e)= FY |X=x

(
s(x0� x11� e− x12)

)
(3.6)

since

Fε|X0=x0(e)= Pr(ε≤ e|X0 = x0)= Pr(ε≤ e|(X0�X1)= (x0� x1))

= Pr
(
ε−X12 ≤ e− x12 | (X0�X1)= (x0� x1)

)
= Pr

(
s(X0�X11� ε−X12)≤ s(x0� x11� ε− x12) |X = x

)
= FY |X=x

(
s(x0� x11� e− x12)

)


Letting X11 = x̄11 and X12 = e− α, in (3.6), we get that

Fε|X0=x0(e)= FY |X=(x0�x̄11�e−α)(y)(3.7)

Hence, the value of the conditional distribution of ε given X0 = x0, at ε =
e, equals the value of the conditional distribution of Y at y, when X0 = x0

and (X11�X12) = (x̄11� e − α). To derive an expression for the function s, we
use (3.6) and (3.7) to get

s(x0� x11� e− x12)= F−1
Y |X=x

(
FY |X=(x0�x̄11�e−α)(y)

)
(3.8)

Consider next the following assumption.

ASSUMPTION I.3′: ε is independent of X .

If Assumption I.3′ holds and the specification is that for some unknown
function s(·)� all ε ∈ E, some α�y ∈ R, some x̄11 and all x0� x12 such that
fX(x0� x̄11� x12) > 0,

m(x0� x11� x12� ε)= s(x0� x11� ε− x12)� s(x0� x̄11�α)= y(III.1)

and Assumptions I.3′ and I.4 are satisfied�

then, we get an overidentification result that for all x̃0 such that fX(x̃0� x̄1�
e− α) > 0

Fε(e)= FY |(X0�X1)=(x̃0�x̄11�e−α)(y) and(3.7′)

s(x0� x11� e− x12)= F−1
Y |X=(x0�x11�x12)

(
FY |(X0�X1)=(x̃0�x̄11�e−α)(y)

)
�(3.8′)



1354 ROSA L. MATZKIN

which, averaging out over x̃0, using the conditional pdf of X0 given X1, gives
that

Fε(e)= FY |X1=(x̄11�e−α)(y) and(3.7′′)

s(x0� x11� e− x12)= F−1
Y |X=x

(
FY |X1=(x̄11�e−α)(y)

)
(3.8′′)

As in (I.2) and (II.2), if X0 is not an argument of the function s, then (3.8′′)
may be substituted by

s(x11� e− x12)= F−1
Y |(X11�X12)=(x11�x22)

(
FY |(X11�X12)=(x̄11�e−α)(y)

)
(3.8′′′)

3.4. Estimation using Specifications I, II, and III

To develop the estimators, let the data be denoted by {Xi�Y i}Ni=1. Let f (y�x),
and F(y�x), denote, respectively, the joint pdf and cdf of (Y�X), let f̂ (y�x),
and F̂(y�x) denote, respectively, their kernel estimators, and let f̂Y |X=x(y) and
F̂Y |X=x(y) denote the kernel estimators of, respectively, the conditional pdf and
conditional cdf of Y given X = x. Then, for all (y�x) ∈R1+L,

f̂ (y�x)= 1
NσL+1

N

N∑
i=1

K

(
y −Y i

σN

�
x−Xi

σN

)
�

F̂(y�x)=
∫ y

−∞

∫ x

−∞
f̂ (s� z)dsdz�

f̂Y |X=x(y)= f̂ (y�x)∫ ∞
−∞ f̂ (s� x)ds

� and F̂Y |X=x(y)=
∫ y

−∞ f̂ (s� x)ds∫ ∞
−∞ f̂ (s� x)ds

where K :R×RL→R is a kernel function and σN is the bandwidth. The above
estimator for F(y�x) was proposed in Nadaraya (1964a). When K(s� z) =
k1(s)k2(z) for some kernel functions k1 :R→R and k2 :RL→R,

F̂Y |X=x(y)=
∑N

i=1 k̃1

(
y−Yi

σ

)
k2

(
x−Xi

σ

)∑N

i=1 k2

(
x−Xi

σ

)
where k̃1(u) =

∫ u

−∞k1(s)ds. Note that the estimator for the conditional cdf
of Y given X is different from the Nadaraya–Watson estimator for FY |X=x(y)
(Nadaraya (1964b), Watson (1964)). The latter is the kernel estimator for
the conditional expectation of Z ≡ 1[Y ≤ y] given X = x. For any t and x,
F̂−1

Y |X=x(t) will denote the set of values of Y for which F̂Y |X=x(y)= t. When the
kernel function k1 is an everywhere positive density on a convex support, this
set of values will contain a unique point. The estimators are obtained by substi-
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tuting FY |X and F−1
Y |X by F̂Y |X and F̂−1

Y |X , at the corresponding values of Y and X ,
in equations (3.2), (3.3), (3.2′), (3.3′), (3.2′′), (3.3′′), (3.3′′′), (3.4), (3.5), (3.4′),
(3.5′), (3.4′′), (3.5′′), (3.5′′′), (3.7), (3.8), (3.7′), (3.8′), (3.7′′), (3.8′′), and (3.8′′′).
Hence, for example, when (I.1) is satisfied,

F̂ε|X0=x0(e)= F̂Y |X=(x0�x̄1)(e) and

m̂(x� e)= F̂−1
Y |X=(x0�x1)

(
F̂Y |X=(x0�x̄1)(e)

);
when (I.2) is satisfied,

F̂ε(e)= F̂Y |X1=x̄1(e) and m̂(x� e)= F̂−1
Y |X=(x0�x1)

(
F̂Y |X1=x̄1(e)

)
�

with

m̂(x� e)= F̂−1
Y |X1=x1

(
F̂Y |X1=x̄1(e)

)
when X0 is not an argument of m.

When (II.1) is satisfied,

F̂ε|X0=x0(e)= F̂Y |X=(x0�(e/ε)x̄1)((e/ε)α)

and

m̂(x� e)= F̂−1
Y |X=x

(
F̂Y |X=(x0�(e/ε)x̄)((e/ε)α)

)
�

with analogous expressions for when (II.2) is satisfied; and when (III.1) is sat-
isfied

F̂ε|X0=x0(e)= F̂Y |X=(x0�x̄11�e−α)(y)

and

ŝ(x0� x11� e− x12)= F̂−1
Y |X=x

(
F̂Y |X=(x0�x̄11�e−α)(y)

)
�

with analogous expressions for when (III.2) is satisfied.
In all the above definitions, the value of the marginal or conditional distrib-

ution of ε, at some given value e, is given by the value of the conditional dis-
tribution of Y , given that X , or, more generally, a subvector, W , of X , equals
a given value, w. This conditional distribution of Y is evaluated at some given
value y . The estimator is obtained by substituting the true conditional distribu-
tion of Y by its kernel estimator. Thus, the consistency and asymptotic normal-
ity of the estimator of the marginal or conditional distribution of ε will follow
from the consistency and asymptotic normality of the kernel estimator for the
conditional distribution of Y given that W = w. In particular, the asymptotic
properties for each of the estimators for the distribution of ε given above can
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be derived from the result in Theorem 1, below, after substituting the corre-
sponding values of w and y . Let W denote a subvector of X of dimension d.
Let w be a particular value of W . Let

∫
K(u)2 = ∫

(
∫
K(u�v)dv)2du, where

v ∈ R1+L−d , and u ∈ Rd corresponds to the coordinates of W . We make the
following assumptions:

ASSUMPTION C. 1: The sequence {Y i�Xi} is i.i.d.

ASSUMPTION C. 2: f (Y�X) has compact support Θ⊂R1+L and it is continu-
ously differentiable on R1+L up to the order s′, for some s′ > 0.

ASSUMPTION C. 3: The kernel function K(·� ·) is differentiable of order s̃, the
derivatives of K of order s̃ are Lipschitz, K(·) vanishes outside a compact set,
integrates to 1, and is of order s′′, where s̃+ s′′ ≤ s′.

ASSUMPTION C.4: As N→∞, σN → 0, ln(N)/(NσL+1
N )→ 0,

√
Nσ

d/2
N →∞,√

Nσ(d/2)+s′′
N → 0, and

√
Nσd

N(
√
(ln(N))/(NσL+1

N )+ σs′′
N )2 → 0.

ASSUMPTION C. 5: 0 < f(w) <∞.

Assumption C.2 requires that the pdf of (Y�W ) be sufficiently smooth. Note
that this requires ε to have a smooth enough density. Assumption C.3 restricts
the kernel function that may be used. Assumption C.4 restricts the rate at
which the bandwidth, σN , goes to zero.

THEOREM 1: Let F̂Y |W =w(y) denote the kernel estimator for the conditional
distribution of Y , conditional on W = w, evaluated at Y = y . Suppose that As-
sumptions C.1–C.5 are satisfied, for s̃ ≥ 0 and s′′ ≥ 2. Then,

sup
y∈R

∣∣F̂Y |W=w(y)− FY |W=w(y)
∣∣→ 0 in probability� and

√
Nσ

(d/2)
N

(
F̂Y |W=w(y)− FY |W=w(y)

)→N(0� VF) in distribution�

where VF =
{∫

K(u)2

}[
FY |W =w(y)

(
1− FY |W=w(y)

)][1/f (w)]

The proof is given in Appendix B. Suppose that Fε(e) = FY |W̃=w̃(ẽ). This
theorem then shows that F̂ε(e) is asymptotically normal with mean Fε(e) and
variance equal to {∫ K(u)2} [Fε(e)(1−Fε(e)]/[Nf(w)σd

N], where w is the value
of W on which we have to condition F̂Y |W to estimate F̂ε(e), and where d is the
dimensionality of W .

To study the asymptotic properties of the estimator for the unknown func-
tion m, we note that the value of the function m, at any given vector (w�e)
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is given by the composition of F−1
Y |W=w and FY |W̃ =w̃(ẽ), for some particular

vector values w and w̃, and some particular value ẽ. By F−1
Y |W=w we denote

the inverse of the conditional distribution of Y given that the subvector, W ,
of X , equals a value w; by FY |W̃ =w̃(ẽ) we denote the conditional distribution
of Y given that the subvector, W̃ , of X , equals the value w̃. The subvec-
tors W and W̃ , of X , are not required to have the same dimension. The es-
timator is obtained by substituting the true conditional distributions of Y by
their kernel estimators. Hence, the consistency and asymptotic normality of
the estimator of m will follow from the consistency and asymptotic normality
of the functional, Φ, of the kernel estimator for the distribution of (Y�X),
which is defined by Φ(F̂Y�X) = F̂−1

Y |W=w(F̂Y |W̃ =w̃(ẽ)). Let d1 denote the num-
ber of coordinates of W̃ , d2 denote the number of coordinates of W , and let
d =max{d1� d2}. Let 1[·] = 1 if the expression in [·] is true; 1[·] = 0 otherwise.
Let

∫
K(u)2 = ∫

(
∫
K(u�v)dv)2du, where v ∈R1+L−d , and u ∈Rd . Assume that∫

K(u)2 is the same when u corresponds to the coordinates of either W or W̃ .
Our next theorem will make use of Assumptions C.1–C.3 and the following
assumptions:

ASSUMPTION C.4′: As N →∞, σN → 0, ln(N)/(NσL+1
N )→ 0, for j = 1�2,√

Nσ
dj/2
N →∞,

√
Nσ

(dj/2)+s′′
N → 0, and

√
Nσd

N(
√
(ln(N))/(NσL+1

N )+ σs′′)2 →
0.

ASSUMPTION C.5′: The subvectors W and W̃ have at least one coordinate
in common, and the values, w and w̃, are different at one such coordinate;
0 < f(w)� f (w̃) <∞; and there exist δ�ξ > 0 such that ∀s ∈ N(m(w�e)�ξ),
f (s�w)≥ δ.

THEOREM 2: Let n̂(w� e) = F̂−1
Y |W =w(F̂Y |W̃=w̃(ẽ)) and n(w�e) =

F−1
Y |W=w(FY |W̃ =w̃(ẽ)). Suppose that Assumptions C.1–C.3, C.4′, and C.5′ are satis-

fied with s̃ ≥ 2 and s′′ ≥ 2. Then,

n̂(w� e)→ n(w�e) in probability and

√
Nσd/2

N (n̂(w�e)− n(w�e))→N(0� Vn) in distribution, where

Vn=
{∫

K(u)2

}[
FY |W̃=w̃(ẽ)(1− FY |W̃=w̃(ẽ))

fY |W=w(n(w�e))2

]
×

[
1[d1 = d]
f (w̃)

+ 1[d2 = d]
f (w)

]
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The proof is given in Appendix B. Suppose that Fε(e) = FY |W̃ =w̃(ẽ). The
statement of the theorem implies then that n̂(w� e) is consistent and asymp-
totically normal with mean n(x� e) and asymptotic variance equal to{∫

K(u)2

}(
Fε(e)

(
1− Fε(e)

))[1[d1 = d]
f (w̃)

+ 1[d2 = d]
f (w)

]
/[

fY |W=w(n(w�e))2Nσd
N

]
�

where w̃ is the value of the vector W̃ on which we have to condition F̂Y |W̃
to estimate F̂ε(e)�w is the value of the vector W that enters as a coordinate
in the function n, and d is the maximum between the number of coordinates
of W̃ and W . Note that the value of the density of w̃ influences the asymp-
totic variance only when the number of coordinates of w̃ is at least as large
as that of w. Also, if the distribution of ε is specified, instead of being esti-
mated, so that n̂(w� e) = F̂−1

Y |W=w(FY |W̃=w̃(ẽ)) where FY |W̃=w̃(ẽ) is known, then√
Nσ

d/2
N (n̂(w�e)− n(w�e))→N(0� Vn) in distribution where

Vn =
{∫

K(u)2

}
FY |W̃ =w̃(ẽ)(1− FY |W̃=w̃(ẽ))

fY |W =w(n(w�e))2 f (w)

with d = d2.
While the kernel function used may be of any order larger than 2, F̂−1

Y |W=w

will be a function only when the order is 2. With higher order kernels, F̂−1
Y |W=w

will converge to a function, as the number of observations increases, but,
for any given t� F̂−1

Y |W=w(t) may possess several values, when the number of
observations is finite. Another issue that may be encountered in practice is
that, with a finite number of observations, there may not exist a value n∗

such that n∗ = F̂−1
Y |W =w(F̂Y |W̃=w̃(ẽ)). This may occur close to the endpoints of

the support of ẽ, when the range of F̂Y |W =w does not include the range of
F̂Y |W̃=w̃(ẽ). To deal with this problem, one can first find the minimum and
maximum values, Fl and Fu, of the range of F̂Y |W=w, and then define a func-
tion F̂Y |W̃ =w̃(ẽ) by: F̂Y |W̃ =w̃(ẽ) = Fu if F̂Y |W̃ =w̃(ẽ) > Fu, F̂Y |W̃ =w̃(ẽ)= F̂Y |W̃=w̃(ẽ)

if Fl ≤ F̂Y |W̃ =w̃(ẽ) ≤ Fu, and F̂Y |W̃=w̃(ẽ) = Fl if F̂Y |W̃=w̃(ẽ) < Fl. The estimator
for n(w�e) then becomes n̂(w� e)= F̂−1

Y |W=w(F̂Y |W̃ =w̃(ẽ)).
To use the results of Theorems 1 and 2 in tests of hypotheses, it is necessary

to replace VF and Vn by consistent estimators. Under the assumptions of Theo-
rem 1, a consistent estimator for VF can be obtained by replacing FY |W=w(y) and
f (w), in the equation for VF , by their respective kernel estimators, F̂Y |W=w(y)

and f̂ (w). Under the assumptions of Theorem 2, a consistent estimator for Vn

can be obtained by replacing, in the equation for Vn, FY |W̃=w̃(ẽ) by F̂Y |W̃ =w̃(ẽ),
f (w̃) by f̂ (w̃), f (w) by f̂ (w), and fY |W=w(n(w�e)) by f̂Y |W =w(n̂(w�e)), where
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F̂Y |W̃=w̃, f̂ , and f̂Y |W=w are the kernel estimators for, respectively, FY |W̃=w̃, f ,
and fY |W=w, and where n̂(w� e) is as defined in the statement of Theorem 2.

3.5. Estimation of Derivatives

In many cases in economics, we estimate a function because we are inter-
ested in its derivatives. For example, we might estimate a demand function
because we want to study some price effect. As another example, we might
be interested in estimating the demand and supply functions of a firm, when
no observations are available on the demanded and supplied quantities, but
where there are observations on the profit of the firm and on the input and
output prices. Then, we can estimate the profit function using the observable
variables, and obtain the demand and supply functions by differentiating the
estimated profit function with respect to prices. In particular, if ε represents
an unobserved price in a profit function m(x�ε), the derivative of m, with re-
spect to ε, determines the demand for the input whose price is ε. Matzkin
(1999) presents estimators for the derivatives of the function m with respect
to x and ε, for some of the specifications presented in Section 2, and shows
their consistency and asymptotic normality.

4. SIMULATIONS

To provide an indication of how the new estimators may perform in practice,
we run a small simulation experiment, using the following two designs:

• DESIGN A: Y =X + ε where X ∼N(0�1) and ε∼N(0�1).
• DESIGN B: Y = (33/44)X4(−ε)−3 where X ∼N(6�1) and ε∼N(−6�1).

The first design was chosen to evaluate how badly the estimator may per-
form, relative to the best estimator that one can use when the function is addi-
tively separable in ε, and its parametric form is known. Design B is the profit
function generated from a production function of the form p(z) = za where
a = 75, X is the price of the output, and −ε is the price of the input z. We
wrote this function in terms of −ε to transform it to be strictly increasing in ε.

For each design, we run 100 simulations of 250 and 500 observations. For
each simulation, we estimated the functions m and Fε at 100 fixed points,
which were drawn from a uniform distribution with support [−2�2] × [−2�2]
for Design A and support [4�8] × [−8�−4] for Design B. Besides using our
nonparametric nonadditive (NPNA) estimator, we also used, for compar-
ison, a Nadaraya–Watson estimator (NW) and a linear least squares esti-
mator (LS). When using the Nadaraya–Watson estimator, we estimated the
model y =m(x�ε)= v(x)+ε, with v nonparametric and ε possibly dependent
on X . When using the linear least squares estimator, we estimated the model
y = β · x+ ε with ε independent of X .
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TABLE I
BANDWIDTHS

N = 250 N = 500

σY σX σY σX

Design A .4497 .3239 .4031 .2928
Design B .0650 .3050 .0596 .2619

To estimate the functions m and Fε using our new estimators, we specified
x̄ = ε = 1 and α = 2 for Design A, and x̄ = ε = 6, and α = 6 · 33/44 for De-
sign B. The estimators were obtained using a multiplicative Gaussian kernel.
The bandwidths that were used are presented in Table I. (Details about the
simulations, including bandwidths selection, can be obtained from the author’s
web page. Matzkin (1999) presents the results obtained from using the same
designs to estimate the derivatives of m with respect to x and ε.)

For each of the three estimation methods, we estimated the functions m
and Fε at each of the 100 fixed points that were drawn from a uniform dis-
tribution. For each point and estimated function, we used the simulations for
which the estimated densities, and multiplications of densities, that appear in
the denominator of the estimator, were above .025. Using those simulations,
we calculated the absolute value of the bias, variance, and mean squared error.
The averages of these results, over the 100 points, are reported in Tables II
and III for Design A, and in Tables IV and V for Design B.

Figure 1 shows the average behavior, over 500 simulations, of the NPNA
estimators for Design B with N = 500. It shows the average of m̂ over the
simulations, and the mean (in a −−line), the median (in a −·− line), and

TABLE II
DESIGN A, N = 250

NPNA NW LS

|bias| var mse |bias| var mse |bias| var mse

m .1284 .0691 .0961 .0981 .0191 .0324 .0048 .0049 .0050
Fε .0072 .0011 .0012 .0220 .0005 .0010 .0166 .0003 .0006

TABLE III
DESIGN A, N = 500

NPNA NW LS

|bias| var mse |bias| var mse |bias| var mse

m .0986 .0409 .0564 .0668 .0105 .0171 .0056 .0024 .0025
Fε .0075 .0007 .0007 .0186 .0003 .0007 .0137 .0002 .0004
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TABLE IV
DESIGN B, N = 250

NPNA NW LS

|bias| var mse |bias| var mse |bias| var mse

m .1048 .1077 .1606 .6035 .0160 .5877 .8417 .0050 1.1455
Fε .0404 .0019 .0037 .1081 .0016 .0213 .0379 .0001 .0020

TABLE V
DESIGN B, N = 500

NPNA NW LS

|bias| var mse |bias| var mse |bias| var mse

m .0800 .1022 .1285 .6030 .0155 .5816 .8408 .0025 1.1433
Fε .0324 .0012 .0023 .1104 .0013 .0215 .0293 .0002 .0014

the 5th and 95th percentiles (in the · · · lines) of F̂ε, m̂(·�−6) and m̂(48� ·),
together with the true values of Fε, m(·�−6) and m(48� ·) (in the solid lines).
For analogous figures corresponding to Design A and to the estimators for the
derivatives of m in Designs A and B, see Matzkin (1999).

5. SUMMARY

We have presented estimators for models in which the value of a dependent
variable is determined by a nonparametric function that is not necessarily ad-
ditive in unobservable random terms. The estimators for the distribution of
the unobservable random terms and the nonparametric function were derived
and were shown to be consistent and asymptotically normal. The estimators
were defined as nonlinear functionals of a kernel estimator for the distribution
of the observable variables. The results of some simulations indicate that the
method may outperform alternative parametric and nonparametric estimators.

Dept. of Economics, Northwestern University, 2003 Sheridan Road, Evanston,
IL 60208, U.S.A.; matzkin@northwestern.edu.

Manuscript received August, 1999; final revision received January, 2003.

APPENDIX A: MULTIVARIATE UNOBSERVABLE RANDOM TERM

Imposing some structure on the function m, we can use the basic model described in Section 3
to identify and estimate random functions that depend on a vector of unobservable random terms.
Let X = (X0�X1) be such that X0 = w0, and X1 = (w1�    �wK). Let ε = (ε1�    � εK). Assume
that ε is distributed independently of X1 conditional on X0 . Assume, further, that the joint dis-
tribution of (ε1�    � εK), conditional on X0, is the multiplication of the marginal distributions of
the εk’s, conditional on X0. For each k, let w0k denote a subvector of w0. Then, if the function
m can be expressed as a known function of K basic functions, each of which satisfies model (2.1),
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FIGURE 1.—Average behavior of the NPNA estimators for Design B.
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it is possible, under some restrictions, to identify the distribution of ε and each of the K random
functions.

Our results allow, for example, the identification of each individual function in a summation,
when only the value of the sum of the random functions is observed. They also allow the identifi-
cation of each individual function in a multiplication, when only the total value of the multiplica-
tion of the random functions is observed. The summation case would be important, for example,
if we were interested in identifying individual random behavior from observations on only the ag-
gregate value of a dependent variable. The multiplicative case would be important, for example,
if we were interested in estimating a multiplicative production function for some product, when
the product is produced using some intermediate inputs. If these intermediate products were
unobserved and were produced by some observable, more basic products, according to some un-
known random production functions, then, using the results below, we can determine that the
random production functions of the unobservable intermediate inputs are identified, as well as
the distributions of the unobservable random terms, ε.

We present the results for the case in which each of the K basic functions satisfies specifica-
tion (I.1). Analogous results can be obtained by using the other possible specifications. Suppose
that

m(X�ε)= r
(
n1(w01 �w1� ε1)�    � nK(w0K �wK�εK)

)
(A.1)

for some known, continuously differentiable function r :RK → R and some unknown, nonpara-
metric functions n1�    � nK . Note that in specification (A.1), each subvector wk enters as an ar-
gument only in the function nk. Some, or all, of the coordinates of w0 may enter as arguments
in some, or all, of the functions nk. Let Fε|X0 denote the unknown distribution of ε, conditional
on X0. Assume, for simplicity, that the support of (X�ε) is RL+K , where X ∈RL. Let α1�    � αK

be known numbers. We will make the following assumptions:

ASSUMPTION AA.1: At (α1�    � αK), the function r is strictly increasing in each of its arguments.

ASSUMPTION AA.2: For each k, there exists a value wk of wk such that for all values of (w0k � εk),
nk(w0k �wk� εk)= εk.

ASSUMPTION AA.3: For each k, there exists a value w̃k of wk such that for all values of (w0k � εk),
nk(w0k � w̃k� εk)= αk.

ASSUMPTION AA.4: For each k, and each (w0k �wk� εk) such that wk �= w̃k, nk(w0k �wk� εk) is
strictly increasing in εk.

ASSUMPTION AA.5: For all e1�    � eK� f(ε1��εK)|X0=w0(e1�    � eK)=∏K
k=1 fεk |X0=w0(ek).

ASSUMPTION AA.5′: For all e1�    � eK� f(ε1��εK)(e1�    � eK)=∏K
k=1 fεk(ek).

ASSUMPTION AA.6: For all e1�    � eK� f(ε1��εK)|X(e1�    � eK)= f(ε1��εK)|X0(e1�    � eK).

ASSUMPTION AA.6′: For all e1�    � eK , f(ε1��εK)|X(e1�    � eK)= f(ε1��εK)(e1�    � eK).

Assumptions AA.2 and AA.4 impose on each function nk the specification (I.1). Assump-
tion AA.3 is used to find values of the vector X for which the conditional distribution of Y coin-
cides with the conditional distribution of nk. A very simple example of a function m that satisfies
Assumptions AA.1–AA.4 is m(X�ε) =∑K

k=1 εkwk , where wk ∈ R. In this case, wk = 1 and for
αk = 0, w̃k = 0. Assumption AA.5 states that, conditional on X0, the εk are independent across
them, while Assumption AA.5′ states that the εk are unconditionally independent across them.
These assumptions allow us to identify, respectively, the conditional and unconditional joint dis-
tribution of ε, from the marginal distributions. If these conditions were not satisfied, we would
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only be able to show the identification of the marginal distributions of the εk. Assumption AA.6
states that ε is independent of X1, conditional on X0 , while Assumption AA.6′ states that ε is
independent of X = (X0�X1). For each k, let wk denote the value of X1 when wj = w̃j for j �= k;
let wk denote the value of X1 when wk = wk and wj = w̃j for j �= k; let Xk = (w0k �X1), and,
for each k, define the function rk :R→R by rk(t)= r(α1�    � αk−1� t� αk+1�    � αK). We can now
state the following result, which is proved in Appendix B:

THEOREM 3: If Assumptions AA.1–AA.6 are satisfied, then Fε|X0=w0 and m are identified. In
particular, for all k and all (w0�wk� ek),

Fεk |X0=w0(ek)= FY |X=(w0�w
k)(rk(ek))� and

nk(w0k �wk� ek)= r−1
k

(
F−1

Y |Xk=(w0�w
k)

(
FY |X=(w0�w

k)(rk(ek))
))


If Assumptions AA.1–AA.4, AA.5′, and AA.6′ are satisfied, then Fε and m are identified. In
particular, for all k and all (w0�wk� ek),

Fεk(ek)= FY |X1=wk(rk(ek))� and

nk(w0k �wk� ek)= r−1
k

(
F−1

Y |Xk=(w0k
�wk)

(
FY |X1=wk(rk(ek))

))


Since, in the statement of the above theorem, the random functions, nk, and the mar-
ginal distributions of the εk’s are expressed in terms of functionals of the distribution of
the observable variables, we can define estimators for these functions and distributions by
substituting the true distribution of (Y�X) by its kernel estimator, in a similar way as
that followed in Section 3. The asymptotic properties of the estimators for the marginal
distributions of the εk’s can be determined using the results of Theorem 1. The consis-
tency of the estimators for the nk functions follows by the convergence in probability of
F̂−1

Y |Xk=(w0�w
k)
(F̂Y |X=(w0�w

k)(rk(ek)) to F−1
Y |Xk=(w0�w

k)
(FY |X=(w0�w

k)(rk(ek)) and the convergence in

probability of F̂−1
Y |Xk=(w0k

�wk)
(F̂Y |X1=wk (rk(ek))) to F−1

Y |Xk=(w0k
�wk)

(FY |X1=wk(rk(ek))), which can be

established using the results of Theorem 2 and the continuity of the function r. The asymptotic
distribution of the estimators for the nk functions follow from the results of Theorem 2 and by
the standard Delta method, using the continuous differentiability of the function r. Hence, under
the assumptions of Theorem 2, we get that, when Assumptions AA.1–AA.6 are satisfied, and d
equals the dimension of (w0�w

k),
√
Nσd/2

N (n̂k(w0k �wk� ek)− nk(w0k �wk� ek))→N(0� Vk) in distribution,

where

Vk=
{∫

K(u)2

}[
FY |X=(w0 �w

k)(rk(ek))(1− FY |X=(w0�w
k)(rk(ek)))

fY |Xk=(w0k
�wk)(nk(w0k �wk� ek))2

]

×
[

1

f (w0�w
k)
+ 1

f (w0�wk)

]
(∆k)

2�

and

∆k = ∂r−1
k (t)

∂t

∣∣∣∣
t=F−1

Y |X=(w0�w
k)

(F
Y |X=(w0�w

k)
(rk(ek)))



When Assumptions AA.1–AA.4, AA.5′, and AA.6′ are satisfied,
√
Nσd/2

N

(
n̂k(w0k �wk� ek)− nk(w0k �wk� ek)

)→N(0� V ′
k) in distribution�
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where

V ′
k=

{∫
K(u)2

}[
FY |X1=wk (rk(ek))(1− FY |X1=wk(rk(ek)))

fY |Xk=(w0k
�wk)(nk(w0k �wk� ek))2

]

×
[

1[d1 = d]
f (wk)

+ 1[d2 = d]
f (w0k �w

k)

]
(∆′k)

2�

∆′k =
∂r−1

k (t)

∂t

∣∣∣∣
t=F−1

Y |Xk=(w0k
�wk)

(F
Y |X1=wk (rk(ek)))

�

d1 denotes the dimension of wk, d2 denotes the dimension of (w0k �w
k), and d =max{d1� d2}.

APPENDIX B: PROOFS OF THEOREMS

In this Appendix, we provide the proofs of Theorems 1, 2, and 3. Theorems 1 and 2 present
the asymptotic properties of our estimators for the distribution of ε and the function m. Since
all these estimators are functionals of kernel estimators for the distributions of the observable
variables, we develop their asymptotic properties using a Delta method, as developed in Newey
(1994) and Ait-Sahalia (1994). We present the “Delta-method” result that we use in the Lemma
below.

To deal with the situation in which the estimators are conditioned on vectors that may
possess only some coordinates in common, we partition X ∈ RL into X = (W0�W1�W2�W3),
where, after relabeling the axes accordingly, X = (Z1�X−1) = (Z2�X−2), Z1 = (W0�W1), Z2 =
(W0�W2), X−1 = (W2�W3), and X−2 = (W1�W3). Hence, W0 denotes the subvector of coordi-
nates of X that Z1 and Z2 share, W3 denotes the subvector of X that is not included in ei-
ther Z1 or Z2, and W1 and W2 denote the subvectors of X that are included in one but not
the other of Z1 and Z2. Let d1 = dim(Z1) and d2 = dim(Z2). For any sufficiently differen-
tiable function G :R1+L→R, define g(y�x)= ∂1+LG(y�x)/∂y∂x, g(z1)=

∫
g(y� z1� x−1)dy dx−1,

g(z2) =
∫
g(y� z2� x−2)dy dx−2, g(y� z1) =

∫
g(y� z1� x−1)dx−1, g(y� z2) =

∫
g(y� z2� x−2)dx−2,

GY |Z1=z1(y
′)= (

∫ y ′
−∞ g(s� z1)ds)/g(z1), and GY |Z2=z2(y

′)= (
∫ y ′
−∞ g(s� z2)ds)/g(z2). (In the proofs

of Theorems 1 and 2, we will use W to denote a subvector of X , instead of Z1 and Z2) Let C
denote a compact set in R1+L that strictly includes Θ, the compact support of (Y ×X). Let D de-
note a set of functions G :R1+L →R such that, for each such G, g(y�x) exists, it is bounded on C ,
and vanishes outside C . Denote the norm ‖G‖ by ‖G‖ = sup(y�x)∈Θ |g(y�x)|. Let Ω(·) denote a
functional from the set D into a Euclidean space. Let F denote FY�X .

LEMMA: Suppose that:
(i) there exists a linear functional, DΩ(·), and a reminder functional, RΩ(·), such that:

(i.a) for all H ∈D, Ω(F +H)−Ω(F)=DΩ(F�H)+RΩ(F�H);
(i.b) for 0 <a1� a2 <∞ and all H ∈D for which ‖H‖ is sufficiently small, |DΩ(F�H)| ≤ a1‖H‖

and |RΩ(F�H)| ≤ a2‖H‖2;
(i.c) for values z1 and z2 of subvectors Z1 and Z2 of X , which possess at least one common

coordinate of X with distinct values, and for real valued functions r1(y� z1� x−1) and r2(y� z2� x−2),
which are bounded and continuous a.e. and vanish outside the compact set C ,

DΩ(F�H)=
2∑

q=1

[∫
rq(s� zq� x−q)h(s� z

q� x−q) d(s� x−q)

]
�

where for at least one q ∈ {1�2}, and some h such that H ∈ D,
∫
rq(s� zq� x−q) h(s� zq� x−q) ×

d(s� x−q) �= 0.
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For each q, let jq = −1 if, for some h as above,
∫
rq(s� zq� x−q)h(s� z

q� x−q)d(s� x−q)

�= 0; let jq = 1 otherwise. Let d̃=max{dq | q such that jq = 1}.
(ii) Assumptions C.1, C.2, and C.3 are satisfied with s′′ ≥ 2, and s̃ ≥ 0.
(iii) As N→∞, σN → 0, ln(N)/(NσL+1

N )→ 0,√
Nσd

N

(√
(ln(N))/(NσL+1

N )+σs′′
N

)2 → 0

and for all q such that jq = 1,
√
Nσ

dq/2
N →∞ and

√
Nσ

(dq/2)+s′′
N → 0.

For each q such that jq = 1, let

Vq=
{∫ [∫

K(s� zq� x−q)d(s� x−q)

]2

dzq

}
×

[∫ [
rq(s� zq� x−q)

]2
f (s� zq� x−q)d(s� x−q)

]


Then,

Ω(F̂)→Ω(F) in probability, and√
Nσd̃

N

(
Ω(F̂)→Ω(F)

)→N(0� V ) in distribution, where

V =
[

2∑
q=1

1[jq = 1]1[
dq = d̃

]
Vq

]


PROOF: To show convergence in probability, we note that by (ii), (iii), and Lemma B.3 in
Newey (1994), ‖F̂ − F‖→ 0 in probability. Let H = F̂ −F be such that ‖H‖ is sufficiently small.
Since by (i.a) and (i.b), |Ω(F̂)−Ω(F)| ≤ a1‖F̂ − F‖ + a2‖F̂ − F‖2, and, by above, ‖F̂ − F‖→ 0
in probability, the result follows.

To show the convergence in distribution result, for each q such that jq = 1, let

DΩ(F�H;zq)=
[∫

r
q
k(s� z

q� x−q)h(s� z
q� x−q)d(s� x−q)

]


Let H = F̂ − F . Then, by (i.c), (ii), (iii), and Lemma 5.3 in Newey (1994),√
Nσ

dq
N DΩ(F� F̂ − F;zq)→N(0� Vq) in distribution, where

Vq =
{∫ [∫

K(s� zq� x−q)d(s� x−q)

]2

dzq

}
×

[∫ [
rq(s� zq� x−q)

]2
f (s� zq� x−q)d(s� x−q)

]


By (i.b), (iii), and Lemma B.3 in Newey (1994),
√
Nσd̃

NRΩ(F�H)→ 0 in probability. Hence,

√
Nσd̃

NDΩ(F�H)=
√
Nσd̃

N

[
2∑

q=1

1[jq ≥ 0]1[
dq = d̃

]
DΩ(F� F̂ − F;zq)

]
+ op(1)
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The result will then follow once we show that√
Nσd̃

N1[j1 = 1]1[
d1 = d̃

]
DΩ(F� F̂ − F;z1) and√

Nσd̃
N1[j2 = 1]1[

d2 = d̃
]
DΩ(F� F̂ − F;z2)

have asymptotic covariance equal to 0. Denote z1 and z2 by z1 = (w1
0�w

1
1) and z2 = (w2

0�w
2
2),

where w1
0 are w2

0 are the values of the coordinates that z1 and z2 have in common. For each q
and i, let

v
q
i =

(
σL+1)−1

∫
rq(s� zq� x−q)K

(
yi − s

σ
�
(zq)i − zq

σ

(x−q)i − x−q

σ

)
dsdx−q

Then, as is well known (see, for example, the proof of Lemma 5.3 in Newey (1994)),

E(v
q
i )=

∫
rq(s� zq� x−q)f (s� z

q� x−q)ds dx−q +O
(
σs′′ )(B.1)

By the definition of DΩ(F� F̂ − F;zq), the covariance between
√
Nσd1

N DΩ(F� F̂ − F;z1) and√
Nσ

d2
N DΩ(F� F̂ − F;z2) equals

σ(d1+d2)/2

σ2(L+1)

{
E

[(∫
r1K1

)(∫
r2K2

)]
−E

(∫
r1K1

)
E

(∫
r2∂K2

)}
where for q= 1�2(∫

rqKq

)
=

∫
rq(s� zq� x−q)K

(
si − s

σ
�
(zq)i − zq

σ
�
(x−q)i − (x−q)

σ

)
d(s� x−q)

Note that

E

[(∫
r1K1

)(∫
r2K2

)]
= σ2L+2−d1−d2

∫ (∫
r̃ 1K̃1

)(∫
r̃ 2K̃2

)
f (si� xi)d(si� xi)�

where ∫
r̃ 1K̃1=

∫
r1(si − σs̃� z1�wi

2 −σw̃2�w
i
3 − σw̃3)

×K

(
s̃�

wi
o −w1

0

σ
�
wi

1 −w1
1

σ
� w̃2� w̃3

)
ds̃ dw̃2 dw̃3�∫

r̃ 2K̃2=
∫

r2(si − σs̃� z2�wi
1 −σw̃1�w

i
3 − σw̃3)

×K

(
s̃�

wi
o −w2

0

σ
� w̃1�

wi
2 −w2

2

σ
� w̃3

)
ds̃ dw̃1 dw̃3�

and xi = (wi
o�w

i
1�w

i
2�w

i
3). Let tu = dim(wu) for u = 0�1�2�3. Then, d1 = t0 + t1, d2 = t0 + t2,

L= t0 + t1 + t2 + t3, and

σ(d1+d2)/2

σ2(L+1)
E

[(∫
r1K1

)(∫
r2K2

)]
= σ(t1+t2)/2

∫ (∫
r̂ 1K̂1

)(∫
r̂ 2K̂2

)
× f (si�w

1
o + σŵ0�w

1
1 + σŵ1�w

2
2 +σŵ2�w

i
3)

× d(si�w)
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where ∫
r̂ 1K̂1=

∫
r1(si −σs̃� z1�w2

2 − σ(ŵ2 − w̃2)�w
i
3 − σw̃3)

×K(s̃� ŵ0� ŵ1� w̃2� w̃3)ds̃ dw̃2 dw̃3�∫
r̂ 2K̂2=

∫
r2(si −σs̃� z2�w1

1 − σ(ŵ1 − w̃1)�w
i
3 − σw̃3)

×K

(
s̃� w̃0 + w1

0 −w2
0

σ
� w̃1� ŵ2� w̃3

)
ds̃ dw̃1 dw̃3�

and

(si�w)= (si� ŵo� ŵ1� ŵ2�w
i
3)

It then follows by bounded convergence, (B1), (ii), and (iii), that the covariance converges to 0.
This completes the proof of the Lemma.

PROOF OF THEOREM 1: Define the functional Λ(·) on D by Λ(G) = GY |W =w(y). Then,
Λ(F̂)= F̂Y |W =w(y) and Λ(F)= FY |W =w(y). (We omit writing explicitly the dependence of Λ on y ,
and w, for brevity of exposition.) For any H in D such that ‖H‖ is sufficiently small, we have that
|h(w)| ≤ a‖H‖, | ∫ y

−∞ h(s�w)ds| ≤ a‖H‖, and |f (w) + h(w)| ≥ b|f (w)| for some 0 < a�b <∞.
Moreover,

Λ(F +H)−Λ(F)= (F +H)Y |W =w(y)− FY |W =w(y)=DΛ(F�H)+RΛ(F�H)�(B.2)

where

DΛ(F�H)=
∫ y

−∞ h(s�w)ds − h(w)FY |W =w(y)

f (w)
and

RΛ(F�H)=
[∫ y

−∞ h(s�w)ds − h(w)FY |W =w(y)

f (w)

][
h(w)

f (w)+ h(w)

]


Hence, for some c <∞,

|DΛ(F�H)| ≤ c

f (w)
‖H‖ and |RΛ(F�H)| ≤ c

f (w)2
‖H‖2(B.3)

Letting z1 = w and r2 ≡ 0, it follows by the assumptions of the theorem and the lemma that
FY |W =w(y)=Λ(F̂)→Λ(F)= FY |W =w(y) in probability and√

Nσd
N

(
F̂Y |W =w(y)− FY |W =w(y)

)=√
Nσd

N

(
Λ(F̂)−Λ(F)

)→N(0� VF)� where

VF =
{∫ (∫

K(u� v)dv

)2

du

}{(
1

f (w)2

)}{∫ [
1[s ≤ y] − FY |W =w(y)

]2
f (s�w)ds

}

=
{∫ (∫

K(u� v)dv

)2

du

}(
1

f (w)

)[
FY |W =w(y)

(
1− FY |W =w(y)

)]
�

for u ∈Rd and v ∈R1+L−d

PROOF OF THEOREM 2: Let W and W̃ be two subvectors of X . Define the functional Φ(·)
on D by Φ(G) = G−1

Y |W =w(GY |W̃ =w̃(ẽ)), where G−1
Y |W =w denotes an arbitrary element of the set

G−1
Y |W =w if G−1

Y |W =w is not a singleton. Then, Φ(F) = n(w� e) and Φ(F̂) = n̂(w� e). Define the
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functionals η and ν by η(G) =GY |W =w(Φ(G)) and ν(G) =GY |W =w̃(ẽ). Then, by the definition
of Φ(F), η(F)= ν(F), and, for any H ∈D, Φ(F +H) satisfies the equation:

η(F +H)= (F +H)Y |W=w(Φ(F +H))= (F +H)Y |W=w̃(ẽ)= ν(F +H)

Let ρ1 > 0 be such that if ‖H‖ ≤ ρ1, then, there exist 0 < a�b <∞, such that for all y , and all
s ∈N(m(w�e)� ξ),

|h(w)| ≤ a‖H‖�
∣∣∣∣ ∫ y

−∞
h(s�w)ds

∣∣∣∣ ≤ a‖H‖�(B.4)

|f (w)+ h(w)| ≥ b|f (w)|� and |f (s�w)+ h(s�w)| ≥ b|f (s�w)|
By (B.2) and (B.3) in the proof of Theorem 1, there exists d <∞ such that for all w′ such that
0 < f(w′) <∞,

sup
y∈R

∣∣(F +H)Y |W =w′(y)− FY |W =w′(y)
∣∣≤ d‖H‖

f (w′)
(B.5)

Using arguments similar to those used in Matzkin and Newey (1993), we will show that there exist
ρ≤ ρ1, such that if ‖H‖ ≤ ρ, then

(F +H)−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

) ∈N(m(w�e)� ξ)(B.6)

To show (B.6), we let r∗ = F−1
Y |W =w(FY |W̃ =w̃(ẽ)), r = (F+H)−1

Y |W=w(FY |W̃ =w̃(ẽ)), and s = FY |W =w(r),
so that r = F−1

Y |W =w(s). Then,

r − r∗ = (F +H)−1
Y |W=w

(
FY |W̃ =w̃(ẽ)

)− F−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

)
= F−1

Y |W =w(s)− F−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

)
=

(
1

fY |W =w(FY |W̃ =w̃(ẽ))

)(
s−FY |W̃ =w̃(ẽ)

)+Rem1

where, for some j1 <∞, |Rem1| ≤ j1|s − FY |W̃ =w̃(ẽ)|2, and where the last equality follows from
Taylor’s Theorem. Since (s − FY |W̃ =w̃(ẽ)) = FY |W =w(r)− (F +H)Y |W=w(r), it follows from (B.5)
that

|r − r∗| ≤
∣∣∣∣ 1
fY |W =w(FY |W̃ =w̃(ẽ))

∣∣∣∣d‖H‖f (w)
+ j1d

2‖H‖2

f (w)2


Hence, if ‖H‖ is sufficiently small, |r − r∗| < ξ, which implies that (F +H)−1
Y |W=w(FY |W̃ =w̃(ẽ)) ∈

N(m(w�e)� ξ).
Consider then the H’s such that ‖H‖ ≤ ρ. We will show, again using arguments similar to those

used in Matzkin and Newey (1993) that for some c1 <∞,

|Φ(F +H)−Φ(F)| ≤ c1‖H‖(B.7)

For this we note that

Φ(F +H)−Φ(F)= (F +H)−1
Y |W=w

(
(F +H)Y |W̃=w̃(ẽ)

)− F−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

)
(B.8)

= {
(F +H)−1

Y |W =w

(
(F +H)Y |W̃=w̃(ẽ)

)
− (F +H)−1

Y |W =w

(
FY |W̃ =w̃(ẽ)

)}
+ {

(F +H)−1
Y |W=w

(
FY |W̃ =w̃(ẽ)

)−F−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

)}
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To obtain an expression for the difference in the first brackets of (B.8), we note that by Taylor’s
Theorem,

(F +H)−1
Y |W =w

(
(F +H)Y |W̃=w̃(ẽ)

)− (F +H)−1
Y |W=w

(
FY |W̃ =w̃(ẽ)

)
= ∂(F +H)−1

Y |W=w

∂r

(
FY |W̃ =w̃(ẽ)

)[
(F +H)Y |W̃=w̃(ẽ)− FY |W̃ =w̃(ẽ)

]+Rem2

where, for some j2 <∞,

|Rem2| ≤ j2

∣∣(F +H)Y |W̃=w̃(ẽ)− FY |W̃ =w̃(ẽ)
∣∣2


Hence, since∣∣∣∣∂(F +H)−1
Y |W =w

∂r

(
FY |W̃ =w̃(ẽ)

)∣∣∣∣
=

∣∣∣∣ 1
(f + h)Y |W =w((F +H)−1

Y |W =w(FY |W̃ =w̃(ẽ)))

∣∣∣∣
=

∣∣∣∣ f (w)+ h(w)

f ((F +H)−1
Y |W =w(FY |W̃ =w̃ (̃e))�w)+ h((F +H)−1

Y |W=w(FY |W̃ =w̃(ẽ))�w)

∣∣∣∣
is bounded by (B.4) and (B.6), and, by (B.5),∣∣(F +H)Y |W̃=w̃(ẽ)− FY |W̃ =w̃(ẽ)

∣∣≤ d‖H‖
f (w)

�

it follows that for some a2 <∞,∣∣(F +H)−1
Y |W=w

(
(F +H)Y |W̃=w̃(ẽ)

)− (F +H)−1
Y |W=w

(
FY |W̃ =w̃(ẽ)

)∣∣≤ a2‖H‖(B.9)

To obtain an expression for the difference in the second brackets of (B.8), we note that by (B.4)
and the Mean Value Theorem,

(F +H)Y |W =w

(
(F +H)−1

Y |W=w(t)
)− (F +H)Y |W=w

(
F−1

Y |W =w(t)
)

= ∂(F +H)Y |W=w(r2)

∂y

[
(F +H)−1

Y |W=w(t)−F−1
Y |W =w(t)

]
�

where r2 is between (F +H)−1
Y |W =w(t) and F−1

Y |W =w(t), and where t = FY |W̃ =w̃(ẽ). Hence, since

(F +H)Y |W =w

(
(F +H)−1

Y |W=w(t)
)= t = FY |W =w

(
F−1

Y |W =w(t)
)
�

it follows by (B.6) that

(F +H)−1
Y |W =w(t)− F−1

Y |W =w(t)=
FY |W =w(F

−1
Y |W =w(t))− (F +H)Y |W=w(F

−1
Y |W =w(t))

(f + h)Y |W =w(r2)


It then follows by (B.5) that for some a3 <∞,∣∣(F +H)−1
Y |W=w

(
FY |W̃ =w̃(ẽ)

)− F−1
Y |W =w

(
FY |W̃ =w̃(ẽ)

)∣∣≤ a3‖H‖(B.10)

Hence, (B.7) follows by (B.8)–(B.10).
Next, we will obtain a first order Taylor expansion for Φ(F +H), using the fact that η(F +

H)−η(F)= ν(F +H)− ν(F). Let
∫ t denote

∫ t

−∞. By the definition of η,

η(F +H)−η(F)= (F +H)Y |W =w

(
Φ(F +H)

)−FY |W =w

(
Φ(F)

)
=

∫ Φ(F+H)
f (s�w)ds+ ∫ Φ(F+H)

h(s�w)ds

f (w)+ h(w)
−

∫ Φ(F)
f (s�w)ds

f (w)
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By the Mean Value Theorem, there exist rf and rh, between Φ(F) and Φ(F +H), such that∫ Φ(F+H)

f (s�w)ds −
∫ Φ(F)

f (s�w)ds = f (rf �w)
(
Φ(F +H)−Φ(F)

)
and

∫ Φ(F+H)

h(s�w)ds −
∫ Φ(F)

h(s�w)ds = h(rh�w)
(
Φ(F +H)−Φ(F)

)


Let ∆Φ=Φ(F +H)−Φ(F). Then,

η(F +H)−η(F)

= f(w)f(rf �w)∆Φ+f(w)h(rf �w)∆Φ+f(w)
∫ Φ(F) h(s�w)ds−h(w)

∫ Φ(F) f (s�w)ds

f(w)(f(w)+h(w)) �

where, by (B.4), f (w)+ h(w) > 0. By the definition of ν,

ν(F +H)− ν(F)= (F +H)Y |X=w̃(ẽ)− FY |X=w̃(ẽ)

=
∫ ẽ

f (s� w̃)ds+ ∫ ẽ
h(s� w̃)ds

f (w̃)+ h(w̃)
−

∫ ẽ
f (s� w̃)ds

f (w̃)

= f (w̃)
∫ ẽ

h(s� w̃)ds− h(w̃)
∫ ẽ

f (s� w̃)ds

f (w̃)(f (w̃)+ h(w̃))


Let

Aw̃= f (w̃)

∫ ẽ

h(s� w̃)ds − h(w̃)

∫ ẽ

f (s� w̃)ds

and

Aw= f (w)

∫ Φ(F)

h(s�w)ds − h(w)

∫ Φ(F)

f (s�w)ds

Then,

η(F +H)−η(F)=
[
f (rf �w)+ h(rf �w)

f (w)+ h(w)

]
∆Φ+ Aw

f(w)(f (w)+ h(w))
�(B.11)

and

ν(F +H)− ν(F)= Aw̃

f(w̃)(f (w̃)+ h(w̃))
(B.12)

Since η(F +H)−η(F)= ν(F +H)− ν(F), it follows from (B.11) and (B.12) that

∆Φ= (f (w)+ h(w))Aw̃

f (w̃)(f (w̃)+ h(w̃))(f (rf �w)+ h(rf �w))
− Aw

f(w)(f (rf �w)+ h(rf �w))


By the Mean Value Theorem, there exist r ′f , between Φ(F) and rf , such that f (rf �w) −
f (Φ(F)�w)= [∂f (r ′f �w)/∂y](rf −Φ(F)). Hence,

∆Φ= (f (w)+ h(w))Aw̃

f (w̃)(f (w̃)+ h(w̃))
(
f (Φ(F)�w)+ ∂f (r ′

f
�w)

∂y
(rf −Φ(F))+ h(rf �w)

)
− Aw

f(w)
(
f (Φ(F)�w)+ ∂f (r ′f �w)

∂y
(rf −Φ(F))+ h(rf �w)

) 
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Let

DΦ(F�H)= f (w)

f (w̃)2f (Φ(F)�w)
Aw̃+ f (w)

f (w)2f (Φ(F)�w)
Aw�

and

RΦ(F�H)=
[

(f (w)+ h(w))

f (w̃)(f (w̃)+h(w̃))
(
f (Φ(F)�w)+ ∂f (r ′

f
�w)

∂y
(rf −Φ(F))+h(rf �w)

)
− f (w)

f (w̃)2f (Φ(F)�w)

]
Aw̃

−
[

1

f (w)
(
f (Φ(F)�w)+ ∂f (r ′

f
�w)

∂y
(rf −Φ(F))+ h(rf �w)

)
− 1

f (w)f (Φ(F)�w)

]
Aw

Then,

Φ(F +H)−Φ(F)=DΦ(F�H)+RΦ(F�H)(B.13)

By the definition of RΦ(F�H),

RΦ(F�H)

=
[
f (w̃)2f (Φ(F)�w)h(w)−f (w)f (w̃)2

∂f(r′
f
�w)

∂y (rf−Φ(F))−f (w)f (w̃)2h(rh�w)

f (w̃)2(f (w̃)+h(w̃))f (Φ(F)�w)(f (rf �w)+h(rf �w))

]
Aw̃

−
[
f(w)f(w̃)h(w̃)f(Φ(F)�w)+f(w)f(w̃)h(w̃)

∂f (r′
f
�w)

∂y (rf−Φ(F))+f(w)f(w̃)h(w̃)h(rh�w)

f(w̃)2(f(w̃)+h(w̃))f(Φ(F)�w)(f(rf �w)+h(rf �w))

]
Aw̃

+
[ ∂f (r ′

f
�w)

∂y
(rf −Φ(F))+ h(rf �w)

f (w)f (Φ(F)�w)(f (rf �w)+ h(rf �w))

]
Aw

Since, by the definition of rf and by (B.7), |rf −Φ(F)| ≤ |Φ(F +H)−Φ(F)| ≤ c1‖H‖, it follows
by (B.4) that, for some a4 <∞, |RΦ(F�H)| ≤ a4‖H‖2. Moreover, by the definition of DΦ(F�H),
there exists a5 < ∞ such that |DΦ(F�H)| ≤ a5‖H‖. It then follows by the assumptions of
the Theorem and the Lemma that n̂(w� e) − n(w� e) = Φ(F̂) − Φ(F)→ 0 in probability and√
Nσ

d̃/2
N (n̂(w� e) − n(w� e)) = √Nσ

d̃/2
N (Φ(F̂) − Φ(F))→ N(0� Vn) where d̃ = d = max{d1� d2}

and

Vn=
{∫

K(u)2

}[(
FY |W̃ =w̃(ẽ)

(
1− FY |W̃ =w̃(ẽ)

))]
× [

fY |W =w(n(w� e))
]−2

[
1[d1 = d̃]
f (w̃)

+ 1[d2 = d̃]
f (w)

]


PROOF OF THEOREM 3: We consider the case where Assumptions AA.1–AA.6 are satisfied.
The case where Assumptions AA.1–AA.4, AA.5′ , and AA.6′ are satisfied can be analyzed in a
similar way. Without loss of generality, we will show the identification of the distribution of ε1,
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conditional on X0 =w0. Given η ∈R, let y = r1(η). Note that when X = (w0�w1� w̃2�    � w̃K)=
(w0�w

1), Y =m(X�ε)= r1(ε1). Hence,

Pr
(
Y ≤ y|X = (w0�w

1)
)= Pr

(
r1(ε1)≤ r1(η)|X = (w0�w

1)
)= Pr(ε1 ≤ η|X0 =w0)

where the last equality follows by Assumption AA.6. Hence, the marginal distribution of ε1, con-
ditional on X0, is identified from the conditional distribution of Y , when X = (w0�w

1). Using
similar arguments, we can conclude that the marginal distribution of each εk, conditional on W0,
is identified from the conditional distribution of Y when X = (w0�w1�w2�    �wK) is such that
wk =wk, and wj = w̃j for j �= k. By Assumption AA.5, the distribution of ε conditional on X0, is
the multiplication of the marginal distributions, conditional on X0. Hence, Fε|X0 is identified.

Next, we show that the functions nk are identified. Again, without loss of generality, we take
k= 1. Note that when X = (w0�w1� w̃2�    � w̃K)= (w0�w

1), Y =m(X�ε)= r1(n1(w01 �w1� ε1)).
Hence, using the conditional independence between ε and X1, and the strict monotonicity of n1

in ε1 it follows that

Pr(ε1 ≤ η|X0 =w0)= Pr
(
ε1 ≤ η|X = (w0�w

1)
)

= Pr
(
n1(w01 �w1� ε1)≤ n1(w01 �w1�η)|X = (w0�w

1)
)

= Pr
(
r1(n1(w01 �w1� ε1))≤ r1(n1(w01 �w1�η))|X = (w0�w

1)
)

= Pr
(
Y ≤ r1(n1(w01 �w1�η))|X = (w0�w

1)
)


Since, as we have shown above, Pr(ε1 ≤ η|X0 = w0) = Pr(Y ≤ r1(η)|X = (w0�w
1)) it fol-

lows that FY |X=(w0�w
k)(r1(η)) = FY |X=(w0�w

k)(r1(n1(w01 �w1�η))). It follows that n1(w01 �w1�η) =
r−1

1 (F−1
Y |X=(w01

�wk)
(FY |X=(w0�w

1)(r1(η)))). This completes the proof of the first part of the theorem.
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