

A Reputational Theory of Firm Dynamics

Simon Board Moritz Meyer-ter-Vehn

UCLA

May 6, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Models of firm dynamics

- ▶ Wish to generate dispersion in productivity, profitability etc.
- Some invest in assets and grow; others disinvest and shrink.

A firm's reputation is one of its most important assets

- Kotler: "In marketing, brand reputation is everything".
- Interbrand: Apple brand worth \$98b; Coca-Cola \$79b.
- EisnerAmper: Reputation risk is directors' primary concern.

Reputation a special asset

- Reputation is market *belief* about quality.
- Reputation can be volatile even if underlying quality constant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This Paper

Firm dynamics with reputation

- Firm invests in quality.
- Firm & mkt. learn about quality.
- Firm exits if unsuccessful.

Optimal investment

- Firm shirks near end.
- Incentives are hump-shaped.

(日)、

This Paper

Firm dynamics with reputation

- Firm invests in quality.
- Firm & mkt. learn about quality.
- Firm exits if unsuccessful.

Optimal investment

- Firm shirks near end.
- Incentives are hump-shaped.

Benchmarks

Consumers observe investment.

・ロト ・ 雪 ト ・ ヨ ト

This Paper

Firm dynamics with reputation

- Firm invests in quality.
- Firm & mkt. learn about quality.
- Firm exits if unsuccessful.

Optimal investment

- Firm shirks near end.
- Incentives are hump-shaped.

Benchmarks

- Consumers observe investment.
- Firm privately knows quality.

(日)、

ied The

Appendix

Literature

Reputation Models

- Bar-Isaac (2003)
- Kovrijnykh (2007)
- Board and Meyer-ter-Vehn (2013)

Firm Dynamics

- Jovanovic (1982)
- Hopenhayn (1992)
- Ericson and Pakes (1995)

Moral hazard and learning

- Holmstrom (1982)
- Bonatti and Horner (2011, 2013)
- Cisternas (2014)

Introduction	Model	Best-Response	Equilibrium	Observable	Informed	The End	Appendix

Model

◆□ → < @ → < Ξ → < Ξ → ○ < ⊙ < ⊙</p>

The End

Appendix

Model, Part I

Long-lived firm sells to short-lived consumers.

- Continuous time $t \in [0, \infty)$, discount rate r.
- Firm invests $A_t \in [0, \overline{a}]$, $\overline{a} < 1$, and exits at time T.

Technology

- Quality $\theta_t \in \{L, H\}$ where L = 0 and H = 1.
- Technology shocks arrive with Poisson rate λ .
- Quality given by $Pr(\theta_s = H) = A_s$ at last shock $s \leq t$.

Information

- Breakthroughs arrive with Poisson rate μ iff $\theta_t = H$.
- Consumers observe history of breakthroughs, h^t .
- Firm additionally recalls past actions.

Reputation and Self-Esteem

- Consumers' beliefs over strategy of firm, $F = F({\tilde{A}_t}, \tilde{T})$.
- Self-esteem $Z_t = \mathbb{E}^{\{A_t\}}[\theta_t|h^t].$
- Reputation, $X_t = \mathbb{E}^F[\theta_t | h^t, t < \tilde{T}].$

Payoffs

- Consumers obtain flow utility X_t .
- Firm value

$$V = \max_{\{A_t\}, T} \mathbb{E}^{\{A_t\}} \left[\int_0^T e^{-rt} (X_t - cA_t - k) dt \right].$$

Recursive Strategies

Game resets at breakthrough, X=Z=1.

- $\{A_t\}, T$ is recursive if only depend on time since breakthrough.
- F is recursive if only puts weight on recursive strategies.
- If F recursive, then optimal strategies are recursive.
- Notation: $\{a_t\}, \tau, \{x_t\}, \{z_t\}, V(t, z_t)$ etc.

Self-esteem

- Jumps to $z_t = 1$ at breakthrough.
- ► Else, drift is $\dot{z}_t = \lambda (a_t z_t) dt \mu z_t (1 z_t) dt =: g(a_t, z_t).$

Assumption: A failing firm eventually exits

- Negative drift at top, $z^{\dagger} := \lambda/\mu < 1$.
- Exit before z^{\dagger} reached, $z^{\dagger} k + \mu z^{\dagger}(1-k)/r < 0$.

Introduction Model Best-Response Equilibrium Observable Informed The End Appendix

Optimal Investment & Exit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(日) (同) (三) (三) (三) (○) (○)

Optimal Strategies Exist

Lemma 1. Given $\{x_t\}$, an optimal $\{a_t^*\}, \tau^*$ exists with $\tau^* \leq \overline{\tau}$.

Idea

- Drift g(a, z) is strictly negative for $z \in [z^{\dagger}, 1]$.
- $V(t, z^{\dagger}) < 0$ for any strategy, so τ^* bounded.
- Action space compact in weak topology by Alaoglu's theorem.
- Payoffs are continuous in $\{z_t\}$, and hence in $\{a_t\}, \tau$.

Notation

- Optimal strategies $\{a_t^*\}, \tau^*$.
- Optimal self-esteem $\{z_t^*\}$.

Introduction

Best-Response

The End

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Appendix

Optimal Investment

Lemma 2. Given $\{x_t\}$, optimal investment $\{a_t^*\}$ satisfies

$$a_t^* = \begin{cases} 0 & \text{if } \lambda V_z(t, z_t^*) < c, \\ \overline{a} & \text{if } \lambda V_z(t, z_t^*) > c. \end{cases}$$

Investment pays off by

- Raising self-esteem immediately.
- Raising reputation via breakthroughs.

Dynamic complementarity

- V(t, z) is convex; strictly so if $\{x_t\}$ continuous.
- Raising a_t raises z_{t+dt} and incentives $V_z(t, z_{t+dt})$.
- Optimal strategies ordered: $z_t^* > z_t^{**} \Rightarrow z_{t'}^* > z_{t'}^{**}$ for t' > t.

Appendix

Marginal Value of Self-Esteem

Lemma 3. Given $\{x_t\}$, if $V_z(t, z_t^*)$ exists it equals

$$\Gamma(t) = \int_{t}^{\tau^*} e^{-\int_{t}^{s} r + \lambda + \mu(1 - z_u^*) du} \mu(V(0, 1) - V(s, z_s^*)) ds.$$

Value of self-esteem over dt

- dz raises breakthrough by $\mu dz dt$.
- Value of breakthrough is $V(0,1) V(s, z_t^*)$.

Discounting the dividends

- Payoffs discounted at rate r.
- dz disappears with prob. $\mu z_t^* dt$, if breakthrough arrives.
- dz changes by $g_z(a, z_t) = -(\lambda + \mu(1 2z_t^*)).$

Derivation of Investment Incentives

Give firm cash value of any breakthrough,

$$V(t, z_t^*) = \int_t^{\tau^*} e^{-r(s-t)} (x_s - ca_s^* - k + \mu z_s^* (V(0, 1) - V(s, z_s^*)) ds.$$

Apply the envelope theorem,

$$V_{z}(t, z_{t}^{*}) = \int_{t}^{\tau^{*}} e^{-r(s-t)} \frac{\partial z_{s}^{*}}{\partial z_{t}^{*}} \Big(\mu(V(0, 1) - V(s, z_{s}^{*})) - \mu z_{s}^{*} V_{z}(s, z_{s}^{*}) \Big) ds.$$

The partial derivative equals,

$$\partial z_s^* / \partial z_t^* = \exp\left(-\int_t^s (\lambda + \mu(1 - 2z_u^*)) du\right).$$

• Placing
$$\mu z_s^* V_z(s, z_s^*)$$
 into the exponent,

$$V_z(t, z_t^*) = \Gamma(t) := \int_t^{\tau^*} e^{-\int_t^s (r+\lambda+\mu(1-z_u^*))du} \mu(V(0,1)-V(s, z_s^*))ds.$$

Theorem 1. Given $\{x_t\}$, any optimal strategy $\{a_t^*\}, \tau^*$, exhibits shirking $a_t^* = 0$ on $[\tau^* - \epsilon, \tau^*]$.

Idea

- At $t \to \tau^*$, so $\Gamma(t) \to 0$.
- ► Need technology shock and breakthrough before τ* for investment to pay off.

Shirking accelerates the demise of the firm.

Property 2: Incentives are Single-Peaked

Theorem 2. If $\{x_t\}$ decreases, investment incentives $\Gamma(t)$ are single-peaked with $\Gamma(0) > 0$, $\dot{\Gamma}(0) > 0$ and $\Gamma(\tau^*) = 0$.

Proof

► Differentiating
$$\Gamma(t)$$
 with $\rho(t) := r + \lambda + \mu(1 - z_t^*)$,
 $\dot{\Gamma}(t) = \rho(t)\Gamma(t) - \mu(V(0, 1) - V(t, z_t^*)).$

Differentiating again,

$$\ddot{\Gamma}(t) = \rho(t)\dot{\Gamma}(t) + \dot{\rho}(t)\Gamma(t) + \mu \dot{z}_t^*\Gamma(t) + \mu V_t(t, z_t^*)$$
$$= \rho(t)\dot{\Gamma}(t) + \mu V_t(t, z_t^*).$$

• If $\{x_t\}$ is decreasing $V_t < 0$, and $\dot{\Gamma}(t) = 0$ implies $\ddot{\Gamma}(t) < 0$.

Countervailing forces: As t rises,

- ▶ Dividends $V(0,1) V(t,z_t^*)$ grow, and incentives increase.
- Get close to exit and incentives decrease.

Theorem 3. If $\{x_t\}$ is continuous, then τ^* satisfies

$$V(\tau^*, z_{\tau^*}) = \underbrace{(x_{\tau^*} - k)}_{\text{flow profit}} + \underbrace{\mu z_{\tau^*} V(0, 1)}_{\text{option value}} = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Best-Response

Model

Equilibrium

Observat

Infor

The En

Appendix

Equilibrium

Equilibrium beliefs

- ▶ Reputation $x_t = E^F[\theta^t | h^t = \emptyset, t \leq \tilde{\tau}]$ given by Bayes' rule.
- Under point beliefs, $\dot{x} = \lambda(\tilde{a} x)dt \mu x(1 x)dt$.
- Can hold any beliefs after $\tau(F) := \min\{t : F(\tilde{\tau} \le t) = 1\}.$

Recursive equilibrium

- Given $\{x_t\}$, any strategy $(\{a_t\}, \tau) \in \text{supp}(F)$ is optimal.
- ▶ Reputation $\{x_t\}$ derived from F via Bayes' rule for $t < \tau(F)$.

Theorem 4. An equilibrium exists.

Idea

- Strategy space compact in weak topology.
- Bayes rule, best response correspondences u.h.c.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Apply Kakutani-Fan-Glicksberg Theorem.

Pure Strategy Equilibria

In a pure strategy equilibrium, $x_t = z_t^*$.

• $\{x_t\}$ decreases and incentives are single-peaked (Theorem 2).

Changes in costs

- High costs: Full shirk equilibrium.
- Intermediate costs: Shirk-work-shirk equilibrium.
- Low costs: Work-shirk equilibrium.

id Appe

Simulation Parameters

Restaurant accounting

- ▶ Revenues: \$*x* million.
- Capital cost: \$500k.
- Investment cost: \$125k.
- Interest rate: 20%.

Arrival rates

- Breakthroughs arrive once a year.
- Technology shocks arrive every 5 years.

Observat

Inform

Appendix

Value Function and Firm Distribution

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

(日) (同) (日) (日)

Appendix

Typical Life-cycles

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

Mixed Strategy Equilibria

Exit

- Firm shirks near exit point (Theorem 1).
- Firms with less self-esteem exits gradually.
- Firm with most self-esteem exits suddenly.

Reputational dynamics

- $\{x_t\}$ decreases until firms start to exit.
- $\{x_t\}$ increases when firms gradually exit.

Observa

Informed

d The End

・ロト ・四ト ・ヨト ・ヨト

æ

Appendix

Illustration of Mixed Strategy Equilibrium

The End

Appendix

Competitive Equilibrium

Agent's preferences

- ▶ Firm *i* has expected output *x*_{*t*,*i*}
- Total output of experience good is $X_t = \int_i x_{t,i} di$.
- Consumers have utility $U(X_t) + N_t$.

Equilibrium

- Competitive equilibrium yields price $P_t = U'(X_t)$.
- Stationary equilibrium: P_t independent of t.
- Firm *i*'s revenue is $x_{t,i}P$ and value is $V_i(t, z_t; P)$.

Entry

- Firm pays ξ to enter and is high quality with probability \check{x} .
- Given a pure equilibrium, let $z_{\tilde{t}} = \check{x}$.
- Free entry determines price level: $V(\check{t}, z_{\check{t}}; P) = \xi$.

Introduction

Best-Respons

Equilibrium

Observable

Inform

ed The

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Appendix

Model Variation: Observable Investment

Appendi>

Observable Investment

Investment a_t is publicly observed

• Reputation and self-esteem coincide, $x_t = z_t$.

Optimal strategies

Optimal investment

$$\hat{a}_t = \left\{ \begin{array}{ll} 0 & \text{if } \lambda \hat{V}_z(\hat{z}_t) < c \\ 1 & \text{if } \lambda \hat{V}_z(\hat{z}_t) > c \end{array} \right.$$

Investment incentives

$$\hat{\Gamma}(t) = \int_t^{\hat{\tau}} e^{-\int_t^s r + \lambda + \mu(1 - \hat{z}_u) du} \left[1 + \mu(\hat{V}(1) - \hat{V}(\hat{z}_s)) \right] ds.$$

Optimal exit

$$\hat{V}(\hat{z}_t) = \underbrace{\hat{z}_{\hat{\tau}} - k}_{\hat{\tau}} + \underbrace{\mu \hat{z}_{\hat{\tau}} \hat{V}(1)}_{\hat{\tau}} = 0.$$

flow profit option value

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Appendix

Characterizing Equilibrium

Theorem 5. If investment is observed, investment incentives $\hat{\Gamma}(t)$ are decreasing with $\hat{\Gamma}(0) > 0$ and $\hat{\Gamma}(\hat{\tau}) = 0$.

Proof

- Value $\hat{V}(\cdot)$ is strictly convex.
- Self-esteem \hat{z}_t strictly decreases over time.
- Hence $\hat{V}_z(z_t)$ strictly decreases with $\hat{V}_z(z_{\hat{\tau}}) = 0$.

Idea: Investment is beneficial if

- There is a technology shock.
- There is a resulting breakthrough prior to exit time.

Value Function and Firm Distribution

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

イロト 不得 トイヨト イヨト

э.

Impact of Moral Hazard

Theorem 6. If investment is observed, the firm works longer than in any baseline equilibrium.

Idea

- ► When observed firm increases investment, belief also rises.
- Such favorable beliefs are good for the firm.
- Optimal investment choice higher for observed firm.

With observable investment,

- No shirk region at the top.
- Work until lower reputation.
- Value higher, so exit later.

Introduction

Best-Respons

Equilibrium

Observabl

Informed

ed The

Appendix

Model Variation: Privately Known Quality

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Privately Known Quality

Firm knows θ_t

• Investment a_t still unknown, so there is moral hazard.

Recursive strategies

- Firm knows quality and time since breakthrough.
- Chooses investment a_t and exit time τ .
- Value function $V(t, \theta_t)$.

Optimal investment $a_t(\theta)$

• Independent of quality $a_t(\theta) = a_t$ and given by:

$$a_t = \left\{ \begin{array}{ll} 1 & \text{if } \lambda \Delta(t) > c \\ 0 & \text{if } \lambda \Delta(t) < c \end{array} \right.$$

where $\Delta(t):=V(t,1)-V(t,0)$ is value of quality.

• Tech. shock has probability λdt , yielding benefit $\Delta(t)$ of work.

Assuming $\{x_t\}$ continuously decreases

- Low quality firm exits gradually when $t > \tau^L$.
- In equilibrium, high quality firm never exits.

Assuming firm works at end,

Exit condition becomes

$$V(t,0) = \underbrace{(x_t - c - k)}_{\text{flow profit}} + \underbrace{\lambda V(t,1)}_{\text{option value}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Equilibrium Characterization

Theorem 7. If quality is privately observed, investment incentives $\Delta(t)$ are increasing with $\Delta(0) > 0$.

Proof

The value of quality is present value of dividends:

$$\Delta(t) = \int_{t}^{\infty} e^{-(r+\lambda)(s-t)} \mu[V(0,1) - V(s,1)] ds.$$

• Investment incentives $\lambda \Delta(t)$ increase in t.

Impact of Private Information

Known quality

- Work pays off if tech. shock (prob. λdt).
- Fight to bitter end.
- Low firm gradually exits; high never does.

Unknown quality

• Work pays off if tech. shock & breakthrough $(\lambda dt \times \mu dt)$.

- Coast into liquidation.
- Firm exits after τ periods without breakthrough.

Value Function and Firm Distribution

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Appendix

Typical Life-cycles

Figure: Capital cost k = 0.5, investment cost c = 0.1, interest rate r = 0.2, max. effort $\overline{a} = 0.99$, breakthroughs $\mu = 1$, technology shocks $\lambda = 0.1$.

Model

- Firm dynamics in which main asset is firm's reputation.
- Characterize investment and exit dynamics over life-cycle.

Equilibrium characterization

- Incentives depend on reputation and self-esteem.
- Shirk-work-shirk equilibrium.

Benchmarks

- Observed investment: Work-shirk equilibrium.
- Privately known quality: Shirk-work equilibrium.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction Model Best-Response Equilibrium Observable Informed The End

Appendix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix

Imperfect Private Information

Private good news signals arrive at rate ν

- Self-esteem jumps to 1 when private/public signal arrive.
- Else, drift is $\dot{z}_t = \lambda(a_t z_t) (\mu + \nu)z_t(1 z_t)$.

Equilibrium

- Model is recursive since time of last public breakthrough.
- Investment incentives equal

$$\Gamma(t) = \int_{t}^{\tau^{*}} e^{-\int_{t}^{s} \rho(u)du} \left[\mu(V(0,1) - V(s,z_{s}^{*})) + \nu(V(s,1) - V(s,z_{s}^{*})) \right] ds$$

where
$$\rho(u) = r + \lambda + (\mu + \nu)(1 - z_u^*)$$
.

Shirk at the end, $t \to \tau^*$.

d The End

Appendix

Brownian Motion

Market observes signal Y_t

- Y_t evolves according to $dY = \mu_B \theta_t dt + dW$.
- Investment incentives are

$$V_z(x_t, z_t) = \mathbb{E}\left[\int_t^{\tau^*} e^{-\int_t^s \rho_u du + \int_t^s (1 - 2z_u)\mu_B dW_u} D(x_s, z_s) ds\right]$$

where $\rho_u = r + \lambda + \frac{1}{2}\mu_B^2 (1 - 2z_u)^2$

and $D(x,z) = \mu_B (x(1-x)V_x(x,z) + z(1-z)V_z(x,z)).$

Results similar to good news case

- Shirk at end, as $t \to \tau^*$.
- Shirk at start if $\overline{a} \approx 1$.
- Work in the middle if *c* not too large.