Durable-Goods Monopoly with Varying Demand

Simon Board
Department of Economics, University of Toronto

June 5, 2006

Simon Board, 2005

Motivation

- Back to school sales
- New influx of demand \rightarrow reduce prices in September.
- But causes people to delay purchase in August.
- How much should reduce price?
- Pricing with varying demand
- What happens if new demand falls over time?
- What happens if new demand is uncertain?
- Objective: Derive optimal pricing strategy for durable-goods monopolist facing fluctuating demand from new cohorts.

Durable Goods Monopoly

- No new entry of consumers (Stokey, 1979)
- Consumers enter market in period 1.
- Firm choose prices $\left\{p_{1}, \ldots, p_{T}\right\}$.
- Agents choose when to buy.
- Solution: charge static monopoly price forever.
- Identical entry each period (Conlisk et al, 1984)
- Solution: charge static monopoly price forever.

Varying Demand

- What if new demand varies over time?
- Theory of dynamic pricing.
- Scope for intertemporal price discrimination.
- Technique
- Method to solve dynamic mechanism design problems.
- Simple marginal revenue interpretation.
- Fast rises and slow falls
- Demand growing \Longrightarrow price increases quickly.
- Demand dying \Longrightarrow price decreases slowly.
- Application: propagation of demand cycles.
- Prices exceed the average-demand price.
- The lowest price is at last period of the "slump".

The Model

- Time is discrete, $t \in\{1, \ldots, T\}$, where allow $T=\infty$.
- Consumers' and firm's information represented by filtered space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}, Q\right)$.
- Common time $-t$ discount rate, $\delta_{t} \in(\epsilon, 1-\epsilon)$, is $\mathcal{F}_{t^{-}}$-adapted.
- Total discount factor $\Delta_{t}:=\prod_{i=1}^{t} \delta_{s}$.
- Consider consumer with value $\theta \in[\underline{\theta}, \bar{\theta}]$
- If buy at time t and price p_{t} get $\left(\theta-p_{t}\right) \Delta_{t}$.
- If do not purchase get zero.
- Each period consumers of measure $f_{t}(\theta)$ enter market
- Distribution function $F_{t}(\theta)$, survival function $\bar{F}_{t}(\theta)$.
- Total measure $F_{t}(\bar{\theta})$.
- New demand, $f_{t}(\theta)$, is $\mathcal{F}_{t^{-}}$-adapted.

Payoffs

- Consumer's Problem
- Consider consumer (θ, t) with value θ who enters at time t.
- Given sequence of \mathcal{F}_{t}-adapted prices $\left\{p_{1}, \ldots, p_{T}\right\}$.
- Choose purchasing time $\tau(\theta, t)$ to maximise expected utility.

$$
u_{t}(\theta)=\mathcal{E}\left[\left(\theta-p_{\tau}\right) \Delta_{\tau}\right]
$$

- Firm's Problem
- Assume marginal cost is zero.
- Choose \mathcal{F}_{t}-adapted prices $\left\{p_{t}\right\}$ to maximise expected profit

$$
\Pi=\mathcal{E}\left[\sum_{t=1}^{T} \int_{\underline{\theta}}^{\bar{\theta}} \Delta_{\tau^{*}(\theta, t)} p_{\tau^{*}(\theta, t)} d F_{t}\right]
$$

where $\tau^{*}(\theta, t)$ maximises the consumer's utility, $u_{t}(\theta)$.

- Notable assumptions: No resale. Firm commits to prices.

Consumer Surplus and Welfare

- Purchase time optimal so use envelope theorem,

$$
u_{t}(\theta)=\mathcal{E}\left[\int_{\underline{\theta}}^{\theta} \Delta_{\tau^{*}(x, t)} d x+u(\underline{\theta}, t)\right]
$$

using Milgrom-Segal (2002) since space of stopping times complex.

- Consumer surplus from generation t,

$$
\int_{\underline{\theta}}^{\bar{\theta}} u_{t}(\theta) d F_{t}=\mathcal{E}\left[\int_{\underline{\theta}}^{\bar{\theta}} \Delta_{\tau^{*}(\theta, t)} \bar{F}_{t}(\theta) d \theta\right]
$$

- Welfare from generation t,

$$
W_{t}=\mathcal{E}\left[\int_{\underline{\theta}}^{\bar{\theta}} \theta \Delta_{\tau^{*}(\theta, t)} d F_{t}\right]
$$

Costs are zero so the welfare is maximised by setting $p_{t}=0$.

Firm's Problem

- Define marginal revenue with respect to price as

$$
m_{t}(\theta):=\theta f_{t}(\theta)-\bar{F}_{t}(\theta)
$$

- Expected profit is welfare minus consumer surplus,

$$
\Pi=\mathcal{E}\left[\sum_{t=1}^{T} \int_{\underline{\theta}}^{\bar{\theta}} \Delta_{\tau^{*}(\theta, t)} m_{t}(\theta) d \theta\right]
$$

- Profit is discounted sum of marginal revenues.
- Marginal revenue sticks to each agent (θ, t).
- The firm's problem is to chooses prices $\left\{p_{1}, \ldots, p_{T}\right\}$ to maximise Π subject to $\tau^{*}(\theta, t)$ maximising $u_{t}(\theta)$.

Consumer's Problem and Cutoffs

Lemma 1. The earliest purchasing rule, $\tau^{*}(\theta, t)$, obeys:
[existence] $\tau^{*}(\theta, t)$ exists.
[θ-monotonicity] $\tau^{*}(\theta, t)$ is decreasing in θ.
[non-discrimination] $\tau^{*}\left(\theta, t_{L}\right) \geq t_{H} \Longrightarrow \tau^{*}\left(\theta, t_{L}\right)=\tau^{*}\left(\theta, t_{H}\right)$, for $t_{H} \geq t_{L}$.

- Characterise $\tau^{*}(\theta, t)$ by \mathcal{F}_{t}-adapted cutoffs

$$
\theta_{t}^{*}:=\inf \left\{\theta: \tau^{*}(\theta, t)=t\right\}
$$

- Back out prices from cutoffs:

$$
\left(\theta_{t}^{*}-p_{t}^{*}\right) \Delta_{t}=\max _{\tau \geq t+1} \mathcal{E}\left[\left(\theta_{t}^{*}-p_{\tau}^{*}\right) \Delta_{\tau}\right]
$$

General Solution

Definition. Cumulative marginal revenue equals $M_{1}(\theta):=m_{1}(\theta)$ and $M_{t}(\theta):=m_{t}(\theta)+\min \left\{M_{t-1}(\theta), 0\right\}$.

Assumption (MON). $M_{t}(\theta)$ is quasi-increasing $(\forall t)$.
Theorem 1. Under (MON) the optimal cutoffs are $\theta_{t}^{*}=M_{t}^{-1}(0)$.

- Period $t=1$
- Sell to agent θ iff $m_{1}(\theta) \geq 0$
- Period $t=2$
- Form cumulative MR, $M_{2}(\theta)=m_{2}(\theta)+\min \left\{M_{t-1}(\theta), 0\right\}$
- Sell to agent θ iff $M_{2}(\theta) \geq 0$
- Cutoffs are determined by past demand.
- Prices are determined by future cutoffs.
- Suppose demand deterministic.

Proposition 2a. Suppose demand is increasing, $m_{t+1}^{-1}(0) \geq m_{t}^{-1}(0)$. Then $\theta_{t}^{*}=m_{t}^{-1}(0)$ and prices are $p_{t}^{*}=m_{t}^{-1}(0)$.

Proposition 2b. Suppose demand is decreasing, $m_{t+1}^{-1}(0) \leq m_{t}^{-1}(0)$. Then $\theta_{t}^{*}=m_{\leq t}^{-1}(0)$ and prices are

$$
p_{t}^{*}=\sum_{s=t}^{T} \mathcal{E}\left[\left.\left(\frac{\Delta_{s}}{\Delta_{t}}-\frac{\Delta_{s+1}}{\Delta_{t}}\right) m_{\leq s}^{-1}(0) \right\rvert\, \mathcal{F}_{t}\right]
$$

- Myopic price: $p_{t}^{M}:=m_{t}^{-1}(0)$.
- Average-Demand price: $p_{t}^{A}:=m_{\leq T}^{-1}(0)$

(2) Deterministic Cycles

- Suppose demand follows K repetitions of $\left\{f_{1}(\theta), \ldots, f_{T}(\theta)\right\}$

Proposition 4. For $k \geq 2$, cycles are stationary.

Proposition 5. For $k \geq 2$, optimal prices always lie above the average-demand price, $m_{\leq T}^{-1}(0)$.

- Price discrimination bad for all customers.

Proposition 6. For $k \geq 2$, if cycles are simple the price is lowest at the end of the slump.

(3) IID Demand

- Demand drawn from $\left\{m_{i}(\theta)\right\}$ with prob $\left\{q_{i}\right\}$.
- Average marginal revenue $m^{A}(\theta)=\sum_{i} q_{i} m_{i}(\theta)$.
- Average-demand price $p^{A}:=\left[m^{A}\right]^{-1}(0)$.

Proposition 7. The SLLN implies $\lim _{t \rightarrow \infty} \theta_{t}^{*} \geq p^{A}$ and $\lim _{t \rightarrow \infty} p_{t}^{*} \geq p^{A}$ a.s..

- Stochastic equivalent of Proposition 5 (i.e. with deterministic cycles, prices exceed the average-demand price).

Summary

- Derived optimal pricing strategy for durable-goods monopolist facing varying demand.
- Award good to agents with positive cumulative MR.
- Prices rise quickly and fall slowly.
- Asymmetry pushes prices upwards.

