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Abstract

Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005; Beckers,
Miller, De Houwer, & Urushihara, 2006) have shown that pretraining with un-
related cues can dramatically influence the performance of humans in a causal
learning paradigm and rats in a standard Pavlovian conditioning paradigm. Such
pretraining can make classic phenomena (e.g. forward and backward blocking)
disappear entirely. We explain these phenomena by a new Bayesian theory of se-
quential causal learning. Our theory assumes that humans and rats have available
two alternative generative models for causal learning with continuous outcome
variables. Using model-selection methods, the theory predicts how the form of
the pretraining determines which model is selected. Detailed computer simula-
tions are in good agreement with experimental findings.

1 Introduction

For more than two decades, researchers in both animal conditioning and human causal learning have
identified significant parallels between the phenomena observed in the two fields (see Shanks, 2004).
It has even been suggested that rats in conditioning paradigms learn to relate cues to outcomes in a
manner similar to the way a scientist learns cause-effect relations (Rescorla, 1988). At the same time,
there have been strong disagreements about the theoretical basis for both human causal learning and
animal conditioning. On the one hand, conditioning models (Rescorla & Wagner, 1972) have been
applied to human causal learning (Shanks, 1985); on the other, models of human causal learning
have been applied to animal conditioning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Cheng,
1997).

A phenomenon that has received particular attention in both the human and animal literatures is
the blocking effect (Kamin, 1969). Suppose that two cues, A and X, are repeatedly and consistently
paired with a particular outcome O. X will be viewed as a weaker cause of O if A alone is repeatedly
paired with O either before (forward blocking) or after (backward blocking) pairings of the AX
compound with O . Some evidence has suggested that blocking is less pronounced in humans than in
rats (De Houwer, Beckers, & Glautier, 2002). However, recent experiments by Beckers et al. (2005,
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2006) indicate that apparent differences between humans and rats in the conditions that promote
blocking may reflect different assumptions about the cue-reward relationship, rather than any basic
difference in causal learning processes between species. For both species, Beckers et al. showed
that different pretraining conditions using unrelated cues could alter the learners assumptions and
thereby prevent or promote the occurrence of classic phenomena such as forward and backward
blocking (leading rats to behave more like humans, and vice versa).

The goal of this paper is to provide a computational explanation for these experimental findings
based on Bayesian inference. Our theory proposes that experimental subjects, whether rats or hu-
mans, have available multiple models of cue integration appropriate for different situations (Wald-
mann, 2007; Lucas & Griffiths, 2007). From our computational perspective, pretraining influences
the probability that causal learners will select a particular integration model during a subsequent
learning session with different cues, and this choice in turn determines the magnitude of blocking
effects.

Most previous statistical theories of human causal learning have focused on learning from summa-
rized contingency data based on binary variables (Cheng, 1997;Griffiths & Tenenbaum, 2005). The
computational theory described here instead provides a trial-by-trial model of learning from sequen-
tial data. For nonverbal animals, there is no obvious way to present summarized data; often, humans
also must learn from sequential data. In particular, sequential models are required to account for in-
fluences of the order of data presentation (Danks, Griffiths, & Tenenbaum, 2003;Dayan & Kakade,
2000;Shanks, 1985). A computational theory should enable beliefs to be dynamically updated by
integrating prior beliefs with new observations in a trial-by-trial manner. In addition, in conditioning
experiments the outcomes (e.g., food reward) are generally continuous in nature (i.e., the magnitude
of the reward may vary). A computational theory must therefore address continuous-valued as well
as binary variables in order to integrate causal learning by humans with learning by other animals.

2 Bayesian Theory of Sequential Learning

Within our theory of causal learning, each causal model corresponds to a different probabilistic
model for generating the data. For continuous-valued outcomes we use a linear-sum model (Dayan
& Kakade, 2000), which has been used previously to explain many aspects of the blocking effect,
and a noisy-MAX model, proposed here for the first time. The latter is a generalization of the noisy-
OR model, which gives a good account of human causal learning about binary variables based on
summarized contingency data (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al, 2007). The
choice of model depends on the type of pretraining, and is determined by standard Bayesian model
selection. These expectations based on pretraining carry over to influence the learners judgments
in the subsequent causal learning task, even though the specific cues differ from those used in the
pretraining.

We first introduce likelihood functions for the two different causal models assumed by our theory.
We then describe the priors, the resulting full models, and model selection. Finally, we report
simulations of experimental data and discuss how the present theory relates to others.

2.1 Causal Generative Models as Likelihood Functions

We focus on the relationship between two binary-valued causes x1, x2 (i.e. xi = 1 if cause i
is present, and xi = 0 otherwise) and a continuous-valued outcome variable O. We define two
continuous-valued hidden variables R1, R2 . The hidden variables correspond to internal states
that reflect the magnitudes of the effect generated by each individual cause. Each such magnitude
corresponds to the weight of the corresponding cause, ω1, ω2 analogous to causal strength (Cheng,
1997). The generative model of the data, as shown in Figure 1, is given by

P (O|ω1, ω2, x1, x2) =
∫

dR1

∫
dR2P (O|R1, R2)

2∏

i=1

P (Ri|ωi, xi). (1)

The first generative model is called the linear-sum model because the output O can be expressed as
the sum of R1 and R2 plus Gaussian noise with mean 0 and variance σ2

m,
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P (O|R1, R2) ∝ exp{−(O −R1 −R2)2/(2σ2
m)} (2)

The second generative model, termed the noisy-MAX model, is motivated by the successful noisy-
OR model for causal reasoning with binary variables by humans (Cheng, 1997). To adapt the noisy-
OR model for continuous outcome variables, we express it as a noisy-MAX,

P (O|R1, R2) ∝ exp{−(O − F (R1, R2; T ))2/(2σ2
m)} (3)

where the function F (R1, R2; T ) is a noisy-MAX function of R1, R2 specified by:

F (R1, R2; T ) = R1
eR1/T

eR1/T + eR2/T
+ R2

eR2/T

eR1/T + eR2/T
(4)

The parameter T determines the sharpness of the noisy-MAX function. As T → 0, the noisy-MAX
function becomes identical to the MAX function, i.e., equal to the maximum value of R1 and R2.
By contrast, as T →∞ the noisy-MAX function approaches the average (R1 + R2)/2.

For both models, the hidden effects of the individual causes are assumed to follow a Gaussian
distribution,

P (Ri|ωi, xi) ∝ exp{−(Ri − ωixi)/(2σ2
h)}, i = 1, 2. (5)

Figure 1: An illustration of the generative models. The different models combine R1 and R2 in
different ways, a linear-sum or a noisy-MAX, to yield the output effect O.

2.2 Causal Priors

To perform Bayesian estimation we must specify prior distributions on the weights P (ω1), P (ω2) ,
which we define as Gaussians with 0 mean and small variance σ2

p. This prior distribution expresses
the default assumption that the weight of both causes is close to zero before observing any data.

For sequential presentation in a trial-by-trial dynamic manner, we also assume a temporal prior for
the change of ω1, ω2 over time (i.e.,trials), as in Dayan & Kakade (2000).

P (ωt+1
i |ωt

i) ∝ exp{−(ωt+1
i − ωit)2/(2σ2

T )}, i = 1, 2. (6)

These temporal priors imply that weights may be slowly varying from trial to trial. The amount of
variation is controlled by the parameter σ2

T . As σ2
T → 0 the weight becomes fixed over trials, thus

effectively switching off the temporal prior. For larger σ2
T the weights can change significantly over

trials.
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2.3 Combining the Likelihood and Priors

We use the standard technique for combining likelihoods with temporal priors for sequential data
(Ho & Lee, 1964). The linear-sum model can be obtained from this formulation as the special case
in which the likelihood, prior, and temporal priors are Gaussian.

To simplify the notation, we write ~x = (x1, x2), ~ω = (ω1, ω2). We write {Ot} and {~xt} to denote
the set of rewards and causes on all trials up to and including trial t, i.e. {Ot} = (Ot, Ot−1, . . . , O1).

The Bayesian formulation for updating the estimates of the weights is given in two stages:

P (~ωt+1|{Ot}, {~xt}) =
∫

d~ωtP (~ωt+1|~ωt)P (~ωt|{Ot}, {~xt}) (7)

P (~ωt+1|{Ot}, {~xt}) =
P (Ot+1|~ωt+1, ~xt+1)P (~ωt+1|{Ot}, {~xt})

P (Ot+1|{Ot}, {~xt+1}) (8)

Here we set P (~ωt+1|~ωt) = P (ωt+1
1 |ωt

1)P (ωt+1
2 |ωt

2) assuming independence in the temporal prior.

The process is initialized by setting P (~ω0) equal to the prior (i.e., product of Gaussians with 0 means
and variances σ2

p).

We use Eq. 7 to predict a distribution on the weights ~ω1 at time t = 1 (with the convention that
{O0} and {~x0} are empty sets). Then we employ Eq. 8 to make use of the observed data on trial 1,
O1, x1, to update the estimate of the weights, ~ω1.

Eqs. 7-8 correspond to prediction and correction for each trial as a recursive estimator. That is, only
the estimated weight distribution from the previous trial t and the current cue-outcome measurement,
xt+1, Ot+1, are needed to compute the weight estimate for the current trial, ωt+1. Thus the model
does not need to memorize cue-outcome pairs across all trials. If all the probabilities are Gaussian,
then updating the probability distributions using Eqs. 7-8 simply corresponds to updating the means
and covariance matrices using the standard Kalman filter equations (Dayan & Kakade, 2000). In the
case of the noisy-MAX model, Eqs. 7-8 are applied directly in the distribution updating.

2.4 Parameter Estimation and Model Selection

There are two types of inference that we can make from the posterior distributions
P (~ωt|{Ot}, {~xt}). First, we can perform parameter estimation to estimate the weights ~ωt i.e., the
weights of causes after t trials. Second, we can evaluate how well each model fits the data and per-
form model selection (i.e., choose between the linear-sum and noisy-MAX models). As discussed
by Lu et al. (2007), different experimental paradigms can be modeled as parameter estimation or
model selection.

Parameter estimation involves estimating the weight parameters ~ωt. In our simulations, these esti-
mates are the means of weights with respect to the distribution:

~ωt =
∫

d~ωtP (~ωt|{Ot}, {~xt})~ωt (9)

Model selection involves determining which model is more likely to account for the observed se-
quence of data {Ot} and ~xt. For each model (linear-sum or noisy-MAX), we compute:

P ({Oτ}|{~xτ}) =
τ−1∏
t=0

P (Ot+1|{Ot}, {~xt+1}), (10)

with the convention that

P (O1|{O0}, {~x1}) =
∫

d~ωP (O1|~ω, ~x1)P (~ω). (11)
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3 Simulation of Blocking Experiments

We first report our simulations of traditional forward/backward blocking paradigms (Shanks, 1985)
using linear-sum and noisy-MAX models. These two blocking effects provide a critical test for any
sequential learning model. We then apply our Bayesian approach, e.g. using model selection, to
a human experiment that employed pretraining (Beckers et al., 2005), and a similar conditioning
experiment using rats (Beckers et al., 2006). The simulations illustrate how our approach accounts
for human and rat performance based on model selection and parameter estimation for sequential
data.

3.1 Forward/Backward Blocking

Conditioning paradigms provide a window to the investigation of natural inferences produced by
causal learning. Two common paradigms, schematized in Table 1, are forward blocking (A+, AX+)
and backward blocking (AX+, A+). In both, the common finding is acquisition of a weaker weight
between X and reward O than that between A and reward O (Kamin, 1969; Shanks, 1985). Note that
backward blocking (typically weaker than forward blocking) implies that the weight of the absent
cue X is updated as a result of a series of A+ trials. Any successful sequential learning model must
explain the difference of weights associated with different cues in both blocking paradigms.

Table 1: Design summary for a typical blocking experiment. The numerical values indicate the
number of trials, + indicates the presence of the outcome effect.

Blocking Training Training Test
Paradigm phase 1 Phase 2
Forward 8A+ 8AX+ A, X

Backward 8AX+ 8A+ A, X

Figure 2 shows simulations of learning of weight for cue A (ωA, solid) and cue X (ωX , dashed) as a
function of trial number in forward blocking (black) and backward blocking (gray) designs. Figure
2A, B shows predictions based on the linear-sum and the noisy-MAX model, respectively. Both
models predict the basic phenomena, as the weight associated with cue X is weaker than the weight
for A in both forward and backward blocking paradigms, and more so in the former. However,
the linear-sum model predicts a larger weight difference than does the noisy-MAX model in both
paradigms. Furthermore, for the weight associated with cue X, the linear-sum model predicts a
weaker weight in forward blocking (dashed black) than in backward blocking (dashed solid), which
is an asymmetry between forward/backward blocking. The noisy-MAX model also predicts an
asymmetry, although it diminishes as the number of trials increases. A novel prediction from the
noisy-MAX in forward blocking is that the weight associated with cue A is expected to decrease to
0.5 after a large number of AX+ trials.

3.2 Impact of Pretraining on Human Judgments

We simulated results of a pretraining study with humans by Beckers et al (2005). Table 2 schema-
tizes the experimental design. G and H indicate different food cues: + and ++ indicate a moderate or
a strong allergic reaction, respectively. As shown in Table 2, additive pretraining involved G+ trials
followed by H+, and then followed by GH++. Sub-additive pretraining involved G+ trials followed
by H+ trials, and then followed by GH+ trials.

The experiment included three phases: (a) pretraining, (b) elemental training, and (c) compound
training. The elemental and compound training were always the same but the pretraining could be
either additive or sub-additive for the two groups. In both groups, standard forward blocking trials
with different food cues (A+ followed by AX+) were presented in phase 2 and 3. Note that the
design used completely different cues in the pretraining phase 1 (cues G, H) and phases 2 and 3
(cues A, X, K, and L). If blocking occurs, we would expect the weight of cue X to be reduced by its
pairing with cue A, due to the earlier elemental training on A in phase 2. K and L served as control
cues, which were only presented in phase 3 as KL+ trials.

5



0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial

M
ea

n 
ω

 

 

(A)

ω
A
 backward

ω
X
 backward

ω
A
 forward

ω
X
 forward

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trial

M
ea

n 
ω

 

 

(B)

ω
A
 backward

ω
X
 backward

ω
A
 forward

ω
X
 forward

Figure 2: Predicted mean weights of each cue as a function of training trials in two different blocking
paradigms. (A) linear-sum model; (B) noisy-MAX model. The black lines indicate predictions for
forward blocking paradigm (A+, AX+); the gray lines indicate predictions for backward blocking
paradigm (AX+, A+). The solid lines are estimates of weights for cue A; the dashed lines are
estimates of weights for cue X. The linear-sum model predicts a larger difference between ωA and
ωX across the two blocking paradigms than does the noisy-MAX.

After completing these three phases, participants were asked to rate how likely each food cue sep-
arately would cause an allergic reaction. As indicated by the human results shown in Figure 4A,
cue X was blocked after additive pretraining but not after sub-additive pretraining. More precisely,
additive pretraining resulted in a lower rating for cue X than for the control cues, K and L, both of
which in turn received significantly lower causal ratings than cue A. In contrast, after sub-additive
pretraining there was little difference among the ratings for X, K, and L.

Table 2: Design summary for human pretraining experiment in Beckers et al. (Exp. 2, 2005).

Group Phase 1: Phase 2: Phase 3:
Pretraining Elemental Training Compound Training

Additive 8G+/8H+/8GH++/8I+/8Z- 8A+/8Z- 8AX+/8KL+/8Z-
Subadditive 8G+/8H+/8GH+/8I++/8Z- 8A+/8Z- 8AX+/8KL+/8Z-

The experimental design used by Beckers et al. (2005) can be translated into the notation of our
model as follows. G+, H+, GH+ respectively correspond to (x1, x2) = (1, 0), (0, 1) and (1, 1) .
The notation + and ++ correspond to O = 1 and O = 2, respectively. Using the pretraining trials
in phase 1, we performed model selection to infer which model is more likely for the additive and
sub-additive groups. With the models selected in the pretraining phase, we then used trials in phases
2 and 3 to estimate the distribution of the weights ω for each cue. The mean of each ω was computed
to provide a comparison with human ratings.

We employed trials in the pretraining phase to compute the log-likelihood ratios for the noisy-MAX
model relative to the linear-sum model using Eq. 10. The resulting plots are shown in Figure 3.
In the simulation we used model parameters σh = 0.6, σT = 0.3, σm = 0.01, and T = 0.4. To
perform model selection, we need to impose a threshold on the log-likelihood ratios. We set the
threshold to be the log-likelihood ratio obtained when only the data G+, H+ had been shown (as the
experimental subject would have no basis for a preference between the two models at this stage).
The simulation results (see Figure 3) show that the linear-sum model is selected if the pretraining
is additive (i.e., G+, H+, GH++), because the corresponding ratio is below the threshold, whereas
the noisy-MAX model is selected if the pretraining is sub-additive (i.e., G+, H+, GH+), because the
corresponding ratio is above the threshold.

We then computed the mean weights, using Eq. 9, for the models chosen by the model selection
stage. These mean weights (see Figure 4B) constitute our simulations predictions for the causal
ratings. The simulation results are in good agreement with the results for humans (Figure 4A). The
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Figure 3: Log-likelihood ratios for the noisy-MAX model relative to the linear-sum model for the
additive group (black) and the sub-additive group (white) in human experiment by Beckers et al.
(2005). The dashed line indicates the threshold for model selection.

linear-sum model generates accurate predictions for the additive group: the mean weight for X is
much lower than weights for the control cues K and L, indicating blocking of causal learning for
cue X. In contrast, the noisy-MAX model gives accurate predictions for the sub-additive group: the
mean weight for X is about the same as the weights for the control cues K and L, consistent with
absence of blocking for X.
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Figure 4: Mean causal rating for each cue. (A) Human ratings in Experiment 2 by Beckers et al
(2005); see their Figure 3, p. 243. Black bars indicate the mean rating for additive pretraining
group; white bars for sub-additive pretraining group. (B) Predicted ratings based on the selected
model for each group. Black bars indicate the mean ω based on the linear-sum model, which gives
a good fit for the human means in the additive group. White bars indicate the mean ω based on the
noisy-MAX model, which give a good fit for the human means in the sub-additive group.

3.3 Impact of Pretraining on Rat Conditioning

Now we compare the predictions of the models to the experimental findings for a conditioning
experiment with rats (Beckers et al., 2006). Animals were presented with cues that were associated
with shocks while the animals pressed a lever for water. We focus on two conditions: sub-additive
and irrelevant element, as schematized in Table 3 (Beckers et al., 2006, Experiment 1). Animals in
the experimental group received forward blocking training (A+ followed by AX+); control animals
did not receive blocking training (B+ followed by AX+). Before the actual blocking training (phase
2 and phase 3), experimental and control animals in the subadditive condition were exposed to a
demonstration of two effective cues, C and D, that had sub-additive outcomes (i.e., C+, D+, CD+),
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or to an irrelevant pretraining (i.e. C+, D+, E+). The number of lever-press responses to X after
phase 3 was measured for all animals.

Table 3: Design summary for the rat pretraining experiment by Beckers et al. (Exp. 1, 2006).

Condition and Phase 1: Phase 2: Phase 3:
Group Pretraining Elemental Training Compound Training

Subadditive
Experimental 4C+/4D+/4CD+ 12A+ 4AX+

Control 4C+/4D+/4CD+ 12A+ 4AX+
Irrelevant Element

Experimental 4C+/4D+/4E+ 12A+ 4AX+
Control 4C+/4D+/4E+ 12A+ 4AX+

We used the same translation to the model notation as before. We set the threshold such that without
any training, the linear-sum model would be preferred over the noisy-MAX model, as evidence
suggests that rats typically assume linear integration (Beckers et al., 2006, p. 98; see also Wheeler,
Beckers, & Miller, 2008). We computed the loglikelihood ratios for the pre-testing data, using
Eq. 10, to confirm that the noisy-MAX model was selected for the subadditive condition and the
linear-sum model for the irrelevant condition. The results are shown in Figure 5. We used model
parameters σh = 0.6, σT = 0.6, σm = 0.01, T = 0.3 in the simulations. Compared to the parameter
set used for the human experiments, we increased the variance for the temporal prior to speed up
causal learning of cues (perhaps reflecting the high salience of electric shock as an outcome).

Beckers et al. (2006) used the suppression ratio of cue X as a measure of rats’ causal judgment about
cue X. A value of 0 for the suppression ratio corresponds to complete suppression of bar pressing
(i.e., high fear of cue X), and a value of 0.5 corresponds to a complete lack of suppression (i.e., no
fear of X). Figure 6A shows the mean suppression ratios for experimental and control animals in
Experiment 1 of Beckers et al. (2006).

We model the suppression ratio as a function of the predicted mean weight of cue X, ω̄X with Eq. 9.
Assuming that the mean number of lever presses in the absence of cue X is N , the expected number
of lever presses in the presence of cue X will be N −NωX . Accordingly, the predicted suppression
ratio can be computed as:

suppression ratio =
N −Nω̄X

N −Nω̄X + N
=

1− ω̄X

2− ω̄X
(12)
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Figure 5: Log-likelihood ratios of noisy-MAX model relative to linear-sum model for the Subad-
ditive condition (white), and the Irrelevant condition (gray) in the rat experiment (Beckers, et al.,
2006, Exp. 1).
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Figure 6B shows the predictions of selected models for the two conditions tested by Beckers et
al. (2006). Similar to the results obtained when modeling the human data, the noisy-MAX model
was selected for the sub-additive condition, and the linear-sum model for the irrelevant condition.
Accordingly, the suppression ratio was estimated using the noisy-MAX model for the Subadditive
condition. The suppression ratio in the Irrelevant condition was computed by the linear-sum, be-
cause the default model was assumed to favor the linear-sum given that irrelevant pretraining data
did not provide clearly discriminative information for model selection. As shown in Figure 6B,
there was no significant difference in the suppression ratio for the noisy-MAX model, in agreement
with rat data showing no significant difference between the experimental and control groups with
Subadditive pretraining. In contrast, suppression ratios differed between experimental and control
groups using the linear-sum model in agreement with the rat data showing a significant difference
between the experimental and control groups with irrelevant element pretraining.
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Figure 6: Mean suppression ratio for cue X in experimental and control groups by pretraining condi-
tions in the subadditive condition and irrelevant condition (Beckers, et al, 2006, Exp. 1). Black/white
bars indicate the experimental/control group, respectively. (A) Rat results; (B) Suppression ratio pre-
dicted by the noisy-MAX model (matched to Subadditive experimental condition), and predicted by
the linear-sum model (matched to Irrelevant element condition).

4 General Discussion

The Bayesian theory of sequential causal learning described in the present paper provides a unified
explanation for important learning phenomena observed with both humans and rats. In particular,
the theory accounts for influences of pretraining on subsequent learning with completely different
stimuli (Beckers, et al., 2005, 2006). The key assumption is that learners have available multiple
generative models, each reflecting a different integration rule for combining the influence of multiple
causes (cf. Lucas & Griffiths, 2007; Waldmann, 2007). When the outcome is a continuous variable,
both humans and rats have tacit knowledge that multiple causes may have a summative impact on
the outcome (linear-sum model). Alternatively, the outcome may be effectively “saturated” at a
level approximated by the weight of the strongest individual cause (noisy-MAX). Using standard
Bayesian model selection, the learner selects the model that best explains the pretraining data, and
then employ the favored model in estimating causal weights with different cues during subsequent
learning. Note that the information provided in Phases 2-3 is identical for both groups; hence only
Phase 1 (pretraining) is relevant to model selection.

A key component of the sequential learning theory is the temporal prior, which controls dynamic
updating of the estimated weight of each cue in a trial-by-trial manner. The temporal prior allows
the theory to explain both forward and backward blocking effects, and more generally captures the
influence of trial order on causal learning. Trial-order effects are outside the scope of models that
only deal with summarized data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al., 2007).

The present theory is also more powerful than previous accounts of sequential causal learning. The
Rescorla-Wagner model (Rescorla & Wagner, 1972) and its many variants (see Shanks, 2004) only

9



update point estimates of causal strength, and thus are unable to represent degrees of uncertainty
about causal strength (Cheng & Holyoak, 1995). By adopting a Bayesian approach to learning
probability distributions, the present theory provides a formal account of how a learners confidence
in the causal strength of a cue will be expected to change over the course of learning. The same
limitation (updating point estimates of strength, rather than probability distributions) holds for a
previous simulation of sequential learning based on the noisy-OR generative model (Danks, Griffiths
& Tenenbaum, 2003). Most importantly, the present theory goes beyond all previous accounts of
dynamical causal learning (e.g., Dayan & Kakade, 2000) in its core assumption that learners, both
human and non-human, are able to flexibly select among multiple generative models that might
“explain” observed data. The theory thus captures what appears to be a general adaptive mechanism
by which biological systems learn about the causal structure of the world.
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