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Abstract

Psychological experiments have shown that human performance on traditional
causal reasoning experiments can be greatly influenced by different pretraining
and postraining conditions. In this paper we present a Bayesian theory of sequen-
tial learning that captures observed experimental results [1] . We implement our
theory using the particle filter algorithm, and show that model selection and model
averaging are able to capture the respective effects of pre- and post- training. In
addition, we model the highlighting effect observed in [5] using a particle filter
algorithm as an approximation to exact statistical inference, in accord with the
limited computational capacity of human cognition. We find that the inferential
approximation based on particle filters predicts the highlighting effect.

1 Introduction

Human reasoning is adaptive, as exemplified by the reasoner’s ability to generalize abstract cause-
effect relations from one situation to another. The challenge in understanding causal generalization
is to identify how humans acquire and propagate abstract causal knowledge across domains. Causal
knowledge includes several key aspects, including causal structure as captured by graphical mod-
els of the existence of cause-effect links ([8], [18]), causal power as reflected in the strength of
cause-effect links [4], and causal integration rules that model how to combine multiple cause-effect
relations [4]. In this paper, we will consider these three types of causal knowledge in the context of
causal generalization.

A variety of ”rational” models of causal learning have taken probabilistic approaches to explain
how people acquire causal knowledge from covariational observations presented in the format of
summarized contingency data ([8], [4], and [16]). Despite their success in capturing a variety of
causal learning phenomena, these models leave open the question of how a learner can cope with
non-summary data. In everyday life, people often receive observations incrementally. For such
naturalistic learning situations, sequential models are required to account for the influence of the
order of data presentation.

To address this issue, a Bayesian sequential model can be used as an inference engine to capture the
propagation of causal knowledge over time. Kalman filtering[9] [10] has been successfully applied
in sequential causal learning, and has been used to explain various experimental phenomenon in
animal conditioning ([6] and [5]). However, a limitation of previous work using Kalman filtering
involves the assumption of Gaussian distributions with a linear-sum causal integration rule to com-
bine multiple cause-effect relations. Many empirical studies have shown that the linear-sum rule is
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not able to account for human causal learning with binary variables ([3] and [14]). Accordingly, a
more flexible inference model is required to account for a broader range of learning situations. In
the present paper, we present a model of sequential causal learning based on particle filtering ([19]),
a sequential method used for approximate probabilistic inference over time. This model is used to
explore how different causal integration rules can be selected, and how causal knowledge can be
propagated with increasing certainty as the number of sequential observations increases.

An additional critical issue concerns how to model the generalization of causal knowledge from one
context to another. In the laboratory, researchers have designed behavioral experiments to measure
causal generalizability in controlled environments. Beckers et al. (2005) [1] first trained human
subjects with certain cue-outcome pairs, such as bacon (cue G) and eggs (cue GH) each paired
with a moderate allergic reaction. The combination of of the two cues, bacon and eggs (cue GH)
was paired with either a moderate or a strong allergic reaction. The subjects were then transferred
to a classic forward blocking paradigm with unrelated cues, such as cheese (cue A) paired with
moderate allergy, and cheese and nuts (cue AX) also paired with moderate allergy. Finally, subjects
were tested on how likely nuts alone (cue X) was to cause allergy. Human participants provided
different ratings on the transfer test for cue X depending on whether cue combination GH has been
paired with moderate or strong allergy during the pretraining. Beckers et al.’s (2005) study [1]
provided empirical evidence that different pretaining conditions using unrelated causal cues can
alter the reasoner’s assumptions, and thereby change their subsequent causal inferences. From a
computational perspective, the influence of pretraining conditions can be explained in terms of a
Bayesian process of model selection, which operates to identify one of the most important aspects
of causal knowledge, the causal integration rule, and transfer it to the subsequent inference task.
An alternative Bayesian procedure would be model averaging [21], which accepts several causal
integration rules with different calculated probabilities, and then averages the inference results across
all the possible integration rules. In the final section, we will explore the possibility that particle
filtering could serve as an approximation to rational inference while allowing for the limitations on
human computational capacity [19].

In this paper, we describe our computational theory in section 2. Section 4 compares human results
with model predictions in three experiments. Last, we show how the particle filter approach is able
to explain highlighting phenomenon, which has been a challenge to Bayesian sequential learning
model using Kalman filters with exact inference.

2 The Computational Theory

This section describes our computational theory. We specify two alternative models which compete
to explain the data by model selection or cooperate to explain the data by model averaging, see
subsection (2.1). We implement the theory using particle filters as described in subsection (2.2).

2.1 The Models

The experiments specify a sequence of input and output pairs (�x 1, d1), ..., (�xt, dt). The input �x =
(x1, x2) specifies which cause is present: (i) cause 1 if x1 = 1, x2 = 0 and, (ii) cause 2 if x1 =
0, x2 = 1. The output d is a continuous variable. We use capital variables as shorthand for these
sequences so that �Xt = (�x1, ..., �xt) and Dt = (d1, ..., dt).

Both models are parameterized by weight variables �ω = (ω1, ω2) which indicate the strength of the
causes x1, x2 for causing the effect. We specify a prior P (�ω) on the weights which is a Gaussian with
zero mean and large covariance (making weak assumptions about the initial values of the weights).
We specify a temporal prior P (�ωt+1|�ωt) which allows the weights to change over time and means
that the model is most influenced by the most recent data. The prior and temporal prior are specified
by:

P (�ω1) =
1

2π
√|Σ1|

exp{−(1/2)�ωT
1 Σ−1

1 �ω1}, (1)

P (�ωt+1|�ωt) =
1

2π
√|Σ2|

exp{−(1/2)(�ωt+1 − �ωt)T Σ−1
2 (�ωt+1 − �ωt)}, (2)

2



where Σ1 = σ2
1I and Σ2 = σ2

2I, where I is the identity matrix. Hence the weights ω1, ω2 are
decoupled in the priors. The respective σ1 and σ2 values are 0.05 and 0.1.

The likelihood functions are of form:

P (d|�ω, �x, M) =
∑

�R

P (d|�R, M)P (�R|�ω, �x), (3)

where �R are the states of hidden units and M indicates the model.

We define P ( �R|�ω, �x) = 1

2π
√

|Σ| exp{−(1/2)(�R − �ω
⊗

�x)T Σ−1(�R − �ω
⊗

�x)}, where �ω
⊗

�x =

(ω1x1, ω2x2).

The models P (d| �R) are of form:

P (d|�R) =
1√

2πσ2
exp{−(d − F (�R, M))2/(2σ2)}, (4)

where F ( �R, M = 1) = R1 + R2 for the first model and F ( �R, M = 2) = R1
eR1/T

eR1/T +eR2/T +

R2
eR2/T

eR1/T +eR2/T for the second model. The first model is the linear-sum model [6] and the second
model is a noisy-max model [16] which is a generalization of the noisy-or model [4]. Figure 1
illustrates the two generative models, which employ different combination rules.

21

x2 x1 

R1 R2 

(A) (B) 
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R1 R2 

Noisy 
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Figure 1: An illustration of the generative models. The different models combine R1 and R2 in
different ways, a linear-sum (A) or a noisy-max (B), to yield the output effect R.

2.2 Inference by Particle Filtering

We use Bayes-Kalman to update the probabilities P (�ωt|Dt, �Xt, M) when we receive new data. In
the rest of the section we will drop the dependencies on �Xt and M to simplify the notation. Bayes-
Kalman specifies that we update weights by a prediction stage followed by a measurement stage:

P (�ωt+1|Dt) =
∫

d�ωtP (�ωt+1|�ωt)P (�ωt|Dt) (prediction) (5)

P (�ωt+1|Dt+1) =
P (dt+1|�ωt+1)P (�ωt+1|Dt)

P (dt+1|Dt)
(measurement). (6)

We implement these equations using particle filters ([7], [15]). Previous methods in the cognitive
science literature are unsuited for this problem. Dayan and Kakade [6] used Kalman’s algebraic
update equations for the means and covariance of P (�ω t), but this cannot be applied to our second
model which is non-Gaussian. Lu et al. (2008) [17] represented the distributions using a fixed lattice
in �ω space, but this becomes problematic for the models described here (high accuracy requires a
very dense lattice which leads to an extremely slow algorithm). By contrast, particle filters sample
the space adaptively and are more efficient. (We validated particle filters by showing that they agree
with these other methods when applicable).

Particle filters approximates distributions like P (�ωt|Dt, M) by a set of discrete particles {�ωμ
t : μ ∈

Γ}. This enables us to approximates quantities such as
∫

d�ωg(�ωt)P (�ωt|Dt) by (1/|Γ|) ∑
μ∈Γ g(�ωμ

t )
for any function g(.).
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We initialize by drawing samples {�ωμ
1 : μ ∈ Γ} from the prior distribution P (�ω). This is straight-

forward since the prior is a Gaussian.

Then we proceed recursively following the prediction and measurement stages of the Bayes-Kalman
filter. Let {�ωμ

t : μ ∈ Γ} be the set of particles representing P (�ωt|Dt) at time t. Then we sample
from the Gaussian distribution P (�ωt+1|�ωμ

t ) for each μ to give a new set of particles {�̄ω
μ
t : μ ∈ Γ}

which represents P (�ωt+1|Dt).

Next we compute the importance weights λμ = P (dt+1|�̄ωμ
t+1) and normalize them to obtain λ̄μ =

λμ/(
∑

μ λμ). Then we re-sample with replacement from the set {ω̄μ
t+1 : μ ∈ Γ} using probability

λ̄μ. This gives new set {�ων
t+1 : ν ∈ Γ} of particles which represent P (�ωt+1|Dt+1).

To compare to experiments, we need to measure the model evidence P (D t) for each model and
to estimate the mean values of the weights �̂ωt =

∫
d�ωt�ωtP (�ωt|Dt). We compute these from the

particles as follows.

The mean values are approximated by the average (1/|Ω|) ∑
μ∈Γ �ωμ

t .

The model evidence is expressed as P (dt|Dt−1)P (dt−1|Dt−2)...P (d1). We evaluate each term
P (dt+1|Dt) =

∫
d�ωt+1P (dt+1|�ωt+1)P (�ωt+1|Dt) by P (dt+1|Dt) = 1

|Γ|
∑

μ∈Γ P (dt+1|�̄ωt+1).

The simulations are run using 6000 particles since beyond this value, even when performing numer-
ous Monte Carlo runs (over 100 each with 6000 particles), the results do not show any significant
variation in their outcomes. Our simulation of highlighting effects is instead performed with 1000
particles. Figure 2 illustrate the change of particle filters in a standard forward blocking paradigm
over training trials.
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Figure 2: Particle filters in the simulation with forward blocking paradigm as a function of training
trials.

3 Comparison of Simulation Results with Experiments

Based on experimental results from Beckers et al. ([1] -see Experiments 2, 3 and 4), we simulate
their study of the effect of pre- and post- training on human judgements. Pretraining is simulated
for (a) forward blocking (Experiment 2), (b) backward blocking (Experiment 3) and (c) release from
overshadowing (Experiment 3). The effect of posttraining is modeled for forward blocking only
(Experiment 4). Details of the experimental designs and experiments are given in [1] and previous
simulation results for the effect of pretraining in the forward blocking case are discussed in [17].

3.1 Modeling of Pretraining Effect using Model Selection

The experiments conducted by Beckers et al. [1] consist of four different food cues: A, X, K, and L
and allergic reactions to these cues are measured as moderate (+) or strong (++). In our notation, G+,
H+, and GH+ correspond to (x1, x2) = (1, 0), (0, 1), and (1, 1) respectively. The reaction strengths
+ and ++ correspond to O = 1 and O = 2 respectively. Human experiment consists of three phases:

4



(1) pretraining, (2) elemental training and (3) compound training. Pretraining is performed with
food cues, namely, G and H, and the subsequent training phases use different food cues. Pretraining
conditions can be either additive (G+ → H+ → GH++) or subadditive (G+ → H+ → GH+). Cues K
and L are only present in phase 3 and therefore serve as control cues.

Table 1 below shows the experimental design for the forward blocking experiment (Exp 2 in [1])
and the backward blocking experiment (Exp 3 in [1]). As discussed in greater detail in [17], using
the pretraining trials in Phase 1, we perform model selection, as shown in Figure 3.The simulation
results show that the linear-sum model is selected if the pretraining is additive (i.e., G+, H+, GH ++),
because the corresponding ratio is below the threshold, whereas the noisy-MAX model is selected
if the pretraining is sub-additive (i.e., G+, H+, GH+), because the corresponding ratio is above the
threshold. Next, we adopt the Bayesian sequential model to update posterior distributions of the
weights ω for each cue presented in Phases 2 and 3. To compare our simulation results with the
human ratings, we compute the mean of each ω.

Table 1: Design summary for human pretraining study in Beckers et al. (2005) Experiment 2 &
3. The numerical values indicate the number of trials and + indicates the presence of the outcome
effect.

Experiment Blocking Pretraining Compound Elemental Test
Paradigm Phase 1 Phase 2 Phase 3

Exp 2 Forward blocking additive 8G+/8H+/8GH++ 8A+ 8AX+/8KL A, X, K, L
Forward blocking subadditive 8G+/8H+/8GH+ 8A+ 8AX+/8KL A, X, K, L

Exp 3 Backward blocking additive 8G+/8H+/8GH++ 8AX+/KL+ 8A+ A, X, K, L
Backward blocking subadditive 8G+/8H+/8GH+ 8AX+/KL+ 8A+ A, X, K, L
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oo
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Figure 3: Log-likelihood ratios for the noisy-MAX model relative to the linear-sum model for exper-
iment by Beckers et al. (2005). Black bars indicate the ratio for the additive group; white bars for the
sub-additive group. The dashed line indicates the threshold for model selection. These simulation
results are in good agreement with experimental findings (see subsection 3.1).

Figure 4 shows the mean causal rating for each cue. In the top panel, the left plot shows the human
ratings in forward blocking experiment (Exp 2) by Beckers et al [1], in which black bars indicate the
mean rating for additive pretraining group; white bars for sub-additive pretraining group. The right
plot shows the predicted ratings based on the selected model for each group. Black bars indicate the
mean ω based on the linear-sum model, which gives a good fit for the human means in the additive
group. White bars indicate the mean ω based on the noisy-MAX model, which give a good fit for
the human means in the sub-additive group. The simulation results are in good agreement with the
results for humans. The linear-sum model generates accurate predictions for the additive group: the
mean weight for X is much lower than weights for the control cues K and L, indicating blocking
of causal learning for cue X. In contrast, the noisy-MAX model gives accurate predictions for the
sub-additive group: the mean weight for X is about the same as the weights for the control cues K
and L, consistent with absence of blocking for X.

The bottom panel in Figure 4 show the results from human and model in backward blocking exper-
iment (Exp 3) by Beckers et al [1]. Again, the model predictions agree with human performance
well. A pretraining effect still preserves for both human and model, although the effect is much
weaker than in forward blocking experiment (Exp 2 in [1]).
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Figure 4: Left, Human ratings by Beckers et al. (2005); Right, Predicted ratings based on the
selected model for each group. Top panel, forward blocking experiment (Exp. 2 in [1]); Bottom
panel, backward blocking experiment (Exp. 3 in [1]). For further details see subsection 3.1.

3.2 Modeling of Posttraining Effect using Model Averaging

Experiment 4 in the study conducted by Beckers and his colleagues [1] reported that information
about outcome additivity have an impact on blocking even if it is presented after the blocking training
phases. As shown in Table 2, Phases 1 and 2 correspond to the elemental and compound training
phases respectively with cue A and X, but Phase 3 is the posttraining phase with different cues
(i.e. cue G and H). After the posttraining phase, human subjects were asked to evaluate the causal
power for cue A and X. In the other words, the design in Exp4 is identical as it in Exp1 described
in section 3.1, except reversing the order of the actual blocking training and the additivity training,
effectively turning the additiveity manipulation in a posttraining instead of a pretraining procedure.

In the first blocking training phases, we assume that humans update posterior distributions of causal
strengths for models, linear-sum and noisy-max. When the posttraining phase is provided, model
averaging is performed to combine the estimates of causal strengths from the two models as

〈ω〉 = P (D|M1)ω̄M1 + P (D|M2)ω̄M2 (7)

where D is the data, M1 and M2 represent the linear-sum and noisy-max gate models respectively,
and P (D|Mi) is the ‘evidence’ for each model from observations in the posttraining phase. ¯ω Mi

is the estimated mean value of causal strength using each model from observations in the first two
training phases.

Figure 5 shows our results for the posttraining experiment (Exp 4 in [1]). We can see that model
averaging is able to capture the posttraining effects qualitatively, and correctly predict a weaker
posttraining effect than the pretraining effect described in section 3.1.

4 Highlighting

In this section, we will demonstrate the use of particle filtering to explain another causal learning
phenomenon, the highlighting effect reported by Kruschke [11] [12] [13]. Tables 3 describes a
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Table 2: Design summary for human posttraining study in Beckers et al. (2005) Experiment 4. The
numerical values indicate the number of trials and + indicates the presence of the outcome effect.

Experiment Group Elemental Compound Posttraining Test
Phase 1 Phase 2 Phase 3

Exp 4 Forward blocking additive A+ 8AX+/8KL+ 8G+/8H+/8GH++ A, X, K, L
Forward blocking subadditive A+ 8AX+/8KL+ 8G+/8H+/8GH+ A, X, K, L
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Figure 5: (A) Mean causal rating for each cue based on human subjects in Experiment 4 (Post-
training) of Beckers et al. [1] (see their Figure 5 p247) and (B) mean causal weights produced by
the model as a function of different cues in the design of Experiment 4 (Beckers et al., 2005). See
section 3.2

canonical experimental design. The learner first see 15 trials of cue A and B associated with outcome
O1, and 5 trials of cue A and C associated with outcome O2; then in the second phase, the order
of the training sessions is reversed. In the subsequent test phase, observers are asked to predict the
outcome (O1 or O2) when showing cue A only and cue B and C together. The highlighting design
equalizes the long-run base rates of the two outcomes, and the frequency of cue-outcome pairs (e.g.,
20 trials in total for AC with O1 and AB with O2). Humans show a strong tendency to choose
outcome O1 for cue A, but a lower probability to choose O1 for cue B and C.

Kruschke [12] developed a locally Bayesian learning model to account for the highlighting effect, by
combining local Bayesian updating between layers and attention control through back-propagation.
In contrast, Daw et al. [5]argued that the highlighting effect could be explained by computation
limitations of human cognitive system. Accordingly to their account, human observers conduct in-
ferential learning by an approximation to statistical models, such as Kalman filtering. Daw et al.
employed a rational model based on Kalman filtering with a linear-sum rule. With exact statistical
inference, this rational model is unable to predict the highlight effect. However, including infer-
ential approximations in their model using reduced-rank approximations was able to explain the
highlighting effect.

In this section, we show that particle filtering, as an approximation to statistical inference, is able
to predict the highlighting effect [19]. The advantage of using particle filtering is that it makes it
possible to control the degree of approximation to exact statistical inference, as simulations with
a very large number of particles are closer to the rational inference model. To be consistent with
the representations used by the two models described in the previous paragraph, we assume that
outcome O1 is indicated when a binary reward value is 1, and outcome O 2 is indicated when the
reward value is 0. We thus focus the model on the case of multiple causes and a single effect, rather
than extending it to the case of multiple causes and multiple effects. Given that the outcome variable
is binary, we adopt two generative models, linear-sum [5] and noisy-logic [4] [20], in the simulation
of particle filtering.
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The left plot in figures 6 shows the learning curve of causal strengths for each cue and the combina-
tion of cue B and C as a function of training trials. Based upon the learned causal strengths for each
cue, the model can predict how likely outcome O1 will be chosen for each cue or cue combination.
The highlighting effect is revealed by the difference between Cue A and BC predictions. We find
that this difference is reduced with increases in the number of particles employed in the simulation,
a result which agrees with the finding in Daw et al. [5], summarized above.

The right plot in figures 6 shows the probability of choosing O 1 for cue A and cue B&C as a function
of different generative models, linear-sum and noisy-logic. Both models yield highlighting effects,
namely higher P (O1) for cue A than for cue B&C, although the effect is weaker for the noisy-logic
model.

Table 3: Highlighting Design by Daw et al. 2007 [5]

Blocking Paradigm Training Training Test
Phase 1 Phase 2

Highlighting 15 × (AB → O1) 5 × (AB → O1) A →?O1

5 × (AC → O2) 15 × (AC → O2) BC →?O2
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Figure 6: Highlighting results. Left, learning curve of causal strength when using linear-sum model.
The highlighting effect is revealed by the difference between Cue A and BC predictions. With
the increase of the number of particles, the highlighting effect will reduce. Right, comparison of
highlighting effect between linear-sum model and noisy-logic model. See section 4.

5 Conclusions

The Bayesian theory of sequential causal learning described in the present paper provides a uni-
fied explanation of important learning phenomena, using the implementation of a particle filter as
an approximation to exact statistical inference. In particular, the theory accounts for influences of
pretraining on subsequent learning as well as influences of posttraining on previous learning, with
completely different stimuli. The key assumption is that learners have available multiple generative
models, each reflecting a different integration rule for combining the influence of multiple causes.
In particular, when the outcome is a continuous variable, humans have tacit knowledge that mul-
tiple effects may have a summative impact on the outcome (linear-sum model). Alternatively, the
outcome may be effectively saturated at a level approximated by the weight of the strongest indi-
vidual cause (noisy-MAX). Using standard Bayesian model selection, the learner selects the model
that best explains the pretraining data, and then continues to favor the most successful model during
subsequent learning with different cues. In other situations, the learner uses both models to per-
form causal learning, but is able to retrospectively re-evaluate the estimations from different models
when extra information about integration rules is provided by post-training with different cues. This
post-training effect can be explained by model averaging.
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Finally, we propose that particle filter simulation could be a good candidate to mimic the limitations
of computational capacity (in particular, working memory resources) in the human cognitive system.
Accordingly, particle filtering may serve as a computationally realistic approximation to rational
inference. This model of approximate inference is able to explain the highlighting effect. In future
work, we hope to extend the model to more complex causal networks that include multiple causes
and multiple effects.
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