Durable–Goods Monopoly with Varying Demand

Simon Board Department of Economics, University of Toronto

June 5, 2006

Simon Board, 2005

Motivation

- Back to school sales
 - New influx of demand \rightarrow reduce prices in September.
 - But causes people to delay purchase in August.
 - How much should reduce price?
- Pricing with varying demand
 - What happens if new demand falls over time?
 - What happens if new demand is uncertain?
- Objective: Derive optimal pricing strategy for durable–goods monopolist facing fluctuating demand from new cohorts.

1

Durable Goods Monopoly

- No new entry of consumers (Stokey, 1979)
 - Consumers enter market in period 1.
 - Firm choose prices $\{p_1, \ldots, p_T\}$.
 - Agents choose when to buy.
 - Solution: charge static monopoly price forever.
- Identical entry each period (Conlisk et al, 1984)
 - Solution: charge static monopoly price forever.

Simon Board, 2005

Varying Demand

- What if new demand varies over time?
 - Theory of *dynamic* pricing.
 - Scope for intertemporal price discrimination.
- Technique
 - Method to solve dynamic mechanism design problems.
 - Simple marginal revenue interpretation.
- Fast rises and slow falls
 - Demand growing \implies price increases quickly.
 - Demand dying \implies price decreases slowly.
- Application: propagation of demand cycles.
 - Prices exceed the average–demand price.
 - The lowest price is at last period of the "slump".

3

The Model

- Time is discrete, $t \in \{1, \ldots, T\}$, where allow $T = \infty$.
 - Consumers' and firm's information represented by filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, Q)$.

- Common time-t discount rate, $\delta_t \in (\epsilon, 1 - \epsilon)$, is \mathcal{F}_t -adapted.

- Total discount factor $\Delta_t := \prod_{i=1}^t \delta_s$.
- Consider consumer with value $\theta \in [\underline{\theta}, \overline{\theta}]$
 - If buy at time t and price p_t get $(\theta p_t)\Delta_t$.
 - If do not purchase get zero.
- Each period consumers of measure $f_t(\theta)$ enter market
 - Distribution function $F_t(\theta)$, survival function $\overline{F}_t(\theta)$.
 - Total measure $F_t(\overline{\theta})$.
 - New demand, $f_t(\theta)$, is \mathcal{F}_t -adapted.

The Model

5

Payoffs

- Consumer's Problem
 - Consider consumer (θ, t) with value θ who enters at time t.
 - Given sequence of \mathcal{F}_t -adapted prices $\{p_1, \ldots, p_T\}$.
 - Choose purchasing time $\tau(\theta, t)$ to maximise expected utility.

$$u_t(\theta) = \mathcal{E}[(\theta - p_\tau)\Delta_\tau]$$

- Firm's Problem
 - Assume marginal cost is zero.
 - Choose \mathcal{F}_t -adapted prices $\{p_t\}$ to maximise expected profit

$$\Pi = \mathcal{E}\left[\sum_{t=1}^{T} \int_{\underline{\theta}}^{\overline{\theta}} \Delta_{\tau^*(\theta,t)} p_{\tau^*(\theta,t)} \, dF_t\right]$$

where $\tau^*(\theta, t)$ maximises the consumer's utility, $u_t(\theta)$.

• Notable assumptions: No resale. Firm commits to prices.

Consumer Surplus and Welfare

• Purchase time optimal so use envelope theorem,

$$u_t(\theta) = \mathcal{E}\left[\int_{\underline{\theta}}^{\theta} \Delta_{\tau^*(x,t)} \, dx + u(\underline{\theta},t)\right]$$

using Milgrom–Segal (2002) since space of stopping times complex.

• Consumer surplus from generation t,

$$\int_{\underline{\theta}}^{\overline{\theta}} u_t(\theta) \, dF_t = \mathcal{E}\left[\int_{\underline{\theta}}^{\overline{\theta}} \Delta_{\tau^*(\theta,t)} \overline{F}_t(\theta) \, d\theta\right]$$

• Welfare from generation t,

$$W_t = \mathcal{E}\left[\int_{\underline{\theta}}^{\overline{\theta}} \theta \Delta_{\tau^*(\theta,t)} \, dF_t\right]$$

Costs are zero so the welfare is maximised by setting $p_t = 0$.

Solution Technique

7

Firm's Problem

• Define *marginal revenue* with respect to price as

$$m_t(\theta) := \theta f_t(\theta) - \overline{F}_t(\theta)$$

• Expected profit is welfare minus consumer surplus,

$$\Pi = \mathcal{E}\left[\sum_{t=1}^{T} \int_{\underline{\theta}}^{\overline{\theta}} \Delta_{\tau^*(\theta,t)} m_t(\theta) \, d\theta\right]$$

- Profit is discounted sum of marginal revenues.
- Marginal revenue sticks to each agent (θ, t) .
- The firm's problem is to choose prices $\{p_1, \ldots, p_T\}$ to maximise Π subject to $\tau^*(\theta, t)$ maximising $u_t(\theta)$.

Consumer's Problem and Cutoffs

Lemma 1. The earliest purchasing rule, $\tau^*(\theta, t)$, obeys: [existence] $\tau^*(\theta, t)$ exists. [θ -monotonicity] $\tau^*(\theta, t)$ is decreasing in θ . [non-discrimination] $\tau^*(\theta, t_L) \ge t_H \Longrightarrow \tau^*(\theta, t_L) = \tau^*(\theta, t_H)$, for $t_H \ge t_L$.

• Characterise $\tau^*(\theta, t)$ by \mathcal{F}_t -adapted cutoffs

$$\theta_t^* := \inf\{\theta : \tau^*(\theta, t) = t\}$$

• Back out prices from cutoffs:

$$(\theta_t^* - p_t^*)\Delta_t = \max_{\tau \ge t+1} \mathcal{E} \left[(\theta_t^* - p_\tau^*)\Delta_\tau \right]$$

Solution Technique

9

General Solution

Definition. Cumulative marginal revenue equals $M_1(\theta) := m_1(\theta)$ and $M_t(\theta) := m_t(\theta) + \min\{M_{t-1}(\theta), 0\}.$

Assumption (MON). $M_t(\theta)$ is quasi-increasing $(\forall t)$.

Theorem 1. Under (MON) the optimal cutoffs are $\theta_t^* = M_t^{-1}(0)$.

- Period t = 1
 - Sell to agent θ iff $m_1(\theta) \ge 0$
- Period t = 2
 - Form cumulative MR, $M_2(\theta) = m_2(\theta) + \min\{M_{t-1}(\theta), 0\}$
 - Sell to agent θ iff $M_2(\theta) \ge 0$
- Cutoffs are determined by past demand.
- Prices are determined by future cutoffs.

(1) Monotone Deterministic Demand

• Suppose demand deterministic.

Proposition 2a. Suppose demand is increasing, $m_{t+1}^{-1}(0) \ge m_t^{-1}(0)$. Then $\theta_t^* = m_t^{-1}(0)$ and prices are $p_t^* = m_t^{-1}(0)$.

Proposition 2b. Suppose demand is decreasing, $m_{t+1}^{-1}(0) \le m_t^{-1}(0)$. Then $\theta_t^* = m_{\le t}^{-1}(0)$ and prices are

$$p_t^* = \sum_{s=t}^T \mathcal{E}\left[\left(\frac{\Delta_s}{\Delta_t} - \frac{\Delta_{s+1}}{\Delta_t}\right) m_{\leq s}^{-1}(0) \mid \mathcal{F}_t\right]$$

- Myopic price: $p_t^M := m_t^{-1}(0).$
- Average–Demand price: $p_t^A := m_{\leq T}^{-1}(0)$

Applications

(2) Deterministic Cycles

• Suppose demand follows K repetitions of $\{f_1(\theta), \ldots, f_T(\theta)\}$

Proposition 4. For $k \geq 2$, cycles are stationary.

Proposition 5. For $k \geq 2$, optimal prices always lie above the average-demand price, $m_{\leq T}^{-1}(0)$.

• Price discrimination bad for *all* customers.

Proposition 6. For $k \ge 2$, if cycles are simple the price is lowest at the end of the slump.

11

(3) IID Demand

- Demand drawn from $\{m_i(\theta)\}$ with prob $\{q_i\}$.
 - Average marginal revenue $m^A(\theta) = \sum_i q_i m_i(\theta)$.
 - Average-demand price $p^A := [m^A]^{-1}(0)$.

Proposition 7. The SLLN implies $\lim_{t\to\infty} \theta_t^* \ge p^A$ and $\lim_{t\to\infty} p_t^* \ge p^A$ a.s..

• Stochastic equivalent of Proposition 5 (i.e. with deterministic cycles, prices exceed the average–demand price).

Applications

13

Summary

- Derived optimal pricing strategy for durable–goods monopolist facing varying demand.
- Award good to agents with positive cumulative MR.
- Prices rise quickly and fall slowly.
- Asymmetry pushes prices upwards.