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Abstract

This paper characterises the optimal contract for a principal who repeatedly chooses among
a set of potential trading partners (agents) under the threat of holdup. As the economy
evolves, the principal would like to trade with different agents; however, the possibility of
ex—post opportunism allows agents to collect rents and creates a fixed cost of initiating a
new relationship. In the optimal contract, the principal divides agents into “insiders”, with
whom she has previously traded, and “outsiders”, with whom she has never traded. The
principal then uses insiders efficiently, while being biased against outsiders. The optimal
contract is self-enforcing if the principal is sufficiently patient. It can also be implemented
by an “employment contract” that is robust to asymmetric information. The model thereby

provides a theory of the firm, where both firm size and growth are endogenous.

1 Introduction

Holdup, whereby investment is deterred by the threat of ex—post opportunism, is one of the most
pervasive forces in economics. In early trading communities, merchants who traded in foreign
markets worried that part of their shipments would be embezzled by their agents (Greif (1993)).
In modern—day Vietnam, where contracts enjoy little legal protection, 25% of suppliers have
had a customer fail to pay for a product after it has been delivered (McMillan and Woodruff
(1999)). And in developed countries, despite the presence of a functioning legal system, the
majority of transactions are covered by no contract, by contradictory contracts or by contracts
that are not legally enforceable (Macaulay (1963)).

In all these cases, ongoing relationships are used to mitigate the holdup problem. However,

maintaining a relationship can reduce of scope of trade. The purpose of this paper is to make
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this tradeoff precise. In doing so, we derive the optimal relational contract, show that it induces
loyalty, and characterise resulting the distortions. The model enables us to make predictions
about when a firm will switch suppliers, and how these switches depend on the length of the
relationship, the number of suppliers, and the shocks to the economy. The following examples
illustrate the practical importance of loyalty in overcoming the holdup problem.

In 1984, the U.S. government started awarding its $200bn worth of contracts through “full
and open competition”, either in the form of sealed bids or competitive negotiations. In or-
der to reduce corruption, the evaluation panel was instructed to ignore subjective information,
such as prior performance. Kelman (1990) examines computer procurement, comparing the
government’s policy with the purchasing behaviour of private firms. First, he finds that private
firms were considerably more loyal to their suppliers. In an extensive survey, 58% of govern-
ment contracts were awarded to the incumbent, compared to 78% for private firms. Moreover,
65% of government contracts were awarded to the lowest bidder, compared to 41% for private
contracts. Second, Kelman finds that private firms were considerably more satisfied with their
contracts. The government contracts rated particularly badly on ‘keeping promises’ and ‘stick-
ing to the contracted delivery schedule’. For example, Kelman reports that vendors held up the
government by withdrawing key personnel, investing in fewer on—site personnel and, perhaps
most importantly, providing poor advice and few creative ideas.

The importance of loyalty is also illustrated by the 1980s automobile industry.! At this time,
General Motors awarded one—year contracts for each component through competitive bidding.
While GM exploited the static gains from trade, it had concerns about quality, necessitating
inspections of deliveries. In contrast, Toyota was more loyal, automatically renewing contracts
for the life of the model and, for new models, favouring preferred bidders and suppliers with
high performance ratings. As a result, Toyota overcame the holdup problem, trusting suppliers
to meet the required quality standards, and installing parts without inspection. While it is not
ex—ante obvious which system is better, it is notable that Toyota outsourced significantly more
production, and that GM later tried, and failed, to adopt the Toyota model.

Finally, Johnson, McMillan, and Woodruff (2002) analyse the incidence of loyalty using
survey of transitional Eastern European countries. When asked whether they would change
suppliers for a 10% price discount, over half the firms surveyed said they would pass up on the
new deal, in whole or in part. Johnson et al. find that these switching costs were significantly
larger in countries with less effective court systems and for goods that are custom—built, sug-
gesting that loyalty is a consequence of the relational contracts used to temper opportunistic
behaviour.

Together, these examples exhibit two key features. First, when given the choice, firms are

loyal to their suppliers, rather than simply maximising the static gains from trade. Second,

!See Asanuma (1989) and Milgrom and Roberts (1997).



loyalty mitigates the holdup problem, and is used more frequently when contracts are hard
to write. This paper will present an explanation of these observations; it will also derive the

optimal contract in such an environment.

1.1 Outline of the Paper

We start with a basic holdup model. Each period, a principal invests in one of N agents.?
The winning agent then has the opportunity to hold up the principal. We suppose the cost
of investment differs across time and across agents, as technology and product requirements
change, leading to variations in the principal’s efficient trading partner. A relational contract
then specifies how the investment by the principal and the price paid to the agent depend on
current costs and the history of the game.

In Section 3, we suppose that the principal commits to a specified investment strategy,
allowing us to focus on the agents’ incentives. When the principal invests in agent i, the agent
has the option to hold up the principal. In order to prevent this opportunism, the principal
must give the agent a sufficiently large rent, so that he resists the temptation. This rent can
come both in terms of payment today and promised payments in future periods. Crucially, the
principal can use these delayed payments in order to prevent future incidences of holdup. This
means that the principal must only pay the agent one rent, independent of the number of times
they trade. That is, the rent acts like a fixed cost of initiating a new relationship.

When designing the contract, the principal must tradeoff exploiting the gains from trade
against the cost of starting new relationships. We show that the principal’s profit-maximising
contract therefore divides agents into “insiders”, with whom she has previously traded, and
“outsiders”, with whom she has never traded. The principal then uses insiders efficiently, while
being biased against outsiders. The model thus provides a theory of endogenous switching
costs, where there is a cost to use a new agent, but no cost to return to an old agent.

A comparison with efficiency wage models is informative. Shapiro and Stiglitz (1984) showed
that an agent can be persuaded not to hold up a principal if they are awarded rents. Greif (1993)
subsequently observed that an agent who trades more frequently demands lower per—period
payments. Greif’s result is driven by the effect we identified above: by spreading payments
over time, the rents used to prevent an agent cheating today can be also used to prevent him
cheating tomorrow. The current paper uses this observation to explicitly identify the cost
associated with a new relationship. Moreover, in contrast to the efficiency wage model, we
solve for the principal’s optimal hiring policy, rather than forcing her to pick randomly from
the pool of unemployed agents.

The insider—outsider contract has one large defect: it is not time consistent. From the

principal’s time—0 perspective, each agent must be paid a rent for the first trade, but not for

2The principal is female, while the agents are male.



subsequent trades. This has the consequence that insiders trade efficiently. The problem is that
many of the agents’ rents come from promised future payments, designed to prevent holdup
during later trades. The principal thus has an incentive avoid trade with insiders in later periods
in order to avoid these promised future payments. Anticipating the principal will renege in later
periods, the agent demands more compensation in earlier periods. This may cause the principal
to renege even more frequently, leading the agent to increase his demands once again.

The time inconsistency has two implications. First, when the principal is impatient, she will
be tempted to default. In Section 4, we examine this problem, supposing that the relationship
is enforced by bilateral punishment: that is, a defection by the principal against agent ¢ is
only observed by agent i. We show that when the principal is sufficiently patient and costs
are IID, the insider—outsider contract is self-enforcing. This is even the case if there are an
infinite number of agents. Intuitively, each agent must be paid a rent, so the principal will only
ever wish to trade with a finite number of partners. As the discount factor approaches 1, the
maximum number of insiders grows to infinity, but it grows sufficiently slowly that the profit
per agent increases without bound.

The second implication of time inconsistency is that the principal has an incentive to ex-
aggerate the cost of investing in insiders in order to avoid trading with them as frequently.
In Section 5, we suppose that the principal’s costs are private information and show that the
principal can overcome this problem by using an ‘employment contract’, where insiders are
paid a fixed amount per period, independent of whether trade occurs or not. The advantage of
the employment contract is that, since the payments to insiders are sunk, the principal has no
incentive to misstate her true costs. The disadvantage is that the principal has more incentive
to renege than when using the optimal prices from Section 4. Nevertheless, under IID costs,
the employment contract is self-enforcing when the principal is sufficiently patient.

Our results rely on the fact that agents can guarantee themselves rents by threatening to
hold up the principal. However, if the principle can demand up—front payments then she can
extract all rents from the agents. In Section 6 we argue that such up—front payments are not
feasible if the agents are poor, or if there is free entry into the market for principals.

This paper builds on a number of relational contracting papers. MacLeod and Malcomson
(1989) examine a repeated moral hazard problem with one worker and deterministic output.
Levin (2003) extends the model to allow for either moral hazard over the worker’s effort or
adverse selection over the worker’s type. Levin (2002) allows the principal to employ multiple
workers, comparing multilateral and bilateral contracts. These papers differ from ours in that
they all assume that contractible transfers are feasible. As a result, the profit-maximising
contract is stationary and maximises joint surplus.

Thomas and Worrall (1994) analyse a holdup game where agents receive rents. They allow

for different levels of investment, but assume there is only one agent. Thomas and Worrall show



that the optimal contract involves a gradual increase of investment, eventually converging to
the efficient level. The latter result is related to our finding that insiders are treated efficiently.?

In independent work, Calzolari and Spagnolo (2006) also analyse a firm who procures from
multiple suppliers under incomplete contracts. Calzolari and Spagnolo assume the principal uses
a stationary contract, choosing the cheapest of n < N suppliers, and that prices are determined
via an auction. In contrast, we solve for the principal’s optimal contract, determining prices
and allocations jointly.

Our paper also builds on community enforcement games, as pioneered by Kandori (1992),
whereby a population of agents are randomly matched into pairs, and then play a partnership
game. In this vein, Sobel (2006) supposes that relationships may grow stale, and agents then
have the choice to continue or quit. As in the current paper, Sobel shows that relationships
last longer than under complete contracting. However, the paper does not solve for the optimal
contract, and does not allow a player to sustain multiple relationships simultaneously.*

The paper is organised as follows. Section 3 derives the principal’s profit—-maximising con-
tract when she can commit to a contingent investment plan. Section 4 examines whether this
contract is self-enforcing when the principal cannot commit. Section 5 extends the model to
allow the principal to privately observe her cost structure. Section 6 discusses the feasibility of

rent—extraction contracts, while Section 7 concludes.

2 The Environment

The economy consists of a principal and N agents. Time t € {0,1,2,...} is discrete and
infinite. At time 0, the principal designs a contract to maximise her expected profits. Each

period t € {1,2,...,} then consists of three stages (see Figure 1).

1. The cost of investing in agent i, ¢;; € [c, €] C [0,00), is publicly revealed. These costs are

distributed according to some stochastic process.

2. The principal chooses to invest in at most one of the agents. Denote the probability that
the principal invests in i by Q;+ € {0,1}, where >, Q;; < 1.

3. The winning agent produces and sells a product worth v. He then chooses to keep p; €

[0,v] and pay the principal v — p;.

We assume that prices p; are observable but not contractible, either because courts are

inefficient or because the transfer is unverifiable. The stage game of this model thus exhibits

3 Also see Albuquerque and Hopenhayn (2004), and DeMarzo and Fishman (2007).

10n a related note, Ramey and Watson (1997) and Sigouin (2003) show that the desire to maintain a rela-
tionship can increase long—term specific investment above the first-best level, easing the dynamic enforcement
constraints.
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Figure 1: Timeline.

the holdup problem. The agent has all the ex—post bargaining power, so will expropriate all
the quasi-rents, v. Anticipating being held up, the principal will then abstain from investing.

This paper considers the infinitely repeated version of the holdup game, where all parties
have discount rate 6 € (0,1). We aim to model a decentralised market, so assume that contracts
are maintained by bilateral punishment: that is, a deviation in the relationship between the
principal and agent i cannot be observed by agents j # i.° Formally, at time ¢, agent i observes
hig == {c1ts--- N1, Qit, PeQi}. The agent’s history at time ¢ is thus hl := (hi1,...,hi).
Similarly, the principal’s history is k! := (h!, ..., hY;). The principal’s investment strategy is a
mapping Q;; : hﬁ_l x [c,@]¥ — {0,1}, while the winning agent’s pricing strategy is a mapping
pe: T x e, @V — [0, 0).

A relational contract (Q;¢,pt) is defined to be a history-contingent plan of allocations and
prices. In Section 3 we assume the principal commits to her investment strategy, allowing us
to focus on the agents’ incentives. A contract is said to be agent—self-enforcing (ASE) if the
agents’ strategies form a subgame perfect equilibrium, taking the principal’s strategy as given.
In Section 4 we analyse the full problem, where the principal cannot commit to her strategy. A
contract is then said to be self-enforcing (SE) if both the agents’ and the principal’s strategies
form a subgame perfect equilibrium. Among the class of self-enforcing contracts, we then look
for the contract that maximises the principal’s profit.

Welfare at time ¢ from the principal’s relationship with agent ¢ is

Wit = FE; Z 55w — Ci,s)Qi,s]
s=t

where “E;” is the expectation in period t, after {c;;} have been revealed. Total welfare is
Wi =", Wi, Agent ¢’s utility at time ¢ is

Uit = L

Zas-tpscgi,s] (2.1)

s=t

® Allowing for multilateral punishments does not change the optimal contract in Section 3, and simplifies the
analysis of Section 4.



The principal’s profit at time ¢ from agent ¢ is

o0

Hi,t =Ly Z 58_t(v —Cis — ps)Qi,s (22)

s=t

The principal’s total profit is II; := >, II; .

2.1 Discussion of the Model

For simplicity, we have phrased the model in terms of the agent stealing from the principal.
This stage game can be interpreted far more broadly.

First, consider a moral hazard interpretation. For example, suppose the government wishes
to hire a computer contractor to complete a project. The timing is as follows: First, the
principal chooses an agent; Second, the principal invests in the equipment the agent advises it
to buy at cost ¢;; Third, the agent chooses whether to exert non—contractible effort, e = v — p.
In the computer procurement example, this effort may take the form of providing well qualified
staff and coming up with innovative solutions, as suggested by Kelman (1990).

Second, consider a Grossman—Hart—Moore interpretation. For example, suppose Toyota
wishes to contract with a supplier for a certain component. The timing is as follows: First, the
principal chooses an agent with whom to trade; Second, the principal makes relational-specific
investment at cost ¢;; Third, the principal and agent decide whether or not to trade, creating
value v. At this final stage, assume the agent has all the bargaining power and the parties
cannot commit not to renegotiate. In this environment, the parties could theoretically write a
contract about the price prior to investment. However, as argued by Hart (1995, Chapter 4.1),
such a contract would be useless: the agent could always get out of the contract and renegotiate

to a price p = v.5

3 One—-Sided Commitment

In this section we suppose that the principal can commit to her investment strategy, Q;:. We

then solve for the optimal agent—self-enforcing contract.

5The argument is as follows. Suppose the parties wish to trade one of several widgets. The identity of the
useful widget is not known ex—ante and is not observed by the court; the other widgets are useless. First, consider
a contract where the principal chooses the widget, and the agent can accept or reject. If p < v, the agent will
reject and renegotiate, obtaining p = v. Second, consider a contract where the agent chooses the widget, and
the principal can accept or reject. In this case, the agent will choose a useless widget, which will be rejected by
the principal. The parties will then renegotiate and set p = v. See Hart and Moore (1999) and Segal (1999) for
a broader analysis.



Lemma 1. A contract (Q;+,pt) is agent-self-enforcing if and only if
(Uit —v)Qiy >0 (Vi)(Vt) (DEA)

Proof. Fix (Qit,p:) and assume that (DEA) holds. Suppose the principal uses the grim trigger
strategy: if ¢ deviates at time ¢, then Q; s = 0 for s > t. If Q);; = 1, the agent will not deviate
since U;; > v. If Q;; = 0, the agent has no action and cannot deviate. The contract is thus
agent—self—enforcing.

Next, suppose that (DEA) does not hold. There exists a time ¢, when Q;; =1 and U;; < v.
The agent will therefore defect and obtain v. O

The agent’s dynamic enforcement constraint (DEA) is necessary and sufficient for the agent
not to defect. Sufficiency follows from the use of the grim—trigger strategy. Necessity, follows
from the fact that the grim—trigger punishment attains the agent’s min—max, so is an optimal
penal code (Abreu (1988)).

The principal’s problem is to choose the contract (Q; ¢, p¢) to maximise time-0 profit

> D i ps)Qi,s] (3.1)
s=1 1

IIp = Ep

subject to the agents’ dynamic enforcement constraint (DEA). This problem can be simplified
by noting that the principal’s profit equals welfare minus the sum of agents’ utilities. The
principal’s problem is then to maximise

ZZ(SSU—C@SQ”] ZUZO (3.2)

IIy = Ey

subject to (DEA).
Let 7;(t) := min{s >t : Q; s = 1} be the time agent ¢ next trades. Lemma 2 then provides

a lower bound on agents’ utilities at each time period.

Lemma 2. A contract (Q;,pt) is agent—self-enforcing if and only if
Uiy > Ey[vs™ 71 (Vi)(vt) (DEA’)
Proof. (DEA’) follows from (DEA) and U;; = Ei[U; -4 )(5”(’&)4]. O

The principal’s problem is thus to choose (Q;:,p:) to maximise profit (3.2) subject to

(DEA’). Agents’ utilities only enter profit via the time-0 term so, if it is feasible, profit is



maximised by ensuring that (DEA’) binds at time-0,
U0 = Eolvd™)] (3.3)

In Section 3.2 we show that this is indeed feasible: there exist prices p; € [0, v] such that (3.3)
holds, and (DEA’) is satisfied at all other times. The principal’s problem therefore reduces to

choosing (Q;;) to maximise profit

Iy = Ey Z Z (58('0 - Cz’,s)Qi,s
s=1 1

We thus solve the problem in two steps. First, we choose the allocations @); ; to maximise profits

_EO

> UWO)] (3.4)

i

(3.4). Second, we use the agents’ dynamic enforcement constraints to derive prices.

3.1 The General Solution

The principal’s problem (3.4) is an optimal-stopping problem and is hard to fully characterise.
Fortunately, a number of economically relevant results are straightforward to derive.
Denote the set of insiders at time ¢t by Z, := {i : 7;(0) < t}.

Proposition 1. An optimal agent—self-enforcing contract has the following properties:
(a) Trade with insiders is efficient. Suppose i € I;. Then Qi+ =1 if

it <v and ¢y <cjy (V)) (3.5)

(b) Trade is biased against outsiders. Suppose i ¢ ;. Then Q; = 0 if either

(i) (v—rcip) <v(l—=20); or (3.6a)
(i7) (cjt—cip) <v(l—=206) for some j eI, (3.6b)
Proof. See Appendix A.1 O

Part (a) says that, if an insider has a lower cost than all other agents, then he will be chosen
by the principal. In addition, the principal treats all insiders equally: conditional on trading
with an insider, she always chooses the cheapest.” The intuition for these results is as follows.
Each agent obtains rents of v the first time they trade, by threatening to hold up the principal.
Agents care about the lifetime value of their utility so, by delaying payments to the agent, the
principal can use the same sum of money to avoid hold up during later trades with the same

agent. This means that the agent only earns one rent, no matter how many times he trades.

"This follows from equation (A.1).



This rent acts like a fixed cost of initiating a new relationship; once the fixed cost has been
paid, the principal uses the agent efficiently.

Part (b) says that trade is biased against outsiders. There are three types of biases. First,
the principal may abstain rather than trade with an outsider, i ¢ Z;. If the principal refrains
from investing in 7, she loses the gains from trade, v — ¢; ;. However, she postpones paying the
agent’s rent by at least one period, gaining the rental value of the rent, (1 — d)v. This yields
equation (3.6a).

The second bias is that the principal may prefer an insider, j, over an outsider, ¢. If the
principal trades with the insider rather than the outsider, she loses the cost difference, ¢;j ¢ —c; ;.
However, she also delays the rent by at least one period, gaining (1 — §)v. This yields equation
(3.6b). This result means that an agent who enters the market late will struggle to trade with
the principal. For example, Proposition 4 show that, when costs are IID, the insider advantage
increases monotonically with the number of insiders, and eventually grows so large than no
more outsiders are used.

The third bias is that the principal may choose to trade with a relatively inefficient outsider.
For example, there is a bias towards agents who are more efficient on average. This is formalised

by the following result.

Proposition 2. Assume N < oo and each agent i € {1,...,N} has costs c;; that are IID
draws from some i—specific distribution. Suppose that the distribution of c1; is smaller than ca
in terms of first-order stochastic dominance. If, in any state of the world, c1 4 = ca then the

principal prefers to use agent 1 over agent 2.

Proof. See Appendix A.2 O

The intuition behind Proposition 2 is that the principal cares both about the cost in the
current period and in future periods, after the agent has become an insider, so she prefers an
agent who is more efficient on average, even if they are not the most efficient in the current
period. Empirically, this suggests a bias towards larger, more established firms. For example,
Kelman (1990, p. 8) finds the largest computer vendor, IBM, had more than twice the market
share among private companies than with the government. The result also suggests a bias
towards generalists rather than specialists. Indeed, many households use a general contractor
rather than a series of specialists (e.g. plumbers, painters, carpenters) in order to reduce their
exposure to holdup.

Proposition 2 has the corollary that two agents may like to merge in order to make themselves
larger and give themselves a competitive advantage. To illustrate, suppose costs are IID and
that agents 1 and 2 can merge, causing them to act as a single entity and giving them joint cost

of min{e1, co}. Then, if N is sufficiently large, such a merger will increase their joint utility.?

8Proof. Before 1 and 2 are merge, they have U; o = O(1/N) as N — oo. Next, suppose agents 1 and
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When choosing among outsiders, the principal also prefers more stable suppliers, who are
expected to be in the market for a long time, over short—term players. Intuitively, when using
a stable supplier, the principal can amortise the rents over a greater number of periods. This
means that longevity can become self—fulfilling: firms who are expected to leave the market
obtain no business and have no incentive to stay.

The optimal contract in Proposition 1 resembles the supply associations in Japanese in-
dustry. For example, Toyota invites preferred suppliers (defined by size, dependency and per-
formance) to join its supply associations (e.g. Kyohokai, Seihokai, Eihokai). These suppliers
account for a large fraction of Toyota’s parts supply (typically over 80%) and are implicitly
promised a share of future business. As in Proposition 1, new firms occasionally join, but
old firms rarely leave. In 1992, Toyota’s Tokai Kyohokai consisted of 141 members; over the
previous 20 years, 29 firms joined but only 5 left (?,Asanuma (1989), Sako (1996)).

A few general points about Proposition 1 are worth emphasising. First, it provides a foun-
dation for switching costs. However, unlike typical models of switching costs (e.g. Klemperer
(1995)), there is a cost to using a new partner for the first time, but not to returning at a
later date. Second, the optimal contract is not stationary, as assumed in efficiency wage models
(e.g. Shapiro and Stiglitz (1984)). Third, we made no assumptions about the stochastic process

governing costs. With more structure, one can strengthen the conditions in part (b).

3.2 Prices

The profit-maximising investment function @;; is chosen to maximise profits (3.4). Prices,
pt € [0,v], can then be chosen in a number of ways such that (a) utilities satisfy the agents’
dynamic enforcement constraints (DEA) and, (b) the principal gives no rents away (3.3). Given

agents’ utilities, prices are then determined by backwards induction:
pe=Uipy — By [5Ti(t+1)Ui,n(t+1)] (3.7)

whenever Q;; = 1.

Adopting the terminology of Hart and Moore (1994), the fastest prices have the property
that the dynamic enforcement constraints (DEA) bind in all periods. These prices are so called
because the principal makes payments to the agent as early as possible. Using (3.7) the fastest
prices are given by

pe = v B[l — §7iH)] (3.8)

2 merge. Suppose the principal has no insiders. If she uses firm ¢ ¢ {1,2}, her profit is at most —c + IIy,
where II,, is the profit from n insiders. If she uses the new merged firm, her profit is —min{ci,co} + Ils.
Observe that an extra insider is valuable in the states when it is unprofitable to bring in an outsider: that is,
Il — II; > E[er — min(er, c2)]Pr(er — ¢ < v(1 —4)) =: k > 0. Hence the principal chooses the merged firm
whenever min{ci,c2} — ¢ < k. As a result, the agents’ joint utility is bounded above zero as N — co.

11



whenever @Q;; = 1. With these prices, the time of the next trade is a sufficient statistic for the
price. In addition, the agent bears much of the risk in the contract since the price depends on
the expected time until the next trade, yet is only paid if that trade occurs.

In contrast, the slowest prices have the property that the principal delays payment by as

much as possible. This means that there exists a t; such that, whenever Q;; = 1,

pr =0 for t < t;
€ (0,v] fort=t;

=0 for t > t7.

The problem with the slowest prices is that, if the principal cannot commit to her investment
strategy, then she will be tempted to defect at time ¢;. This following result formalises this

idea.

Proposition 3. Fiz an allocation rule QQ;¢. Denote the profit under the fastest prices by 11,4
and the profit under any other price system by H;,t. Then 11; ; > H;t (Vi) (V).

Proof. Profit at time ¢ is given by II;; = W;; — U;;. Utilities must obey (DEA’), so II;; is
maximised by setting U; ; = E} [véTi(t)—t]_ =

Proposition 3 shows that the fastest prices maximise the principal’s profit in each period.
Consequently, when the principal cannot commit to the contract (Section 4), an investment

rule is implementable only if it can be implemented by the fastest prices.

3.3 IID Costs

In this section we suppose costs are identically and independently distributed both over time
and across agents, with support [c,¢]. The IID model is appealing because the identity of most
efficient agent constantly changes, emphasising the tradeoff between exploiting the gains from
trade and maintaining a long run relationship. Since the number of insiders can be treated as
the state variable, the IID case is also very tractable.

First, we can characterise the maximum number of insiders, n*. Suppose there are n* — 1
insiders, and costs are most favourable for using an outside agent. Then it must be the case
that the principal prefers to use one last outsider and pay rent v, rather than sticking to the

current set of insiders. That is,

1) o
— - * > —_C - *_ .
c+ 1_5w(n ) > max{v —¢,0} + T3 (n*—1) (3.9)

where w(n) := E[max{v—ci.n,0}] is the expected welfare from n agents and c;.,, :== min{cy, ..., c,}.

Similarly, it must be the case that the principal does not want to increase the number of agents

12



from n* to n* + 1, yielding another equality analogous to (3.9). Together these inequalities
imply that n* is the unique integer satisfying
0 _ 1
mAw(n*) > max{v —¢,0} +¢> mAw(n* +1) (3.10)
where Aw(n) := w(n) — w(n — 1).? Since the number of insiders increases over time, n; — n*
almost surely. Moreover, as agents become more patient, the benefit from future cost reductions
increases and n* rises.

Next, we can characterise the principal’s investment strategy. At any time ¢, we can sum-
marise the state of the world by the number of insiders, n; := |Z;|. The evolution of n; is then
described by a time—invariant markov chain. The transition depends upon the lowest costs of
the insiders and outsiders, denoted ¢! and ¢© respectively. Since the principal can always choose
not to invest, the effective inside cost is ¢ := min{v, c'}.

The transition process can be characterised by backwards induction, using n* as an initial
condition. Abusing notation, denote the value function of the principal’s profit-maximisation

problem in state n by IL,,. This evolves as follows:
I, = E[v — &] + 411, ifieZ; Ul (3.11)
= E[-°) + 00,  ifie N\Z

Denote the insider cost differential by A := & — ¢©. The optimal policy opts for the inside

agent if the cost differential is less than some cutoff, A < A}. The value function then becomes
I, = E[-°] + E[6T,111asa;:] + E[(v — A+ 011,)1a<a;] (3.12)

Using (3.11), the cutoff AY is chosen so that
(v—24A7%) =06 (41 — 1Ip) (3.13)

Using (3.12) to substitute for II,, yields,

0
(v=A}) = 15 (1= 6)p41 — E [max{v — A%, v — A} — co] (3.14)
The left hand side of equation (3.14) equals today’s lost profits from investing in an extra agent.
The right hand side equals the future discounted gains from using an extra agent, taking into

account the fact a principal who uses an insider this period retains the right to use an outsider

“Proof that Aw(n) decreases in n. Let xp = max{v — ¢1.n—1,0}, 1 = v — ¢, and 22 = v — cp41. Then
Aw(n + 1) = E[max{z2 — max{zo, z1},0}] > E[max{z2 — z0,0}] = E[max{z: — zo,0}] = Aw(n), since z; and
x2 have the same distribution.
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in the future, if A > Aj.

We can now derive the optimal policy for any distribution of costs and any number of agents.
First, solve for the maximal number of agents, n*, and calculate the associated value function.
Second, use equation (3.14) to solve for the optimal state—(n* — 1) cutoff and equation (3.12)
to calculate the value function II,«_1. Then iterate.

Table 1 provides a numerical illustration. In this example there are an infinite number of
agents willing to trade with the principal. Despite all this choice, the principal only ever uses
six agents. The principal’s adoption of new agents rapidly diminishes over time: it takes an
average of 4 periods for her to use 3 different agents, and 35 periods to use 5 different agents.
This distorted trading pattern lowers the principals profits to $83.6, relative to $100 under the
first—best.

Insiders, n; Cutoff, A* Prob(ny+1 = nt) | Value function, II,,
0 0 0 83.6
1 0.358 0.358 85.3
2 0.398 0.637 87.0
3 0.454 0.837 88.6
4 0.549 0.959 90.2
5 0.834 0.999 91.7
6 1 1 92.9

Table 1: The Evolution of Trade. This example assumes the value of trade is v = 2, costs are
¢it ~ [0, 1], the number of suppliers is N = oo, and the discount rate is § = 0.98.

More generally, we can show the following comparative static.

Proposition 4. Suppose agents’ costs are IID, and that either ¢ > 0 or v > ¢. Then A} and

Prob(nyy1 = n¢|ny = n) increase in n.

Proof. In Appendix A.3 we show A} increases in n. Since the number of insiders increases in
n, the number of outsiders decreases in n and A} increases in n, we conclude that Prob(n;y; =

n¢|ny = n) increases in n. O

Proposition 4 shows that, as the number of insiders grows, so the gain from an extra insider
declines and the optimal cutoff increases.

Throughout this section we have assumed that the principal can commit to her strategy.
This assumption is not unreasonable: Example 2 in Section 4.1 shows that the principal will
not renege on her investment plan under the assumptions in Table 1. Next, we investigate this

issue in more detail.
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4 No Commitment

In this section we examine the optimal self-enforcing contract. To motivate the discussion,
example 1 shows that the principal’s dynamic enforcement constraint may strongly restrict the

set of possible trading opportunities.

Example 1 (Unravelling Trade). Suppose N = 1 and ¢;; € (0,v) are deterministic and
increasing such that lim; .o ¢1¢ > dv and >_,2, §t(v— c1,t) > v. See Figure 2 for an illustration.
In this case, the optimal ASE contract obeys Q1 = 1 (Vt). However, since gains from trade
disappear over time, any contract eventually satisfies W7 ; < v for t > ¢*. Thus trade is not
feasible at time t* and, by backwards induction, the only solution to satisfy (??) is Q1+ =0
(V). A

As Example 1 shows, the insider-outsider contract is not time consistent. From the princi-
pal’s time-0 perspective, she has to pay rents v to an agent in order to stop him defecting. After
these rents have been paid, the principal uses the agent efficiently, as shown in Proposition 1.
The problem is that many of these rents come in terms of promised future utility which are
needed to stop future defections. These postponed payments mean that the principal may later
regret promising to use the agent efficiently. If the principal defects in these later periods, she
then raises the required price in earlier periods, exerting a negative externality on her former
self.

The relational contract turns around the holdup problem. In a one-shot game, the principal
is concerned that the agent will cheat after the specific investment. This problem is solved
through a long term relationship, by delaying the payment of the agent’s rents. This relational
contract then introduces a second holdup problem: the principal is tempted to defect, and
refuse to pay these promised rents.

The problem of time consistency is very real for car manufacturers. Throughout the 1980s,
GM ostensibly adopted the Japanese partnering model. However, at the turn of the millennium,
GM was able to source from China, and “jumped to the conclusion that the immediate benefits
of low wage costs outweighed the long-term benefits of investing in relationships” (Liker and
Choi (2004)).

4.1 1ID Costs with Patient Agents

When the principal cannot commit to the contract, a contract (Q; ¢, pt) is self-enforcing if and
only if it satisfies the agents’ dynamic enforcement constraint (DEA) and the principal’s own

dynamic enforcement constraint (DEP).
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Figure 2: Time Inconsistency of the Optimal ASE Contract. In this example, the optimal ASE
stipulates trade in every period. However, the increase in costs at time t* causes the principal to quit
the relationship, leading the contract to unravel.

When relationships are enforced by bilateral punishments, a defection by the principal on

agent ¢ will be punished by the termination of relationship i. Hence the constraint is
IL+ Qi > 0 (Vi) (V). (DEPg)
Appealing to Proposition 3, (DEA’) binds in each period, enabling us to rewrite (DEPg) as
iy = (Wir —0)Qir >0 (Vi)(Vt) (DEPpR)

Bilateral enforcement is realistic in large decentralised market where agent ¢’s information about
agent j’s relationship is poor. For example, in Vietnam, McMillan and Woodruff (1999, p. 648)
report that only 19% of interviewees thought that a cheating customer would be blacklisted
by other firms in the industry. Similarly, in the U.S., firms often refuse to report negative
information about former suppliers or employees for fear of legal action (Kelman (1990, p. 49),
Bewley (1999)).

When relationships are enforced by multilateral punishments, a defection by the principal

on agent ¢ will be punished by the termination of all relationships. Hence the constraint is

) Qir =0 (Vi)(¥h). (DEPy)

Appealing to Proposition 3, (DEA’) binds in each period, enabling us to rewrite (DEPy) as

II; = E; Z Z 5w — ¢is)Qis
s=t 1

The multilateral constraint is weaker than the bilateral constraints, and therefore increases the

_Et

Zvéﬂ'(t)] >0 (Vi)(VP). (DEP},)
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profits of the principal. Indeed, ? claims that Toyota’s supply associations were formed to
share information and safeguard against opportunism.

As in Section 3, the principal’s problem reduces to choosing (Q; ;) to maximise time-0 profit
(3.1) subject to (DEPR) or (DEP},). Given the optimal investment rule, payments are given
by the fastest prices (3.8). Proposition 5 shows that, when the principal is sufficiently patient,

the optimal contract is self-enforcing.

Proposition 5. Suppose that costs are IID, and that either ¢ > 0 or v > ¢. Then there exists
§ < 1, independent of N, such that the optimal agent-self-enforcing contract satisfies (DEPg)
and (DEPy;) when § > 6.

Proof. See Appendix A.4. O

Example 2 (Uniform Costs). Suppose N = oo, ¢;y ~ UJ[0,1] and v > 1. As shown is
Appendix A.5, (DEPg) and (DEPy) are satisfied if § > 6 := 1/(1 + (v — 1)3). For example, if
v = 2, then 5= 1/2, so the example in Table 1 is self-enforcing. As v — 1, so §— 1. A

The bilateral dynamic enforcement constraint requires that, when the principal trades with
agent 7, the future profits associated with ¢ are positive. For fixed N, this trivially holds as the
discount rate approaches one and profit per agent tends to infinity. Hence there exists a oN
such that the optimal contract satisfies (DEPg) when 6 > dy.

Proposition 5 makes a stronger statement: there exists a critical discount factor, 5, inde-
pendent of the number of agents, such that the optimal contract satisfies (DEPg) when ¢ > 5.
With an infinite number of agents, the problem is that the number of trading partners will
increase without bound as § — 1. Despite this, the average profit per agent tends to infinity
as the parties become more patient. Intuitively, the principal’s investment in new partners is
limited by having to pay rent v for every new relationship. This means that the maximum
number of insiders is determined by the marginal benefit of an extra agent, F[c1.,—1 — €1:n], a8
in equation (3.9). This marginal benefit is of order o(n) and therefore decreases more rapidly
than the average benefit of each relationship, E[v — c¢;1.,]/n. The average profit per agent thus

increases in §, and the principal will refrain from defecting when sufficiently patient.

4.2 1ID Costs with Impatient Agents: Version 1

When the optimal contract (Proposition 4) does not satisfy the principal’s dynamic enforcement
constraint, she may treat insiders inefficiently in order to increase her continuation profits. The
general principal is that the time-0 principal treats the insiders’ rents as sunk and therefore
ignores them, while the time-t principal still pays these rents, and would therefore like to

re-designate the insiders as outsiders.
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First, suppose there is one agent, N = 1. When there is one insider, n = 1, the principal
wishes to maximise welfare subject to (DEP),). If the constraint binds then the principal can
increase her continuation profits by cutting out some low value trades. In particular, trade will
occur if and only if ¢ < k1, where k1 < v is defined by the largest root of

)
5l = legi] —k1 =0

When n = 0, the principal will trade with the agent if and only if ¢ < k. As usual, the
optimal contract is biased against outsider: ky < k;. Intuitively, a trade at cost k; yields
zero profit, so the principal will prefer to wait for the cost to fall. In addition, kg is less
that the corresponding cutoff when the principal can commit.!? Intuitively, efficient trading
opportunities are sometimes forgone after the agent become an insider, reducing the ex-ante
value of trade the willingness of the principal to invest in a new agent.

Next, suppose there are two agents, N = 2, and the agents use multilateral enforcement.
When n = 2, the principal wishes to maximise welfare subject to (DEP};). If the constraint
binds the optimal contract is biased towards insiders who were used more recently. To under-
stand this result, suppose the principal uses agent 1 at time ¢. At time t+1, a small bias towards
agent 1 has a second-order effect on welfare but delays the use of agent 2, yielding a first-order
reduction of rents. In order to slacken the (DEP},) constraint, the principal may also wish to
abstain from trade when the insiders costs exceed a cutoff, ko. When n = 1, the principal will
be biased against the outsider. Trade with the insider will also be limited if (DEP};) binds.

Finally, suppose there are three agents, N = 3. When there are n = 3 insiders and (DEP},)
binds, the principal will bias trade towards insiders with whom she has traded more recently. To
understand this result, suppose the principal last used the agents {1,2,3} at times {¢1, t2,t3},
where t; > to > t3. At time t; + 1, biasing allocation towards 1 over 2 and 3 slackens (DEP{\/I)
in periods {t2 + 1,...,t1} by reducing agent 2 and 3’s rents. Similarly, biasing the allocation
towards 2 over 3, slackens (DEP},) in periods {t2 + 1,...,%2}, while having no effect on the
(DEP),) constraint in periods {t2 + 1,...,#;}.}1 When there are fewer insiders, the principal
is biased against outsiders. As above, trade with the insiders will also be affected if (DEP},)
binds.

When agents use bilateral enforcement, the results are similar. When the (DEP}) constraint
binds, the principal will bias trade towards agents she used more recently. For example, suppose
N = 3, all the agents are insiders and the principal last used the agents {1,2,3} at times
{t1,ta,t3}, where t; > ty > t3. At time ¢; + 1, a small bias in favour of 1 over 2, and 2 over 3
then leads to second-order losses in total welfare, but first-order increases in the welfare from
trades with agent 1. It therefore weakens the (DEP}) which states that the welfare from

1ORecall, with commitment trade occurs if ¢1,+ < ¢o for an outsider, and c¢1,+ < v for an insider.
" Observe that the (DEP};) constraints in periods {1,...,ts} are independent of the policy at time 1 + 1.
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4.3 1IID Costs with Impatient Agents: Version 2

When the optimal contract (Proposition 1) does not satisfy the principal’s dynamic enforcement
constraint, she may treat insiders inefficiently in order to increase her continuation profits. The
general principal is that the time-0 principal treats the insiders’ rents as sunk and therefore
ignores them, while the time-t principal still pays these rents, and would therefore like to
re-designate the insiders as outsiders.

First, suppose there is one agent, N = 1. When there are no insiders n = 0, the principal
awards the good to the agent if his cost is below come cutoff, k. When n = 1, the principal
wishes to maximise welfare subject to (DEP). If the constraint binds then the principal can
increase her continuation profits by cutting out some low value trades. In particular, trade will
occur if and only if ¢ < k1, where k1 < v is defined by the largest root of

0
5l = legi] — k1 =0

As usual, the optimal contract is biased against outsider: ky < k1. Intuitively, a trade at cost
k1 yields zero future expected profits, so the principal prefers to wait for the cost to fall. When
compared to the commitment case, the introduction of the (DEP) constraint reduces trade.
For an insider, the principal forgoes efficient trades in order to satisfy (DEP). This reduces the
ex-ante value of trade and the willingness of the principal to invest in a new agent.

Next, suppose N > 2 and trade is enforces bilaterally. When n = 0, the principal trades
with the cheapest agent with cost below a cutoff. When n = 1, the principal is biased towards
the insider and, if (??) binds, will forgo some low value trades in order to reduce the incentive to
defect. When n is larger and (77?) binds, the principal is biased against agents used less recently,
and even more biased against an outsider. For example, suppose agents {1, 2,3} constitute the
set of insiders, and were last used at times {¢1,t2,t3}, where t; > to > t3. At time ¢; + 1, a
bias in favour of agent 1 over agent 2, and agent 2 over agent 3 increases the welfare of agent
1 at time ¢, and therefore weakens (?7). Such biases lead to welfare losses from insiders and
therefore reduce the principal’s time-0 profit, however these are second order when the biases
are small, whereas the increase in the trading agent’s welfare are of first-order.

Next, suppose N > 2 and trade is enforces multilaterally. The results are similar, albeit for
slightly different reasons. When n = 0 or n = 1 the analysis is essentially unchanged. When n
is larger, the principal is again biased against agents used less recently, and even more biased
against an outsider. Using the above example, a small bias towards agent 1 at time ¢; + 1 has
a second-order effect on welfare, and therefore time-0 profits, but delays the use of agents 2
and 3, yielding a first-order reduction of rents and slackening (?7?) in periods {t2 + 1,...,t1}.
Similarly, a small bias towards 2 over 3, results in a second-order loss in welfare, while delaying

the use of agent 3, thereby slackening (??) in periods {t3 4+ 1,...,t1}.
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5 Private Cost Information

In this section we suppose that costs ¢;; € [c, €] are privately observed by the principal. Section

5.1 discusses the problem of incentive compatibility, while Section 5.2 suggests a solution.

5.1 Failure of Incentive Compatibility

In Section 4 we showed that, if agents are sufficiently patient, the insider—outsider contract is

self-enforcing. It may not, however, be incentive compatible.

Example 3. Suppose N = 1, v = 1, costs are ¢;4 ~ UJ0,2] and § = 9/10. In the optimal
insider—outsider contract, the principal trades with an outsider if ¢; ; < 0.80, and trades with
an insider if ¢;; < 1. This contract is self-enforcing and generates prices p; = 0.18. However,
the contract is not incentive compatible. If ¢;; € [0.82,1], the principal has an incentive to

overstate her cost in order to avoid trade with an insider. AN

Example 3 shows that the principal may exaggerate her cost to avoid trade with an insider.
Similarly, she may misstate her costs in order to trade with an outsider over an insider. These
problems result from the time—inconsistency of the insider—outsider contract. Intuitively, since
many of an agent’s rents take the form of delayed payments, the principal has an incentive to
avoid trade in these future periods by pretending that her costs are artificially high.

The principal can try to alter her investment strategy, @;:, in order to obtain incentive
compatibility. For example, the contract could make trade compulsory, restrict the agents
with whom the principal trades, or impose stationarity. In Section 5.2 we show there is a better
solution: if the principal can expand the space of payments, then she can implement the optimal
ASE contract.

5.2 Employment Contract

First, let us expand the set of contracts to allow payments from the principal to the agent in
any period after the relationship has formed, i.e. ¢t > 7;(0). That is, we allow transfers in
periods when no trade occurs.'?

Denote the contract by (Q; ¢, pit), where p;; is the price paid to agent ¢ in period ¢ by p; ;.
This contract specifies allocations and payments as a function of the principal’s cost reports and
the parties past actions. As before, the contract is chosen at time—0 to maximise the principal’s

profits. We then consider the following game.

1. The principal privately observes her costs {c¢;;}. These costs are distributed according to

some stochastic process.

12This expansion in the space of payments does not change the set of attainable ASE or SE payoffs when costs
are publicly observable: see Section 6.1.
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2. The principal makes public cost reports {¢;:}. These reports determine the allocation

and payments specified by the contract.
3. The principal invests according to Q; € {0,1}, where >, Q;; < 1.

4. The principal makes payments p;; € IR to agent <. The winning agent can refuse and

keep v. A losing agent can refuse and keep 0.

A relational contract (Qi,pit) is incentive compatible if the principal cannot improve her
payoffs by misreporting at stage 2.

Consider the following employment contract. Payments are given by

pig=0—-0w ificl (5.1)
bit = 0 ifi g7,

The investment strategy @;; is then chosen to maximise time-0 profits (3.4).

Proposition 6. Suppose that costs are privately known by the principal. The employment con-
tract (5.1) is an optimal agent—self-enforcing contract and is incentive compatible. Moreover,
it 1s self-enforcing if

Wiy >v  foralli€T. (DEPFC)

)

Proof. See Appendix A.7 O

The employment contract pays each insider (1 — d)v per period, independent of whether
trade occurs or not. That is, each ‘employee’ submits to the authority of the principal, working
when they are told, in exchange for a constant wage. The model thereby provides a theory of
the firm, where both firm size and growth are determined endogenously.

The benefit of the employment contract is that the principal’s payments to insiders are
independent of her cost declarations. As a consequence, the principal’s investment strategy is
incentive compatible. The contract is also detail-free in that agents do not have to know the
distribution of costs, so long as they trust the principal to stick to the contract.

The cost of the employment contract is that the principal’s dynamic enforcement constraint
(DEPEC) is stricter than under the fastest price contract (??). The reason for the difference
is straightforward: under the employment contract, an insider receives utility U;; = v whether
or not he trades; under the fastest price contract, an insider receives U;; = v when he trades
and receives strictly less in other periods. Nevertheless, when costs are IID and the parties are

patient, Proposition 7 shows that the difference between (??) and (DEPEC) is relatively minor.

Proposition 7. Suppose that costs are IID. In addition, assume that either ¢ > 0 or v > €.

Then there exists a 6 < 1, independent of N, such that the optimal agent—self-enforcing contract
satisfies (DEPPC) when § > 6.

21



Proof. Same as proof of Proposition 5. O

When costs are IID, the future benefit from the relationship with agent ¢ does not depend
on whether they are trading or not this period. Hence the additional dynamic enforcement
constraints, needed to guarantee the principal pays each insider each period, are not particularly
restrictive for high discount factors. This may not be the case for other cost structures: for
example, if costs follow a markov chain then the optimal ASE contract may satisfy (??) but
not (DEPFC).

6 Agents’ Rents

This paper has argued that the threat of holdup enables the agents to extract rents, and that
the principal will allocate investment in order to minimise these rents. The idea that agents
earn rents has empirical support. Kelman (1990, p. 84) shows that suppliers’ margins on private
contracts are higher than those on government contracts. Similarly, Liker and Choi (2004) claim
that Toyota is more concerned about suppliers’ profitability than GM.

Nevertheless, if agents are allowed to make payments before the time of first trade, then
the principal can extract all their rents. For example, the contract can require each agent to
make a voluntary payment equal to his lifetime rents at time 0. Since this payment is sunk,
it reallocates rents but does not affect the subsequent continuation game. The purpose of
this section is twofold. In Section 6.1, we show that if agents are poor, or the principal is
untrustworthy, these rent-extraction contracts are not feasible.'® In Section 6.2, we briefly

discuss the form of the optimal relational contracts without rents.'*

6.1 Sources of Rents

If the set of contracts is sufficiently broad, then the principal can extract all rents from the
agents. In this section we provide two reasons why such contracts may not be feasible. First,
consider a generalised relational contract (Qi,t, Dit,) consisting of allocations and prices. In pe-
riod 0, the principal designs the contract and makes payment p; o to agent ¢. In each subsequent

period, the parties play the following game.
1. Costs {c;+} are publicly revealed.

2. The principal chooses to invest according to Qiyt € {0,1}, where ), Qi,t <1.

13These arguments are not new: see Shapiro (1983), Shapiro and Stiglitz (1984) and Mathewson and Winter
(1985). Nevertheless, it is important to establish the results formally.

Y Throughout this section we assume that all payments are voluntary. Contractible or up—front payments
provide another method to extract the agents’ rents, by requiring an agent to pay the principal v before the
principal invests in him. Such contractible payments do not affect the results in this section.
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3. The principal chooses to make payments p; ; € IR to agent 7."° The winning agent can

refuse and keep v. A losing agent can refuse and keep 0.

We first suppose each agent has zero wealth, so that the agents’ utilities must be positive in
each history of the game. The following result shows that any generalised contract can then be

reformulated as a contract where the principal only pays the winner, as in Sections 2 —5.

Proposition 8. Suppose each agent has zero wealth. Then for any (agent-)self-enforcing
contract <C~2¢7t,;5i’t>, there exists an (agent-)self-enforcing contract (Qiy,pr) that attains the
same time-0 payoffs.

Proof. See Appendix A.8. O

Intuitively, in order to extract an agent’s rents, the principal needs to demand payment
before the time of first trade. However, such a payment is impossible if the agent has no
wealth. To illustrate, Kaufmann and Lafontaine (1994) show that an average McDonald’s
franchisee makes ex—post rents of $400K, but only faces a franchise fee of $20K. They argue
that, since franchisees are expected to actively manage their restaurant, liquidity constraints
prevent McDonald’s expropriating more of the rent.

A second problem with the full-extraction contracts is that they are not robust to free entry
into the market for principals. We say a contract is cowboy—proof if a new principal, with costs

cit = 00, cannot make a strictly positive profit.

Proposition 9. For any cowboy—proof (agent-)self-enforcing contract <Qi,t,ﬁi7t>, there exists

an (agent-)self-enforcing contract (Qiy,pt) that attains the same time-0 payoffs.
Proof. See Appendix A.9. O

Proposition 9 says that if we want the contract to be robust to free entry into the market
for principals, then we can limit ourselves to contracts where payments only occur when trade
takes place. Thus expanding the space of possible payments does not benefit the principal.!® To
illustrate, McMillan and Woodruff (1999, Table 1) find that only 35% of customer relationships
involve any advance payment. One reason is that customers are concerned about cowboys: 6%

report that a supplier had failed to deliver goods without returning an advance payment.

6.2 Loyalty without Rents

This paper has argued that loyalty results from the principal trying to minimising agents’ rents.

However, even if rents can be extracted, the optimal contract may still exhibit loyalty, albeit of

151f p;+ < 0, then the payment is from agent i to the principal.
16This, of course, ignores issues of incentive compatibility. It is worth noting that the employment contract is
cowboy—proof and obeys the zero wealth constraint.

23



a different form. In this case, the principal chooses a generalised relational contract <Qi7t, Dit)

to maximise welfare
(o)
Wo=Eo|Y Y 6"v—cit)Qis
t=1 i

subject to her dynamic enforcement constraint,
(Wig —0)Qip > 0 (77)

In addition, suppose costs ¢;; are 11D.

The principal would thus like to invest in the cheapest agent each period. For fixed N, this
satisfies (?7?) if 6 > dy. However, for fixed 4, there is always a large enough N such that (??)
is not satisfied. That is, the analogue to Proposition 5 is false.

When the welfare-maximising investment rule is not feasible, the optimal contract will
induce loyalty. Intuitively, when the principal uses multiple sources, the frequency of trade is
reduced and defection becomes more likely. To be more precise, one would expect the principal
to reward an agent she uses with cash today and a greater continuation value tomorrow, as in
Thomas and Worrall (1988) and Kocherlakota (1996). As a result, the principal would wish to
bias trade towards agents with whom she has traded more recently. While a full characterisation
of this problem is beyond the scope of the current paper, this form of loyalty is qualitatively
different from the loyalty exhibited in Proposition 1, whereby all insiders are treated equally.

7 Conclusion

This paper derives the optimal way for a firm to procure under incomplete contracts. It shows
that ongoing relationships can be used to mitigate holdup and analyses the trade—off between
maintaining such a long—term relationship and exploiting the gains from trade. We show the
optimal contract has a simple characterisation: the principal acts as if there is a fixed cost
of initiating a new relationship and biases trade towards ‘insiders’, with whom she has traded
previously, at the expense of ‘outsiders’.

The model has many empirical implications. It predicts that a principal will be loyal to her
agents, and this loyalty has a specific pattern: she treats all previous trading partners equally;
she is biased against new agents; and when adopting new agents, she prefers agents who are
large and stable. Looking across economies, loyalty is higher when parties are impatient, when
the country has a poorer legal system, and when the principal is purchasing custom made
goods. In addition, a principal who exhibits less loyalty receives poorer quality services and is
expropriated more frequently. In the optimal contract, suppliers receive rents and prices are

sufficiently backloaded to prevent holdup, but not too backloaded to tempt the principal to
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defect. As a result, prices will tend to increase as the expected frequency of trade decreases.
Finally, when a firm has problems committing to a contract the model predicts that, if parties
are sufficiently impatient or the value of trade decreases over time, then there may be no trade
or radically different trade patterns from that under the optimal contract.

The model can be extended in a number of ways. First, in the current formulation, spot—
market contracts yield negative profits and are therefore infeasible. If spot markets were more
effective, the principal could foster relationships with some agents, while using others on a
temporary basis, as in the Japanese electric machinery industry (Asanuma (1989)). Second, if
the principal could choose the level of investment as well as the direction, she would wish to
increase her investment over time, as in Thomas and Worrall (1994). As a consequence there
would be different levels of insiders, corresponding to the number of times an agent has been
used in the past.

The model can also help us think about a number of broader points. First, as highlighted
by Kelman (1990), a relational contract requires subjective judgements and therefore cannot
be implemented without managerial discretion. This must be traded off against the cost of
discretion, such as self-interested managers and possible corruption. Second, the model helps
us understand the benefit from writing more complete contracts or integrating production within
the firm. For example, it illustrates that formal contracts are most important where there are
many potential partners, and where the efficient trading partner changes frequently. Finally,
the model raises the issue of how to initiate such a relational contract. To illustrate, GM spent
much of the last 20 years trying to implement the Japanese system and build bonds with their
suppliers. However, as argued by Liker and Choi (2004), these changes were superficial and did

not alter the fundamental nature of their relationship.
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A Omitted Proofs

A.1 Proof of Proposition 1

(a) Fix t and suppose that ¢ € Z; obeys (3.5). By the principal of optimality, the principal

wishes to maximise

Op=Ep |3 6 v—cis)Qis| — B | Y 60y (A1)
s=t 1 kZIy

Using equation (3.5), the principal prefers trading to both abstaining or trading with another
agent, 7.

(b)(i) Fix t and suppose i ¢ Z; obeys (3.6a). Fix an allocation (Q); ) such that the principal
trades with agent 4 in period ¢. Using (A.1), profit is given by

Me(i) = —cig+ B | > > 6 (v—cio)Qis| — B | > 670y
SRR kT \{i}
<O E | D D 0T 0 ai)Qus | — B | >, 6Dy
L kT,\{i}
é 0 + Et Z Z 5S_t(v - Ci,s)Qi,s - Et Z (ST’“(H_I)_t’U
8=t+1 7 k§f1}
< IL(0)

where the first inequality comes from (3.6a) and II;(0) is the profit obtained by following the
original plan, but abstaining from trade at period ¢. The proof for (b)(ii) is analogous: In this

case, trade with agent ¢ is dominated by trade with agent j.

A.2 Proof of Proposition 2

Assume the distribution of c; ¢ is less than the distribution of ¢ ; in terms of first-order stochas-
tic dominance. We will show that whenever ¢ ; = a4, then the principal (weakly) prefers agent
1 over agent 2. Since costs are IID, we will henceforth drop time subscripts.

We proceed by induction. First, suppose there are N — 2 insiders, which we number

{3,4,...,N}. The continuation profits when either 1 or 2 are also insiders are given by
II; = E[max{v —c1 + 01y, —co + (5H172, v — ¢y + oI, (5H1}] <A2)
I, = E[max{—cl + (51_[172, v — co + 0llg, v — ¢ + 61, (5H2}] (AS)
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where ¢y is the lowest cost of {3,4,..., N}, and II; o are the profits when both 1 and 2 are
insiders.

By contradiction, assume IIs > II;. Then (A.2) implies
II; > E[max{v —cC1 + 5H2, —Co + 5H1,2, v —cy+ 5H2, 51_[2}] — 5(1_[2 — Hl) (A4)

Lemma 3 (Shaked and Shanthikumar (2007, Thm 1.A.10)). Suppose (c1,c2) are independent
variables and cy first-order stochastically dominates ci. Suppose ¢1(c1,c2) and ¢2(c1,c2) satisfy
the following conditions:

(a) ¢1(c1,c2) — Ppalc1, ca) is decreasing in cq.

(b) ¢1(c1,c2) — Palcr,c2) is increasing in co.

(c) $1(c1,c2) = d2(c2,c1).

Then E[$1(c1,c2)] — El¢a(c1,¢2)] = 0.

Fixing cy, let ¢1(c1, c2) be the term in the brackets on right hand side of (A.4) and ¢2(c1, ¢2)
be the term in the brackets on right hand side of (A.3). We can now apply Lemma 3, where
conditions (a) and (b) follow from the fact than agent i € {1, 2} is more likely to be used when

he is an insider than when he is an outsider. Taking expectations over cy,
[y — II} < Elgo] — El¢1] + 6(Iz — 1) < §(I1 —Iy) (A.5)

Hence II; > Ils, yielding a contradiction.
Proceeding by induction, suppose there is a group of insiders I, excluding agents 1 and 2.

The continuation profits when either 1 or 2 are also insiders are given by

I} = E[max{v — ¢1 + 6111, —ca + 0111 2,v — ¢1 + 611y, v — co + 011 o, 6111 }] (A.6)
I, = E[max{—cl + (5H1,2, v —co + 0y, v —cf + 6lls, v — co + (5H270, (5]._.[2}] (A.7)

where ¢y is the lowest cost of the insiders (excluding 1 and 2), c¢o is the lowest cost of the
outsiders (excluding 1 and 2), II; o are the profits when both 1 and 2 are insiders, and II; o are
the profits when both 1 and one outsider are insiders.

By induction, we know that II; o > Il 0. By contradiction, assume II; > II;. Then (A.6)

implies

II; > E[max{v —cC1 + (SHQ, —Co + (SHLQ, v —cy+ (5H2,U —co + (5H270, 51_[2}] — 5(H2 — Hl)
(A.8)

Fixing (cr,co), let ¢1(c1,c2) be the term in the brackets on the right hand side of (A.8) and
¢2(c1, c2) be the term in the brackets on the right hand side of (A.7). Taking expectations over
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(c1,c0), Lemma 3 yields equation (A.5). Hence II; > Ily, providing a contradiction.
Finally, suppose there is some set of insiders Z that does not include either 1 or 2. The

principal’s profits are thus
II= E[max{—cl + 0111, —co + 611, v — ¢y + 011, v — co + 61, 5H}]

where II; are the profits when 1 becomes an insider, Il the profits when 2 becomes an insider,
and IIp are the profits when the lowest cost outsider (excluding 1 and 2) becomes an insider.

Since II; > Iy, the principal prefers agent 1 over agent 2, as required.

A.3 Proof of Proposition 4

The optimal cutoff is given by equation (3.13). We thus seek to show that All,, 4 := T, 11 —1II,

decreases in n. First, let us write

I, o = E[max{v —c1+ 0, 9,v — o + 0l a0,v — ¢f + 01l 10, —co + 011,13, (5Hn+2}] (A.9)
I, 1 = E[max{—cl + 010, v — co + 0Il, 11, v — ¢f + 01,41, —co + 611,40, 5Hn+1}} (A.10)

where ¢; and ¢y are the costs of agents 1 and 2, ¢y is the lowest insider cost (excluding agents
1 and 2), and cp is the lowest outsider cost (excluding agents 1 and 2). Similarly, it is useful

to write

141 = E[max{v —c1 + 5Hn+1, —Co + 6Hn+2, v—cr+ 6Hn+1, —co + 5Hn+2, 5Hn+1}] (All)
IT,, = E[max{—c| + 6141, —cz + 6py1,v — ¢f + 611, —co + 611,11, 011, }] (A.12)

Subtracting 011,42 from (A.9) and (A.10),

All, 40 = E[max{v —¢1,0 — 2,0 — ¢1,—co + 0AIL, 13, O}] (A.13)
— E[max{—cl, v —co — 0AIl, 19,0 — cf — Al 42, —co, —5AHn+2}]

Similarly, subtracting 01l from (A.11) and (A.10),

All,.q = E[max{v —c1,—Ca + Al 10,v — cp, —co + 6AIl, 49, O}} (A.14)
- E[max{—cl, —co,v — ¢y — 0AIl, 11, —co, —5AHH+1}]

We now prove the result by induction. Since ¢ > 0 or v > ¢, equation (3.10) implies n* < oo.

Let n = min{N — 2,n*}, allowing us to drop the co term in equations (A.13) and (A.14). By
contradiction, assume that All, o > All, 1.
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First, suppose ¢; < c¢a. Then (A.13) becomes
All, 0 < E[max{v —c1,v — ¢y, 0}] — E[max{—cl, v —c; — 0AIL, 1o, —5AHn+2}]
where we use the “max” operator. Equation (A.14) becomes

All,4q = E[max{v —c1,v — ¢y, 0}] — E[max{fcl, v—cr — 6ATl, 41, féAﬂnH}]
> E[max{v —c1,v — ¢y, O}] — E[max{—cl, v—cr — 6AIl, 4o, —6AHn+2}] — §(All42 — Al 41)

where the first line uses dAIL,4+2 < v and the second uses All, o > All,+;. Comparing these
equations, we have All, o — All, 41 < §(All, 2 — All,41), implying that AIL,; > All, 49
and yielding a contradiction.

Second, assume ¢; > ¢3. Equation (A.13) becomes

All,40 = E[max{v — ¢9,V — ¢y, 0}} — E[max{v — g — 0AIl, 49,0 — cf — §AIl, 49, —6AHn+2}]
- 6AHH+2

Similarly, equation (A.14) becomes

AHn—‘,—l > E[max{—CQ + 5Aﬂn+2, v —cy, 0}] — E[max{—CQ, vV —cCy— 5Aﬂn+1, —5Aﬂn+1}]
> E[max{—CQ + 0AIl,49,v — ¢y, 0}] — E[max{—cz, v —cr — 6AIL, 49, —5AHn+2}] — §(All 42 — ATl 1)
= 0AIl, 41

where the first line uses the “max” operator, and the second uses All, 1o > All,;1. Hence we
have All, 41 > All,, 49, yielding a contradiction.

Continuing by induction, consider n < min{n*, N —2}. By contradiction, assume AIl, o >
All,41. First, assume ¢; < ca. Then (A.13) becomes

All, 40 < E[max{v —c1,v—cr,—co + 0AIL, 43, 0}] — E[max{—cl, v —cr — 6All, 49, —co, —5AHn+2}}
where we use the max operator. Equation (A.14) becomes

All, 1 = E[max{v —c1,v —cr,—co + 0AIL, 19, O}] — E[max{—cl, v —cy — 0AIl, 41, —co, —5AHn+1}]
> E[max{v —c1,v —cr,—co + 0AIl, 43, O}] — E[max{—cl, v —cy — 0AIL, 49, —co, —5AHn+2}]
— (Al o — All,41)

where the first line uses dAIL, 2 < v, and the second uses All,, 12 > All, ;3 from the induction
hypothesis and the assumption that All,;o > All,,;. Hence we have All,41 > All, 4o,
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yielding a contradiction.

Second, assume ¢ > c¢3. Equation (A.13) becomes

All, o = E[max{v —¢o,v — c1, —co + 0AIlL, 3, 0}] — E[max{v — o — 0AIl,49,v — ¢ — 6AIL, 42, —co, —5AHn+2}]
< O0AIL, 42

where the first line uses ¢; > co, and the second line uses the induction hypothesis. Similarly,

equation (A.14) becomes

All,yq > E[max{—cz + §AIl,19,v — ¢, —co + 6ATIL, 49, 0}] — E[max{—cz, v —cr — 6AIl, 41, —co, —5AHn+1}]
> E[max{—cz + Al 49,v — ¢, —co + 6ATIL, 49, 0}] — E[max{—CQ, v —cr — 6All, 49, —co, —5AH,H_2}]
— §(All 42 — ATl 1)
= 0AIl, 41

where the first line uses the “max” operator and the second line uses the assumption that

All, 40 > All,41. Hence we have All, 1 > All, 9, yielding a contradiction.

A.4 Proof of Proposition 5

We seek to show that, for ¢ sufficiently high, (DEPpR) is slack under the optimal contract. This
implies that the (DEPy;) constraint is also slack. If Q;+ = 1, the profit from relationship i is

ILis = —cit + OB Wi 441]
> —v+ iiw(n*) (A.15)
- n*l—4¢
where n* is the maximum number of agents, and w(n) := E[max{v — c¢1.,,0}] is welfare when
using n agents. Let us define w(0) := 0. Two facts are worth noting. First, w(n) is increasing
in n and converges to E[v — ¢|. Second, the marginal welfare of an extra agent, Aw(n) :=
w(n) —w(n — 1) decreases in n and converges to zero.

The proof rests on two lemmas.

Lemma 4. For any increasing sequence of integers {n;},

ng —nNi—1
D=
n:

i>1 v

Proof. Pick an infinite subsequence of the integers {m;} as follows. Let m; := n; and m; =
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min{n; : n; > 2m;_1}. Then

Z ny —Nnj—1 Z Z Ny — Nj—1
ng g

i>1 7 {i:mj2n¢>mj,1}

> Z Z n; ;Zi_l

J {i:mi>ni>mj_1}

:ij_mj—l
- my
j J

By construction, % > % Hence the sum is infinite. O
J

Lemma 5. nAw(n) — 0 as n — o0

Proof. Since Aw(n) > 0 (Vn), liminf nAw(n) > 0. By contradiction, suppose that lim sup nAw(n) =

kE > 0. Then there exists a subsequence of integers {n;} such that
niAw(n;) >k—e>0 (Vi) (A.16)

Abusing notation, let n;(n) = min{n; : n, > n} be the next integer in the subsequence after an

arbitrary integer n. We now obtain the following contradiction,

U—QZZAUJ(TI)

n>1
> Aw(ni(n))
n>1
= Z(TLZ — ni_l)Aw(ni)
i>1
g
i>1 v

The first line follows from w(1) = E[v — ¢] and limw(n) = v — ¢. The second uses the fact
that Aw(n) is decreasing. The fourth line uses (A.16), while the fifth line follows from Lemma
4. O

Using equation (3.9), we can place an upper bound on the number of insiders, n*.!” Sub-
stituting (3.9) into (A.15),

ILs > —v+ n:dA(Zul;)l*) max{v —¢,0} + | (A.17)

170f course, this bound will not be reached if n* > N.
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Since either ¢ > 0 or v > ¢, then max{v —¢,0} +¢ > 0. As d — 1, so n*(J) increases
monotonically without bound. Consequently, w(n*) — v—c and, by Lemma 5, n*[Aw(n*)] — 0.
Hence II; ; — o0, as required. Observe that this argument applies for any value of N, including
N = 0.

A.5 Derivation of Example 2

Suppose ¢; ¢ ~ U[0,1] and v > 1. As in equation (A.15), profits at time ¢ are

I+ = —cit + OB Wi 4 41]

> 14 ()
- P
1 2o
> —1 —1 Al
- [n*(n*—i—l)] 1-96 (v—1) (A-18)
since w(n) =v — p%n Using equation (3.9),
d L oy (A.19)

1-0 n*(n* + 1)

Substituting (A.19) into (A.18) yields,

1/2 y
> _1\3/2
Hz,t = 1 + |:1 _5:| (’U ].)

Hence I1;+ > 0 if (v —1)3 > (1 — §)/d. That is,

1

>
5_1+(v—1)3

A.6 Proof of Proposition 7?7

The problem is to maximise (?7) subject to (?7).'® First, suppose that the agent is an insider
(i.e. that they have bought previously). By the principle of optimality, the principal wishes to
maximise

Wt = (U — Ct)Qt + (5Et[Wt+1]

subject to
(5Et[Wt+1] — Ct)Qt 2 0 (??)

18Since there is only one agent, we drop i subscripts.

32



By pointwise optimisation, the solution is monotone: that is, trade occurs if ¢; is below some

threshold. Since the problem is stationary, the value function, W (k), can thus be written as

B (5)) = 1Bl — e

Then ** is characterised by the largest cost that satisfies (?7),
K™ =max{k <v : E[W(K)] — k > 0} (A.20)

Initial profit II(x*) is defined by

K* c

(k) = | (BEW(K™)] —¢)dF(c) + | ol(x*)dF(c)

" (SE[W (k)] - ¢) dF (c)
1—6(1—F(k%))

Is)

(A.21)

The initial cutoff k* is chosen to maximise II(k*) subject to (??). Since (??) must hold,
k* < k**. Finally, we wish to show that k* < ¢* and ™ < v. The latter follows from (A.20).
To show the former note that II(x*) is log—supermodular in (x*, E[IV]), so that x* is increasing
in E[W]. Since expected welfare E[W] is higher under the optimal ASE contract, the first

period cutoff is higher, as required.

A.7 Proof of Proposition 6

First, we show the contract is agent—self-enforcing. Under the employment contract, if Q; ; = 1,
agent i anticipates future rents v. Hence (DEA) holds, and the agent has no incentive to defect.

Second, we show incentive compatibility. At time ¢, the principal’s profit is

Oy =B [ > 6 v—cpe)| —E | Y 607 = (A.22)
s=t €71y 1€Ty

Observe that the last term in (A.22) is sunk and can be ignored. The investment plan, Q;,
chosen to maximise time—0 profits (3.4) thus maximises time—¢ profits (A.22) by the principle of
optimality. The principal therefore cannot gain by lying about her costs, altering the investment
plan.

Third, the contract is self-enforcing if the principal has no incentive to deviate. When

Qi+ = 1 the principal must be willing to invest in ¢. That is,

Hu = W@t —v > 0 (A.23)
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When Q;; = 0 and i € 7, the principal must be willing to pay the agent p;; = (1 — J)v. That
is,

H@t = W@t —v > 0 (A.24)
When Q;; = 0 and i ¢ 7;, the principal cannot defect. Putting (A.23) and (A.24) together,
yields (DEPEC).

A.8 Proof of Proposition 8

Pick a contract <C~2i7t, Pi,t). Define utility of agent ¢ at time ¢ by

i 5S_tﬁi,s]

s=t

Uir = By

Similarly, define the profit from relationship ¢ at time ¢ by,

i 55t <(U —¢is)Qis — ﬁi,s)]

s=t

IL; s = By

Denote the times the principal invests in i by {¢{,#5,...}. In terms of our previous notation,
{=m7(0)and t!,,; = 7;(t,, +1) for n > 1.
We now establish three facts. First, observe that the principal can always defect on i at

time t, by refusing to invest. This would yield the agent utility
ti—1

Uin =Y 8Pis (A.25)
s=1

The zero wealth constraint thus says that (A.25) is positive for each t¢.
Second, when @;; = 1, the agent can defect by refusing to pay the principal, keeping v.

Hence the relational contract must satisfy,
t = (A.26)

Third, when @Q;; = 1, the principal can defect by refusing to invest. Hence the relational
contract must satisfy,
IL;; >0 (A.27)

)

We now construct a new contract, (Q;,p:), where payments are voluntary and only occur
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when trade takes place. Let Q; = Qi,t and

[t5—1 ti—1
p = Ey Z s | + Z 85y s for t =t} (A.28)
L s=t s=1
[t -1
= F; Z (55_%3,-’5 for t = tfl and n >1
s=t

Let U;; and 1I;; be the utilities and profits from this new contract.!” The payoffs from the
two contracts are related as follows. At time 0, the contracts yield the same payoffs. That is,
Uio = ffi,o and II; o = 1:[2‘,0. At time t = t!, we have

Uiy =06 Ui = Uiy +0'Uin (A.29)
=6 'Tig=1;,— 60 (A.30)

At time ¢t = ¢, and n > 1, we have

Uit = Uiy (A.31)
I, = 10, (A4.32)

We now make three claims. First, the new contract satisfies the agent’s wealth constraint.

Equation (A.25) implies that for each n,

n—-1 th—1 n—1 thp1—1

4 S~ S~
E o mPm = E 0 Di,s + § Etgn § o Di,s
m=1 s=1 m=1 S:t;’ln

is positive. Hence the agent’s wealth is positive in every history.

Second, the agent’s dynamic enforcement constraint is satisfied. In period ¢ = ¢}, equations
(A.29) and (A.26) and the fact that UiJ > 0, implies U; ; > v. In subsequent periods of trade,
equations (A.26) and (A.31) imply that U;; > v. Hence the new contract is ASE when the
original contract is ASE.

Third, the principal’s dynamic enforcement constraint is satisfied. In period t = ¢}, equation
(A.30) and the fact that IZILO > 0 implies that II; ; > 0. In subsequent periods of trade, equations
(A.27) and (A.32) imply that II;; > 0. Hence the new contract is SE when the original contract
is SE.

9Under this construction, we have p; € IR. Under the principal’s optimal contract, we can restrict prices to
pt € [0,v], as shown in Section 3.2.
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A.9 Proof of Proposition 9
Pick a contract (Qi,t, Dit). Cowboy-proofness says that a cowboy’s profits from agent 1,
1

. 73(0)—
II; = — Z §"Pi
=1

must be negative. This says that U;; > 0, as defined by (A.25). The new contract (Q;¢,ps) is
constructed by setting Q;; = Qi,t and defining prices by (A.28). Verifying this new contract

satisfies the dynamic enforcement constraints is then the same as Proposition 8.
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