

Relational Contracts and the Value of Loyalty

Simon Board

Department of Economics, UCLA

November 20, 2009

En

Motivation

Holdup problem is pervasive

- Developing economies (McMillan and Woodruff, 99)
- Developed countries (Macaulay, 67)

Holdup explains forms of organisations

- Organisation of communities (Grief, 93)
- Make vs Buy decisions (Williamson, 85)

How does Holdup affect supply relationships?

- Holdup problem mitigated by ongoing relationships.
- Maintaining relationships can reduce the scope of trade.

Toyota vs. GM

General Motors in 1980s

- Competitive bidding each year.
- Use cheapest supplier.
- Outsource 30% of production.
- Check quality of part before installing.

Toyota in 1980s

- Automatically renew contracts for life of vehicle.
- Preferred supplier policy for new models.
- Outsource 70% of production.
- Trust suppliers to verify quality.

its E

Government Procurement (Kelman, 1990)

Government Procurement in 1980s

- ► Full and open competition (e.g. competitive bidding).
- Could not use subjective information (e.g. prior performance)

Public vs. Private

- Government uses lowest bidder more often.
- Private firms more loyal to suppliers.
- Private firms more satisfied with performance.

Motivation

This paper will ...

- Derive the optimal relational contract.
- Show relational contracts induce loyalty.
- Characterise distortions induced by ongoing relationships.

We will have predictions about

- Switching between suppliers.
- Time path of prices.
- When trade will take place at all.

s E

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

The Theory

One principal and \boldsymbol{N} agents.

- Each period, principal invests in one agent.
- Investment costs vary across agents and over time.
- Agent can then hold up principal.

s E

The Theory

One principal and \boldsymbol{N} agents.

- Each period, principal invests in one agent.
- Investment costs vary across agents and over time.
- Agent can then hold up principal.

Agents can garner rents through threat of holdup.

- Rents same if trade once or one hundred times.
- Rents acts like fixed cost of new relationship.

Principal divides agents into 'insiders' and 'outsiders'.

- Trade with insiders efficiently.
- Trade is biased against outsiders.
- ► This is self-enforcing if parties are patient enough.

- Calzolari and Spagnolo (2006).
- Relational contracts with random hiring: Shapiro and Stiglitz (1984) and Greif (1993, 2003).
- Relational contracts with contractible transfers: MacLeod and Malcomson (1989), Levin (2002, 2003).

 Community enforcement: Kandori (1992), Ghosh and Ray (1996), Sobel (2006).

Introduction

- Ø Model
- One-sided Commitment
- Full Problem
- Private Cost Information
- On Transfers
- Conclusion

Model

Model: Stage Game

One principal and N agents. Time $t \in \{1, 2, \ldots\}$.

- **①** Costs $\{c_{i,t}\}$ publicly revealed.
- Principal chooses $Q_{i,t} \in \{0,1\}$ s.t. $\sum_i Q_{i,t} ≤ 1$. Winning agent produces and sells product worth v.
- **③** Agent keeps $p_t \in [0, v]$, and gives back $v p_t$ to principal.

Investment $Q_{i,t}$ and prices p_t are noncontractible.

Model

Model: Stage Game

One principal and N agents. Time $t \in \{1, 2, \ldots\}$.

- **①** Costs $\{c_{i,t}\}$ publicly revealed.
- ② Principal chooses $Q_{i,t} \in \{0,1\}$ s.t. $\sum_i Q_{i,t} ≤ 1$. Winning agent produces and sells product worth v.
- **③** Agent keeps $p_t \in [0, v]$, and gives back $v p_t$ to principal.

Investment $Q_{i,t}$ and prices p_t are noncontractible.

Holdup Problem: No investment in unique stage game equilibrium.

Model: Repeated Game

Relationships bilateral.

Model

• Agent *i* observes costs $\{c_{i,t}\}$ and $Q_{i,t}$.

Relational contract $\langle Q_{i,t}, p_t \rangle$ specifies

• Investments: $Q_{i,t}: h^{t-1} \times [\underline{c}, \overline{c}]^N \to \{0, 1\}.$

• Prices:
$$p_t: h_i^{t-1} \times [\underline{c}, \overline{c}]^N \to [0, v].$$

Equilibrium

- Contract is agent-self-enforcing (ASE) if agents' strategies form SPNE, taking principal's investment strategy as given.
- Contract is self-enforcing (SE) if both agents' and principal's strategies form SPNE.

One-Sided Commitment

Assumption

- Principal commits to (contingent) strategy, $Q_{i,t}$.
- Allows us to focus on agents' incentives.

Agent i's utility at time t is

$$U_{i,t} := E_t \left[\sum_{s \ge t} \delta^{t-s} p_t Q_{i,t} \right]$$

Lemma 1.

Contract $\langle Q_{i,t}, p_t \rangle$ is agent–self–enforcing if and only if

$$(U_{i,t} - v)Q_{i,t} \ge 0$$
 $(\forall i)(\forall t)$ (DEA)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Dynamic Enforcement Constraint

Lemma 2. Contract $\langle Q_{i,t}, p_t \rangle$ is agent–self–enforcing if and only if

$$U_{i,t} \ge E_t[v\delta^{\tau_i(t)-t}] \qquad (\forall i)(\forall t) \qquad (\mathsf{DEA'})$$

where $\tau_i(t) := \min\{s \ge t : Q_{i,s} = 1\}$ is time of next trade.

Proof.

End

Principal's Problem

The profit at time t from relationship i is

$$\Pi_{i,t} := E_t \left[\sum_{s \ge t} \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \right]$$

Total profit is $\Pi_t := \sum_i \Pi_{i,t}$.

Principal's problem is to maximise initial profit

$$\begin{split} \Pi_0 &:= E_0 \bigg[\sum_{s \ge 1} \sum_i \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \bigg] \\ \text{s.t.} \quad (U_{i,t} - v) Q_{i,t} \ge 0 \quad (\forall i) (\forall t) \end{split} \tag{DEA}$$

End

Principal's Problem

The profit at time t from relationship i is

$$\Pi_{i,t} := E_t \left[\sum_{s \ge t} \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \right]$$

Total profit is $\Pi_t := \sum_i \Pi_{i,t}$.

Principal's problem is to maximise initial profit

$$\begin{split} \Pi_0 &:= E_0 \bigg[\sum_{s \ge 1} \sum_i \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \bigg] \\ \text{s.t.} \qquad U_{i,t} \ge E_t [v \delta^{\tau_i(t) - t}] \quad (\forall i) (\forall t) \end{split} \tag{DEA'}$$

s En

Principal's Problem

The profit at time t from relationship i is

$$\Pi_{i,t} := E_t \left[\sum_{s \ge t} \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \right]$$

Total profit is $\Pi_t := \sum_i \Pi_{i,t}$.

Principal's problem is to maximise initial profit

$$\begin{split} \Pi_0 &:= E_0 \bigg[\sum_{s \ge 1} \sum_i \delta^{t-s} (v - c_{i,t}) Q_{i,t} \bigg] - \sum_i U_{i,0} \\ \text{s.t.} \quad U_{i,t} \ge E_t [v \delta^{\tau_i(t)-t}] \quad (\forall i) (\forall t) \end{split} \tag{DEA'}$$

Principal's Problem

The profit at time t from relationship i is

$$\Pi_{i,t} := E_t \left[\sum_{s \ge t} \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \right]$$

Total profit is $\Pi_t := \sum_i \Pi_{i,t}$.

Principal's problem is to maximise initial profit

$$\Pi_0 := E_0 \left[\sum_{s \ge 1} \sum_i \delta^{t-s} (v - c_{i,t}) Q_{i,t} \right] - E_0 \left[\sum_i v \delta^{\tau_i(0)} \right]$$

Optimal ASE Contract

The set of insiders at time t is $\mathcal{I}_t := \{i : \tau_i(0) < t\}$

Property 1.

Trade with insiders is efficient. Suppose $i \in \mathcal{I}_t$. Then $Q_{i,t} = 1$ if $c_{i,t} < v$ and $c_{i,t} < c_{j,t}$ $(\forall j)$.

The Idea

- First time agent trades, they gets rents v.
- This payment can be delayed and used to stop future holdup.
- Thus rents act like fixed cost of new relationship

Optimal ASE Contract

Property 2.

Trade is biased against outsiders. Suppose $i \notin I_t$. Then $Q_{i,t} = 0$ if either:

 $\begin{array}{l} \bullet \quad (v-c_{i,t}) < v(1-\delta); \mbox{ or } \\ \bullet \quad (c_{j,t}-c_{i,t}) < v(1-\delta) \mbox{ for } j \in \mathcal{I}_t. \end{array}$

The Idea

- Abstain if profit less than rental value of rents.
- Prefer insider if profit gain less than rental value of rents.
- May prefer relatively inefficient outsider (if costs not IID).

Theory of endogenous switching costs

Pay to switch to new agent, but not to revert back.

General prices

- ▶ Pick $U_{i,t}$ such that (DEA') holds $(\forall t)$ and binds at t = 0.
- Prices can then backed out of utility:

$$p_{i,t} = U_{i,t} - E_t[\delta^{\tau_i(t+1)}U_{i,\tau_i(t+1)}]$$

Fastest prices

• These have property that (DEA') binds $(\forall t)$,

$$p_{i,t} = vE_t[1 - \delta^{\tau_i(t+1)}]$$

- Fastest prices maximise continuation profits, $\Pi_{i,t}$.
- Full problem: Investment rule implementable only if it can be implemented by fastest prices.

(日)

Example: IID Costs

- ▶ Number of insiders, n_t, follows time-invariant markov chain.
- Stay inside if best insider cost $c_{1:n}$ falls below cutoff, c_n^* .

Insiders, n_t	Cutoff, c_n^*	$Prob(n_{t+1} = n_t)$	Value fn., $\Phi(n)$
0	0	0	83.6
1	0.358	0.358	85.3
2	0.398	0.637	87.0
3	0.454	0.837	88.6
4	0.549	0.959	90.2
5	0.834	0.999	91.7
6	1	1	92.9

Table: v = 2, $c_{i,t} \sim [0,1]$, $N = \infty$ and $\delta = 0.98$.

Predictions

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

In More loyalty in countries with poorer legal systems.

- Johnson et al (2002)
- Ø More loyalty where goods are more specific.
 - Johnson et al (2002)
- Sirms who are less loyal receive lower quality.
 - Kelman (1990), GM vs. Toyota.
- Trade harder as end game approaches.
 - Bankruptcy of GM and suppliers.

End

Full Problem

Principal's problem is to maximise profits

$$\begin{split} \Pi_0 &= E_0 \bigg[\sum_{s \ge 1} \sum_i \delta^{t-s} (v - c_{i,t} - p_t) Q_{i,t} \bigg] \\ \text{s.t.} \quad \Pi_{i,t} Q_{i,t} \ge 0 \quad (\forall i) (\forall t) \qquad (\mathsf{DEP}) \\ (U_{i,t} - v) Q_{i,t} \ge 0 \quad (\forall i) (\forall t) \qquad (\mathsf{DEA}) \end{split}$$

Question

Can we implement optimal ASE contract?

Full Problem

Principal's problem is to maximise profits

$$\Pi_{0} = E_{0} \left[\sum_{s \ge 1} \sum_{i} \delta^{t-s} (v - c_{i,t}) Q_{i,t} \right] - E_{0} \left[\sum_{i} v \delta^{\tau_{i}(0)} \right]$$

s.t.
$$\Pi_{i,t} Q_{i,t} \ge 0 \quad (\forall i) (\forall t) \qquad (\mathsf{DEP})$$
$$(U_{i,t} - v) Q_{i,t} \ge 0 \quad (\forall i) (\forall t) \qquad (\mathsf{DEA})$$

Question

Can we implement optimal ASE contract?

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Full Problem

Principal's problem is to maximise profits

$$\Pi_{0} = E_{0} \left[\sum_{s \ge 1} \sum_{i} \delta^{t-s} (v - c_{i,t}) Q_{i,t} \right] - E_{0} \left[\sum_{i} v \delta^{\tau_{i}(0)} \right]$$

s.t. $(W_{i,t} - v) Q_{i,t} \ge 0 \quad (\forall i) (\forall t)$ (DEP')

Question

Can we implement optimal ASE contract?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Time Inconsistency

Example 1

- Suppose N = 1, v = 1 and $\delta = 3/4$.
- Costs: $c_t = 1/2$ for $t \le 10$, and $c_t = 0.99$ for t > 10.

What goes wrong:

- Optimal ASE contract has $Q_{i,t} = 1 \ (\forall t)$.
- By backwards induction, $Q_{i,t} = 0 \ (\forall t)$.

Time Inconsistency

Example 1

- Suppose N = 1, v = 1 and $\delta = 3/4$.
- Costs: $c_t = 1/2$ for $t \le 10$, and $c_t = 0.99$ for t > 10.

What goes wrong:

- Optimal ASE contract has $Q_{i,t} = 1 \; (\forall t)$.
- By backwards induction, $Q_{i,t} = 0 \; (\forall t)$.

Optimal ASE contract is not time consistent.

- Rents of insiders are sunk, so agent used efficiently.
- But payment of rents is delayed to prevent future holdup.
- Principal may later regret promising to use agent efficiently.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

IID Costs

Proposition 3.

Suppose that costs are IID and $\underline{c} > 0$. Then $\exists \hat{\delta}$, independent of N, such that the optimal ASE contract satisfies (DEP) when $\delta > \hat{\delta}$.

IID Costs

Proposition 3.

Suppose that costs are IID and $\underline{c} > 0$. Then $\exists \hat{\delta}$, independent of N, such that the optimal ASE contract satisfies (DEP) when $\delta > \hat{\delta}$.

- ▶ For fixed *N*, result is trivial.
 - $W_{i,t} \to \infty$ as $\delta \to 1$.
- ▶ Problem: If $N = \infty$, then $\sup_t n_t \to \infty$ as $\delta \to 1$.
 - Marginal welfare, $E[c_{1:n} c_{1:n+1}]$, falls quickly in n.
 - Average welfare, $E[v c_{1:n}]/n$, falls more slowly in n.
 - Thus $W_{i,t} \to \infty$ as $\delta \to 1$.

IID Costs

Proposition 3.

Suppose that costs are IID and $\underline{c} > 0$. Then $\exists \hat{\delta}$, independent of N, such that the optimal ASE contract satisfies (DEP) when $\delta > \hat{\delta}$.

- ▶ For fixed *N*, result is trivial.
 - $W_{i,t} \to \infty$ as $\delta \to 1$.
- ▶ Problem: If $N = \infty$, then $\sup_t n_t \to \infty$ as $\delta \to 1$.
 - Marginal welfare, $E[c_{1:n} c_{1:n+1}]$, falls quickly in n.
 - Average welfare, $E[v c_{1:n}]/n$, falls more slowly in n.
 - Thus $W_{i,t} \to \infty$ as $\delta \to 1$.

Example 2

- Suppose $c_{i,t} \sim U[0,1]$ and v > 1.
- ▶ Then (DEP) satisfied when $\delta \ge \hat{\delta} = (1 + (v 1)^3)^{-1}$.

Private Cost Information

Suppose $\{c_{i,t}\}$ are privately known by principal.

Problem

- The optimal ASE contract is not incentive compatible.
- Principal lies about costs because of time inconsistency.

Example 3

- ▶ Suppose N = 1, v = 1, $c \sim U[0, 2]$, and $\delta = 9/10$
- ▶ Optimal ASE contract: Outsiders trade if $c \le 0.80$; Insiders trade if $c \le 1$.
- This contract is self-enforcing and generates prices, $p_t = 0.18$.
- Principal will overstate cost if $c \in [0.82, 1]$.
- Similarly, she may lie to use outsider over insider.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Maintenance Contracts

A maintenance contract has payments:

$$\begin{aligned} p_{i,t} &= (1-\delta)v & \text{ if } i \in \mathcal{I}_t \\ p_{i,t} &= 0 & \text{ if } i \notin \mathcal{I}_t \end{aligned}$$

Investments $Q_{i,t}$ chosen to maximise profits Π_0 as in optimal ASE contract.

More formally

- 1. Principal observes her costs.
- 2. Principal makes public cost reports, determining $\langle Q_{i,t}, p_{i,t} \rangle$.
- 3. Principal chooses in whom to invest.
- 4. Winning agent chooses whether to hold up principal.

Maintenance Contracts

Proposition 5.

The maintenance contract is an optimal ASE contract, and is incentive compatible for principal. It is self-enforcing if

$$W_{i,t} \ge v$$
 for all $i \in \mathcal{I}_t$. (DEP^{MC})

Benefit of MC

Incentive Compatibility

Cost of MC

- ▶ (DEP^{MC}) is stricter than (DEP).
- However, under IID costs (DEP^{MC}) holds if $\delta > \hat{\delta}$.

Agents' Rents

Agents' obtain rents.

- Crucial to this paper.
- But principal may be able to fully extract.

1. Up-front payments.

- At time 0, agent pays principal all rents.
- 2. Contractible transfers.
 - Set transfer equal to v.
 - Agent "buys the firm".

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivation 1: Wealth Constraints

General Contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$

- $\phi_{i,t}$ is voluntary payment from *i* to principal.
- $\phi_{i,t}^0$ is contractible payment from *i* to principal.

Proposition 7.

Suppose the agent has zero wealth. Then any self-enforcing contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$ delivers the same payoffs as a contract of the form $\langle Q_{i,t}, p_t \rangle$.

Rents

Motivation 1: Wealth Constraints

General Contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$

- $\phi_{i,t}$ is voluntary payment from *i* to principal.
- $\phi_{i,t}^0$ is contractible payment from i to principal.

Proposition 7.

Suppose the agent has zero wealth. Then any self-enforcing contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$ delivers the same payoffs as a contract of the form $\langle Q_{i,t}, p_t \rangle$.

Case Study: McDonalds (Kaufman and Lafontaine, 1994).

- In 1980s, franchisees made ex ante rents of \$400K.
- Franchise fee was only \$22.5K.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivation 2: Cowboys

Free Entry of Principals

- Suppose there are many 'cowboy principals' in the world.
- These cowboys have costs $c_{i,t} = \infty \; (\forall i) (\forall t).$

General Contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$

Contract is cowboy–proof if cowboys makes negative profits.

Proposition 8.

Any self-enforcing cowboy-proof contract $\langle Q_{i,t}, \phi_{i,t}, \phi_{i,t}^0 \rangle$ delivers the same payoffs as a contract of the form $\langle Q_{i,t}, p_t \rangle$.

Rents

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Strategy for Outsourcing

Kern, Willocks and van Heck (2002), "The Winner's Curse in IT Outsourcing", California Management Review.

"The goal must be win-win, where the supplier can make a return. In a one-sided venture, the supplier has to try to cover its costs in any way possible, which is likely to effect services, operations and relations adversely."

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Contracts without Rents

Optimal contract exhibits loyalty

- Multi-sourcing reduces the frequency of trade.
- Hence defection more likely.

Optimal contract

- Contract is stationary.
- Bias trade towards most recently used agent.

Extensions

Incentives to innovate

- How does contract affect entry of new agents?
- How does contract affect incentives to invest in R&D?
- How does potential entry affect optimal contract?

Different quantity levels, $Q \in \{0, 1..., L\}$

Slow build up of trade.

Renegotiation-proofness

• Equilibrium is ϵ -renegotiation-proof if $N \ge \hat{N}_{\epsilon}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

End

Summary

Agents' ability to holdup principal gives them rents.

- These rents are independent of number of trades.
- Act like fixed cost of relationship.

Characterisation of optimal ASE contract.

- Principal divides agents into 'insiders' and 'outsiders'.
- Trade biased towards insiders.

ASE contract is robust.

- If parties patient, contract is self-enforcing.
- With maintenance payments, contract robust to private info.

Full Problem with IID Costs and N = 1

Suppose N = 1. The optimal ASE contract obeys

$$\begin{aligned} Q_t &= \mathbf{1}_{c_t \leq c^*} & \text{ if } i \notin \mathcal{I}_t \\ Q_t &= \mathbf{1}_{c_t \leq v} & \text{ if } i \in \mathcal{I}_t \end{aligned}$$

If $\delta > \hat{\delta}$, then optimal ASE contract is implementable.

Proposition 4.

Suppose N = 1. Then the optimal SE contract obeys

$$\begin{aligned} Q_t &= \mathbf{1}_{c_t \leq \kappa^*} & \text{if } i \notin \mathcal{I}_t \\ Q_t &= \mathbf{1}_{c_t \leq \kappa^{**}} & \text{if } i \in \mathcal{I}_t \end{aligned}$$

(日)

where $\kappa^* \leq \kappa^{**}$, $\kappa^* \leq c^*$ and $\kappa^{**} \leq v.$

A Complementary Theory for Loyalty

Suppose agents are impatient.

- ► If multi-source then reduce frequency of trade.
- Hence defection more likely.

Model with transfers.

- Optimal contract stationary.
- ▶ For fixed N, efficient contract enforceable if $\delta \ge \delta_N$
- For fixed δ , efficient contract not enforceable if $N \ge N_{\delta}$.

Optimal contract

- When N = 1, then trade if $c_t \in [0, c^*] \subset [0, v]$.
- When N = 2, bias trade towards most recently used agent.
- ▶ What happens as N grows large?