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Abstract of the Dissertation

Explaining Human Causal Learning

using a Dynamic Probabilistic Model

by

Randall Rojas Rojas

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2010

Professor Allan L. Yuille, Chair

Recent psychological experiments (Beckers, De Houwer, Pineño, & Miller, 2005;

Beckers, Miller, De Houwer, & Urushihara, 2006) have revealed that pre- and/or

post- training with unrelated cues can significantly modulate the performance of

humans in causal learning tasks and rats in the standard Pavlovian condition-

ing paradigm. This modulation can be large enough that classical conditioning

phenomena such as forward and backward blocking can vanish, contrary to ex-

pectations from traditional psychological theories of associative learning. In this

work we present a novel Bayesian theory of sequential causal learning that ex-

plains these experimental results. In addition, we extend our theory to provide an

account for the highlighting effect (Daw, Courville, & Dayan, (2007); Kruschke,

2006, 2001) and then generalize our formalism to model the case of multiple cues

and outcomes in the learning framework. Our Bayesian theory assumes that hu-

mans and rats have available several alternative generative models (linear-sum,

MAX, noisy-MAX, etc.) for causal learning. By exploring the model space, we

narrow the plausible models to two possibilities (linear-sum, noisy-MAX) where

the cues and outcomes are both continuous variables. We implement the models

xviii



using two approaches: (1) discretize the cue and outcome variables (making sure

the discretization is dense enough) and (2) use the particle filter algorithm as

an approximation to statistical inference. Our results show that model selection

and model averaging are able to capture the effects of pre- and post- training

respectively. We conjecture that the choice between model selection and model

averaging is determined by when the information for making this choice is avail-

able. For the experiments with pretraining, the information is available before the

learning trails (by the pretraining), therefore, humans/rats know which model to

use. For posttraining, the information is only made available after the learning

trials, which requires humans/rats to make retrospective evaluations. Lastly, our

generalization to multiple cues and outcomes is tested within the Highlighting

paradigm and we show that this more robust approach, provides an excellent

account of experimental findings.

xix



CHAPTER 1

Introduction

Cognitive science, in the last couple of decades, has experienced a remarkable

flourishing of ideas and advances. In particular, the topic of Causal Learning has

evolved into an impressive interdisciplinary enterprize that combines principles

from Psychology, Philosophy, Computer Science and Statistics in order to provide

greater insight about the mechanisms by which people learn causal relationships

and ultimately, understand the overall causal architecture of our thinking process.

A traditional approach to the study of causal learning and inference (see

e.g., Arnheim, 1969), consists of a psychological experiment where subjects (peo-

ple in the case of human causal learning) are given the learning task to infer

the strengths (and existence) of causal relationships between cause-effect links,

where the potential causes and effects have been a priori, established by the ex-

perimenter. Plausible causes and effects are commonly represented by binary

variables to indicate the presence (value=1) or absence(value=0) of the respec-

tive event type. A rating system is typically employed to measure a person’s

judgement of a cause-effect link1.

An explanation for how people solve this learning problem has led to the de-

velopment of a large number of psychological accounts of human causal learning.

However, there are two dominating schools of thought: (a) associative learning

1Depending on the nature of the experiment, continuous variables may also be used.
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theories2 (e.g., ∆P model (Allan, 1980) and Rescorla-Wagner model (Rescorla-

Wagner, 1972)) which are based on the notion that humans track contingency

and (b) Patricia Cheng’s causal power theory (Cheng, 1997) which instead pos-

tulates that people assume that the influence of a cause on its effect is hidden,

and therefore, the problem of causal learning is to ascertain the strength of the

respective hidden influence.

A popular perspective that has been actively explored (which is also the one

adopted in this manuscript) is to consider how a computer would learn a causal

structure. The standard causal model framework (Spirtes, Glymour, & Scheines,

1993; Pearl, 2000; Glymour, 2001), commonly referred to as Causal Bayes Net

framework, is a graphical model composed of links (which represent the causal

relations) and nodes (which represent the variables of the system such as the

cues and outcomes) that characterize the architecture of the causal system. The

graphical model can be illustrated by a directed acyclic graph (DAG) as shown

in Figure 1.1. Casual Bayes nets have served as a solid foundation for many

psychological theories of causal learning and have also been applied with great

success to many other fields (Danks, 2005; Bessler, 2003; Ramsey et al., 2002).

Sloman (2005) identifies three main parts of a causal model (for a graphical

representation see Fig. 4.1 in Sloman, 2005):

(1) The causal system being represented.

(2) A probability distribution over the variables.

(3) A DAG that represents the causes that generate the probabilities.

In the case of Bayes nets, these three parts are held together by two powerful

2Behaviorists divide associative learning into two categories: operant conditioning and clas-
sical conditioning.
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C
1

C
2

E

Figure 1.1: Directed Acyclic Graph (DAG). Illustration of a DAG consisting of

two potential causes C1 and C2 depicted by the top nodes and respective effect

E indicated by the lower node. Edges represent conditional dependencies and

arrows represent the causal relations (conditional probabilities).

assumptions: (a) the causal Markov assumption which states that every variable

in a DAG is independent of all other variables in the graph conditional on its

own direct causes and (b) the causal faithfulness assumption (also known as the

stability assumption ) which asserts that the only conditional independencies are

those that are consequences of the Markov assumption. Given the assumptions

above and the ability of Bayes nets to model interventions (one of their key

strengths, Danks, 2005), we can see that causal graphs are ideal for modeling

complex systems of causal relations.

Studies have shown that intervention facilitates learning in many ways (Schulz

& Gopnik, 2004). For example, interventions can help discriminate between com-

peting causal structures that are otherwise indistinguishable based solely on ob-

servations. They also allow interveners to play an active role in systematic testing

(Sloman, 2005). By allowing manipulations of the causal system variables, their

effects can be more easily assessed. Therefore, a robust causal model frame-

3



work has to have the flexibility to accommodate not only inferences based on

observations but also, inferences about the underlying causal structure based on

interventions that we may or may not engage in.

In the last two decades, many machine learning algorithms (Chickering, 2002;

Spirtes et al., 1993) have been developed to infer causal structure from patterns

of correlations based on the Markov and faithfulness assumptions. There are two

main categories into which these algorithms can be divided: (a) constraint-based

which perform an exhaustive search for correlations and dependencies between

variables to uncover the underlying causal structure and (b) Bayesian which takes

on a holistic approach (Sloman, 2005; Danks, 2005) to exploring the space of

causal models that could generate the data based on our prior beliefs.

Although there is no strong evidence to support one approach over another,

for many situations, the Bayesian method does provide a better framework for

performing causal learning. In favor of the Bayesian perspective, it has been

suggested that human causal learning can be characterized as either a top-down

search over the causal Bayes structures (Waldmann, 2000; Lagnado & Sloman,

2004) or as a rational analysis where a mixture of the two (constraint-based and

Bayesian) methods is preferred (Gopnik et al., 2001; Gopnik & Glymour, 2002;

Tenenbaum & Griffiths, 2003).

Despite the many heroic attempts to understand how we think, the promise of

a single theory capable of explaining our complex thinking process seems highly

unlikely. However, the importance of causal learning models in every day life is

eminent. Models of causal learning provide a window to our understanding of

complex causal systems and have universal applicability that transcends disci-

plinary barriers.

The organization of the manuscript is as follows. In Chapter 2 we introduce

4



the mathematical foundations (Bayesian Paradigm) of our simulations. Chapter

3 discusses details of the experiments simulated and our comparison of simulation

results with experiments. An extension of our Bayesian sequential model to the

modeling of the highlighting effect is introduced in Chapter 4 and a discussion of

our conclusions and future work is given in Chapter 5.
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CHAPTER 2

The Bayesian Paradigm

2.1 Introduction

Bayesian reasoning has its origins in the celebrated and influential work by Rev-

erend Thomas Bayes. In particular, Proposition 9 in his famous essay, An Essay

Towards Solving a Problem in the Doctrine of Chances, captures the main re-

sult of what nowadays is known as Bayes’ Theorem (Bayes, 1763). Qualitatively,

Bayes’ theorem is a simple tool that allows us to update our prior belief in the

light of new evidence (data) to yield a posterior belief. For a detailed discussion

of Bayesian theory, see e.g., textbooks by Bernardo & Smith, (1998); Gelman et

al., (2003); O’Hagan, (1994); Press, (2003) and Robert, (2001).

An alternative to Bayesian statistics is the classical frequentist approach where

only long-run frequencies of repeatable events have probabilities. From a frequen-

tist perspective, probability statements about the respective parameters are not

meaningful because the parameters are not random. This key difference between

the Bayesian and frequentist view of parameters can be viewed as a dominant

strength of the Bayesian paradigm. From a scientific perspective, a Bayesian

approach has several advantages over traditional frequentist methods.

• One of the major benefits of the Bayesian approach is the ability to incor-

porate all available information. Bayesian statistics, by including the prior
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information ensures that no information is wasted, as opposed to frequentist

statistics where prior information is disregarded in exchange for objectivity.

• A Bayesian analysis allows greater flexibility in the modeling of systematic

errors (as well as hierarchical structures in the data).

• The Bayesian approach makes it possible to formulate direct statements

about the parameters of interest, providing more intuitive and meaningful

inferences and making it better suited for decision-making (O’Hagan, 2004;

King et al., 2000).

• Bayesian methods often yield better performance than frequentist methods

and can answer complex questions cleanly and exactly. For example, the

frequentist interpretation of confidence intervals is know to be a difficult

task (except for the linear model). However, for a Bayesian analyst, the

equivalent of classical confidence intervals, can be interpreted probabilisti-

cally in a straightforward way.

• The Bayesian framework relies on a single tool, Bayes theorem (Bolstad,

2004).

Despite its advantages, Bayesian theory did not gain much popularity until

after its modern form was established by the French mathematician Pierre-Simon

de Laplace (Laplace, 1812). Since then, there has been a plethora of applications

of Bayesian reasoning (Chen, 2003; Press, 2003; Jaynes, 2003) including but not

limited to topics in machine learning, pattern classification and recognition, de-

cision theory, artificial intelligence, econometrics, epidemiology, non-parametric

statistics, linear and non-linear regression, neuroscience, and cognitive science.
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2.2 Bayesian Statistical Inference

In Bayesian inference, we treat the unknown parameters θ1 (discrete-valued or

continuous, time-varying or fixed) of the statistical model as random variables

and the observations y as fixed, known quantities. We denote the respective prior

distribution for the parameters θ by the function p(θ). This function contains

all the available information about the parameter values prior to observing the

data. The prior distribution p(θ) is then updated with the new evidence y to yield

the corresponding posterior distribution p(θ|y), which expresses our knowledge

about the parameters after seeing the data. The update rule for p(θ|y) is given

by Bayes’ Theorem (Bayes, 1763) according to:

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (2.1)

We can see that the posterior distribution is the conditional distribution of the

parameters after observing the data. The conditional probability p(y|θ) of the

data y when θ is assumed to be known, is commonly refereed to as the likelihood

function. The normalization function p(y) ensures that the posterior distribution

will integrate (or sum in the case of discrete θ) to 1 and is obtained by integrating

out θ according to:

p(y) =

∫

θ

p(y|θ)p(θ)dθ. (2.2)

From the posterior distribution, we can then perform model selection (for a de-

tailed discussion see e.g., Zucchini, 2000; Linhart & Zucchini, 1986) or parameter

estimation. For model selection, suppose we have to choose between two mod-

els (hypotheses) M1 and M2 based on a data set D. We denote the marginal

likelihood for model i (where i = 1, 2) by p(D|Mi) and respective prior prob-

ability densities by p(Mi). Note that in general, if θi is the parameter vector

1Boldface symbols denote vectors or matrices.
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of model Mi and p(θi|Mi) the prior distribution of θi, then the marginal likeli-

hood of model i, p(D|Mi) is computed by integrating the likelihood (predictive

probability) p(D|θi, Mi) over the parameter space:

p(D|Mi) =

∫
p(D,θi|Mi)dθi (2.3)

=

∫
p(D|θi,Mi)p(θi|Mi)dθi. (2.4)

Next, we compute the corresponding Bayes Factor B12 (Kass & Raferty, 1995;

Jeffreys, 1935) and prior odds (Λ12) for M1 against M2 defined respectively as:

B12 =
p(D|M1)

p(D|M2)
(2.5)

=

∫
p(θ1|M1)p(D|θ1,M1)dθ1∫
p(θ2|M2)p(D|θ2,M2)dθ2

(2.6)

and

Λ12 =
p(M1)

p(M2)
. (2.7)

Finally, model selection follows from computing the posterior odds for M1 against

M2 given the data D according to:

p(M1|D)

p(M2|D)
=

p(D|M1)

p(D|M2)

p(M1)

p(M2)
(2.8)

= B12Λ12 (2.9)

where the Bayes factor B12 provides a scale of evidence in favor of one model over

another. Table (2.1) provides a list of various values for B12 and their respective

interpretation.

In the case of parameter estimation, given a statistic of interest, f(θ) and

Eqs. 2.1 and 2.2 we can compute its expectation respective directly from

E p(θ|y)[f(θ)] =

∫

Θ

f(θ)p(θ|y)dθ. (2.10)
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B12 Strength of Evidence

<1 Supports M2

1 to 3.2 Barely worth mentioning

3.2 to 10 Substantial

10 to 100 Strong

>100 Decisive

Table 2.1: Table of Bayes factor values and their respective interpretation as

given in Kass & Raferty, (1995).

2.3 Recursive Bayesian Estimation

Recursive Bayesian estimation deals with the problem of inferring knowledge

about parameters (indirectly observable) recursively over time as new observa-

tions are collected using a mathematical process model. Both the sought param-

eters and observations are stochastic quantities where it is assumed that: (a) the

true states xt ∈ Rn follow an unobserved Markov process and (b) the observa-

tions Zt = {zi}t
i=1 are the observed states of a Hidden Markov Model (HMM)

(Ho & Lee, 1964; Chen, 2003; Kramer & Sorenson, 1988; West, 1981; Jazwinski,

1970). From Bayes’ Theorem (Eq. 2.1) it follows that

p(xt|Zt) =
p(Zt|xt)p(xt)

p(Zt)

=
p(zt,Zt−1|xt)p(xt)

p(zt,Zt−1)

=
p(zt|Zt−1,xt)p(Zt−1|xt)p(xt)

p(zt|Zt−1)p(Zt−1)

=
p(zt|Zt−1,xt)p(xt|Zt−1)p(Zt−1)p(xt)

p(zt|Zt−1)p(Zt−1)p(xt)

=
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)
(2.11)
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and the respective prediction density p(xt+1|Zt) is given by

p(xt+1|Zt) =

∫

Rn

p(xt+1|xt)p(xt|Zt)dxt. (2.12)

In general, Eqs. 2.11 and 2.12 can not be solved analytically and therefore,

approximate methods must be employed such as Particle Filters (Gordon, 1993;

Bergman, 1999; Doucet, 2001).

2.4 Monte Carlo Sampling

Monte Carlo2 sampling (Metropolis & Ulam, 1949) is a technique used in the mod-

eling of physical and mathematical processes based on repeated random sampling.

Mathematically, Monte Carlo sampling can be formulated as follows: Consider

the problem of computing the integral

E[f(x)] =

∫

X
f(x)p(x)dx (2.13)

where x is a continuous random variable, p(x) its respective probability density

function and f(x) an integrable function of x. We can approximate the integral

given in Eq. 2.13 with its Monte Carlo estimate f̂n(x) by taking n independent

and identically distributed (i.i.d) random samples {x(1), . . . , x(n)} from X and

computing the mean of f(x) over the samples according to:

f̂n(x) =
1

n

n∑
i=1

f(x(i)). (2.14)

From the Weak Law of Large Numbers, if E[f(x)] < ∞, then for any arbitrarily

small ε

lim
n→∞

P (|f̂n(x)− E[f(x)]| ≥ ε) = 0 (2.15)

2The term Monte Carlo is believed to have been first used by S. Ulam and J. von Neumann
while working in the Manhattan project in Los Alamos, New Mexico.
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and provided n is large enough and the variances Var[f(x)] are finite, according

to the Strong Law of Large Numbers, f̂n(x)
a.s.→ E[f(x)] and its convergence rate,

based on the Central Limit Theorem, ensures that

√
n

(
f̂n(x)− E[f(x)]

)
L→ N (0, σ2) (2.16)

where σ2 =Var[f(x)]. It is also worth mentioning that f̂n(x) is an unbiased es-

timator of E[f(x)] and the error rate is of order O(n−1/2), independent of the

dimension of x. A key issue in Monte Carlo sampling, is how to reduce the

variance of the Monte Carlo estimators. Many variance-reduction techniques

exist that are suitable for large variety of problems across a wide range of dis-

ciplines, however, three techniques that have been particularly useful for many

applications are (a) Importance Sampling (IS, Marshall, 1956), (b) Sequential

Importance Sampling (SIS) and Sampling Importance Resampling (SIR, Efron,

1982; Rubin, 1987). These methods are further discussed in the next section in

the context of sequential Monte Carlo estimation. More formal discussions of

Monte Carlo sampling methods can be found in Rippley, (1987); Hammersley &

Handscomb, (1964); MacKAy, (1999), and Liu, (2001).

2.5 Sequential Monte Carlo Methods: Particle Filters

Sequential Monte Carlo (SMC) methods3 are model estimation techniques that

rely on simulations for sampling from a sequence of probability distributions.

SMC methods for on-line learning within a Bayesian framework, can also be found

in the literature under Particle Filters (Gordon, 1993), Bootstrap Filters (Green,

1995), Sampling Importance Resampling (SIR, Efron, 1982; Rubin, 1987), Con-

densation Trackers (Isard, 1998), Interacting Particle Approximations (Crisan,

3A valuable resource on this topic can be found at the University of Cambridge, Sequential
Monte Carlo Methods homepage (www-sigproc.eng.cam.ac.uk/smc/).
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1999) and Survival of the Fittest (Kanazawa, Koller, & Russel, 1995).

Traditionally, a large number of random samples (commonly referred to as

particles) is used to approximate the desired sequence of probability distributions.

The system then evolves in time (i.e., the particles are propagated) via sampling

algorithms such as IS, SIS and SIR. Ideally, we would like to sample directly from

the posterior distribution, unfortunately, this is usually not possible because the

posterior distribution is unknown. Therefore, instead, we sample from a known,

easy to sample proposal pdf distribution.

Mathematically, the canonical Bayesian Importance Sampling algorithm can

be described as follows:

Let p(xk|Zk) denote the posterior distribution from which it is difficult to

sample from and π(xk|Zk) the respective, easy to sample proposal pdf distribu-

tion. Samples {xi
k} (where i = 1, . . . , n) drawn from p(xk|Zk) are assumed to be

i.i.d. and therefore, the posterior distribution p(xk|Zk) can be represented by

p(xk|Zk) ≈ 1

n

n∑

k=1

δ(xk − xi
k) (2.17)

and the expectation of any integrable function f(xk) of xk, provided n is large

enough so that p̂(xk|Zk) ≡ p(xk|Zk), can be estimated by (Chen, 2003)

E[f(xk)] ≈
∫

f(xk)p̂(xk|Zk)dxk

=
1

n

n∑
i=1

∫
f(xk)p̂(xk|Zk)dxk

=
1

n

n∑
i=1

∫
f(xk)δ(xk − xi

k)dxk

=
1

n

n∑
i=1

f(xi
k) ≡ f̂n(x) (2.18)

However, since it is easier to sample from the proposal distribution π(xk|Zk), the
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mean of f(xk) can be estimated as

E[f(xk)] =

∫
f(xk)

p(xk|Zk)

π(xk|Zk)
π(xk|Zk)dxk

=

∫
f(xk)

w(xk)

p(Zk)
π(xk|Zk)dxk

=

∫
f(xk)w(xk)π(xk|Zk)dxk∫

p(Zk|xk)p(xk)dxk

=

∫
f(xk)w(xk)π(xk|Zk)dxk∫

w(xk)π(xk|Zk)dxk

=
Eπ(xk|Zk)[wk(xk)f(xk)]

Eπ(xk|Zk)[wk(xk)]
(2.19)

where

wk(xk) =
p(Zk|xk)p(xk)

π(xk|Zk)
(2.20)

are know as the importance sampling weights. Therefore, by drawing the i.i.d.

samples {xi
k} from π(xk|Zk)

E[f(xk)] ≈
1
n

∑n
i=1 wk(x

i
k)f(xi

k)
1
n

∑n
i=1 wk(xi

k)

=
n∑

i=1

f(xi
k)w̃k(x

i
k) ≡ f̂(x) (2.21)

where

w̃k(x
i
k) =

wk(x
i
k)∑n

j=1 wk(x
j
k)

. (2.22)

When the proposal and posterior distributions, π(x0:k|Z0:k) and p(x0:k|Z0:k) re-

spectively, can be factorized, a recursive estimate of the importance weights wi
k

can be easily obtained. For example, assume that π(x0:k|Z0:k) can be factored as

π(x0:k|Z0:k) = π(x0)
k∏

j=1

π(xj|x0:j−1,Z0:j) (2.23)

and that the posterior p(x0:k|Z0:k) can be expressed as

p(x0:k|Z0:k) =
p(Zk|xk)p(xk|xk−1)p(x0:k−1|Z0:k−1)

p(Zk|Z0:k−1)
(2.24)
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following a similar derivation as in Eq. 2.11. The importance weights are then

obtained from

wi
k = wi

k−1

p(Zk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,Z0:k)
. (2.25)

2.5.1 Sequential Importance Sampling (SIS) Algorithm

Following the general discussion of Monte Sequential methods from the preceding

section, we now discuss a popular sampling scheme know as Sequential Impor-

tance Sampling (SIS). SIS is a widely-used method for randomly sampling from

hard-to-sample distributions. This approach is based on the importance sampling

idea (Marshall, 1956) that suggests sampling only the region(s) of importance in

order to save computational resources (Liu, 2001).

Despite its successes, a common problem with the SIS filter is that as the

number of iterations increases, only a few (or one) of the importance weights will

be different than zero (Kong, Liu & Wong, 1994). This problem is known as the

weight degeneracy problem (Rubin, 1987) and a proposed solution was introduced

by Kong, Liu & Wong, (1994) where a measure of the difference between the trail

and target distribution is quantified via the effective sample size (N̂eff ) given by

N̂eff =
1∑n

k=1 (wi
k)

2 (2.26)

If N̂eff is less than a previously specified threshold Nthresh, the respective sample

is accepted, otherwise, resampling is done following the canonical SIS algorithm

as described in the box below. This resampling step reduces the computation

time and therefore, improves the efficiency of the algorithm.
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Sequential Importance Sampling Algorithm

For steps k = 1, 2, . . .

1. For i = 1, . . . , n draw samples from the proposal distribution

xi
k ∼ π(xk|xi

k−1,Z0:k)

2. Set xi
0:k = {xi

0:k−1,x
i
k}

3. For i = 1, . . . , n update the importance weights

wi
k = wi

k−1

p(Zk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

0:k−1,Z0:k)
.

Note that when the transition prior π(xi
k|xi

k−1,Z0:k) = p(xi
k|xi

k−1),

the importance weights can be simplified to

wi
k = wi

k−1p(Zk|xi
k)

4. For i = 1, . . . , n compute the normalized importance weights

w̃i
k =

wi
k∑n

j=1 wj
k

End

2.5.2 Sampling Importance Resampling (SIR) Algorithm

The Sampling Importance Resampling (SIR) filter (Gordon, 1993; Liu & Chen,

1998) is based on the idea of resampling from the observations (these methods are

known as Bootstrap and Jacknife techniques (Efron, 1982)) and is used to circum-

vent the problem of degeneracy. By introducing the resampling step between two

importance sampling steps (Rubin, 1987) particles with smaller weights are more

readily eliminated and thereby, increasing those samples with larger weights. An-
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other advantage of the SIR filter is that there is greater flexibility in the choice

of resampling algorithm.

An important point to emphasize from the previous discussions is that parti-

cle filters, in general, can be regarded as the recursive version of the importance

sampling scheme (Levy, Reali, & Griffiths, 2009) such as the SIR algorithm. Par-

ticle filters have been widely used for probabilistic inference across many scientific

domains, in particular, their growing success in providing a means for exploration

of the influence of memory limitations on probabilistic inference (Levy, Reali, &

Griffiths, 2009; Daw & Courville, 2008; Sanborn, Griffiths, & Navarro, 2006),

makes them highly attractive as a preferred choice of computational framework

for the present work. Therefore, in this manuscript we implement our simulations

using particle filters as an approximation (indicated by the number of particles)

to human causal inference.
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Sequential Importance Resampling Algorithm
For steps k = 1, 2, . . .

1. For i = 1, . . . , n initialize samples and importance weights respectively:

x
i
0 ∼ p(x0) and w

i
0 = 1/n

2. For i = 1, . . . , n draw samples from the proposal distribution

x
i
k ∼ π(xk|xi

k−1,Z0:k)

3. Set xi
0:k = {xi

0:k−1, xi
k}

4. For i = 1, . . . , n update the importance weights

w
i
k = w

i
k−1p(Zk|xi

k)

5. For i = 1, . . . , n compute the normalized importance weights

w̃
i
k =

wi
k∑n

j=1 w
j
k

5. Calculate the effective number of particles

N̂eff =
1

∑n
k=1

(
wi

k

)2

6. If N̂eff < Nthresh, perform resampling

(i.) Draw n particles {xj
k
} from the current particle set {xi

0:k} by resampling with replacement with prob-

abilities proportional to their weights

(ii.) For i = 1, . . . , n set w̃i
k = 1/n

7. Repeat steps 2-6

End
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CHAPTER 3

Sequential Causal Learning in Humans and Rats

3.1 Abstract

Recent experiments (Beckers, De Houwer, Pineño, & Miller, 2005; Beckers, Miller,

De Houwer, & Urushihara, 2006) have shown that pretraining and posttraining

with unrelated cues can dramatically influence the performance of humans in a

causal learning paradigm and rats in a standard Pavlovian conditioning paradigm.

Such pretraining can make classic phenomena (e.g. forward and backward block-

ing) disappear entirely. We explain these phenomena by a new Bayesian theory

of sequential causal learning. Our theory assumes that humans and rats have

available two alternative generative models for causal learning with continuous

outcome variables. Using model-selection methods, the theory predicts how the

form of the pretraining determines which model is selected. We also show that

model averaging is able to capture the effects of posttraining. Detailed computer

simulations are in good agreement with experimental findings.

3.2 Introduction

For more than two decades, researchers in both animal conditioning and human

causal learning have identified significant parallels between the phenomena ob-

served in the two fields (see Shanks, 2004). It has even been suggested that rats
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in conditioning paradigms learn to relate cues to outcomes in a manner similar

to the way a scientist learns cause-effect relations (Rescorla, 1988). At the same

time, there have been strong disagreements about the theoretical basis for both

human causal learning and animal conditioning. On the one hand, conditioning

models (Rescorla & Wagner, 1972) have been applied to human causal learning

(Shanks, 1985); on the other, models of human causal learning have been applied

to animal conditioning (Blaisdell, Sawa, Leising, & Waldmann, 2006; Cheng,

1997).

A phenomenon that has received particular attention in both the human and

animal literatures is the blocking effect (Kamin, 1969). Suppose that two cues,

A and X, are repeatedly and consistently paired with a particular outcome O.

X will be viewed as a weaker cause of O if A alone is repeatedly paired with O

either before (forward blocking) or after (backward blocking) pairings of the AX

compound with O . Some evidence has suggested that blocking is less pronounced

in humans than in rats (De Houwer, Beckers, & Glautier, 2002). However, recent

experiments by Beckers et al., (2005, 2006) indicate that apparent differences

between humans and rats in the conditions that promote blocking may reflect

different assumptions about the cue-reward relationship, rather than any basic

difference in causal learning processes between species. For both species, Beckers

et al., (2005) showed that different pretraining conditions using unrelated cues

could alter the learners assumptions and thereby prevent or promote the occur-

rence of classic phenomena such as forward and backward blocking (leading rats

to behave more like humans, and vice versa).

The goal of this paper is to provide a computational explanation for these

experimental findings based on Bayesian inference. Our theory proposes that

experimental subjects, whether rats or humans, have available multiple models
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of cue integration appropriate for different situations (Waldmann, 2007; Lucas &

Griffiths, 2007). From our computational perspective, pretraining influences the

probability that causal learners will select a particular integration model during a

subsequent learning session with different cues, and this choice in turn determines

the magnitude of blocking effects.

Most previous statistical theories of human causal learning have focused on

learning from summarized contingency data based on binary variables (Cheng,

1997; Griffiths & Tenenbaum, 2005). The computational theory described here

instead provides a trial-by-trial model of learning from sequential data. For non-

verbal animals, there is no obvious way to present summarized data; often, hu-

mans also must learn from sequential data. In particular, sequential models

are required to account for influences of the order of data presentation (Danks,

Griffiths, & Tenenbaum, 2003; Dayan & Kakade, 2000;Shanks, 1985). A compu-

tational theory should enable beliefs to be dynamically updated by integrating

prior beliefs with new observations in a trial-by-trial manner. In addition, in con-

ditioning experiments the outcomes (e.g., food reward) are generally continuous

in nature (i.e., the magnitude of the reward may vary). A computational theory

must therefore address continuous-valued as well as binary variables in order to

integrate causal learning by humans with learning by other animals.

3.3 Bayesian Theory of Sequential Learning

Within our theory of causal learning, each causal model corresponds to a different

probabilistic model for generating the data. For continuous-valued outcomes we

use a linear-sum model (Dayan & Kakade, 2000), which has been used previously

to explain many aspects of the blocking effect, and a noisy-MAX model, proposed

here for the first time. The latter is a generalization of the noisy-OR model, which
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gives a good account of human causal learning about binary variables based on

summarized contingency data (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu

et al., 2007). The choice of model depends on the type of pretraining, and is

determined by standard Bayesian model selection. These expectations based

on pretraining carry over to influence the learners judgments in the subsequent

causal learning task, even though the specific cues differ from those used in the

pretraining.

We first introduce likelihood functions for the two different causal models

assumed by our theory. We then describe the priors, the resulting full models,

and model selection. Finally, we report simulations of experimental data and

discuss how the present theory relates to others.

3.3.1 Causal Generative Models as Likelihood Functions

We focus on the relationship between two binary-valued causes x1, x2 (i.e. xi = 1

if cause i is present, and xi = 0 otherwise) and a continuous-valued outcome

variable O. We define two continuous-valued hidden variables R1, R2 . The

hidden variables correspond to internal states that reflect the magnitudes of the

effect generated by each individual cause. Each such magnitude corresponds

to the weight of the corresponding cause, ω1, ω2 analogous to causal strength

(Cheng, 1997). The generative model of the data, as shown in Figure 3.1, is given

by

P (O|ω1, ω2, x1, x2) =

∫
dR1

∫
dR2P (O|R1, R2)

2∏
i=1

P (Ri|ωi, xi). (3.1)

The first generative model is called the linear-sum model because the output O

can be expressed as the sum of R1 and R2 plus Gaussian noise with mean 0 and
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variance σ2
m,

P (O|R1, R2) =
1√

2πσ2
m

exp{−(O −R1 −R2)
2/(2σ2

m)}. (3.2)

The complete first model is given by:

P (O|ω1, ω2, x1, x2) =

∫
dR1

∫
dR2P (O|R1, R2)P (R1|ω1, x1)P (R2|ω2, x2),

=
1√
2πσ2

f

exp{−(O − ω1x1 − ω2x2)
2/(2σ2

f )}. (3.3)

In this case, we are able to exploit the fact that all the distributions are Gaussian

in order to integrate out the hidden variables, with σf =
√

σ2
m + 2σ2

h.

The second generative model, termed the noisy-MAX model, is motivated

by the successful noisy-OR model for causal reasoning with binary variables by

humans (Cheng, 1997). To adapt this model for continuous outcome variables, we

express it as a MAX or noisy-MAX. This gives two related alternative expressions

for P (R|R1, R2):

P (O|R1, R2) =
1√

2πσ2
m

exp{−(O −max(R1, R2))
2/(2σ2

m)}, (3.4)

P (O|R1, R2) =
1√

2πσ2
m

exp{−(O − F (R1, R2; T ))2/(2σ2
m)}, (3.5)

where the function F (R1, R2; T ) is a noisy-MAX function of R1, R2 specified by:

F (R1, R2; T ) = R1
eR1/T

eR1/T + eR2/T
+ R2

eR2/T

eR1/T + eR2/T
. (3.6)

The parameter T determines the sharpness of the noisy-MAX function. As T 7→
0, the noisy-MAX function becomes identical to the max function. By contrast,

as T 7→ ∞ the noisy-MAX function becomes the weighted average (R1 + R2)/2.

Generally, the larger T the softer the noisy-MAX.

For both models, the hidden effects of the individual causes are assumed to

follow a Gaussian distribution,

P (Ri|ωi, xi) =
1√
2πσ2

h

exp{−(Ri − ωixi)
2/(2σ2

h)}, i = 1, 2. (3.7)
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As before, we generate the full MAX and noisy-MAX models by using the formula:

P (O|ω1, ω2, x1, x2) =

∫
dR1

∫
dR2P (O|R1, R2)P (R1|ω1, x1)P (R2|ω2, x2), (3.8)

using the appropriate formula for P (R|R1, R2). In these cases, it is impossible to

simplify the distribution P (R|ω1, ω2, x1, x2).

R

Cues

R
1

R
2

ω
2

Output effects

Hidden states

ω
1

X
2

X
1

Figure 3.1: An illustration of the generative models. The different models com-

bine R1 and R2 in different ways, a linear-sum or a noisy-MAX, to yield the

output effect O.

3.3.2 Causal Priors

To perform Bayesian estimation we must specify prior distributions on the weights

P (ω1), P (ω2) , which we define as Gaussians with 0 mean and small variance σ2
p.

This prior distribution expresses the default assumption that the weight of both

causes is close to zero before observing any data.
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For sequential presentation in a trial-by-trial dynamic manner, we also assume

a temporal prior for the change of ω1, ω2 over time (i.e.,trials), as in Dayan &

Kakade (2000).

P (ωt+1
i |ωt

i) =
1√

2πσ2
T

exp{−(ωt+1
i − ωt

i)
2/(2σ2

T )}, i = 1, 2. (3.9)

These temporal priors imply that weights may be slowly varying from trial to

trial. The amount of variation is controlled by the parameter σ2
T . As σ2

T → 0

the weight becomes fixed over trials, thus effectively switching off the temporal

prior. For larger σ2
T the weights can change significantly over trials.

3.3.3 Combining the Likelihood and Priors

We use the standard technique for combining likelihoods with temporal priors for

sequential data (Ho & Lee, 1964). The linear-sum model can be obtained from

this formulation as the special case in which the likelihood, prior, and temporal

priors are Gaussian.

To simplify the notation, we write ~x = (x1, x2), ~ω = (ω1, ω2). We write {Ot}
and {~xt} to denote the set of rewards and causes on all trials up to and including

trial t, i.e. {Ot} = (Ot, Ot−1, . . . , O1).

The Bayesian formulation for updating the estimates of the weights is given

in two stages:

P (~ωt+1|{Ot}, {~xt}) =

∫
d~ωtP (~ωt+1|~ωt)P (~ωt|{Ot}, {~xt}), (3.10)

P (~ωt+1|{Ot}, {~xt}) =
P (Ot+1|~ωt+1, ~xt+1)P (~ωt+1|{Ot}, {~xt})

P (Ot+1|{Ot}, {~xt+1}) . (3.11)

Here we set P (~ωt+1|~ωt) = P (ωt+1
1 |ωt

1)P (ωt+1
2 |ωt

2) assuming independence in the

temporal prior.

The process is initialized by setting P (~ω0) equal to the prior (i.e., product of
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Gaussians with 0 means and variances σ2
p).

We use Eq. 3.10 to predict a distribution on the weights ~ω1 at time t = 1

(with the convention that {O0} and {~x0} are empty sets). Then we employ Eq.

3.11 to make use of the observed data on trial 1, O1, x1, to update the estimate

of the weights, ~ω1.

Eqs. 3.10-3.11 correspond to prediction and correction for each trial as a recur-

sive estimator. That is, only the estimated weight distribution from the previous

trial t and the current cue-outcome measurement, xt+1, Ot+1, are needed to com-

pute the weight estimate for the current trial, ωt+1. Thus the model does not

need to memorize cue-outcome pairs across all trials. If all the probabilities are

Gaussian, then updating the probability distributions using Eqs. 3.10-3.11 simply

corresponds to updating the means and covariance matrices using the standard

Kalman filter equations (Dayan & Kakade, 2000). In the case of the noisy-MAX

model, Eqs. 3.10-3.11 are applied directly in the distribution updating.

3.3.4 Parameter Estimation and Model Selection

There are two types of inference that we can make from the posterior distributions

P (~ωt|{Ot}, {~xt}). First, we can perform parameter estimation to estimate the

weights ~ωt i.e., the weights of causes after t trials. Second, we can evaluate how

well each model fits the data and perform model selection (i.e., choose between

the linear-sum and noisy-MAX models). As discussed by Lu et al., (2007),

different experimental paradigms can be modeled as parameter estimation or

model selection.

Parameter estimation involves estimating the weight parameters ~ωt. In our

simulations, these estimates are the means of weights with respect to the distri-
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bution:

~̂ωt =

∫
d~ωtP (~ωt|{Ot}, {~xt})~ωt (3.12)

Model selection involves determining which model is more likely to account for

the observed sequence of data {Ot} and ~xt. For each model (linear-sum or noisy-

MAX), we compute:

P ({Oτ}|{~xτ}) =
τ−1∏
t=0

P (Ot+1|{Ot}, {~xt+1}), (3.13)

with the convention that

P (O1|{O0}, {~x1}) =

∫
d~ωP (O1|~ω, ~x1)P (~ω). (3.14)

3.4 Simulation of Blocking Experiments

We first report our simulations of traditional forward/backward blocking paradigms

(Shanks, 1985) using linear-sum and noisy-MAX models. These two blocking ef-

fects provide a critical test for any sequential learning model. We then apply our

Bayesian approach, e.g. using model selection, to a human experiment that em-

ployed pretraining (Beckers et al., 2005), and a similar conditioning experiment

using rats (Beckers et al., 2006). The simulations illustrate how our approach

accounts for human and rat performance based on model selection and parameter

estimation for sequential data.

We implement the models by discretizing the variable ω1, and ω2 and refer

to this implementation as the ‘bins’ method. We perform the integrals in equa-

tions (3.10, 3.14) by discrete sums. This requires that the variables are restricted

to lie within a fixed range depending on the experiment. The discretization

must be sufficiently dense to ensure good quality results (an alternative is to use
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particle filtering techniques). Table (3.1) lists the respective parameters for the

noisy-OR, human and rat experiments. These parameters include the observation

variance σ2
h, temporal prior variance σ2

T , reward combination variance σ2
m, range

of values for the weights ω, and the number of bins (N) used for discretizing ω.

To facilitate comparison with previous works, we list the corresponding standard

deviations instead of the variances themselves.

Data σh σT σm T (ωmin, ωmax) No of bins (N)

Noisy-OR 0.6 0.1 0.01 0.1 [0, 1] 100

Human 0.6 0.3 0.01 0.4 [-1, 2] 100

Rat 0.6 0.6 0.01 0.3 [-2, 4] 100

Table 3.1: Summary of model parameters. Listed are the parameters used for

each of the three experiments, Noisy-OR, Human, and Rat.

We checked our implementation by comparing our results for the linear-sum

model to those reported in Dayan & Kakade, (2000), and Daw, Courville, &

Dayan, (2007) using the standard Kalman update equations. Our results were in

very good agreement (provided the discretization was sufficiently dense).

The nature of the problem implies that the variables ω1, ω2, R1, R2 are essen-

tially zero outside a small range. Hence we truncate the integrals outside these

ranges (while checking to ensure that the distributions remain within them). We

approximate the integrals by finite sums (we explored between 20 and 100 bins).

We check that the distributions are normalized by computing the normalization

factors explicitly. We also check that these normalization factors are close to

1 (if not, there is a risk of bugs). We are careful at computing terms such as

eR1/T /(eR1/T + eR2/T ) since such terms become unstable if eR1/T and eR2/T are

small (like dividing zero by zero).
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As discussed in Chapter 2, we also implement our simulations using particle

filters. Therefore, in order to provide a unified account of the results from all

the simulations, we report our results based on the simulations from the particle

filter method when appropriate. We verified that both the bins and particle

filter simulations yielded consistent results for every experiment. Simulations of

experiments with the particle filter are performed with 4000 particles and the

results shown are the averages from 25 Monte Carlo runs. In Chapter 4 we we

provide further details of the particle filter implementation.

3.4.1 Forward/Backward Blocking

Conditioning paradigms provide a window to the investigation of natural infer-

ences produced by causal learning. Two common paradigms, schematized in

Table (3.2), are forward blocking (A+, AX+) and backward blocking (AX+,

A+). In both, the common finding is acquisition of a weaker weight between X

and reward O than that between A and reward O (Kamin, 1969; Shanks, 1985).

Note that backward blocking (typically weaker than forward blocking) implies

that the weight of the absent cue X is updated as a result of a series of A+ trials.

Any successful sequential learning model must explain the difference of weights

associated with different cues in both blocking paradigms.

Figure 3.2 shows simulations of learning of weight for cue A (ωA, solid) and

cue X (ωX , dotted) as a function of trial number in forward blocking (black) and

backward blocking (gray) designs. Figure 3.2A, B shows predictions based on

the linear-sum and the noisy-MAX model, respectively. Both models predict

the basic phenomena, as the weight associated with cue X is weaker than the

weight for A in both forward and backward blocking paradigms, and more so in

the former. However, the linear-sum model predicts a larger weight difference
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Blocking Training Training Test

Paradigm phase 1 Phase 2

Forward 8A+ 8AX+ A, X

Backward 8AX+ 8A+ A, X

Table 3.2: Design summary for a typical blocking experiment. The numerical

values indicate the number of trials, + indicates the presence of the outcome

effect.

than does the noisy-MAX model in both paradigms. Furthermore, for the weight

associated with cue X, the linear-sum model predicts a weaker weight in forward

blocking (dashed black) than in backward blocking (dashed solid), which is an

asymmetry between forward/backward blocking. The noisy-MAX model also

predicts an asymmetry, although it diminishes as the number of trials increases.

A novel prediction from the noisy-MAX in forward blocking is that the weight

associated with cue A is expected to decrease to 0.5 after a large number of AX+

trials.

3.4.2 Impact of Pretraining on Human Judgments

We simulated results of a pretraining study with humans by Beckers et al., (2005).

Table (3.3) schematizes the experimental design. G and H indicate different food

cues: + and ++ indicate a moderate or a strong allergic reaction, respectively. As

shown in Table (3.3), additive pretraining involved G+ trials followed by H+, and

then followed by GH++. Sub-additive pretraining involved G+ trials followed

by H+ trials, and then followed by GH+ trials.

The experiment included three phases: (a) pretraining, (b) elemental training,

and (c) compound training. The elemental and compound training were always
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Figure 3.2: Predicted mean weights of each cue as a function of training trials in

two different blocking paradigms. (A) linear-sum model; (C) Noisy-MAX model.

The black lines indicate predictions for forward blocking paradigm (A+, AX+);

the gray lines indicate predictions for backward blocking paradigm (AX+, A+).

The solid lines are estimates of weights for cue A; the dashed lines are estimates

of weights for cue X. The linear-sum model predicts a larger difference between

ωA and ωX across the two blocking paradigms than does the Noisy-MAX. Plots

(B) and (D) show the respective particle filter simulations of plots (A) and (C)

using 4000 particles and averaging over 25 Monte Carlo runs. Also shown are the

corresponding 1σ error bars.

the same but the pretraining could be either additive or sub-additive for the two

groups. In both groups, standard forward blocking trials with different food cues

(A+ followed by AX+) were presented in phase 2 and 3. Note that the design
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used completely different cues in the pretraining phase 1 (cues G, H) and phases 2

and 3 (cues A, X, K, and L). If blocking occurs, we would expect the weight of cue

X to be reduced by its pairing with cue A, due to the earlier elemental training

on A in phase 2. K and L served as control cues, which were only presented in

phase 3 as KL+ trials.

After completing these three phases, participants were asked to rate how likely

each food cue separately would cause an allergic reaction. As indicated by the

human results shown in Figure 3.4A, cue X was blocked after additive pretrain-

ing but not after sub-additive pretraining. More precisely, additive pretraining

resulted in a lower rating for cue X than for the control cues, K and L, both of

which in turn received significantly lower causal ratings than cue A. In contrast,

after sub-additive pretraining there was little difference among the ratings for X,

K, and L.

Group Phase 1: Phase 2: Phase 3:

Pretraining Elemental Training Compound Training

Additive 8G+/8H+/8GH++/8I+/8Z- 8A+/8Z- 8AX+/8KL+/8Z-

Subadditive 8G+/8H+/8GH+/8I++/8Z- 8A+/8Z- 8AX+/8KL+/8Z-

Table 3.3: Design summary for human pretraining experiment in Beckers et al.,

(Exp. 2, 2005).

The experimental design used by Beckers et al., (2005) can be translated into

the notation of our model as follows. G+, H+, GH+ respectively correspond

to (x1, x2) = (1, 0), (0, 1) and (1, 1) . The notation + and ++ correspond to

O = 1 and O = 2, respectively. Using the pretraining trials in phase 1, we

performed model selection to infer which model is more likely for the additive

and sub-additive groups. With the models selected in the pretraining phase, we

then used trials in phases 2 and 3 to estimate the distribution of the weights ω

for each cue. The mean of each ω was computed to provide a comparison with
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human ratings.

We employed trials in the pretraining phase to compute the log-likelihood

ratios for the noisy-MAX model relative to the linear-sum model using Eq. 3.10.

The resulting plots are shown in Figure 3.3. In the simulation we used model

parameters σh = 0.6, σT = 0.3, σm = 0.01, and T = 0.4. To perform model

selection, we need to impose a threshold on the log-likelihood ratios. We set

the threshold to be the log-likelihood ratio obtained when only the data G+, H+

had been shown (as the experimental subject would have no basis for a preference

between the two models at this stage). The simulation results (see Figure 3.8)

show that the linear-sum model is selected if the pretraining is additive (i.e., G+,

H+, GH++), because the corresponding ratio is below the threshold, whereas

the noisy-MAX model is selected if the pretraining is sub-additive (i.e., G+,

H+, GH+), because the corresponding ratio is above the threshold.

We then computed the mean weights, using Eq. 3.12, for the models chosen

by the model selection stage. These mean weights (see Figure 3.4B) constitute

our simulations predictions for the causal ratings. The simulation results are

in good agreement with the results for humans (Figure 3.4A). The linear-sum

model generates accurate predictions for the additive group: the mean weight for

X is much lower than weights for the control cues K and L, indicating blocking

of causal learning for cue X. In contrast, the noisy-MAX model gives accurate

predictions for the sub-additive group: the mean weight for X is about the same

as the weights for the control cues K and L, consistent with absence of blocking

for X.

33



Figure 3.3: Log-likelihood ratios for the MAX and Noisy-MAX models relative to

the linear-sum model for Experiment 2 of Beckers et al., (2005). Two models were

evaluated, MAX model and noisy-MAX model, as shown on the x axis. Black bars

indicate model selection results for the additive group; white bars indicate the

selection results for the subadditive group. The red lines indicate the thresholds

for the log-likelihood ratio when only the data G+ and H+ had been shown.

If the log-likelihood ratio is below the threshold line, the linear-sum model is

preferred; if the ratio is above the threshold line, the MAX or noisy-MAX models

are preferred. The results clearly show that the linear-sum model is selected in

the additive group, whereas the MAX or noisy-MAX model is selected in the

subadditive group.

3.4.3 Impact of Pretraining on Rat Conditioning

Now we compare the predictions of the models to the experimental findings for a

conditioning experiment with rats (Beckers et al., 2006). Animals were presented

with cues that were associated with shocks while the animals pressed a lever

for water. We focus on two conditions: sub-additive and irrelevant element, as

schematized in Table (3.4) (Beckers et al., 2006, Experiment 1). Animals in the
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Figure 3.4: Mean causal rating for each cue. (A) Human ratings in Experiment 2

by Beckers et al., (2005); see their Figure 3, p. 243. Black bars indicate the mean

rating for additive pretraining group; white bars for sub-additive pretraining

group. (B) Predicted ratings based on the selected model for each group. Black

bars indicate the mean ω based on the linear-sum model, which gives a good fit

for the human means in the additive group. White bars indicate the mean ω

based on the noisy-MAX model, which give a good fit for the human means in

the sub-additive group. Simulation results represent averages (with respective

1σ error bars) over 25 Monte Carlo runs using the particle filter implementation

with 4000 particles.

experimental group received forward blocking training (A+ followed by AX+);

control animals did not receive blocking training (B+ followed by AX+). Before

the actual blocking training (phase 2 and phase 3), experimental and control

animals in the subadditive condition were exposed to a demonstration of two

effective cues, C and D, that had sub-additive outcomes (i.e., C+, D+, CD+),

or to an irrelevant pretraining (i.e. C+, D+, E+). The number of lever-press

responses to X after phase 3 was measured for all animals.

We used the same translation to the model notation as before. We set the
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Condition and Phase 1: Phase 2: Phase 3:

Group Pretraining Elemental Training Compound Training

Subadditive

Experimental 4C+/4D+/4CD+ 12A+ 4AX+

Control 4C+/4D+/4CD+ 12A+ 4AX+

Irrelevant Element

Experimental 4C+/4D+/4E+ 12A+ 4AX+

Control 4C+/4D+/4E+ 12A+ 4AX+

Table 3.4: Design summary for the rat pretraining experiment by Beckers et al.,

(Exp. 1, 2006).

threshold such that without any training, the linear-sum model would be pre-

ferred over the noisy-MAX model, as evidence suggests that rats typically as-

sume linear integration (Beckers et al., 2006, p. 98; see also Wheeler, Beckers,

& Miller, 2008). We computed the loglikelihood ratios for the pre-testing data,

using Eq. 3.13, to confirm that the noisy-MAX model was selected for the sub-

additive condition and the linear-sum model for the irrelevant condition. The

results are shown in Figure 3.5. We used model parameters σh = 0.6, σT = 0.6,

σm = 0.01, T = 0.3 in the simulations. Compared to the parameter set used

for the human experiments, we increased the variance for the temporal prior to

speed up causal learning of cues (perhaps reflecting the high salience of electric

shock as an outcome).

Beckers et al., (2006) used the suppression ratio of cue X as a measure of rats’

causal judgment about cue X. A value of 0 for the suppression ratio corresponds

to complete suppression of bar pressing (i.e., high fear of cue X), and a value

of 0.5 corresponds to a complete lack of suppression (i.e., no fear of X). Figure

3.7A shows the mean suppression ratios for experimental and control animals in

Experiment 1 of Beckers et al., (2006).

We model the suppression ratio as a function of the predicted mean weight

of cue X, ω̄X with Eq. 3.12. Assuming that the mean number of lever presses in
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the absence of cue X is N , the expected number of lever presses in the presence

of cue X will be N −NωX . Accordingly, the predicted suppression ratio can be

computed as:

suppression ratio =
N −Nω̄X

N −Nω̄X + N
=

1− ω̄X

2− ω̄X

(3.15)
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Figure 3.5: Log-likelihood ratios of noisy-MAX model relative to linear-sum

model for the Subadditive condition (white), and the Irrelevant condition (gray)

in the rat experiment (Beckers et al., 2006, Exp. 1).

Figure 3.7B shows the predictions of selected models for the two conditions

tested by Beckers et al., (2006). Similar to the results obtained when modeling

the human data, the noisy-MAX model was selected for the sub-additive con-

dition, and the linear-sum model for the irrelevant condition. Accordingly, the

suppression ratio was estimated using the noisy-MAX model for the Subadditive

condition. The suppression ratio in the Irrelevant condition was computed by the

linear-sum, because the default model was assumed to favor the linear-sum given

that irrelevant pretraining data did not provide clearly discriminative information

for model selection. As shown in Figure 3.7B, there was no significant difference
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Figure 3.6: Log-likelihood ratios for the MAX and noisy-MAX models relative

to the linear-sum model in the rat experiments performed by Beckers et al.,

(2006). The same conventions are used as in Figure (3.3). The results clearly

show that the linear-sum model is selected in the additive group, whereas MAX

or noisy-MAX model is selected in the subadditive group.

in the suppression ratio for the noisy-MAX model, in agreement with rat data

showing no significant difference between the experimental and control groups

with Subadditive pretraining. In contrast, suppression ratios differed between

experimental and control groups using the linear-sum model in agreement with

the rat data showing a significant difference between the experimental and control

groups with irrelevant element pretraining.

3.5 Comparison of Simulation Results with Experiments

Based on experimental results from Beckers et al., (2005 -see Experiments 2, 3

and 4), we simulate their study of the effect of pre- and post- training on hu-

man judgements. Pretraining is simulated for (a) forward blocking (Experiment

2), (b) backward blocking (Experiment 3) and (c) release from overshadowing
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Figure 3.7: Mean suppression ratio for cue X in experimental and control groups

by pretraining conditions in the subadditive condition and irrelevant condition

(Beckers et al., 2006, Exp. 1). Black/white bars indicate the experimen-

tal/control group, respectively. (A) Rat results; (B) Suppression ratio predicted

by the noisy-MAX model (matched to Subadditive experimental condition),

and predicted by the linear-sum model (matched to Irrelevant element condi-

tion). Simulation results represent averages (with respective 1σ error bars) over

25 Monte Carlo runs using the particle filter implementation with 4000 particles.

(Experiment 3). The effect of posttraining is modeled for forward blocking only

(Experiment 4). Details of the experimental designs and experiments are given in

Beckers et al., (2005) and previous simulation results for the effect of pretraining

in the forward blocking case are discussed in Lu et al., 2008b.

3.5.1 Modeling of Pretraining Effect using Model Selection

The experiments conducted by Beckers et al., 2005 consist of four different food

cues: A, X, K, and L and allergic reactions to these cues are measured as moderate

(+) or strong (++). In our notation, G+, H+, and GH+ correspond to (x1, x2) =
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(1, 0), (0, 1), and (1, 1) respectively. The reaction strengths + and ++ correspond

to O = 1 and O = 2 respectively. Human experiment consists of three phases:

(1) pretraining, (2) elemental training and (3) compound training. Pretraining is

performed with food cues, namely, G and H, and the subsequent training phases

use different food cues. Pretraining conditions can be either additive (G+ → H+

→ GH++) or subadditive (G+ → H+ → GH+). Cues K and L are only present

in phase 3 and therefore serve as control cues.

Table 3.5 below shows the experimental design for the forward blocking ex-

periment (Exp 2 in Beckers et al., 2005) and the backward blocking and release

from overshadowing experiments (Exp 3 in Beckers et al., 2005). As discussed

in greater detail in Lu et al., (2008b), using the pretraining trials in Phase 1,

we perform model selection, as shown in Figure 3.8.The simulation results show

that the linear-sum model is selected if the pretraining is additive (i.e., G+, H+,

GH ++), because the corresponding ratio is below the threshold, whereas the

noisy-MAX model is selected if the pretraining is sub-additive (i.e., G+, H+,

GH+), because the corresponding ratio is above the threshold. Next, we adopt

the Bayesian sequential model to update posterior distributions of the weights ω

for each cue presented in Phases 2 and 3. To compare our simulation results with

the human ratings, we compute the mean of each ω.

Figure 3.9 shows the mean causal rating for each cue. In the top panel, the

left plot shows the human ratings in forward blocking experiment (Exp 2) by

Beckers et al., (2005), in which black bars indicate the mean rating for additive

pretraining group; white bars for sub-additive pretraining group. The right plot

shows the predicted ratings based on the selected model for each group. Black

bars indicate the mean ω based on the linear-sum model, which gives a good

fit for the human means in the additive group. White bars indicate the mean
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Table 3.5: Design summary for human pretraining study in Beckers et al., (2005)

Experiment 2 & 3. The numerical values indicate the number of trials and +

indicates the presence of the outcome effect.

Experiment Blocking Pretraining Compound Elemental Test

Paradigm Phase 1 Phase 2 Phase 3

Exp 2 Forward blocking additive 8G+/8H+/8GH++ 8A+ 8AX+/8KL A, X, K, L

Forward blocking subadditive 8G+/8H+/8GH+ 8A+ 8AX+/8KL A, X, K, L

Exp 3 Backward blocking additive 8G+/8H+/8GH++ 8AX+/KL+ 8A+ A, X, K, L

Backward blocking subadditive 8G+/8H+/8GH+ 8AX+/KL+ 8A+ A, X, K, L

Release from overshadowing additive 8G+/8H+/8GH++ 8AX+/KL+ 8A- A, X, K, L

Release from overshadowing subadditive 8G+/8H+/8GH+ 8AX+/KL+ 8A- A, X, K, L

ω based on the noisy-MAX model, which give a good fit for the human means

in the sub-additive group. The simulation results are in good agreement with

the results for humans. The linear-sum model generates accurate predictions for

the additive group: the mean weight for X is much lower than weights for the

control cues K and L, indicating blocking of causal learning for cue X. In contrast,

the noisy-MAX model gives accurate predictions for the sub-additive group: the

mean weight for X is about the same as the weights for the control cues K and

L, consistent with absence of blocking for X.

The bottom panel in Figure 3.9 show the results from human and model in

backward blocking experiment (Exp 3) by Beckers et al., (2005). Again, the

model predictions agree with human performance well. A pretraining effect still

preserves for both human and model, although the effect is much weaker than in

forward blocking experiment (Exp 2 in Beckers et al., 2005).

Another important human causal learning paradigm that has been experimen-

tally observed (Exp. 3 in Beckers et al., 2005) is the release from overshadowing

effect. Similar to backward blocking, the release from overshadowing effect is

another example of the more general retrospective revaluation effects. The key
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Figure 3.8: Log-likelihood ratios for the noisy-MAX model relative to the lin-

ear-sum model for experiment by Beckers et al., (2005). Black bars indicate the

ratio for the additive group; white bars for the sub-additive group. The dashed

line indicates the threshold for model selection. These simulation results are in

good agreement with experimental findings (see subsection 3.5.1).

difference between the two cue competition effects lies in the elemental training

phase; in the case of release from overshadowing, trials of A- follow the compound

training trials of AX+, as opposed to backward blocking where A+ trials follow

the AX+ trials. Figure 3.10 shows our simulation results for the release from

overshadowing experiment. Following the same convention as in Figure 3.9, the

left plot shows the human ratings in the release from overshadowing experiment

(Exp 3) by Beckers et al., (2005) and the right plot the predicted ratings based

on the selected model for each group. We can see that our model predictions,

for cues A, X, and K accurately predict the observed human performance. In

the case of cue L, there a small discrepancy, however, given the experimental 1σ

error bars, are results are within a reasonable range.
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Figure 3.9: Left, Human ratings by Beckers et al., (2005); Right, Predicted rat-

ings based on the selected model for each group. Top panel, forward blocking

experiment (Exp. 2 in Beckers et al., 2005); Bottom panel, backward blocking

experiment (Exp. 3 in Beckers et al., (2005)). For further details see subsection

4.1.1. Simulation results represent averages (with respective 1σ error bars) over

25 Monte Carlo runs using the particle filter implementation with 4000 particles.

3.5.2 Modeling of Posttraining Effect using Model Averaging

Experiment 4 in the study conducted by Beckers et al., (2005) reported that

information about outcome additivity have an impact on blocking even if it is

presented after the blocking training phases. As shown in Table 3.6, Phases 1 and

2 correspond to the elemental and compound training phases respectively with

cue A and X, but Phase 3 is the posttraining phase with different cues (i.e. cue

G and H). After the posttraining phase, human subjects were asked to evaluate
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Figure 3.10: Release from Overshadowing results. Left, Human ratings from the

release from overshadowing experiment (Exp. 3 in Beckers et al., (2005); Right,

Predicted ratings based on the selected model for each group. For further details

see subsection 3.5.1. Simulation results represent averages (with respective 1σ

error bars) over 25 Monte Carlo runs using the particle filter implementation with

4000 particles.

the causal power for cue A and X. In the other words, the design in Exp 4 is

identical as it in Exp 1 described in Section 3.5.1, except reversing the order of

the actual blocking training and the additivity training, effectively turning the

additivity manipulation in a posttraining instead of a pretraining procedure.

In the first blocking training phases, we assume that humans update posterior

distributions of causal strengths for models, linear-sum and noisy-MAX. When

the posttraining phase is provided, model averaging is performed to combine the

estimates of causal strengths from the two models as

〈ω〉 = P (D|M1)ω̄M1 + P (D|M2)ω̄M2 (3.16)

where D is the data, M1 and M2 represent the linear-sum and noisy-MAX gate

models respectively, and P (D|Mi) is the ‘evidence’ for each model from obser-
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vations in the posttraining phase. ω̄Mi
is the estimated mean value of causal

strength using each model from observations in the first two training phases.

Figure 3.11 shows our results for the posttraining experiment (Exp 4 in Beck-

ers et al., 2005). We can see that model averaging is able to capture the post-

training effects qualitatively, and correctly predict a weaker posttraining effect

than the pretraining effect described in section 3.5.1.

Table 3.6: Design summary for human posttraining study in Beckers et al., (2005)

Experiment 4. The numerical values indicate the number of trials and + indicates

the presence of the outcome effect.

Experiment Group Elemental Compound Posttraining Test

Phase 1 Phase 2 Phase 3

Exp 4 Forward blocking additive A+ 8AX+/8KL+ 8G+/8H+/8GH++ A, X, K, L

Forward blocking subadditive A+ 8AX+/8KL+ 8G+/8H+/8GH+ A, X, K, L

A summary of the values for all the model parameters used in our simulations

of Beckers et al., (2005, 2006) experiments using the particle filter method is

given in Table 3.7 and in Table 3.8 we include the respective parameters for

the bins implementation of the simulations. The particle filter parameters listed

include the likelihood function variance σ2
m, the reward combination variance σ2

m,

temporal prior variance σ2
T , reward combination temperature T for the Noisy-

MAX likelihood function, the range for the causal weights (ωmin, ωmax), range of

values for the reward (Rmin, Rmax), number of particles Np used and number of

Monte Carlo runs NMC . For the variance values, we list instead the respective

standard deviation values in order to better match the algorithm implementation

where standard deviation values are specified rather than variances.

A key observation from the parameter values in Tables 3.7 and 3.8 is that de-

spite the inherent differences in the experiments (e.g., humans vs. rats, blocking
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Figure 3.11: (A) Mean causal rating for each cue based on human subjects in

Experiment 4 (Posttraining) of Beckers et al., (2005) (see their Figure 5 p247)

and (B) mean causal weights produced by the model as a function of different cues

in the design of Experiment 4 (Beckers et al., 2005). See section 3.2. Simulation

results represent averages (with respective 1σ error bars) over 25 Monte Carlo

runs using the particle filter implementation with 4000 particles.

experiment, etc.), the respective parameter values across the different experi-

ments are not that different from one another. This property of our current

implementation, highlights an important advantage of our models in that we are

able to make more testable predictions than the experiments reveal (Lu, Weiden,

& Yuille, 2009).

3.6 Analysis

3.6.1 Noisy-OR and MAX models

One interesting prediction is that the Noisy-OR model does not predict forward

blocking. We compared the estimated causal weight of B in the binary output
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Table 3.7: Summary of model parameters using the Particle Filter. Listed are

the values of the parameters used for the simulations of Beckers et al. 2005,

2006 experiments using the method of Particle Filters for the simulations. The

variables Np and NMC represent the number of particles used and the number of

Monte Carlo runs respectively.

Experiment σh σT σm T (ωmin, ωmax) (Rmin, Rmax) Np NMC

Exp 1, Rats (Beckers et al. (2006)) 0.6 0.6 0.01 0.3 [-2, 4] [-2, 4] 4000 25

Exp 2 Humans (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 [-2, 4] [-2, 4] 4000 25

Exp 3 Backward (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 [-2, 4] [-2, 4] 4000 25

Exp 3 Overshadowing (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 [-2, 4] [-2, 4] 4000 25

Exp 4 Forward (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 [-2, 4] [-2, 4] 4000 25

Table 3.8: Summary of model parameters using the bins method. Listed are

the values of the parameters used for the simulations of Beckers et al. 2005

experiments using the bins implementation for the simulations.

Experiment σh σT σm T N (ωmin, ωmax) (Rmin, Rmax)

Exp 1, Rats (Beckers et al. (2006)) 0.6 0.6 0.01 0.3 100 [-2, 4] [-2, 4]

Exp 2 Humans (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 100 [-1, 2] [-2, 4]

Exp 3 Backward (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 100 [0, 1] [-2, 4]

Exp 3 Overshadowing (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 100 [-0.4, 2] [-2, 4]

Exp 4 Forward (Beckers et al. (2005)) 0.6 0.3 0.01 0.4 100 [-1, 2] [-2, 4]

case in two conditions, including standard forward blocking (A+, AB+) and its

control condition (AB+). The noisy-OR model predicts the same causal weight

of B in both conditions, suggesting a complete lack of blocking. This result

is also replicated by the MAX and Noisy-MAX model. The simulation with

small number of trials confirms the above theoretical prediction, as shown in

Figure (3.12).
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Figure 3.12: Model mean causal weights of cue B in two different conditions.

The first one (A+, AB+) is the standard forward blocking paradigm; the second

(AB+) is the control condition. The results show that MAX and noisy-MAX

models are good approximation to the Noisy-OR model. As predicted, Noisy-OR

model did not show any blocking effect. Max and noisy-MAX models predict

weak blocking effect with 15 trials per condition.

3.6.2 Analysis without a Temporal Prior

The temporal prior plays a critical role in our models. As shown in Figure (3.2),

the model with temporal prior correctly predicts the asymmetry between the for-

ward and backward blocking. However, without the temporal prior, the model

would give identical results for forward and backward blocking in disagreement

with experimental findings Daw, Courville, & Dayan, (2007). To gain a deeper

understanding of the model we analyze the case when the temporal prior is

switched off.

We consider the limit case when the variance σh is zero. The linear-sum model
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is expressed as:

P (r|x1, x2, ω1, ω2) =
1√

2πσm

exp{−(r − ω1x1 − ω2x2)
2/(2σ2

m)}. (3.17)

Now suppose we have N1 samples with r = 1, x1 = 1, x2 = 1 and N2 samples

with r = 1, x1 = 1, x2 = 1. Then the maximum likelihood (ML) estimates for the

parameters ω1, ω2 are obtained by minimizing the energy:

E(ω1, ω2) = N1(1− ω1 − ω2)
2 + N2(1− ω1)

2. (3.18)

For N2 > 1, this is minimized by setting ω1 = 1 and ω2 = 0. Note that if N2 = 0,

then there is a family of solutions with ω1 + ω2 = 1.

There are two main points from this analysis. First, the results depend only

on the numbers N1 and N2 of samples. In particular, the results are independent

of the ordering of the samples and give the same results for both forward and

backward blocking. Second, the results depend very weakly on N1, N2, and only

on whether these numbers are zero or non-zero. A single example N2 = 1 is

sufficient to ensure that ω1 = 1 and ω2 = 0. This would imply that there would

be very fast jumps in the estimates of ω1, ω2 as we change phases.

We can perform a similar analysis for the noisy-MAX. Again we set σh = 0.

The noisy-MAX model is:

P (r|x1, x2, ω1, ω2) =
1√

2πσm

exp{−(r −max(ω1x1, ω2x2))
2/(2σ2

m)}. (3.19)

The values of ω1, ω2 are obtained by minimizing the energy:

E(ω1, ω2) = N1(1−max(ω1, ω2))
2 + N2(1− ω1)

2. (3.20)

For N1 > 0, N2 > 0, the solution is given by ω1 = 1 and ω2 ≤ 1. For N2 > 0 we

have ω1 = 1. For N2 = 0, we get max(ω1, ω2) = 1.
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This analysis yields similar results as above. The ordering of the samples does

not matter. But the occurrence of a single example with r = 1, x1 = 1, x2 = 0

(i.e. N2 = 1) is sufficient to ensure that ω1 = 1.

3.6.3 Need for Updating when No Data are Present

Finally, there is the issue of whether the temporal prior should be applied if the

corresponding cause is not present (i.e., should we update ωi if xi = 0?). We

have obtained results for either situation. The results do not differ very much at

the level of analysis with which we are concerned. There are, however, various

paradoxes associated with updating the temporal prior for ωi in situations where

xi = 0. The reason is that the temporal prior acts as a type of blurring of the

weight. If the distribution of ωi is initially peaked sharply about zero, then it

becomes increasingly broadly peaked as we run the temporal prior. This seems

unintuitive. It is more plausible that the temporal prior is only activated when

the cause is present. The idea is that the temporal prior is a luxury that the

system can only afford if there are data coming in.

3.7 General Discussion

The Bayesian theory of sequential causal learning described in the present pa-

per provides a unified explanation for important learning phenomena observed

with both humans and rats. In particular, the theory accounts for influences

of pretraining on subsequent learning with completely different stimuli (Beckers

et al., 2005, 2006). The key assumption is that learners have available multi-

ple generative models, each reflecting a different integration rule for combining

the influence of multiple causes (cf. Lucas & Griffiths, 2007; Waldmann, 2007).
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When the outcome is a continuous variable, both humans and rats have tacit

knowledge that multiple causes may have a additive impact on the outcome

(linear-sum model). Alternatively, the outcome may be effectively “saturated”

at a level approximated by the weight of the strongest individual cause (noisy-

MAX). Using standard Bayesian model selection, the learner selects the model

that best explains the pretraining data, and then employ the favored model in

estimating causal weights with different cues during subsequent learning. Note

that the information provided in Phases 2-3 is identical for both groups; hence

only Phase 1 (pretraining) is relevant to model selection.

A key component of the sequential learning theory is the temporal prior,

which controls dynamic updating of the estimated weight of each cue in a trial-

by-trial manner. The temporal prior allows the theory to explain both forward

and backward blocking effects, and more generally captures the influence of trial

order on causal learning. Trial-order effects are outside the scope of models that

only deal with summarized data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005;

Lu et al., 2007).

The present theory is also more powerful than previous accounts of sequen-

tial causal learning. The Rescorla-Wagner model (Rescorla & Wagner, 1972)

and its many variants (see Shanks, 2004) only update point estimates of causal

strength, and thus are unable to represent degrees of uncertainty about causal

strength (Cheng & Holyoak, 1995). By adopting a Bayesian approach to learning

probability distributions, the present theory provides a formal account of how

a learners confidence in the causal strength of a cue will be expected to change

over the course of learning. The same limitation (updating point estimates of

strength, rather than probability distributions) holds for a previous simulation

of sequential learning based on the noisy-OR generative model (Danks, Griffiths
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& Tenenbaum, 2003). Most importantly, the present theory goes beyond all pre-

vious accounts of dynamical causal learning (e.g., Dayan & Kakade, 2000) in its

core assumption that learners, both human and non-human, are able to flexibly

select among multiple generative models that might “explain” observed data.

The theory thus captures what appears to be a general adaptive mechanism by

which biological systems learn about the causal structure of the world.

In the next chapter we extend our applications of particle filters to the study

of the limitations of human inference. In particular, we show that by using a

limited number of particles (¡6000), we are able to capture important conditioning

phenomena such as the highlighting effect and that when we increase this number

substantially (e.g., ≥ 18, 000) to reflect exact inference, the effect vanishes as

expected (see e.g., Daw et al., 2005).

52



CHAPTER 4

Modeling Causal Generalization with Particle

Filters

4.1 Abstract

We model the highlighting effect observed in Daw, Courville, & Dayan, (2007)

using a particle filter algorithm as an approximation to exact statistical infer-

ence, in accord with the limited computational capacity of human cognition. We

find that the inferential approximation based on particle filters predicts the high-

lighting effect. We also generalize our models to account for relations between

multiple cues and multiple outcomes. We test our generalized framework with the

highlighting effect and also show that our models are robust against variations

in the likelihood function variance. Specifically, we demonstrate that the results

obtained from assuming the likelihood function variance is fixed are consistent

with those obtained from learning the likelihood variance by varying its value

within in a reasonable range. Our results also show that when a significantly

large number of particles (≥ 18, 000) is used for simulation of exact statistical

inference, the highlighting effect is no longer captured by our models.
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4.2 Introduction

Human reasoning is adaptive, as exemplified by the reasoner’s ability to gener-

alize abstract cause-effect relations from one situation to another. The challenge

in understanding causal generalization is to identify how humans acquire and

propagate abstract causal knowledge across domains. Causal knowledge includes

several key aspects, including causal structure as captured by graphical models

of the existence of cause-effect links (Griffiths & Tenenbaum, 2005; Pearl, 2000),

causal power as reflected in the strength of cause-effect links (Cheng, 1997), and

causal integration rules that model how to combine multiple cause-effect rela-

tions (Cheng, 1997). In this paper, we will consider these three types of causal

knowledge in the context of causal generalization.

A variety of “rational” models of causal learning have taken probabilistic

approaches to explain how people acquire causal knowledge from covariational

observations presented in the format of summarized contingency data (Griffiths

& Tenenbaum, 2005; Cheng, 1997; Lu et al., 2008a). Despite their success in

capturing a variety of causal learning phenomena, these models leave open the

question of how a learner can cope with non-summary data. In everyday life,

people often receive observations incrementally. For such naturalistic learning

situations, sequential models are required to account for the influence of the

order of data presentation.

To address this issue, a Bayesian sequential model can be used as an infer-

ence engine to capture the propagation of causal knowledge over time. Kalman

filtering (Kalman, 1960; Kamin, 1969) has been successfully applied in sequential

causal learning, and has been used to explain various experimental phenomenon

in animal conditioning (Dayan & Kakade, 2000; Daw, Courville, & Dayan, 2007).

However, a limitation of previous work using Kalman filtering involves the as-

54



sumption of Gaussian distributions with a linear-sum causal integration rule to

combine multiple cause-effect relations. Many empirical studies have shown that

the linear-sum rule is not able to account for human causal learning with binary

variables (Buehner, 2003; Liljeholm, 2007). Accordingly, a more flexible inference

model is required to account for a broader range of learning situations. In the

present paper, we present a model of sequential causal learning based on particle

filtering (Wood, 2007), a sequential method used for approximate probabilistic

inference over time. This model is used to explore how different causal integra-

tion rules can be selected, and how causal knowledge can be propagated with

increasing certainty as the number of sequential observations increases.

An additional critical issue concerns how to model the generalization of causal

knowledge from one context to another. In the laboratory, researchers have de-

signed behavioral experiments to measure causal generalizability in controlled

environments. Beckers et al., (2005) first trained human subjects with certain

cue-outcome pairs, such as bacon (cue G) and eggs (cue GH) each paired with

a moderate allergic reaction. The combination of the two cues, bacon and eggs

(cue GH) was paired with either a moderate or a strong allergic reaction. The

subjects were then transferred to a classic forward blocking paradigm with unre-

lated cues, such as cheese (cue A) paired with moderate allergy, and cheese and

nuts (cue AX) also paired with moderate allergy. Finally, subjects were tested on

how likely nuts alone (cue X) was to cause allergy. Human participants provided

different ratings on the transfer test for cue X depending on whether cue combina-

tion GH has been paired with moderate or strong allergy during the pretraining.

Beckers et al.,’s (2005) study provided empirical evidence that different pretrain-

ing conditions using unrelated causal cues can alter the reasoner’s assumptions,

and thereby change their subsequent causal inferences. From a computational

perspective, the influence of pretraining conditions can be explained in terms of
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a Bayesian process of model selection, which operates to identify one of the most

important aspects of causal knowledge, the causal integration rule, and transfer

it to the subsequent inference task. An alternative Bayesian procedure would

be model averaging (Erven, 2007), which accepts several causal integration rules

with different calculated probabilities, and then averages the inference results

across all the possible integration rules. In the final section, we will explore the

possibility that particle filtering could serve as an approximation to rational infer-

ence while allowing for the limitations on human computational capacity (Wood,

2007).

In this chapter, we describe our computational theory in Section 4.3. Section

5 compares human results with model predictions in three experiments. Last, we

show how the particle filter approach is able to explain highlighting phenomenon,

which has been a challenge to Bayesian sequential learning model using Kalman

filters with exact inference.

4.3 The Computational Theory

This section describes our computational theory. We specify two alternative

models which compete to explain the data by model selection or cooperate to

explain the data by model averaging, see subsection (4.3.1). We implement the

theory using particle filters as described in subsection (4.3.2).

4.3.1 The Models

The experiments specify a sequence of input and output pairs (~x1, d1), ..., (~xt, dt).

The input ~x = (x1, x2) specifies which cause is present: (i) cause 1 if x1 = 1, x2 = 0

and, (ii) cause 2 if x1 = 0, x2 = 1. The output d is a continuous variable. We use
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capital variables as shorthand for these sequences so that ~Xt = (~x1, ..., ~xt) and

Dt = (d1, ..., dt).

Both models are parameterized by weight variables ~ω = (ω1, ω2) which indi-

cate the strength of the causes x1, x2 for causing the effect. We specify a prior

P (~ω) on the weights which is a Gaussian with zero mean and large covariance

(making weak assumptions about the initial values of the weights). We specify

a temporal prior P (~ωt+1|~ωt) which allows the weights to change over time and

means that the model is most influenced by the most recent data. The prior and

temporal prior are specified by:

P (~ω1) =
1

2π
√
|Σ1|

exp{−(1/2)~ωT
1 Σ−1

1 ~ω1}, (4.1)

P (~ωt+1|~ωt) =
1

2π
√
|Σ2|

exp{−(1/2)(~ωt+1 − ~ωt)
TΣ−1

2 (~ωt+1 − ~ωt)}, (4.2)

where Σ1 = σ2
1I and Σ2 = σ2

2I, where I is the identity matrix. Hence the

weights ω1, ω2 are decoupled in the priors. The respective σ1 and σ2 values are

0.05 and 0.1. It is important to point out that our sequential model is fairly

robust to different initial priors. Although we only report results with one prior

in this discussion, we have experimented with several different priors -including

Gaussian, delta distributions centered at zero, and uniform distributions- and

obtained similar results in all cases.

The likelihood functions are of form:

P (d|~ω, ~x,M) =
∑

~R

P (d|~R, M)P (~R|~ω, ~x), (4.3)

where ~R are the states of hidden units and M indicates the model.

We define P (~R|~ω, ~x) = 1

2π
√
|Σ| exp{−(1/2)(~R − ~ω

⊗
~x)T Σ−1(~R − ~ω

⊗
~x)},

where ~ω
⊗

~x = (ω1x1, ω2x2).
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The models P (d|~R) are of form:

P (d|~R) =
1√

2πσ2
exp{−(d− F (~R,M))2/(2σ2)}, (4.4)

where F (~R, M = 1) = R1 + R2 for the first model and F (~R, M = 2) =

R1
eR1/T

eR1/T +eR2/T +R2
eR2/T

eR1/T +eR2/T for the second model. The first model is the linear-

sum model (Dayan & Kakade, 2000) and the second model is a noisy-MAX model

(Lu et al., 2008a) which is a generalization of the Noisy-OR model (Cheng, 1997).

Figure 4.1 illustrates the two generative models, which employ different combi-

nation rules.

!2"!1"

x2 x1 

R1 R2 

(A) (B) 

!2"!1"

x2 x1 

R1 R2 

Noisy 

 Max + 

Figure 4.1: An illustration of the generative models. The different models com-

bine R1 and R2 in different ways, a linear-sum (A) or a noisy-MAX (B), to yield

the output effect R.

4.3.2 Inference by Particle Filtering

We use Bayes-Kalman to update the probabilities P (~ωt|Dt, ~Xt,M) when we re-

ceive new data. In the rest of the section we will drop the dependencies on ~Xt

and M to simplify the notation. Bayes-Kalman specifies that we update weights

by a prediction stage followed by a measurement stage:

P (~ωt+1|Dt) =

∫
d~ωtP (~ωt+1|~ωt)P (~ωt|Dt) (prediction) (4.5)

P (~ωt+1|Dt+1) =
P (dt+1|~ωt+1)P (~ωt+1|Dt)

P (dt+1|Dt)
(measurement). (4.6)
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We implement these equations using particle filters (Doucet, Freitas, & Gordon,

2001; Liu, 2001). Previous methods in the cognitive science literature are un-

suited for this problem. Dayan & Kakade, 2000 used Kalman’s algebraic update

equations for the means and covariance of P (~ωt), but this cannot be applied to

our second model which is non-Gaussian. Lu et al., (2008a) represented the dis-

tributions using a fixed lattice in ~ω space, but this becomes problematic for the

models described here (high accuracy requires a very dense lattice which leads

to an extremely slow algorithm). By contrast, particle filters sample the space

adaptively and are more efficient. (We validated particle filters by showing that

they agree with these other methods when applicable).

Particle filters approximates distributions like P (~ωt|Dt,M) by a set of discrete

particles {~ωµ
t : µ ∈ Γ}. This enables us to approximates quantities such as

∫
d~ωg(~ωt)P (~ωt|Dt) by (1/|Γ|) ∑

µ∈Γ g(~ωµ
t ) for any function g(.).

We initialize by drawing samples {~ωµ
1 : µ ∈ Γ} from the prior distribution

P (~ω). This is straightforward since the prior is a Gaussian.

Then we proceed recursively following the prediction and measurement stages

of the Bayes-Kalman filter. Let {~ωµ
t : µ ∈ Γ} be the set of particles representing

P (~ωt|Dt) at time t. Then we sample from the Gaussian distribution P (~ωt+1|~ωµ
t )

for each µ to give a new set of particles {~̄ωµ
t : µ ∈ Γ} which represents P (~ωt+1|Dt).

Next we compute the importance weights λµ = P (dt+1|~̄ωµ
t+1) and normalize

them to obtain λ̄µ = λµ/(
∑

µ λµ). Then we re-sample with replacement from the

set {ω̄µ
t+1 : µ ∈ Γ} using probability λ̄µ. This gives new set {~ων

t+1 : ν ∈ Γ} of

particles which represent P (~ωt+1|Dt+1).

To compare to experiments, we need to measure the model evidence P (Dt) for

each model and to estimate the mean values of the weights ~̂ωt =
∫

d~ωt~ωtP (~ωt|Dt).

We compute these from the particles as follows.
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The mean values are approximated by the average (1/|Γ|) ∑
µ∈Γ ~ωµ

t .

The model evidence is expressed as P (dt|Dt−1)P (dt−1|Dt−2)...P (d1). We eval-

uate each term P (dt+1|Dt) =
∫

d~ωt+1P (dt+1|~ωt+1)P (~ωt+1|Dt) by P (dt+1|Dt) =

1
|Γ|

∑
µ∈Γ P (dt+1|~̄ωµ

t+1).

The simulations are run using 6000 particles since beyond this value, even

when performing numerous Monte Carlo runs (over 100 each with 6000 particles),

the results do not show any significant variation in their outcomes. We also tested

the model with a much smaller numbers of particles (100 and 500) with multiple

simulation runs (i.e., the number of runs was matched to the number of subjects

in the Beckers’ experiments). The average performance with these numbers of

particles was very close to the results obtained with 6000 particles. So a very

large number of particles is not necessary to account for Beckers’ experimental

results. Our simulation of highlighting effects is instead performed with 1000

particles. Figure 4.2 illustrate the change of particle filters in a standard forward

blocking paradigm over training trials.
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Figure 4.2: Particle filters in the simulation with forward blocking paradigm as

a function of training trials.
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4.4 Highlighting

In this section, we will demonstrate the use of particle filtering to explain an-

other causal learning phenomenon, the highlighting effect reported by Kruschke,

(2001), Kruschke, (2006) and Kruschke, (2008). Table 4.1 describes a canonical

experimental design. The learner first sees 15 trials of cue A and B associated

with outcome O1, and 5 trials of cue A and C associated with outcome O2; then

in the second phase, the order of the training sessions is reversed. In the subse-

quent test phase, observers are asked to predict the outcome (O1 or O2) when

showing cue A only and cue B and C together. The highlighting design equalizes

the long-run base rates of the two outcomes, and the frequency of cue-outcome

pairs (e.g., 20 trials in total for AC with O1 and AB with O2). Humans show

a strong tendency to choose outcome O1 for cue A, but a lower probability to

choose O1 for cue B and C.

Kruschke, (2006) developed a locally Bayesian learning model to account for

the highlighting effect, by combining local Bayesian updating between layers

and attention control through back-propagation. In contrast, Daw, Courville,

& Dayan, (2007) argued that the highlighting effect could be explained by com-

putation limitations of the human cognitive system. According to their account,

human observers conduct inferential learning by an approximation to statistical

models, such as Kalman filtering. Daw et al., (2007) employed a rational model

based on Kalman filtering with a linear-sum rule. With exact statistical inference,

this rational model is unable to predict the highlight effect. However, including

inferential approximations in their model using reduced-rank approximations was

able to explain the highlighting effect.

In this section, we show that particle filtering, as an approximation to sta-

tistical inference, is able to predict the highlighting effect (Wood, 2007). The
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advantage of using particle filtering is that it makes it possible to control the

degree of approximation to exact statistical inference, as simulations with a very

large number of particles are closer to the rational inference model. To be consis-

tent with the representations used by the two models described in the previous

paragraph, we assume that outcome O1 is indicated when a binary reward value

is 1, and outcome O2 is indicated when the reward value is 0. We thus focus the

model on the case of multiple causes and a single effect, rather than extending

it to the case of multiple causes and multiple effects. Given that the outcome

variable is binary, we adopt two generative models, linear-sum (Daw, Courville,

& Dayan, 2007) and noisy-logic (Cheng, 1997; Yuille, 2007), in the simulation of

particle filtering.

The left plot in Figures 4.3 shows the learning curve of causal strengths for

each cue and the combination of cue B and C as a function of training trials.

Based upon the learned causal strengths for each cue, the model can predict how

likely outcome O1 will be chosen for each cue or cue combination. The highlight-

ing effect is revealed by the difference between Cue A and BC predictions. We

find that this difference is reduced with increases in the number of particles em-

ployed in the simulation, a result which agrees with the finding in Daw, Courville,

& Dayan, (2007), summarized above.

The right plot in Figures 4.3 shows the probability of choosing O1 for cue A

and cue B&C as a function of different generative models, linear-sum and noisy-

logic. Both models yield highlighting effects, namely higher P (O1) for cue A than

for cue B&C, although the effect is weaker for the noisy-logic model.

In Figure 4.4 we show results from a simulation using 1000 (plot (A)) and

18,000 (plot (B)) particles. The experimental design is the same as in Daw,

Courville, & Dayan, (2007). However, our implementation is performed with
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Table 4.1: Highlighting Design by Daw, Courville, & Dayan, (2007)

Blocking Paradigm Training Training Test

Phase 1 Phase 2

Highlighting 15× ( AB → O1) 5× ( AB → O1) A →?O1

5× ( AC → O2) 15× ( AC → O2) BC →?O2

Table 4.2: Summary of model parameters. Listed are the values for the parame-

ters used in each model.

Model σh σT σm (ωmin, ωmax) (Rmin, Rmax) N (particles)

Noisy-OR 0.1 0.1 0.1 [-1, 1] [-1, 1] 1500

Linear-Sum 0.1 0.1 0.1 [-1, 1] [-1, 1] 1500

particle filters. We can see that the use of particle filters as an approximation

to statistical inference is well motivated and justified as reflected in the causal

strengths of cues A and BC in plots (A) and (B) where the presence of the

highlighting effect is mediated via the number of particles.

Another important study we conducted was to investigate the effect of varying

the value of the likelihood variance (σh) in our simulations of the highlighting

effect. In our models we assumed σh was fixed and equal to 0.1, however, this

was motivated by the fact that when we varied its value in the interval [0.01,

1], which covers a large dynamic range, the results did not change by much.

Figure 4.5 shows our results for the case when we fix σh (plot (A)) and when

we vary its value (plot (B)). In both case the causal strengths for the respective

cues show almost indistinguishable behavior confirming that either approach is

appropriate.

63



0 10 20 30 40
−1

−0.5

0

0.5

1

Trial

M
ea

n 
po

st
er

ia
l p

re
di

ct
io

n

 

 

A
B
C
BC

O
1

O
1

 5AC  5AB

15AB

O
2 O

2

15AC

Linear Noisy−Logic
−0.1

0

0.1

0.2

0.3

0.4

Generative Model

P
ro

ba
bi

lit
y 

of
 c

ho
os

in
g 

O
1

 

 

A
BC

Figure 4.3: Highlighting results. Left, learning curve of causal strength when

using linear-sum model. The highlighting effect is revealed by the difference

between Cue A and BC predictions. With the increase of the number of parti-

cles, the highlighting effect will reduce. Right, comparison of highlighting effect

between linear-sum model and noisy-logic model. See section 4.
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Figure 4.4: Highlighting results using 1000 (plot A) and 18,000 (plot B) particles.

We can see that the highlighting effect vanishes when a very large number of

particles is used as shown in Figure (B).
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Figure 4.5: Highlighting results using a fixed likelihood variance value (plot A)

and varying the variance in the range [0.01, 1] (plot B). We can see that the

highlighting effect is clearly present in both cases (plots A and B) as reflected

in the difference between the causal strengths of cues A and BC and the overall

trends are about the same.

4.5 Conclusions

We propose that particle filter simulation could be a good candidate to mimic the

limitations of computational capacity (in particular, working memory resources)

in the human cognitive system. Accordingly, particle filtering may serve as a

computationally realistic approximation to rational inference. This model of

approximate inference is able to explain the highlighting effect and is a significant

step forward in our understanding of human performance on causal reasoning.
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CHAPTER 5

Conclusions and Future Work

The Bayesian theory of sequential causal learning described in the present work

provides a unified explanation of important learning phenomena, using the imple-

mentation of a particle filter as an approximation to exact statistical inference. In

particular, the theory accounts for influences of pretraining on subsequent learn-

ing as well as influences of posttraining on previous learning, with completely

different stimuli. The key assumption is that learners have available multiple

generative models, each reflecting a different integration rule for combining the

influence of multiple causes. In particular, when the outcome is a continuous

variable, humans have tacit knowledge that multiple effects may have an ad-

ditive impact on the outcome (linear-sum model). Alternatively, the outcome

may be effectively “saturated” at a level approximated by the weight of the

strongest individual cause (noisy-MAX). Using standard Bayesian model selec-

tion, the learner selects the model that best explains the pretraining data, and

then continues to favor the most successful model during subsequent learning

with different cues. In other situations, the learner uses both models to perform

causal learning, but is able to retrospectively re-evaluate the estimations from

different models when extra information about integration rules is provided by

post-training with different cues. This post-training effect can be explained by

model averaging.

Future work will entail extending our model to more complex causal networks
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that include multiple causes and multiple effects. In this case, rather than having

one binary outcome O (=0 or 1), we will have two binary outcomes, E1(=0 or 1)

and E2(=0 or 1). For each cue, A, B and C, the corresponding causal strength is

now associated with each respective binary outcome. To make the associations

more transparent, we adopt the following notation: For a given cue, X, its causal

strength with respect to an outcome Ei will be denoted as ωEi
X , where i = 1, 2.

For example, the causal strength for cue B associated with the outcome E1 would

be denoted as ωE1
B . To indicate the value that a particular outcome assumes, we

use superscripts indicating a value of 1 or 0, e.g., if E1 = 0, we denote this as E0
1

and if E1 = 1, then we write it as E1
1 .

In Figure 5.1 we show a plot of the causal network structure for three cues

(A, B, and C), two binary outcomes (E1 and E2) and respective causal strengths

ωEi
X .
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Figure 5.1: Causal network for multiple cues and multiple outcomes. The top

nodes represent the three cues A, B and C, and the bottom nodes the two bi-

nary outcomes, E1 and E2. Arrows correspond to the respective associations

between cues and outcomes and the respective causal strengths are indicated by

the variables ωEi
X , where i = 1, 2 and X = {A,B, C}.
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The experimental design that we will explore for this framework is illustrated

in Table 5.1 and can be regarded as a generalized version of that given in Table 4.1.

To indicate the presence or absence of a particular cue, we use a value of 1 or 0

respectively as given by the numbers in parentheses in Table 5.1.

Table 5.1: Highlighting Design based on Daw, Courville, & Dayan, (2007)

Highlighting No. of Trials A B C E1,E2

Phase I. 15× 1 1 0 1, 0

5× 1 0 1 0, 1

Phase II. 5× 1 1 0 1, 0

15× 1 0 1 0, 1

Test





A →?E1 or A →?E2

BC →?E1 or BC →?E2

The implementation of this causal network is based on the mathematical

principles discussed in Section 4.3. However, a key component of our future

generalization is that we assume that the likelihood probability of the observed

data P (E1, E2|A,B, C, ωE2
A , ωE1

B , ωE2
B , ωE1

C , ωE2
C ) can be factored according to:

P
(
E1, E2|A,B, C, ωE1

A , ωE2
A , ωE1

B , ωE2
B , ωE1

C , ωE2
C

)
= P

(
E1|A,B, C, ωE1

A , ωE1
B , ωE1

C

)

×P
(
E2|A,B,C, ωE2

A , ωE2
B , ωE2

C

)

(5.1)

where E1, E2, A,B, C ∈ {0, 1}.

A natural extension of this work will be to test our approach on other con-

ditioning paradigms such as upwards and downwards unblocking, second-order
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conditioning, and conditioning inhibition, and to integrate the collaborative in-

teraction of our senses in the overall learning process. At the present, stimuli

are modeled as inputs from one sense alone (e.g., visual or auditory). However, a

more comprehensive approach will be to incorporate the participation of the other

senses (even if their involvement is highly suppressed by a dominating sense) in

the respective causal learning task.
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