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Abstract

In a range of settings, private firms manage peer effects by sorting agents into different

groups, be they schools, communities or product categories. This paper considers such a

firm, which controls group entry by setting a series of anonymous prices. We show that

private provision systematically leads to two distortions relative to the efficient solution:

first, agents are segregated too finely; second, too many agents are excluded from all groups.

We demonstrate that these distortions are a consequence of anonymous pricing and do not

depend upon the nature of the peer effects. This general approach also allows us to assess

the way the ‘returns to scale’ of peer technology and the cost of group formation affect the

optimal group structure.

1 Introduction

In an increasingly privatised world, for–profit organisations have come to play an important

role in many markets where peer effects are prominent. This paper considers such a market,

where a firm posts a series of prices and agents self–select into different groups. The quality

of a group, in turn, depends on the number and characteristics of its members. We show

that private provision systematically leads to two distortions in group formation relative to the

efficient solution. First, there is too much segregation between different types of agents; that

is, groups are excessively homogenous. Second, too many agents are excluded from all available

groups.

The model captures the key features of several important markets. First, consider the

market for education, where peer effects play an important role in shaping students’ goals and
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learning experience. In such a market, firms can manage peer effects to their advantage by

charging more for courses and at institutions that attract above–average students. This type of

differentiation is commonplace among providers of higher education and professional training

and, with the introduction of vouchers, promises to become important among primary and

secondary schools.

Second, the model can be used to study (indirect) network goods, such as cars or electronics.

When buying one of these goods the consumer cares about the availability of post–purchase

services, such as car repairs or accessories. The quality of these services, in turn, depends on

the number and composition of consumers buying the good. A firm can therefore discriminate

between different types of consumers by offering a range of products.

The third application concerns the market for private communities (e.g. condominiums,

planned unit developments) which now house more than forty million Americans. When pur-

chasing a unit, buyers care about the type of neighbours both directly (e.g. social ties, crime)

and through the resulting neighbourhood services (e.g. shops, schools). A developer will then

seek to design tiers of communities to attract different types of agents.1

Finally, peer effects play an important role in the theory of the firm. Agents care about the

composition of their division or team, through direct interactions or shared bonuses. Agents also

care about the size of their division or team, since this may yield returns to scale or exacerbate

moral hazard. The firm thus seeks to assemble compatible agents in order to maximise their

productivity and minimise their wage bill.

A significant problem in analysing peer effects is that peer technology can be very compli-

cated, encompassing composition effects, network effects and congestion effects. Peer technology

also differs greatly across environments. In a recent survey on the role of private education,

Helen Ladd (2002, p. 14) writes:

“This lack of clarity about how peer effects differ among groups rules out any clear

predictions about whether a voucher program would be likely to increase or decrease

the overall productivity of the education system through the mechanism of peer

effects”.

Despite this concern, we analyse the distortions induced by private provision while placing very

little structure on the nature of peer effects. This general approach enables us to examine how

the degree of segregation depends on the form of peer effects. It also helps us interpret the

recent empirical literature quantifying peer effects in different environments.

1The model applies to many other types of communities: restaurants, golf clubs and luxury good manufac-
turers all seek to affect the attractiveness of their product through exclusivity. For example, Kaneff owns six golf
courses in Ontario, charging a range of fees, and separating different types of customers into groups. See Rayo
(2005) for other examples.
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1.1 Outline of the Paper

The basic structure of the model is as follows. First, a single principal posts a range of anony-

mous group–entry prices. Agents vary in their willingness to pay for group quality and, after

observing these prices, sort themselves into different groups. The quality of a group, in turn,

depends upon the types of its members. This quality function is allowed to be very general and

subsumes the average quality model (e.g. Rayo (2005)), the Cobb–Douglas quality model (e.g.

Epple and Romano (1998)) and the multiplicative quality model (e.g. Lazear (2001)).2

Since pricing is anonymous, the principal must rely on agents to self–select into different

groups. Self–selection immediately implies that agents who care more about group quality must

be in better quality groups (the monotonicity condition). As a result, if the agents who generate

high quality have a low willingness to pay, then the principal must assign all agents to identical

groups. Conversely, if the agents who generate high quality have a high willingness to pay, then

the principal can segregate the agents into groups of different standards.

The paper first analyses the principal’s problem when group formation is costless, showing

that profit–maximisation leads to two distortions relative to the welfare–maximising group

structure. The first distortion, the segregation effect, states that there are too many groups

under profit–maximisation. Intuitively, by splitting a group into two, putting all high types

into one group and the low types into another, the principal increases the price the high types

are willing to pay in order to avoid the low quality group. Crucially, we do not require any

assumptions on the nature of peer effects in order to attain this result: the required restrictions

come endogenously from the requirement that agents self–select into groups. This segregation

effect implies that the distribution of group qualities under private provision has a lower mean

and will tend to be more dispersed than the efficient distribution.

The second distortion, the exclusion effect, states that too many agents are excluded from

all privately provided groups. The exclusion effect is analogous to the standard result that a

monopolist prices above marginal cost. Intuitively, excluding some low types of agents raises

the price paid by those agents who are not excluded.

We further analyse how the optimal group structure depends upon the nature of peer inter-

actions. When a quality function has decreasing returns to scale, in that splitting a group into

two subgroups raises the average quality, then welfare and profit are maximised by complete

separation. That is, every type is in a group of his own, so agents associate with those just like

themselves and ignore everyone else. Conversely, when a quality function has increasing returns

to scale, in that splitting a group into two subgroups lowers the average quality, then matching

will be assortative (i.e. groups will be connected) and there will tend to be some pooling.

The paper also examines the principal’s problem when group formation is costly. This set-

2The principal is female, while agents are male.
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ting introduces a new factor, the appropriability effect, according to which a welfare–maximising

principal may invest more in group formation than a profit–maximising principal. Intuitively,

a profit–maximiser cannot appropriate agents’ consumer surplus and may opt for larger groups

than is optimal. Nevertheless, under increasing returns to scale and the usual monotone haz-

ard rate condition, the segregation effect dominates the appropriability effect and groups are

smaller under profit–maximisation.

We also investigate how welfare– and profit–maximising group structures change with rel-

ative position. This is motivated by Lazear (2001) who argues that more able students will

tend to be in larger classes. In our model, when group formation is costless, we also find that

higher types will tend to be in larger groups, albeit for a very different reason. The intuition

behind our result is that the ratio between the highest and lowest types in a group declines as

everyone’s type rises. This means a group split, which helps the high types but hurts the low

types, becomes less desirable. This suggests that selective grammar schools were of more use

in the 1950s, when education levels were relatively low, than today. In comparison, Lazear’s

finding derives from the specifics of the multiplicative quality model, under which returns to

scale increase in agents’ types

The paper proceeds as follows. The remainder of this section provides a literature review,

while Section 2 considers a simple two–type example that captures a number of the main effects.

Section 3 describes the model. Section 4 assesses the implications of self–selection. Sections

5 and 6 analyse the costless group formation problem, deriving the segregation and exclusion

effects. Section 7 examines the costly group formation problem, comparing appropriability and

segregation effects. Section 8 derives conditions under which higher types are in larger groups.

Section 9 considers two extensions of the basic model, while Section 10 concludes.

1.2 Literature

It is helpful to break the peer group literature into three branches.

The first branch considers a single principal with perfect information about agents’ charac-

teristics. In their classic paper, Arnott and Rowse (1987) analyse the socially optimal way to

break students into N groups in the presence of peer effects. A student’s utility is a function

of his ability, the mean ability of the other students in the class and educational expenditure.

Using a Cobb–Douglas quality function, the authors obtain sufficient conditions for assorta-

tive matching and computationally solve several examples. Lazear (2001) considers a highly

tractable model where each student is disruptive with probability p. If there are m students in

the class who act independently of each other then the class is attentive proportion (1 − p)m

of the time. Lazear shows that a welfare–maximising school increases class size as p increases

and, in a two–type model, will segregate students by type.3

3In a related model, Kremer (1993) considers a groups of agents on a production line who each make a mistake

4



In the second branch, there is a single principal with imperfect information about agents’

characteristics. Helsley and Strange (2000) analyse common interest developments with social

interactions. Agents, who vary in their type, choose whether to stay in the public sector or join

a single private community, and subsequently choose an action. Agents’ utility then depends

upon their action, their type and the mean action of those in their community. Helsley and

Strange allow the private community to choose both a minimum required action and an entry

price. In a numerical example they show fewer people secede from the public sector when the

community is profit–maximising, in a similar spirit to our exclusion effect.

The two closest papers to the current one both consider a principal who price discriminates

between agents by sorting them into different groups of different qualities. Rayo (2005) considers

a one–sided matching problem, similar to ours, where the principal breaks the agents up into

groups. Rayo uses the average–quality function and investigates the role of non–monotone

marginal revenue functions (see Section 5.4). Damiano and Li (2007b) analyse a two–sided

matching market where the principal can discriminate between different sides of the market and

between different groups. They derive necessary and sufficient conditions on the distribution

of types for full separation.4

The third branch analyses competition between peer groups. Epple and Romano (1998)

analyse a model of private school competition, where agents differ in their income and ability,

both of which are publicly observable. Epple and Romano show that monopolistic competition

between schools with fixed costs leads to stratification of the market where poor talented agents

attend the same schools as wealthy untalented agents. Caucutt (2002) introduces educational

expenditure and shows that complete segregation may not be desirable, even without fixed

costs of setting up schools. Intuitively, a school can keep its quality constant by lowering its

expenditure on teachers but recruiting a few talented students. Farrell and Scotchmer (1988)

analyse a perfect–information model where agents form groups and then split the output of

the groups between the members. In the unique core allocation, groups are connected and

are too finely segregated: intuitively, high types do not internalise their positive externality

on low types. Farrell and Scotchmer also find that the size of these groups increases with

agents’ types.5 Finally, in a model with imperfectly observed types, Damiano and Li (2007a)

analyse the competition between two matchmakers who each simultaneously choose a single

with probability pi. In the competitive equilibrium, there is assortative matching and higher quality workers
work in longer production lines.

4Moldovanu, Sela, and Shi (2007) consider a model similar to that in Rayo (2005), assuming that there are
only a finite number of agents. Also relevant is Pesendorfer (1995) who supposes that status is driven by a
two–sided matching problem, where a durable status good is sold by a monopolist. Pesendorfer argues that the
firm will regularly introduce new designs if they cannot commit to a price path or if there is imitation.

5One can view these papers of applications of club theory (e.g. Scotchmer (2002)). For example, Ellickson
et al. (1999) show that, when a full set of group– and type–dependent prices is available, then the competitive
equilibria are Pareto efficient and coincide with the core. On a more applied level, Nechyba (2000) and Benabou
(1993) look at competition across schools and cities.
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group–entry price.

The discussion of the empirical literature is postponed until Section 3.1.

2 Two–Type Example

There are equal numbers of two types of agents, θH > θL, where an agent’s type describes his

willingness to pay for quality. The utility of type θi who is assigned to a group of quality Q(θi)

and pays price y(θi) is given by u(θi) = θiQ(θi)− y(θi), for i ∈ {L,H}. The quality of a group

is determined by the types of its members. A group consisting of θH agents has quality QH ; a

group consisting of θL agents has quality QL; and a group consisting of both types has quality

QLH . An agent’s outside option is 0. Finally, we suppose that agents are small, so no individual

agent can affect the quality of a group.

The principal posts anonymous group–entry prices and lets agents self–select into the dif-

ferent groups. This means that, in order to stop the high type copying the low type, we must

have Q(θH) ≥ Q(θL) (the monotonicity condition). Consequently, the principal can separate

the agents if and only if QH ≥ QL; otherwise a high type would enter the low type’s group

rather than his own.

2.1 Segregation Effect

Let us first consider the principal’s incentive to separate the two types of agents. For simplicity,

assume that 2θL ≥ θH and that the principal does not exclude either type. Utility is quasi–

linear, so welfare equals θLQ(θL) + θHQ(θH). A welfare–maximising principal would therefore

like to separate the agents when

θHQH + θLQL ≥ θHQLH + θLQLH (2.1)

Define QW
LH as the pooling quality that equates both sides of (2.1). If QH < QL, the principal

can only pool the agents. If QH ≥ QL, then the principal will separate the agents when

QLH ≤ QW
LH . Since QW

LH ≥ (QH + QL)/2, separation is optimal if the quality function is

increasing, QH ≥ QL, and satisfies decreasing returns to scale, in that QLH ≤ (QH +QL)/2.

A profit–maximising principal maximises total payments, y(θL) + y(θH). If the principal

pools both types, she will charge y(θL) = y(θH) = θLQLH in order to fully extract from the low

type, θL. On the other hand, if the principal separates both types, she will charge y(θL) = θLQL

to the low group and y(θH) = θLQH − (θH − θL)QL to the high group. Under these prices, the

low type is just willing to join the low group, while the high type is indifferent between joining

the high and low groups. Putting this together, the profit–maximising principal would like to

6
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Figure 1: Two–Type Model with QH ≥ QL. This figure shows (a) there is more separation under
profit–maximisation than welfare–maximisation; and (b) under either objective, separation is optimal if
the quality function satisfies decreasing returns to scale.

separate the agents when

θHQH + (2θL − θH)QL ≥ 2θLQLH (2.2)

Define QΠ
LH as the pooling quality that equates both sides of (2.2). If QH < QL, then the

principal can only pool the agents. If QH ≥ QL, then QΠ
LH ≥ QW

LH , so a profit–maximising

principal is more willing to separate the agents than a welfare–maximising principal (see Figure

1). Intuitively, by separating high and low types, the good agents become very keen to avoid the

bad agents and can be forced to pay higher prices. Notice that this segregation effect requires

no assumptions about the structure of qualities (QL, QH , QLH): the fact that Q(θH) ≥ Q(θL)

follows from the endogenous self–selection constraint.

2.2 Exclusion Effect

If 2θL < θH , then the profit–maximising principal may wish to exclude the low types in order

to increase revenue. To see this, consider the case where QH ≥ QL.6 The welfare–maximising

principal never excludes any type of agent, and separates the two types if (2.1) holds. In

contrast, the profit–maximising principal may wish to exclude the low type, enabling her to

charge y(θH) = θHQH to the remaining high types. She therefore wishes to separate the two

types if

θHQH + max{2θL − θH , 0}QL ≥ 2θLQLH (2.3)

As above, (2.1) implies (2.3). This shows that the segregation effect extends to the case where we

allow exclusion. Moreover, a profit–maximising principal is more willing to exclude agents than

a welfare–maximising principal. This exclusion effect is analogous to the standard monopoly

distortion: by cutting out low types the principal increases the price she can charge the high

types.

6This assumption is not necessary. If QH < QL then the principal may wish to exclude the low type in
order to ‘monotonise’ the quality function (see Section 6). However, it is straightforward to show that both the
segregation and exclusion effects continue to apply.
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2.3 Appropriability Effect

So far we have assumed that splitting the agents into two groups is free of charge. Costly group

formation introduces a third effect. To illustrate, let us assume that QH ≥ QL. Using equation

(2.1), the benefit of separation for a welfare–maximising principal is

θH(QH −QLH) + θL(QL −QLH) (2.4)

If 2θL ≥ θH , equation (2.2) implies that the benefit of separation for a profit–maximising

principal is

θH(QH −QLH) + (2θL − θH)(QL −QLH) (2.5)

Hence, if group formation is costly, and there are very strong decreasing returns to scale,

QL ≥ QLH , then the welfare–maximising principal is willing to pay more to separate the

agents than the profit–maximising principal. This appropriability effect is caused by the profit–

maximising principal’s inability to appropriate the agents’ consumer surplus. However, when

there are sufficient returns to scale, then the segregation effect outweighs the appropriability

effect and the profit–maximising principal is more likely to separate the groups.

3 Basic Model

Agents’ Preferences. A single principal faces a continuum of agents with privately known

willingness to pay θ ∈ [θ, θ] ⊂ IR+, where we allow θ = ∞. Types are distributed according

to positive density f(θ) with distribution function F (θ). If agent θ is assigned to a group of

quality Q and pays price y, he obtains utility

u = θQ− y.

If an agent is assigned to no group, he obtains zero utility.

Mechanism. We are interested in a model where the principal chooses prices and agents select

into groups. Appealing to the revelation principle,7 we analyse the direct revelation mechanism

〈G, y〉 which consists of a group structure G, defined below, and payments y : [θ, θ] → IR.

Groups. The principal breaks the agents into groups G. A group G ⊂ [θ, θ] is a Borel set.

A group structure G is a collection of nonintersecting groups whose union equals [θ, θ]. Given

mechanism 〈G, y〉, an agent who declares θ̂ is assigned to the corresponding group in G. Two

7The revelation principle says that, given any equilibrium in the price–setting game, then there exists a
corresponding direct revelation mechanism such that all agents accept the mechanism (individual rationality)
and announce their types truthfully (incentive compatibility).
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definitions will be useful. Taking two group structures, GC and GF , we write GC ⊂ GF if GF

is finer than GC . Two groups, G and G′, overlap if there exists θH > θM > θL, such that

θH , θL ∈ G and θM ∈ G′, or θH , θL ∈ G′ and θM ∈ G.

Peer Technology. Each group G ∈ [θ, θ] is associated with a quality Q(G) > 0. Given a

group structure G, let Q(θ,G) denote the quality of type θ’s group, and assume Q is integrable

on [θ, θ].8 A quality function Q(G) is said to be weakly increasing in G if Q(GH) ≥ Q(GL)

whenever GH is larger than GL in the sense that θH ≥ θL for all θH ∈ GH and θL ∈ GL.

Agents’ Problem. Given a mechanism 〈G, y〉, an agent of type θ declares that they are type

θ̂, receives quality Q(θ̂,G) and makes payment y(θ̂). Since there are a continuum of agents, the

quality of an agent’s group depends on his declaration but not his type. Utility is then

u(θ, θ̂) = θQ(θ̂,G) − y(θ̂) (3.1)

Principal’s Problem. The principal chooses a mechanism 〈G, y〉 to maximise welfare/profits

subject to individual rationality (each agent receives positive utility) and incentive compatibility

(each agent declares his type truthfully).

Some remarks are in order. First, we do not insist that groups be connected. This is

important because the optimal group structure may place agents with a wide range of abilities in

the same group, as suggested by the empirical work of Mas and Moretti (2006) and experimental

study of Falk and Ichino (2006).

Second, we assume that the principal places each agent into a group. That is, we suppose it

is not optimal for the principal to exclude any types of agents. This assumption is for simplicity:

we extend the analysis in Section 6.9 Further extensions are discussed in Section 9.

Finally, we say a function φ : IR → IR is quasi–increasing if φ(xL) ≥ 0 implies φ(xH) ≥ 0

for xH > xL, and weakly quasi–increasing if φ(xL) > 0 implies φ(xH) ≥ 0.

3.1 Group Quality Functions

The paper allows for a large range of quality functions, Q : G → IR++, subsuming those used

in a number of previous papers. This level of generality is particularly important since the peer

technology depends on the specific environment and is hard to quantify in any given application.

Some examples of quality functions are as follows:

8For example, Q(θ,G) is integrable if Q(G) is bounded.
9We can easily allow for exclusion if the principal’s objective, MR(θ), is positive (∀θ). In this case, one can

define the quality function so that Q(G) = 0 if θ ∈ G. Pooling agent θ with type θ is then equivalent to excluding
θ. This ‘evil type’ model does not work if MR(θ) is negative since the objective fails to be log–supermodular.
Consequently, when we allow MR(θ) to be negative in Section 6, we use a different approach.
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A. Average–quality: Q(G) = E[θ|θ ∈ G]. This states that the quality of a group is given

by the average type of its members. This is used by status papers such as Rayo (2005),

Dubey and Geanakoplos (2004) and Moldovanu, Sela, and Shi (2007), as well as matching

papers such as Damiano and Li (2007b, 2007a).

B. Generalised average–quality: Q(G) = φ1(E[φ2(θ)|θ ∈ G]). As a special case, this

includes the Cobb–Douglas quality function, Q(G) = E[θ1/α|θ ∈ G]β , which is used by

Epple and Romano (1998), Nechyba (2000), Caucutt (2002) and the latter parts of Arnott

and Rowse (1987).

C. Linear–quality: Q(G) = α sup(G) + β inf(G), with α, β ≥ 0. One special case of this

is min–quality, Q(G) = inf(G), where the group is only as good as its worst member.

Another special case is max–quality, Q(G) = sup(G), where the best agent becomes the

“leader” of the group.

D. Multiplicative–quality: Q(G) = exp
(

−m
∫

G(1 − θ)dF (θ)
)

, where m > 0. This is a

continuous analogue of the production functions in Kremer (1993) and Lazear (2001),

where each child is quiet with probability θi ∈ [0, 1], and a class of N students is attentive

with probability ΠN
i=1θi.

10

E. Average–quality with multiplicative scale effects: Q(G) = φ(E[1G])E[θ|θ ∈ G].

The slope of φ(·) represents the importance of scale effects. This was used by Farrell and

Scotchmer (1988), assuming φ(·) is increasing.

F. Average–quality with additive scale effects: Q(G) = E[θ|θ ∈ G] + φ(E[1G]). If

φ(·) is decreasing, then agents crowd each other out. If φ(·) is increasing, then there are

network effects.

There is a large empirical literature which seeks to estimate peer technology. While it is

hard to generalise, the magnitude of these peer effects can be substantial. In the classroom,

Henderson, Mieszkowski, and Sauvageau (1978) find that moving a student from a weak class

to a strong class can increase their overall rank from the 50th percentile to the 20th percentile.

In the workplace, Mas and Moretti (2006) and Falk and Ichino (2006) find a 10% increase in

the productivity of a worker’s colleagues leads that worker’s productivity to rise by 1.5%. This

literature has analysed three major aspects of the production function.

First, curvature of the peer technology. Looking at college roommates, Zimmerman (2003)

finds that bad students have a bigger effect on their roommates than good students. However,

in a similar study, Sacerdote (2001) finds the converse: bad students seem to have a smaller

effect on their roommates than good students. We will see that the former is an example of

10For a proof, see the WebAppendix, http://www.chass.utoronto.ca/board/papers/groups-webappendix.pdf.
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decreasing returns to scale, implying that bad students should be segregated; while the latter

is an example of increasing returns to scale, implying that some mixing of abilities is optimal

(see Proposition 2). In a similar spirit, Henderson, Mieszkowski, and Sauvageau (1978) find

that test scores are a concave function of mean class ability. These results are consistent with

a generalised average–quality function where φ1(·) is concave, implying increasing returns to

scale.

Second, interaction effects. In their workplace studies, Mas and Moretti (2006) and Falk and

Ichino (2006) find that having good peers have a stronger effect on poor workers. In contrast,

with college roommates, Zimmerman (2003) finds that peer effects have the biggest impact on

students of middling ability. Looking at the classroom, Henderson, Mieszkowski, and Sauvageau

(1978) and Hanushek et al. (2003) report that there are few such cross effects. This latter result

implies that, if all students care equally about their test scores, then it is impossible to separate

different types of agents (see Lemma 2). However, if high ability students care more about their

test scores than low ability students, then separation can be sustained.

Third, scale effects. In the education literature, there has been a long standing debate about

the impact of reductions in class size. While the desirability of small classes may seem obvious,

the evidence seems to find beneficial effects only in certain environments (Hanushek (1999)).

In the workplace, Falk and Ichino (2006) find agents are more productive at stuffing envelopes

when they work in the presence of others, although this result clearly depends on the task at

hand.

Looking across these studies, it seems that the peer technology can vary greatly with the

environment. This observation has two important implications. First, it is important to derive

results that do not depend on the exact nature of the peer effects. To illustrate, both the

multiplicative quality and Cobb–Douglas quality are widely used models. However, while the

multiplicative model predicts that more able agents should be in larger groups (Lazear (2001)),

the Cobb–Douglas model predicts the opposite (Figure 4). The second implication is that

theory should identify which aspects of the peer technology are critical for a given result, rather

than working with a single functional form, which contains many hidden assumptions. This

approach both helps us categorise different classes of peer technologies, and helps us understand

what to look for in the data.

4 Agents’ Problem

Define equilibrium utility to be U(θ) = u(θ, θ).

Lemma 1. A mechanism 〈G, y〉 is incentive compatible and individually rational if and only if:
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(a) Utility is given by

U(θ) =

∫ θ

θ
Q(s,G) ds+ U(θ) (4.1)

(b) The lowest type obtains U(θ) ≥ 0; and

(c) The monotonicity condition holds. That is, Q(θ,G) is increasing in θ.

Proof. Since Q(θ,G) is integrable, Milgrom and Segal (2002, Corollary 1) shows that incentive

compatibility implies (4.1). The rest of the proof is the same as Mas-Colell, Whinston, and

Green (1995, Proposition 23.D.2).

Lemma 2. In any incentive compatible group structure:

(a) Any overlapping groups have the same quality.

(b) If Q(G) is weakly decreasing then every agent will be in a group of the same quality.

Proof. Follows from the monotonicity condition (Lemma 1(c)).

Lemma 2(a) says that while groups do not have to be connected, any overlapping groups

must have the same quality. Lemma 2(b) says that the principal cannot separate different

types when the agents who generate high quality have a low willingness to pay. Separation may

therefore be difficult with some conspicuous goods, where agents seek to signal a certain image.

For example, the consumers who generate Harley–Davidson’s reputation are unlikely to have

the highest incomes. Similarly, the supporters with the highest willingness to pay for football

tickets may not create the best atmosphere.11

5 The Segregation Effect

5.1 Principal’s Problem

Welfare equals the sum of utilities plus transfers,

W = E[θQ(θ,G)] (5.1)

Integrating utility (4.1) by parts, consumer surplus is

E[U(θ)] = E

[

1 − F (θ)

f(θ)
Q(θ,G)

]

+ U(θ) (5.2)

Profit equals welfare (5.1) minus consumer surplus (5.2). The profit–maximising principal will

set prices so that the lowest type’s individual rationality constraint binds, U(θ) = 0. Profit is

11In both these examples the firms use non–price mechanisms to maintain quality. Harley–Davidson uses
waiting lists, while football clubs force supporters to buy season tickets.
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then given by

Π = E [MR(θ)Q(θ,G)] (5.3)

where marginal revenue is defined by

MR(θ) := θ −
1 − F (θ)

f(θ)

Welfare and profit can be thus combined into a single objective:

H = E [h(θ)Q(θ,G)] (5.4)

where h(θ) ∈ {θ,MR(θ)}. Let Γ be the set of group structures that satisfy the monotonicity

condition (Lemma 1(c)). The principal’s problem is then to choose G ∈ Γ to maximise (5.4).

Assume a solution to this problem exists.

There are two difficulties with this maximisation problem. First, Γ is not generally a lattice.

Second, Q(θ,G) is unlikely to be quasi–supermodular in G. Intuitively, two different ways of

splitting a group are likely to be substitutes rather than complements. Consequently, the

optimal set of groups structures may not be a lattice.

5.2 Welfare– and Profit–Maximisation

A partition is a collection of intervals (connected sets) whose union equals [θ, θ]. For a fixed

group structure G, let I(G) be the finest connected coarsening of G, formed by merging all

overlapping groups. Formally, I(G) is the join (coarsest common refinement) of all partitions

formed by taking unions of groups in G. Lemma 2(a) then implies that quality is constant over

each I ∈ I(G).

Lemma 3. GC ⊂ GF implies I(GC) ⊂ I(GF ).

Proof. Let ΛC (resp. ΛF ) be the set of partitions formed by taking unions of groups in GC (resp.

GF ). Pick I ∈ ΛC . Since GC ⊂ GF , I can also be formed by taking unions of groups in GF .

That is, ΛC ⊂ ΛF . As a consequence,

I(GC) = ∨I∈ΛC
I ⊂ ∨I∈ΛF

I = I(GF )

where ∨ denotes the join.

Assumption (MON). [1 − F (θ)]/θf(θ) is decreasing in θ.

This assumption implies that MR(θ) is quasi–increasing. It is weaker than the usual hazard

rate condition (see Section 7).
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Proposition 1 (Segregation Effect). Suppose (MON) holds and MR(θ) ≥ 0. For any welfare–

maximising solution, GW , Π(GW ) ≥ Π(G) on {G ∈ Γ : G ⊂ GW }. Hence if any optimal

solutions, GW and GΠ, are ordered then there exists a profit–maximising solution, GΠ∗, such

that GW ⊂ GΠ∗.

Proof. Suppose GW maximises welfare and fix G ∈ Γ such that G ⊂ GW . Since GW is welfare–

maximising, E[θ∆Q(θ)] ≥ 0, where ∆Q(θ) := Q(θ,GW )−Q(θ,G). Define I∗ to be the coarsest

partition on which ∆Q(θ) is quasi–increasing (see Figure 2). Applying Lemma 3, I(G) ⊂

I(GW ). Monotonicity thus implies that ∆Q(θ) is increasing on each I ∈ I(G), so I∗ ⊂ I(G).

Moreover, each I ∈ I∗ has positive measure since ∆Q(θ) = 0 on single points in I(G). The

proof is now based on two steps.

For the first step, we claim that E[θ∆Q(θ)|I∗] ≥ 0.12 To see this suppose, by contradiction,

that E[θ∆Q(θ)|I∗] < 0 on some set I ∈ I∗. Then define a new group structure, G′, equal to

G on I and GW elsewhere. This new structure has two properties. First, G′ has higher welfare

than GW , E[θQ(θ,G′)] > E[θQ(θ,GW )]. Second, G′ ∈ Γ, which we verify below. Together,

these contradict the welfare–optimality of GW .

Let us now verify that G′ ∈ Γ. The partition I∗ has the key property that ∆Q(θ) goes

from negative to positive on each in each I∗ ∈ I∗. Formally, there exists θ1(I
∗) ∈ I∗ such

that ∆Q(θ) ≤ 0 on {θ ∈ I∗ : θ ≤ θ1(I
∗)}, except possibly for the lowest interval. Similarly,

there exists θ2(I
∗) ∈ I∗ such that ∆Q(θ) ≥ 0 on {θ ∈ I∗ : θ ≥ θ2(I

∗)}, except possibly for

the highest interval. To show Q(θ,G′) is increasing, pick θH > θL and denote the respective

partitions IH , IL ∈ I∗. If IH = IL, then Q(θH ,G
′) ≥ Q(θL,G

′) follows from the monotonicity

of Q(θ,G) and Q(θ,GW ). Next, suppose IH 6= IL and fix θ′ ∈ {θ ∈ IH : θ ≤ θH , θ ≤ θ1(IH)}

and θ′′ ∈ {θ ∈ IL : θ ≥ θL, θ ≥ θ2(IL)}. Then,

Q(θH ,G
′) ≥ Q(θ′,G′) ≥ Q(θ′,GW ) ≥ Q(θ′′,GW ) ≥ Q(θ′′,G′) ≥ Q(θL,G

′)

The first, third and fifth inequalities come from monotonicity. The second and fourth inequal-

ities come from the above properties of I∗. Hence G′ ∈ Γ, as required.

For the second step, index the objective function h(θ, t) so that h(θ, 1) = MR(θ) ≥ 0 and

h(θ, 0) = θ. Under (MON), the function h(θ, t) ≥ 0 is log–supermodular. Since ∆Q(θ) is quasi–

increasing on each I∗ ∈ I∗, Karlin and Rubin (1956, Lemma 1) states that E[h(θ, t)∆Q(θ)|I∗]

is quasi–increasing in t.13 Thus E[θ∆Q(θ)|I∗] ≥ 0 implies that E[MR(θ)∆Q(θ)|I∗] ≥ 0.

Integrating over θ, we have E[MR(θ)∆Q(θ)] ≥ 0. That is, Π(GW ) ≥ Π(G).

12Notation: the function E[θ∆Q(θ)|I∗] : [θ, θ] → IR maps each type into its conditional expectation.
13Karlin and Rubin (1956, Lemma 1) actually shows that the objective function is weakly quasi–increasing.

Lemma 11 in Appendix A.2 extends the result, showing the objective is quasi–increasing. The proof is essentially
identical.
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∆Q(θ)

I(GW )

I(G)

I∗

θ θ

Figure 2: Illustration of Sets in Proof of Proposition 1.

Corollary 1. If GW ⊂ GΠ then E[φ ◦Q(θ,GW )] ≥ E[φ ◦Q(θ,GΠ)] for any increasing, concave

function φ : IR → IR.

Proof. See Appendix A.1.

Proposition 1 says that groups will tend to be finer under profit–maximisation than welfare–

maximisation. As shown by Corollary 1, this means that profit–maximisation induces a dis-

tribution of quality levels that has lower a mean and will tend to be more dispersed. In the

school example, if one interprets Q(θ,G) as the exam scores of agent θ, then Corollary 1 yields

testable implications of the theory.

The idea behind the segregation effect is that, under (MON), MR(θ) is steeper than θ, so

a profit–maximising firm puts relatively more weight on the preferences of high types than the

social planner. This means a profit–maximising firm is more likely to split up a group, which

helps the high types and hurts the low types. Intuitively, by introducing extra segregation the

principal raises the cost of pretending to be a lower type and reduces consumer surplus. That

is, by separating good and bad agents, the good agents become very keen to avoid the bad

groups and can be forced to pay higher prices.

As stated in the Introduction, Proposition 1 makes no assumption about the nature of the

peer effects. This is important because peer technology differs greatly across environments.

Instead, Proposition 1 only uses the monotonicity condition that comes endogenously from the

agents’ self selection constraints.

Proposition 1 does have one limitation in that the welfare– and profit–maximising groups

may not be ordered. One should therefore view the result as saying that, if we start from the
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2 2.5 3

Revenue

Welfare

Figure 3: Optimal Group Formation: Linear Quality. This figure shows the profit and welfare–
maximising group structures where Q(G) = 0.55 sup(G) + 0.45 inf(G) and θ ∼ U [2, 3]. See Section 5.4
and Example 7 for more details.

welfare–maximising group structure, then separating groups may increase profit, but merging

groups will not. Moreover, Figure 3 shows that the spirit of the result may remain true even if

the optimal solutions are not ordered.

Example 1 (Pareto Distribution). Suppose θ ∼ Par(α, β), so that f(θ) = αβαθ−(α+1). In this

case, (MON) holds with equality and profit is (1−α−1)E[θQ(θ,G)]. Consequently, the welfare–

and profit–maximising group choices coincide. 4

5.3 Group Structure and Returns to Scale

This section analyses how different types of peer technology affect the optimal group structure.

Definition 1. Consider any GF ,GC ∈ Γ such that GC ⊂ GF .

(a) Q(θ,G) has decreasing returns to scale (DRS) if E[Q(θ,GF )] ≥ E[Q(θ,GC)].

(b) Q(θ,G) has increasing returns to scale (IRS) if E[Q(θ,GF )] ≤ E[Q(θ,GC)].

Under DRS, splitting a group raises the average quality. Under IRS, splitting a group

lowers the average quality. Which case is appropriate depends upon the application and the

interpretation of a group. To illustrate, consider the school example. If one interprets a group

as a class, then dividing one class into two is likely to improve all students’ performance. This

suggests that the quality function will satisfy DRS. On the other hand, if one fixes the class

size and interprets a group as an entire school, then the good students may help the poor

students more than the poor students harm the good students (e.g. Henderson, Mieszkowski,

and Sauvageau (1978)). In this case, the quality function will satisfy IRS.

Proposition 2. Assume h(θ) is positive and increasing, and Q(G) is weakly increasing in G.

(a) Under decreasing returns to scale, the optimum is attained under full separation (i.e. each
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type is in a group of their own).

(b) Under increasing returns to scale, the optimum is attained when groups are connected.

Proof. (a) We prove a more general result: Suppose h(θ) is positive and increasing, and that

DRS holds. Then, for any GC ,GF ∈ Γ such that GC ⊂ GF , the principal prefers GF to GC . If

Q(G) is weakly increasing then full separation satisfies monotonicity and therefore maximises

the principal’s payoff.

Pick GC ,GF ∈ Γ such that GC ⊂ GF , and denote ∆Q(θ) := Q(θ,GF ) −Q(θ,GC). Let I∗ be

the coarsest partition on which ∆Q(θ) is quasi–increasing. By Lemma 3, I∗ ⊂ I(GC) ⊂ I(GF ).

We claim that DRS implies

E[∆Q(θ)|I∗] ≥ 0 (5.5)

To see this pick I∗ ∈ I∗ and let G′ equal GF on I∗ and equal GC elsewhere. First, G′ ∈ Γ, as in

the proof of Proposition 1. Second, since GC ⊂ G′, DRS implies

E[∆Q(θ)|I∗] = E[Q(θ,G′)] − E[Q(θ,GC)] ≥ 0

as required. This result implies that,

E[h(θ)∆Q(θ)|I∗] ≥ E[h(θ)|I∗]E[∆Q(θ)|I∗] ≥ 0

where the first inequality comes from the fact that an increasing function and a quasi–increasing

function have positive covariance (e.g. Persico (2000, Lemma 1)), and the second from (5.5).

Integrating over θ, GF yields a higher payoff that GC .

(b) Suppose there is IRS. Consider an arbitrary group structure, G ∈ Γ. Let I(G) by the

finest connected coarsening of G. Since Q(G) is weakly increasing, we have I(G) ∈ Γ. Moreover,

IRS implies that merging increases group quality so that E[h(θ)Q(θ,I(G))] ≥ E[h(θ)Q(θ,G)].

Proposition 2 says that when h(θ) is increasing, there is full separation under DRS and may

be pooling under IRS. This result applies to a welfare–maximising principal and, when MR(θ)

is increasing, to a profit–maximising principal.14

Example 2 (Exponential Distribution). Suppose f(θ) = (1/λ) exp(−(θ−θ)/λ), where θ ≥ λ.

Then profit is E[θQ(θ,G)]−λE[Q(θ,G)], and only differs from welfare in the second expression.

Under DRS, full separation is optimal under both welfare– and profit–maximisation. Under

IRS, the second term decreases as G becomes finer. Consequently, profit is increased by splitting

a group only if welfare is increased by splitting a group, illustrating the segregation effect. 4

14Similarly, if h(θ) is constant, then there is full separation under DRS and full pooling under IRS. And if h(θ)
is decreasing, then there may be multiple groups under DRS and there is full pooling under IRS. This last result
can be shown by ironing the objective as in Myerson (1981).
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5.4 Group Quality Functions

We now reconsider the examples from Section 3.1, using the above results. Examples A–F satisfy

increasing or decreasing returns to scale; Example 3 shows that the optimal group structure

may be more complex.

A. Average Quality. The average quality function, Q(G) = E[θ|θ ∈ G], satisfies both

increasing and decreasing returns to scale. As shown by Rayo (2005), one can then

handle objective functions that are non–monotone. In particular, when the ironed h(θ)

is increasing, the principal chooses full separation; when the ironed h(θ) is constant, the

principal chooses full pooling.15 Thus there will always be full separation under welfare–

maximisation, but there may be regions of pooling under profit–maximisation, if MR(θ) is

badly behaved. This suggests welfare–maximisation leads to smaller groups than profit–

maximisation. In comparison, Proposition 1 says that when we allow for different quality

functions, the reverse is likely to be true.

B. Generalised Average Quality. SupposeQ(G) = φ1(E[φ2(θ)|θ ∈ G]). If φ1(·) is concave

and increasing, as suggested by the empirical analysis of Henderson, Mieszkowski, and

Sauvageau (1978), then the quality function has increasing returns to scale, by Jensen’s

inequality.16 The profit–maximising group structure is then likely to exhibit some pooling

and, by Proposition 1, be finer than the welfare–maximising group structure.

C. Linear Quality. Suppose Q(G) = α inf(G) + β sup(G) and θ ∼ U [θ, θ]. If G ∈ Γ,

then Q(θ,G) = Q(θ,I(G)).17 Proposition 2 implies that if β ≤ α (e.g. min–quality)

there is decreasing returns to scale and welfare– and profit–maximisation will entail full

separation. Conversely, if β ≥ α (e.g. max–quality) there is increasing returns to scale

and welfare– and profit–maximisation will generally induce some pooling.

D. Multiplicative Quality. With multiplicative technology, Q(G) exhibits decreasing re-

turns to scale. Hence full separation is feasible and optimal. Even with costly group

formation, it will be optimal to have assortative matching. To see this, suppose G1 and

G2 overlap. Then define disjoint G′
1 and G′

2 such that G′
1 lies below G′

2, Q(G′
1) = Q(G1)

and Q(G′
2) = Q(G2).

15The ironed version of a function h(θ) is defined such that the integral equals the greatest convex minorant
of the integral of h(θ). See Myerson (1981).

16Proof. Let GC ⊂ GF and ψ(θ) = E[φ2(θ)|GF ]. By Jensen’s inequality, φ1(E[ψ|GC ]) ≥ E[φ1(ψ)|GC ]. Taking
expectations over θ, and applying the law of iterated expectations yields the result.

17Proof. Pick I ∈ I(G). There exists a G ⊂ I such that sup(G) = sup(I). Suppose, by contradiction, that
Q(I) 6= Q(G). Then α > 0 and inf(G) > inf(I). There exists G′ ⊂ I such that inf(G′) = inf(I). Since α > 0 and
sup(G) ≥ sup(G′), Q(G) > Q(G′), contradicting monotonicity.
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E. Average–quality with multiplicative scale effects. Assuming φ(·) increases, this

quality function exhibits increasing returns to scale. Proposition 2(b) then implies that

it is optimal for groups to be connected. If types are sufficient high (i.e. fix θ ∼ f(θ) on

[θ, θ] and consider shifting up the distribution by t, so that θ ∼ f(θ − t) on [θ + t, θ + t])

then welfare is maximised by one giant group, as in Farrell and Scotchmer (1988).

F. Average–quality with additive scale effects. If φ(·) decreases, then the quality func-

tion exhibits decreasing returns to scale. Proposition 2(a) then implies that full separation

is optimal. If φ(·) increases, then the quality function exhibits increasing returns to scale.

Proposition 2(b) then implies that it is optimal for groups to be connected.

Example 3 (Intervals not Optimal). Suppose Q(G) = sup(G) − E[1G], so the quality of the

group depends upon its leader and the number of followers. This is one interpretation of the

results Mas and Moretti (2006) and Falk and Ichino (2006). Here, groups will not take the form

of intervals: it will be optimal to have lots of small groups, each with a very good leader. Since

groups will overlap, Lemma 2(a) implies that they must all have the same quality. 4

6 The Exclusion Effect

In Section 5 we examined the optimal way to segregate different types of agents when the

principal serves all agents. In this section we extend the analysis to allow for exclusion. In

the education example, these excluded agents may attend a public school or, in the case of

universities, enter the workplace.

An agent has an outside option of zero. Given a group structure G, suppose the principal

excludes A ∈ [θ, θ], made up of groups from G. Agents’ rents can then be characterised by

Lemma 1, where the quality function is given by Q(θ,G)1¬A.18

Lemma 4. In any incentive compatible mechanism 〈G, A, y〉 then

(a) A is decreasing; and

(b) A ∈ σ(I(G)).19

Proof. Follows from the monotonicity condition (Lemma 1(c)).

6.1 Principal’s Problem

There are two possible reasons to exclude an agent. First, the principal might wish to exclude θ

if h(θ) < 0. Second, the principal can exclude groups to ‘monotonise’ a non–monotonic quality

18Notation: ¬A := {θ : θ 6∈ A}.
19Notation: σ(I) is the sigma–algebra generated by I.
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function, expanding the set of implementable group–structures. To illustrate, consider the the

two–type model in Section 2 and suppose QL > QH > QLH . If QLH is sufficiently low, the

principal may prefer to separate rather than pool. Since QL > QH , separation is only feasible

if the low types are excluded.

Formally, the principal’s problem is to choose a group structure G and a set of excluded

agents A to maximise

H = E [h(θ)Q(θ,G)1¬A]

subject to Q(θ,G)1¬A increasing in θ. Let D∗
G be the smallest decreasing set in σ(I(G)) such

that Q(θ,G) is increasing on [θ, θ]\D∗
G , and let Q∗(θ,G) := Q(θ,G)1¬D∗

G
be the induced quality

function. Denote the positive and negative components of a function by φ(x)+ := max{φ(x), 0}

and φ(x)− := −min{φ(x), 0}.

Lemma 5. Fix G and suppose h(θ) is quasi–increasing. Then the principal’s maximal payoff

is given by

H(G) = E
[

E[h(θ)|I(G)]+ Q∗(θ,G)
]

(6.1)

Proof. Fix G. By Lemma 4, the excluded set A must be decreasing and measurable with respect

to σ(I(G)). Given such a set, the monotonicity condition is satisfied if and only if A ⊃ D∗
G .

The principal’s payoff is then given by

E
[

h(θ)Q(θ,G)1¬A

]

= E
[

E[h(θ)Q(θ,G)1¬A |I(G)]
]

= E
[

E[h(θ)|I(G)]Q(θ,G)1¬A

]

(6.2)

The first equality uses the law of iterated expectations, while the second uses the fact that

Q(θ,G) and A are measurable with respect to σ(I(G)). The principal thus chooses A ⊃ D∗
G to

maximise (6.2). Pointwise maximisation implies that payoffs are maximised by

A∗ = D∗
G ∪ {θ : E[h(θ)|I(G)] < 0} (6.3)

Since h(θ) is quasi–increasing, (6.3) is a decreasing set, as required. This yields equation

(6.1).

Observe that Lemma 5 applies to the welfare–maximisation problem and, under (MON), to

the profit–maximisation problem. Moreover, if we assume that the quality function is weakly

increasing, then the principal need not exclude in order to ‘monotonise’ the quality function.

Lemma 6. Suppose that h(θ) is quasi–increasing and Q(G) is weakly increasing in G. Then

the principal’s payoff is maximised by G ∈ Γ, and is given by

H(G) = E
[

E[h(θ)|I(G)]+ Q(θ,G)
]

(6.4)
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Proof. Suppose G maximises the principal’s payoff (6.1). If G ∈ Γ, then we are done. If G 6∈ Γ,

then form a new structure G′ by pooling all excluded agents into one group. Since Q(G) is

weakly increasing, G′ ∈ Γ. Profits are then maximised by excluding

A∗ = {θ : E[h(θ)|I(G′)] < 0} (6.5)

The new group structure G′ therefore attains a (weakly) greater payoff than G, as required.

6.2 Welfare– and Profit–Maximisation

The principal’s problem is to choose G to maximise (6.1). Proposition 3 shows that the segre-

gation effect extends to the case where the principal can exclude agents. Notably, this result

places no restrictions on the sign of MR(θ).

Proposition 3 (Segregation Effect II). Suppose (MON) holds. For any welfare–maximising

solution, GW , Π(GW ) ≥ Π(G) on {G : G ⊂ GW }. Hence if any optimal solutions, GW and GΠ,

are ordered then there exists a profit–maximising solution, GΠ∗, such that GW ⊂ GΠ∗.

Proof. See Appendix A.3.

There are two effects underlying Proposition 3. First, a profit–maximising principal cares

relatively more about high value agents than a welfare–maximising principal (see Proposition

1). Second, a profit–maximising principal is more willing to exclude agents than a welfare–

maximising agent (see Proposition 4). Hence the smaller group size provides additional flexi-

bility to exclude some agents.

Proposition 4 (Exclusion Effect). Suppose that (MON) holds and either (a) Q(G) is weakly

increasing in G, or (b) GW ⊂ GΠ. Then there exist versions of the smallest optimal excluded

sets, AW and AΠ, such that AW ⊂ AΠ.20

Proof. See Appendix A.4.

The exclusion effect is analogous to the standard monopoly distortion. Under profit–

maximisation the principal would like to exclude agents with negative marginal revenue, whereas

under welfare–maximisation the principal would like to exclude no agents (see Proposition 4(a)).

The principal may also exclude agents in order to ‘monotonise’ the quality function. However,

the profit–maximising principal is more likely to exclude agents than a welfare–maximising

principal since she cares less about low value agents (see Proposition 4(b)).

Proposition 5 provides a characterisation of the excluded agents. A quality function Q(G)

is increasing in G if Q(GH) ≥ Q(GL) whenever GH is larger than GL in strict set order.21

20Definition: The sets A and A′ are versions of each other if they coincide almost everywhere.
21Definition: GH is larger than GL in strict set order if min{θ, θ′} ∈ GL and max{θ, θ′} ∈ GH for all θ ∈ GL

and θ′ ∈ GH .
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Proposition 5. Suppose h(θ) is increasing. Assume that either:

(a) Q(G) is weakly increasing in G and exhibits DRS; or

(b) Q(G) is increasing in G and exhibits IRS.

Then the principal’s objective is maximised by excluding the set A∗ = {θ : h(θ) < 0}.

Proof. See Appendix A.5.

At first sight, it seems reasonable to conjecture that the principal should exclude an agent

if and only if h(θ) < 0. There are two reasons why this may not be correct. First, the principal

may exclude more agents in order to ‘monotonise’ the quality function. Second, the principal

may exclude fewer agents if they exert a positive externality on the included agents, with

h(θ) > 0. Broadly speaking, Proposition 5 shows that both of these possibilities are ruled out

if the quality function is increasing.

7 Costly Group Formation

The segregation effect (Proposition 1) states that groups will be finer under profit–maximisation

than welfare–maximisation. With costly group formation this is countered by the appropriabil-

ity effect: a profit–maximising principal cannot capture consumer surplus and may not invest

enough in creating groups. Examples 4–5 illustrate how the appropriability effect can dominate

the segregation effect. Proposition 6 then derives sufficient conditions for the segregation effect

to dominate the appropriability effect.

In order to focus on the segregation effect, we suppose the principal cannot exclude any

agents.22 The principal’s problem is thus to choose G ∈ Γ to maximise H(G) − c(G), where

H(G) := E[h(θ)Q(θ,G)] and c(G) is an arbitrary cost function.

Example 4 (Appropriability Effect I). Suppose θ ∼ Par(α, β), as in Example 1. If there are

N groups, the principal’s problem is to choose groups {Gi}
N
i=1 to maximise:

(1 − α−1)

N
∑

i=1

Q(Gi)

∫

Gi

θdF − c(G) (7.1)

This coincides with the welfare–maximising problem if α = ∞. Suppose that c(G) only de-

pends on G through the number of groups N , and is increasing in N (e.g. N is the number

of teachers). Equation (7.1) is supermodular in (α,N), so there will be more groups under

welfare–maximisation than profit–maximisation.23 4

22One can allow for exclusion using the ‘evil type’ approach in footnote 9. Proposition 6 then holds no matter
what the sign of MR(θ). Saying this, the result is less interesting when MR(θ) < 0 since GW and GΠ are unlikely
to be ordered, as assumed in the final line, since the first group in GΠ will likely be very large.

23There are other variants of this result. For example, if c(GF ) ≥ c(GC) for GC ⊂ GF , then W (GΠ) ≥W (G) on
{G ∈ Γ : G ⊂ GΠ}.
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Example 5 (Appropriability Effect II). Suppose that splitting a group increases everyone’s

quality (e.g. multiplicative quality) and that MR(θ) ≥ 0. Hence ∆Q(θ) = Q(θ,GF )−Q(θ,GC) ≥

0 (∀θ), for GC ,GF ∈ Γ such that GC ⊂ GF . Since θ ≥ MR(θ) ≥ 0, we have E[θ∆Q(θ)] ≥

E[MR(θ)∆Q(θ)]. That is, whenever a profit–maximiser splits a group, a welfare–maximiser

will also split the group. 4

Assumption (HR). [1 − F (θ)]/f(θ) is decreasing in θ.

Proposition 6 (Weak Segregation Effect). Suppose (HR) holds and Q(G) exhibits increasing

returns to scale. For any welfare–maximising solution, GW , Π(GW ) ≥ Π(G) on {G ∈ Γ : G ⊂

GW }. Hence if any optimal solutions, GW and GΠ, are ordered then there exists a profit–

maximising solution, GΠ∗, such that GW ⊂ GΠ∗.

Proof. Suppose GW maximises welfare and fix G ⊂ GW , such that G ∈ Γ. Hence E[θ∆Q(θ)] ≥

c(GW ) − c(G), where ∆Q(θ) = Q(θ,GW ) −Q(θ,G). Let I∗ be the coarsest partition on which

∆Q(θ) is quasi–increasing. As in Proposition 2, IRS implies that E[∆Q(θ)|I∗] ≤ 0. Since

∆Q(θ) is quasi–increasing on each I∗ ∈ I∗, E[1D∆Q(θ)] ≤ 0 for any decreasing set D.

For decreasing sets {Di} and positive constants {ai}, i ∈ {1, . . . ,m}, E[
∑

i ai1Di
∆Q(θ)] ≤

0. Since (HR) implies that [1 − F (θ)]/f(θ) is decreasing, we can define {Di} such that
∑

i ai1Di
→ [1 − F (θ)]/f(θ) as m→ ∞. Hence

E

[

1 − F (θ)

f(θ)
∆Q(θ)

]

≤ 0 (7.2)

Equation (7.2) implies that

Π(GW ) − Π(G) = E[MR(θ)∆Q(θ)] ≥ E[θ∆Q(θ)] ≥ c(GW ) − c(G)

as required.

The appropriability effect states that a profit–maximising principal cannot capture consumer

surplus and may not invest enough in group formation. Under (HR) and IRS, consumer surplus

is maximised by complete pooling, so a profit–maximiser will be willing to invest more in group

formation than a welfare–maximiser.

Proposition 6 is more restrictive than the original segregation effect (Proposition 1). First,

it assumes that the distribution of types satisfies (HR) rather than (MON). Defining h(θ, 0) = θ

and h(θ, 1) = MR(θ), (MON) implies that h(θ, t) is log–supermodular, while the stronger (HR)

assumption is required for h(θ, t) to be supermodular. Second, the result assumes that Q(G)

satisfies IRS, overcoming the problem in Example 5.
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Example 6 provides a tractable numerical illustration of Proposition 6. Observe that Ex-

ample 6 exhibits constant returns to scale, so the conditions of Proposition 6 are stronger than

necessary.

Example 6 (Average Quality). Suppose Q(G) = E[θ | G] and c(G) only depends on G through

the number of groups, N . By Proposition 2(b), the optimal group structure consists of intervals.

The principal then chooses cutoffs {θi}
N
i=0 to maximise welfare or profit (5.4). When θ ∼

U [θ, θ], the FOCs for {θi}
N−1
i=1 reduce to (θi+1 − θi) = (θi − θi−1) under both welfare– and

profit–maximisation. If exclusion is not feasible, then marginal welfare from an extra group is

dW/dN = (θ−θ)2/6N3, while the marginal profit from an extra group is dΠ/dN = (θ−θ)2/3N3.

Since dΠ/dN ≥ dW/dN , a profit–maximising principal will choose to have more groups.24

This example shows that, once again, profit–maximisation exhibits excessive segregation.

However, conditional on choosing the same number of groups, the welfare– and profit–maximising

principals will choose to divide agents in the same manner. This makes regulation relatively

easy: the government need only restrict the total number of tariffs; the principal will then

choose the welfare–maximising group structure.25 4

8 Group Size and Relative Position

In this section we investigate how the size of groups changes with the types of agents. These

results are of particular interest in the education market, where they enable us to assess how

class composition should change (a) with ability and (b) over time.

The results can be summarised as follows. In Section 8.1, we show that, under costless

group formation, higher types will tend to be in larger groups. In Section 8.2, we show this

result extends to costly group formation if the quality function exhibits increasing returns to

scale, but reverses under decreasing returns. Finally we relate our results to those of Lazear

(2001) and discuss the implications for education.

8.1 Costless Group Formation

In order to examine how group size changes with agents’ types, we consider the following

experiment. First, suppose that types are initially distributed according to θ ∼ f(θ) on [θ, θ].

We then examine the effect of an upwards shift in the distribution so that θ ∼ f(θ − t) on

[θ + t, θ + t]. We then compare the size of the group containing θ in the initial distribution to

24For a proof, see the WebAppendix, http://www.chass.utoronto.ca/board/papers/groups-webappendix.pdf.
25Although the models are very different, this result resembles Epple and Romano (1998, Propsition 4(i))

which showed that, conditional on the number of schools, a private system segregates students optimally. Their
paper also showed that the business stealing effect tends to lead to excessive entry of private schools.
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that containing θ + t in the shifted distribution. For an arbitrary group, G, under the initial

distribution, let G(t) := G+ t. Similarly define G(t) and Γ(t) relative to the new distribution.

Assumption (LIN). A vertical shift affects group quality linearly: Q(G(t)) = Q(G(0)) + λt.

The (LIN) assumption is satisfied by average–quality (λ = 1), average quality with additive

scale effects (λ = 1) and linear–quality (λ = α + β) among others. This assumption acts as a

benchmark, which we discuss below. The principal’s problem is then to choose G(t) ∈ Γ(t) to

maximise26

H =

∫ θ+t

θ+t
h(θ, t)Q(θ,G(t))f(θ − t) dθ.

Under (LIN) we can change variables to θ̃ = θ − t. Under welfare–maximisation, h(θ, t) = θ,

so the objective becomes h(θ̃ + t, t) = θ̃ + t. Under profit–maximisation, h(θ, t) = θ − [1 −

F (θ − t)]/f(θ − t) so the objective becomes h(θ̃ + t, t) = MR(θ̃) + t. Putting this together,

h(θ̃ + t, t) = h(θ̃) + t. Denoting G := G(0), the principal’s problem is thus to choose G ∈ Γ to

maximise

H(G, t) =

∫ θ

θ
[h(θ̃) + t][Q(θ̃,G) + λt]f(θ̃) dθ̃. (8.1)

Proposition 7. Suppose h(θ)+t is positive and increasing in θ, and that quality satisfies (LIN).

Fix tH > tL. For any tH–optimal solution, GH , H(GH , tL) ≥ H(G, tL) on {G ∈ Γ : G ⊂ GH}.

Hence if any optimal solutions, GL and GH , are ordered then there exists a tL–optimal solution,

GL∗, such that GH ⊂ GL∗.

Proof. The function h(θ)+ t is positive and increasing in θ, and is therefore log–submodular in

(θ, t). The rest of the proof is identical to Proposition 1.

Proposition 7 says that higher types will tend to be in larger groups under welfare or profit–

maximisation. To understand the result, take a group [θL + t, θH + t] and consider a split that

reduces the quality of the low types a lot, while raising the quality of the high types a little.

When the agents’ types are low (i.e. t is low), the ratio between the highest and lowest types

in the group, (θH + t)/(θL + t), is large and this split may increase welfare/profit. Yet when

the agents’ types are high (i.e. t is high), the ratio between the highest and lowest types in the

group is small and the split is less likely to be beneficial. This result is similar to the finding

of Farrell and Scotchmer (1988, Proposition 3) that group size in the unique stable partition

increases in agents’ types.27

26This assumes the principal cannot exclude. As in footnote 9, if h(θ, t) ≥ 0 then one can allow for exclusion
using the ‘evil type’ approach.

27The (LIN) assumption does not encompass the Farrell–Scotchmer preferences (Section 3.1, Example E).
Nevertheless, Proposition 7 extends, so that higher types are in larger groups.
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0.5 0.75 1

Pooling Fine Segregation

Figure 4: Optimal Group Formation: Cobb Douglas Quality. In this figure, θ ∼ U [0.5, 1],
Q(G) = (E[θ|G] − 0.5)0.3. In the finely segregated part, the groups are around 0.0001 wide.

Our result concerns the group structure as the entire distribution of types shifts. It also

suggests that higher types will be in larger groups than lower types within a given distribution

if the relative ratio of high types to low types remains constant throughout the distribution

(e.g. the density is uniform, ignoring boundary problems). This can be seen in Figure 3, where

higher types are in larger groups under both welfare– and profit–maximisation.

Proposition 7 assumes that the quality function satisfies (LIN). Without this assumption

the result may be overturned, and high types may be in smaller groups than low types. For

example, Figure 4 illustrates the welfare–maximising partition under Cobb–Douglas quality. In

this case, agents below a certain cutoff are pooled into one giant group, while all other types

are very finely segregated. Intuitively, for low types the quality function is very concave and

the returns to scale are large; for high types the quality function is less concave and the returns

to scale are small.

8.2 Costly Group Formation

With costly group formation, the principal’s problem is to choose G ∈ Γ to maximise H(G, t)−

c(G), where H(G, t) is defined by (8.1) and c(G) is an arbitrary cost function.

Proposition 8. Suppose h(θ) + t is increasing in θ, and that quality satisfies (LIN). Suppose

either:

(a) there are increasing returns to scale and fix t′′ < t′; or

(b) there are decreasing returns to scale and fix t′′ > t′.

Then for any t′–optimal solution, G′, H(G′, t′′) ≥ H(G, t′′) on {G ∈ Γ : G ⊂ G′}. Hence if any

optimal solutions, G′ and G′′, are ordered then there exists a t′′–optimal solution, G′′∗, such that

G′ ⊂ G′′∗.

Proof. Suppose IRS holds and fix t′ > t′′. Consider a t′–optimal solution, G′, and consider

G ⊂ G′ such that G ∈ Γ. IRS implies that E[∆Q(θ)] ≤ 0, where ∆Q(θ) := Q(θ,G′) −Q(θ,G).

Observe that H(G′, t) −H(G, t) = E[(h(θ) + t)∆Q(θ)] and

E[(h(θ) + t′′)∆Q(θ)] − E[(h(θ) + t′)∆Q(θ)] = (t′′ − t′)E[∆Q(θ)] ≥ 0
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Hence H(G′, t′)−H(G, t′) ≥ c(G′)−c(G) implies H(G′, t′′)−H(G, t′′) ≥ c(G′)−c(G), as required.

The proof for DRS is identical.

Proposition 8 says that (a) under IRS, higher types are in larger groups; and (b) under DRS,

higher types are in smaller groups. In comparison, if there is costless group formation then (a)

under IRS, higher types are in larger groups (Proposition 7); and (b) under DRS, there is full

separation (Proposition 2). To understand this result, consider the IRS case. Splitting a group

has an efficiency effect, reducing the mean group quality, and a distributional effect, benefiting

high types while hurting low types. When all types are higher, the importance of the efficiency

effect increases while the distributional effect, which depends on the difference between types,

remains constant. Hence the principal becomes less willing to invest in group formation.

Proposition 8 considers a shift of the entire distribution of types. Example 7 shows that,

under the uniform–linear model, a similar result applies within a given distribution of types.

Example 7 (Linear–Quality). Suppose Q(G) = α inf(G) + β sup(G), θ ∼ U [θ, θ] and c(G)

only depends on G through the number of groups, N . As in Section 5.4, the optimal group

structure consists of intervals. The welfare–maximising principal then chooses cutoffs {θi}
N
i=0

to maximise (5.1). Under constant returns to scale (α = β), the FOCs for {θi}
N−1
i=1 reduce to

(θi+1 − θi) = (θi − θi−1), as in Example 6, so groups are the same size for all types. Under DRS

(i.e. α ≥ β), then (θi+1 − θi) ≤ (θi − θi−1), so groups are smaller for higher types. Under IRS

(i.e. α ≤ β), then (θi+1 − θi) ≥ (θi − θi−1), so groups are larger for higher types.28 4

These results have implications for education markets. When considering the optimal class-

room size, the assumption of decreasing returns seems reasonable. Proposition 8 then suggests

that more able students should be in smaller classes. Intuitively, when students are more able,

they have more to gain from a reduction in class size. This result seems consistent with the

35% reduction is U.S. pupil–teacher ratio over the last half–century (Hanushek (1999)).

This result can also be contrasted to Lazear (2001, Proposition 1) which shows that, with

multiplicative quality, groups are larger for higher types. The reason for Lazear’s result is that,

under multiplicative quality, there are significant decreasing returns to scale when θ is low, but

approximately constant returns as θ approaches one. This is the reverse of the logic behind the

Cobb–Douglas example in Figure 4.

When considering the optimal school composition, holding class size constant, Henderson,

Mieszkowski, and Sauvageau (1978) suggest that increasing returns may be the appropriate

assumption. Propositions 7–8 then imply that selective grammar schools were of more use in

the 1950s, when education levels were relatively low, than today.

28For a proof, see the WebAppendix, http://www.chass.utoronto.ca/board/papers/groups-webappendix.pdf.
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9 Extensions

Here we consider two extensions to the basic model in Section 3.

9.1 Mixed Strategies

The basic model assumes that different agents of a single type are assigned to the same group.

However, since groups may be disconnected, this assumption is with little loss of generality. To

illustrate, suppose θ ∼ U [0, 1]. A group with measure 1/2 on [0,1/2] can then be approximated

by a group with measure 1 on [0, 1/8] ∪ [3/8, 4/8]. In terms of welfare and profit, this approx-

imation can be made arbitrarily good if the quality functional, which maps measures on the

type space to the real line, is continuous in, say, the Prokhorov metric.

9.2 Multidimensional Types

The basic model also assumes that agents’ quality and willingness to pay are determined by

their type θ. The segregation effect can be generalised to allow for multiple dimensions.

Consider the following model. Each agent is endowed with a type (θ, q), with measure

f(θ, q). As before, an agent’s utility is given by u = θQ− y. A group is now a measure g(θ, q).

The quality of the group is determined by the marginal distribution over q’s. That is,

Q :

∫ θ

θ
g(θ, q)dθ → IR+

A group structure G is then collection of measures gω(θ, q) such that
∑

ω∈Ω g(θ, q) = f(θ, q).

Consider groups GC and GF with collections of measures, ΩC and ΩF . We say GC ⊂ GF if we

can partition ΩF into sets {ΩF (ωC)}ωc
such that for each ωC ∈ ΩC ,

gωC
(θ, q) =

∑

ωF∈ΩF (ωC)

gωF
(θ, q)

First, we can characterise agents’ utility. Fix a group structure G. Since agents are atomless,

types (θ, q) and (θ, q′) must be in a group of the same quality. Denote the induced quality

Q(θ,G). Utility is then given by Lemma 1. Similarly welfare and profit are given by (5.1) and

(5.3) respectively.

Second, say two groups g1(θ, q) and g2(θ, q) overlap if the projection of their supports onto

[θ, θ] overlap. For a given group structure G, let I(G) be the finest connected coarsening of [θ, θ],

formed by merging all overlapping groups. As in Lemma 3, GC ⊂ GF implies I(GC) ⊂ I(GF ).

Proposition 1 is then unchanged: a profit–maximising principal will never choose a coarser

group structure that a welfare–maximising principal, but may choose a finer group structure.
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The proof is the same. Intuitively, an agent’s utility depends on his payoff type θ, but not

his quality type q. Since an agent can always lie about his type, the principal can only dis-

criminate on the θ–dimension. Hence the two–dimensional screening problem collapses to a

one–dimensional screening problem.

10 Conclusion

This paper has analysed how a principal will divide agents into groups in the presence of peer

effects. With costless group formation, we showed that a profit–maximising principal will seg-

regate agents more finely than is socially optimal (the segregation effect) and exclude too many

agents (the exclusion effect). We also analysed how the optimal group structure depends upon

the returns to scale of the peer technology. With costly group formation, we demonstrated that

a profit–maximising firm may not invest enough in group formation (the appropriability effect).

However, under increasing returns to scale, the segregation effect dominates the appropriability

effect.

Our analysis has implications for public policy. Proponents argue that private communities

increase welfare by providing safety and comfort for those willing to pay; critics counter that

they are discriminatory and isolationist. Our model is consistent with both these arguments,

showing how stratification can increase welfare, but also that private provision leads to commu-

nities that are insufficiently diverse. This suggests that, in cases where a few local developers

have market power, the government should be careful to ensure new developments contain a

wide range of housing stock.

This paper also informs the debate on the role of private schools. Much of the discussion over

vouchers and public–private partnerships centres on the mantra of parental choice. However,

choice is not the aim in itself. This paper has shown that when the options are designed

by an organisation with market power, then private provision may provide too much choice,

introducing excessive segregation. On the positive side, given knowledge of these distortions,

there is no reason why an alert regulatory agency cannot mitigate their impact.

We have examined a simple model, while allowing for a wide range of peer interactions. A

number of extensions would be of interest. First, while we have considered a single firm, it is

important to understand how oligopolistic schools would differentiate themselves. Second, in

many practical examples, agents are not atomless and can directly affect the quality of their

group. Third, one would like to take account of interactions between the group structure and

the quality of the outside option (e.g. the local public school). Fourth, one could allow the

principal to choose both inputs (e.g. teachers) as well as group–entry prices. It is hoped that

the framework used in this paper can help address some of these issues.
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A Omitted Material

A.1 Proof of Corollary 1

Suppose GW ⊂ GΠ. Lemma 3 implies that I(GW ) ⊂ I(GΠ). Let I∗ be the coarsest partition

such that ∆Q(θ) := Q(θ,GΠ) −Q(θ,GW ) is quasi–increasing.

Lemma 7. E[∆Q(θ)|I∗] ≤ 0.

Proof. As in Proposition 1, we have E[θ∆Q(θ)|I∗] ≤ 0. For any I∗ ∈ I∗, it follows that

0 ≥ E[θ∆Q(θ)|I∗] ≥ E[θ|I∗]E[∆Q(θ)|I∗]

where the second inequality comes from the fact that a quasi–increasing function is positively

correlated with an increasing function (e.g. Persico (2000, Lemma 1)).

Fix I∗ ∈ I∗. Denote the distribution function of Q(θ,GΠ), conditional on θ ∈ I∗, by

FΠ(q) := E[1Q(θ,GΠ)≤q|I
∗]. Similarly define the distribution function of Q(θ,GW ), conditional

on θ ∈ I∗, by FW (q) := E[1Q(θ,GW )≤q|I
∗].

Lemma 8. For any I∗ ∈ I∗, FW (q) − FΠ(q) is weakly quasi–increasing.

Proof. Q(θ,GW ) and Q(θ,GΠ) are increasing, so denote the inverses by Q−1
W (q) := inf{θ :

Q(θ,GW ) > q} and Q−1
Π (q) := inf{θ : Q(θ,GΠ) > q}. Q(θ,GΠ) −Q(θ,GW ) is quasi–increasing

on I∗, so Q−1
W (q) −Q−1

Π (q) is weakly quasi–increasing. The difference between the distribution

functions is

FW (q) − FΠ(q) = E[1θ≤Q−1

W
(q) − 1θ≤Q−1

Π
(q)|I

∗]

Hence FW (q) − FΠ(q) is weakly quasi–increasing.

For I∗ ∈ I∗, Lemmas 7–8 imply that [Q(θ,GW )|I∗] ≥icv [Q(θ,GΠ)|I∗], where ≥icv denotes

the increasing–concave order (Shaked and Shanthikumar (1994, Theorem 3.A.12(b))). The

increasing–concave order is closed under mixtures so Q(θ,GW ) ≥icv Q(θ,GΠ) (Shaked and

Shanthikumar (1994, Theorem 3.A.5(b))).

A.2 Monotone Comparative Statics used in Appendix A.3

The function h(θ, t) is extended–log–supermodular if for θH > θL and tH > tL,

h(θH , tH)h(θL, tL) ≥ h(θH , tL)h(θL, tH) (A.1)

If h(θ, t) is also positive, then it is log–supermodular.
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Lemma 9. Suppose h(θ, t) is extended–log–supermodular, weakly quasi–increasing in θ and

weakly quasi–increasing in −t. Then for any partition I, E[h(θ, t)|I]+ is log–supermodular.

Proof. First, we show that the properties of h(θ, t) carry over to ψ(θ, t) := E[h(θ, t)|I]. Pick

tH > tL and θH > θL, where θH ∈ IH and θL ∈ IL. Since h(θ, t) is extended–log–supermodular,

ψ(θH , tH)ψ(θL, tL) − ψ(θL, tH)ψ(θH , tL)

=

∫

IL

∫

IH

[h(θ̃H , tH)h(θ̃L, tL) − h(θ̃L, tH)h(θ̃H , tL)] dFIH
(θ̃H)dFIL

(θ̃L) ≥ 0

where FI(·) is the distribution of θ conditional on lying in I. Similarly, if h(θ, t) is weakly

quasi–increasing in a parameter then ψ(θ, t) has the same property.

Second, we show that ψ(θ, t)+ is log–supermodular. Pick θH > θL and tH > tL. If

ψ(θL, tH) ≤ 0, then ψ(θ, t)+ is trivially log–supermodular. If ψ(θL, tH) > 0, then ψ(θH , tH) ≥ 0

and ψ(θL, tL) ≥ 0 from the monotonicity properties of ψ(θ, t). The log–supermodularity of

ψ(θ, t)+ follows from the extended–log–supermodularity of ψ(θ, t).

Lemmas 10–11 are variants of Karlin and Rubin (1956, Lemma 1). The method of proof is

identical.

Lemma 10. Consider groups GC ,GF such that I(GC) ⊂ I(GF ) and assume Q(θ,G) ≥ 0.

Suppose that E[h(θ, t)|I(GF )]+ is log–supermodular in (θ, t) and decreasing in t. Consider a

partition I∗ ⊂ I(GC) such that Q(θ,GF )−Q(θ,GC) is quasi–increasing on every I ∈ I∗. Then

E

[

E[h(θ, t)|I(GF )]+Q(θ,GF )

∣

∣

∣

∣

I∗

]

− E

[

E[h(θ, t)|I(GC)]Q(θ,GC)

∣

∣

∣

∣

I∗

]

(A.2)

is quasi–increasing in t.

Proof. Write ψ(θ, t) := E[h(θ, t)|I(GF )] and ∆Q(θ) := Q(θ,GF ) − Q(θ,GC). Rewriting (A.2)

we wish to show that

E
[

ψ(θ, t)+∆Q(θ)
∣

∣

∣
I∗

]

+ E
[

ψ(θ, t)−Q(θ,GC)
∣

∣

∣
I∗

]

(A.3)

is quasi–increasing in t. By way of contradiction, suppose there exists tH > tL and an interval

I ∈ I∗

E
[

ψ(θ, tL)+∆Q(θ)
∣

∣

∣
I
]

+ E
[

ψ(θ, tL)−Q(θ,GC)
∣

∣

∣
I
]

≥ 0 (A.4)

and

E
[

ψ(θ, tH)+∆Q(θ)
∣

∣

∣
I
]

+ E
[

ψ(θ, tH)−Q(θ,GC)
∣

∣

∣
I
]

< 0 (A.5)

Since ∆Q(θ) is quasi–increasing on I, so we can break it up into positive and negative compo-

nents. That is, ∆Q(θ) ≥ 0 on some I+ ∈ IF and ∆Q(θ) < 0 on I− := I\I+. For notational
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convenience, restrict the state space to I and rewrite (A.4) and (A.5) as

E
[

ψ(θ, tL)+∆Q(θ)+
]

+ E
[

ψ(θ, tL)−Q(θ,GC)
]

≥ E
[

ψ(θ, tL)+∆Q(θ)−
]

(A.6)

and

E
[

ψ(θ, tH)+∆Q(θ)−
]

> E
[

ψ(θ, tH)+∆Q(θ)+
]

+ E
[

ψ(θ, tH)−Q(θ,GC)
]

(A.7)

There are two possible cases. First, suppose that the left hand side of (A.6) equals zero. Then

the right hand side of (A.6) is also zero and, since ψ(θ, t) is decreasing in t, the left hand side of

(A.7) is zero. We thus obtain a contradiction. Second, we suppose the left hand side of (A.6)

is strictly positive. Multiplying (A.6) and (A.7),

E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)+∆Q(θ)+
]

+ E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)−Q(θ,IL)
]

(A.8)

> E
[

ψ(θ, tH)+∆Q(θ)+
]

E
[

ψ(θ, tL)+∆Q(θ)−
]

+ E
[

ψ(θ, tL)+∆Q(θ)−
]

E
[

ψ(θ, tH)−Q(θ,IL)
]

We now show that (A.8) also yields a contradiction. This follows from two facts. First, using

the log–supermodularity of ψ(θ, t)+,

E
[

ψ(θ, tH)+∆Q(θ)+
]

E
[

ψ(θ, tL)+∆Q(θ)−
]

− E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)+∆Q(θ)+
]

(A.9)

=

∫

I−
L

∫

I+

L

[ψ(θH , tH)+ψ(θL, tL)+ − ψ(θH , tL)+ψ(θL, tH)+]∆Q(θH)+∆Q(θL)−dF (θH)dF (θL) ≥ 0

Second, ψ(θ, t) is decreasing in t. Hence ψ(θ, tL)+ ≥ ψ(θ, tH)+ and ψ(θ, tH)− ≥ ψ(θ, tL)−. This

means

E
[

ψ(θ, tL)+∆Q(θ)−
]

E
[

ψ(θ, tH)−Q(θ,GC)
]

≥ E
[

ψ(θ, tH)+∆Q(θ)−
]

E
[

ψ(θ, tL)−Q(θ,GC)
]

(A.10)

Together, (A.9) and (A.10) contradict (A.8), as required.

Lemma 11. Suppose ∆Q(θ) is quasi–increasing on I. In addition, suppose that h(θ, t) is

log–supermodular in (θ, t) and decreasing in t. Then E[h(θ, t)∆Q(θ)|I] is quasi–increasing in t.

Proof. Follows from Lemma 10.

A.3 Proof of Proposition 3

The method of proof is the same as in Proposition 1. Suppose GW maximises welfare and pick

G such that G ⊂ GW . We wish to show that Π(GW ) ≥ Π(G). By Lemma 3, I(G) ⊂ I(GW ).
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Denote the benefit from splitting, conditional on I(G), by

∆W (θ) := E

[

θQ∗(θ,GW )

∣

∣

∣

∣

I(G)

]

− E

[

θQ∗(θ,G)

∣

∣

∣

∣

I(G)

]

∆Π(θ) := E

[

E[MR(θ)|I(GW )]+Q∗(θ,GW )

∣

∣

∣

∣

I(G)

]

− E

[

E[MR(θ)|I(G)]+Q∗(θ,G)

∣

∣

∣

∣

I(G)

]

Let ∆Q∗(θ) := Q∗(θ,GW )−Q∗(θ,G). Since GW maximises welfare, E[∆W (θ)] ≥ 0. Observe

that ∆Q∗(θ) is increasing on each I ∈ I(G) and let I∗ be the coarsest partition such that ∆Q∗(θ)

is quasi–increasing for all I∗ ∈ I∗.

Lemma 12. E[∆W (θ)|I∗] ≥ 0.

Proof. Same as Proposition 1.

Lemma 13. E[∆Π(θ)|I∗] ≥ 0 and hence E[∆Π(θ)] ≥ 0.

Proof. Let us divide the state space into two. MR(θ) is quasi–increasing in θ, so E[MR(θ)|I(G)]

is positive on some increasing set IB ⊂ [θ, θ], and strictly negative on the compliment, IA.

First, E[∆W (θ)|I∗] ≥ 0 implies E[∆W (θ)1IB
|I∗] ≥ 0. To see this, notice that the function

h(θ, t) = θ1θ≥t is log–supermodular and decreasing in t. Let h(θ, 0) = θ and h(θ, 1) = θ1IB
and

apply Lemma 11.

Second, let h(θ, 0) = θ1IB
and h(θ, 1) = MR(θ)1IB

. Under (MON), h(θ, t) is extended–

log–supermodular in (θ, t), weakly quasi–increasing in θ and decreasing in t. Lemma 9 im-

plies that E[h(θ, t)|I(GW )]+ is log–supermodular and decreasing in t. Hence, by Lemma 10,

E[∆W (θ)1IB
|I∗] ≥ 0 implies that E[∆Π(θ)1IB

|I∗] ≥ 0.

Third, E[MR(θ)1IA
|I(G)]+ = 0, so E[∆Π(θ)1IA

|I∗] ≥ 0. Thus E[∆Π(θ)1IB
|I∗] ≥ 0 implies

E[∆Π(θ)|I∗] ≥ 0.

A.4 Proof of Proposition 4

(a) Lemma 6 implies that welfare is maximised by AW = ∅, so that AW ⊂ AΠ.

(b) Suppose GW ⊂ GΠ. By Lemma 3, I(GW ) ⊂ I(GΠ). Let AW and AΠ be versions of

the smallest excluded sets and suppose, by contradiction, that AW\AΠ has nonzero measure.

Define a new group structure G′ equal to GΠ on AW and GW on ¬AW , and consider excluding

AΠ. First, this new group structure increases welfare: E[θQ(θ,G′)1¬AΠ ] > E[θQ(θ,G′)1¬AW ].

Second, the new group structure is feasible, as shown below. This contradicts the optimality of

(GW , AW ).

To verify the new group structure is feasible, let I∗ be the coarsest partition of ¬AW such

that ∆Q(θ) := Q(θ,GΠ)−Q(θ,GW ) is quasi–increasing. As in Proposition 1, E[θ∆Q(θ)|I∗] ≤ 0.
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Hence, for each I∗ ∈ I∗, there exists θ1(I
∗) ∈ I∗ such that ∆Q(θ) ≤ 0 on {θ ∈ I∗ : θ ≤ θ1(I

∗)}.

To verify monotonicity, pick θH ≥ θL. If θH , θL are both in AΠ\AW or ¬AW , monotonicity

follows from the monotonicity of Q(θ,GΠ) and Q(θ,GW ). Next, pick θH ∈ ¬AW and let IH ∈ I∗

be the corresponding interval, and pick θL ∈ AΠ\AW . Then,

Q(θH ,G
′) = Q(θH ,G

W ) ≥ Q(θ′,GW ) ≥ Q(θ′,GΠ) ≥ Q(θL,G
Π) = Q(θL,G

′)

for θ′ ∈ {θ ∈ IH : θ ≤ θ1(IH), θ ≤ θH}. The two equalities come from the definition of G′.

The first and third inequalities come from monotonicity of Q(θ,GΠ) and Q(θ,GW ). The second

inequality comes from the fact that ∆Q(θ′) ≤ 0.

A.5 Proof of Proposition 5

(a) Let D := {θ : h(θ) < 0}. Since h(·) is increasing, D is a decreasing set. Q(G) is weakly

increasing in G, so Lemma 6 implies that we can restrict ourselves to considering G ∈ Γ. Q(G)

also exhibits DRS, so Proposition 2(a) implies that, among all G ∈ Γ, the principal’s payoffs

are maximised by full separation.29 Using pointwise maximisation, profit is maximised when

the principal excludes D.

(b) Q(G) is (weakly) increasing, so Lemma 6 implies that we can restrict ourselves to considering

G ∈ Γ. Q(G) also exhibits IRS, so Proposition 2(b) implies that, among all G ∈ Γ, the principal’s

payoffs are maximised when groups are intervals.30 We now show that excluding D is optimal.

First, suppose that A\D has positive measure. Form a new group structure G′ by including

A\D as a single group. Since Q(G) is (weakly) increasing, G′ ∈ Γ. Moreover, G′ yields a

(weakly) higher payoff than G.

Second, suppose that D\A has positive measure. Form a new group structure G′′ by splitting

any group G into G ∩ D and G ∩ ¬D, and consider excluding D. Since Q(G) is (weakly)

increasing, G′′ ∈ Γ. Moreover, Q(G) is increasing, so Q(G∩¬D) ≥ Q(G). As a result, G′′ yields

a (weakly) higher payoff than G,

E[h(θ)Q(θ,G)1¬A] ≤ E[h(θ)Q(θ,G)1¬D ] ≤ E[h(θ)Q(θ,G′′)1¬D]

as required.

29Proposition 2(a) does not allow for exclusion, but the result immediately extends. With exclusion, smaller
groups provide more flexibility and, via Jensen’s inequality, further increase the principal’s payoff.

30Proposition 2(b) does not allow for exclusion, but the result immediately extends. The proof is identical.
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