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This paper solves for the profit-maximizing strategy of a durable-goods monopolist when incoming
demand varies over time. We first characterize the consumers’ optimal purchasing decision by a cut-off
rule. We then show that, under a monotonicity condition, the profit-maximizing cut-offs can be derived
through a myopic algorithm, which has an intuitive marginal revenue interpretation. Consumers’ ability
to delay creates an asymmetry in the optimal price path, which exhibits fast increases and slow decreases.
This asymmetry creates an upward bias in the level of prices, pushing them above the price charged by a
firm facing the average level of demand. The optimal policy outperforms renting and can be implemented
by a time-consistent best-price provision.

1. INTRODUCTION

In her classic 1979 paper, Nancy Stokey asked whether a firm should use time to discriminate
between different types of consumers. By lowering its price over time, the firm can make extra
sales to low-valuation agents; however, such a strategy will lead some high-valuation agents to
postpone their purchases. When it can commit to its pricing policy, Stokey concluded that the
firm should forgo the opportunity to discriminate, setting the price equal to the static monopoly
price and holding it there forever. On the equilibrium path, sales only occur in the first period and
no consumer ever delays.

Relaxing the assumption that demand is never refreshed, Conlisk, Gerstner and Sobel (1984)
and Sobel (1991) allow a homogenous set of consumers to enter the market each period. They
show that, once again, the profit-maximizing strategy is to set the price equal to the static mono-
poly price. There are sales in each period, but no consumer ever delays.

The purpose of the current paper is to analyse the firm’s profit-maximization problem when
incoming demand varies over time. We characterize the optimal sequence of prices and allo-
cations, and examine how the firm uses time to discriminate between different generations. As
incoming demand changes, prices fluctuate and some consumers choose to strategically delay
their consumption. We show that this delay induces an asymmetry in the optimal price path and
raises the average level of prices.

Variation in demand arises naturally in many markets. For example, each September, thou-
sands of students return to universities and colleges across Canada. Canadian Tire, a large retailer,
responds to this influx of new consumers by holding a back-to-school sale, reducing prices on
furniture and stationery. While the price reduction helps increase profits from price-sensitive
students, it also leads consumers who would have bought in July and August to delay their pur-
chases. When choosing their September price, Canadian Tire must therefore trade off these two
effects. Anticipating the back-to-school sale, Canadian Tire must also consider how to alter prices
in July and August in order to mitigate consumer delay.
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Allowing different generations to have different demand functions significantly complicates
the firm’s problem. Agent’s types have two dimensions: their valuation and their birthdate, so
the challenge is to identify which incentive compatibility constraints bind. Once we know which
generations purchase in which periods (e.g. that consumers from August, but not July, will wait
until September), then it is easy to derive the optimal prices from the firm’s profit-maximization
problem. Of course, which generations choose to delay are themselves endogenous and depend
on the price path.

Rather than trying to directly solve for the optimal prices, as in Stokey (1979), we solve
the problem by working in quantity space. First, we characterize the consumers’ purchasing rule
by a sequence of cut-offs: at any time t , a consumer purchases if his valuation lies above some
time-t cut-off. We then use mechanism design to eliminate prices and describe the firm’s profit
as a function of these cut-offs.

Second, under a monotonicity condition on marginal revenue, we characterize the profit-
maximizing cut-offs by a myopic algorithm, where the allocation at time t only depends upon
the consumers who have entered the market up to time t . Consumers are forward looking, so
prices depend upon the sequence of future demand; the optimal allocations, however, only de-
pend on past demand. The myopic nature of this algorithm enables us to analyse any stochastic
sequence of demand functions: monotone demand paths, demand cycles, i.i.d. demand draws,
and so on. The optimal prices can then be derived from the consumers’ utility-maximization
problem.

The optimal myopic algorithm has an intuitive interpretation: The incoming demand curve
in any period t can be associated with a marginal revenue curve, where marginal revenue is
with respect to price, not quantity. In the first period, the firm sells the good to consumers with
positive marginal revenue (net of costs). In each period thereafter, the firm adds the marginal
revenue of the old consumers who have yet to buy the marginal revenue of the new agents,
forming a cumulative marginal revenue function. The firm then sells the good to agents with
positive cumulative marginal revenue.

Consumers’ ability to delay induces an asymmetry in the optimal price path. When demand
grows stronger over time, in that valuations tend to rise, the firm will want to increase its price.
Agents then have no incentive to delay and the firm can discriminate between the different gener-
ations, charging the monopoly price against the incoming generation (the “myopic price”). When
demand weakens over time, in that valuations tend to fall, the firm will want to decrease its price.
Charging the myopic price, however, will lead to falling prices, causing some consumers to delay
their purchases. In order to mitigate this delay, the firm slows the rate at which prices fall. The
price path is flattened so much that prices always remain above the price chosen by a firm who
faces the average level of demand (the “average demand price”).

The asymmetry between increases and decreases in demand crucially affects the firm’s op-
timal pricing policy in other environments. Suppose demand follows stationary cycles, as shown
in Figure 1, where the lower panel describes which generations purchase in which periods. Af-
ter the first cycle, prices follow a stationary shark-fin pattern, rising quickly and falling slowly.
The pattern has two interesting features. First, the price is minimized in the last period of the
slump, not in the period of lowest demand. Second, the asymmetry between increases and de-
creases in demand raises the price level, so that prices always exceed the average demand price.
This means that the introduction of demand variation makes all consumers worse off and reduces
social welfare.

The basic model makes two assumptions of note. First, there is no resale. There are many
goods for which this is the right assumption: one-time experiences (e.g. a trip to Disneyland), in-
termediate products (e.g. aluminium), and goods with high transaction costs (e.g. fridges). How-
ever, such an assumption is not innocuous. With resale, price variations decrease in amplitude as
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FIGURE 1

This figure assumes that valuations have measure 1 on [0,bt ],bt ∈ [20,30], and the discount rate is δ = 0·75. The top
panel shows how prices and cut-offs vary when demand follows cycles. The bottom panel illustrates which generations

are active in any given period. Examples 4 and 6 further analyse the linear demand example

the market gets older; without resale, the market fluctuations never abate. With resale, the price
responds symmetrically to changes in demand; without resale, price movements are highly asym-
metric. Introducing resale has no effect on allocations if demand falls over time, but otherwise
lowers the firm’s profits. As observed by Coase (1972) and Bulow (1982), renting is identical to
commitment pricing with resale since both policies induce the same set of implementable allo-
cations. Renting is therefore optimal only if demand is declining. This result also means that, in
the presence of demand variation, the monopolist has an incentive to shut down any secondary
market.

The second important assumption is that the firm can commit to a sequence of prices. With
homogenous demand and no commitment, there are many equilibria ranging from those which
are very bad for the firm to others which are close to the full-commitment outcome (Sobel,
1991). This paper should thus be viewed as establishing the best possible outcome for the firm.
This seems particularly reasonable if the firm is concerned about its reputation across several
durable-goods markets. In addition, there are contractual solutions to the commitment problem:
we extend the result of Butz (1990) by showing that a best-price provision can implement the
optimal scheme without pre-commitment.

The paper solves for the optimal price sequence of a durable-goods monopolist, but one can
also look at more general mechanisms. For example, Segal (2003) shows that, without the entry
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of new generations, the optimal mechanism in a durable goods model can be implemented by a
price mechanism if marginal costs are constant or if there are large numbers of consumers. Both
these assumptions are satisfied in our model.

The precursors of this paper are the models of Stokey (1979), Conlisk et al. (1984) and Sobel
(1991), as described in Section 3.2. Also closely related, Dudine, Hendel and Lizzeri (2006)
analyse the problem of a storable-goods monopolist who faces varying demand. This differs from
the current paper in two ways. First, Dudine et al. assume that the storage cost takes the form of a
fixed fee, so all types of agents have the same incentive to intertemporally shift their consumption.
This enables the authors to characterize the optimal prices both with and without commitment.
Second, with a storable good, agents arbitrage a price spike by shifting consumption forward,
causing prices to fall quickly and rise slowly.1

Our model is also related to the product life cycle literature. Rogers (1962) argues that the
nature of new demand changes over the life cycle of a product: early adopters are “venture-
some and daring”, while laggards are “skeptical and traditional”. The analysis of pricing of new
goods has since focused on encouraging new demand via network effects, overlooking agents’ in-
tertemporal consumption decisions (e.g. Krishnan, Bass and Jain, 1999). This paper, in contrast,
analyses the pricing of a new product where agents can strategically time their purchases.2

The remainder of the paper is organized as follows: Section 2 describes the model. Section 3
derives the firm’s profit-maximization problem, which is solved in Section 4. Section 5 discusses
applications including monotone demand paths and demand cycles. Section 6 extends the results
to stochastic demand, while Section 7 analyses resale and renting. Section 8 concludes.

2. MODEL

Preliminaries. Time is discrete, t ∈ {1, . . . ,T }, where we allow T = ∞. Consumers and the
firm have a common discount factor, which may vary over time, denoted by δt ∈ [0,δ] ⊂ [0,1).
Discounting up to time t is given by �t = ∏t

s=1 δs , where �t : = 0 for t ≥ T +1.

Preferences. A consumer with valuation θ ∈ [θ,θ ] who purchases at time t ∈ {1, . . . ,T,∞}
and price pt obtains utility

(θ − pt )�t .

A consumer always has the option not to purchase, in which case they obtain zero utility
and are said to buy at time t = ∞.

Demand. Each period, consumers of measure ft (θ) enter the market. Let Ft (θ) be the
absolutely continuous distribution function, where Ft (θ) is the total number of agents (which
may vary over time), and denote the survival function by Ft (θ): = Ft (θ)− Ft (θ). The sequence
of demand curves is deterministic and common knowledge.

1. Other authors introduce dynamics into durable goods models in different ways. Conlisk (1984) and Biehl (2001)
have stochastic valuations, while cost variations have been analysed by Stokey (1979). When consumers and the firm have
different discount rates, the optimal price may fall over time, as examined by Landsberger and Meilijson (1985). There
is also a line of work where the good depreciates over time and consumers are allowed to scrap the product, such as Rust
(1986), Waldman (1996), and Hendel and Lizzeri (1999).

2. In this paper, price fluctuations are simply driven by changes in elasticities, such as those during seasonal
demand peaks (Nevo and Hatzitaskos, 2005), over the product life cycle (Gordon, 2007), or those due to shifting demo-
graphics (Lach, 2007). There may, however, be other reasons why firms hold sales. Price fluctuations may be internally
generated (Conlisk et al., 1984) and come from competition between stores (Varian, 1980) or from firms price dis-
criminating against those unable to time their purchases. Sales may also be caused by aggregate demand shocks which
undermine collusion (Rotemberg and Saloner, 1986) or intensify searching (Warner and Barsky, 1995).
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Consumers’ problem. Consider a consumer of type (θ, t) with valuation θ who enters in
period t . Given a sequence of prices {pt }, they have the problem of choosing a purchasing time
τ(θ, t) ∈ {t, . . . ,T,∞} to maximize utility

ut (θ) = sup
τ

(θ − pτ )�τ . (2.1)

Let τ ∗(θ, t) be the earliest solution to this problem.3

Firm’s problem. Assume that marginal cost is constant and normalize it to zero. Given a
sequence of prices {pt }, the firm’s profit is

� =
T∑

t=1

θ∫
θ

�τ∗(θ,t) pτ∗(θ,t)d Ft , (2.2)

where τ ∗(θ, t) maximizes the consumer’s utility (2.1). The firm’s problem is to choose {pt } to
maximize (2.2).

3. SOLUTION TECHNIQUE

3.1. Firm’s problem

Consumers choose their purchase times optimally, so we can apply the envelope theorem to the
utility-maximization problem (2.1).4 This yields utility

ut (θ) =
θ∫

θ

�τ∗(x,t)dx +ut (θ). (3.1)

Since the seller will always choose prices pt ≥ θ (∀ t), it will be the case that ut (θ) = 0 (∀ t).
Integrating by parts, consumer surplus from generation t is

θ∫
θ

ut (θ)d Ft =
θ∫

θ

�τ∗(θ,t)Ft (θ)dθ. (3.2)

Welfare from generation t is defined by

Wt : =
θ∫

θ

�τ∗(θ,t)θd Ft (3.3)

with total welfare W : = ∑
t Wt . Since costs are zero, the welfare-maximizing pricing scheme sets

all prices equal to zero. Profit equals welfare (3.3) minus consumer surplus (3.2),

3. We use the earliest purchasing time for ease of presentation. This choice does not affect profits: Lemma 1(b)
implies that any optimal selection is decreasing in θ and therefore must coincide (a.e. θ ).

4. The generalized envelope theorem of Milgrom and Segal (2002, Theorem 2) requires that the set of optimal
purchasing times is non-empty. This follows from Lemma 1 in Section 3.3.
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� =
T∑

t=1

θ∫
θ

[�τ∗(θ,t)θ −ut (θ)]d Ft

=
T∑

t=1

θ∫
θ

�τ∗(θ,t)mt (θ)dθ, (3.4)

where mt (θ): = θ ft (θ)− Ft (θ) is the marginal revenue with respect to price.5

Profit is thus the discounted sum of marginal revenues. Notice how the marginal revenue
gained from agent (θ, t) is the same no matter when they choose to buy. That is, an agent’s
marginal revenue is determined when they are born and sticks to them forever. Intuitively, when
the firm lowers the price in period t and awards the object to an extra few agents, they gain
revenue from the extra sales, but lose money from the inframarginal agents who buy in that
period. In addition, the firm must also lower all the prices in earlier periods in order to prevent
agents delaying and so loses money from all the inframarginal agents who bought previously.

The firm’s problem is thus to choose prices {pt } to maximize profit (3.4) subject to con-
sumers choosing their purchasing time τ ∗(θ, t) to maximize utility (2.1).

Some definitions will be useful. Period H is said to have higher demand than period L if
m−1

H (0) ≥ m−1
L (0), so the optimal static monopoly price is higher under FH (θ) than FL(θ).6

There may, of course, be more people under the “low” demand, that is, FH (θ) ≤ FL(θ), as is the
case in the “back-to-school” example in the Introduction. Denote the marginal revenue from a set
of generations A ⊂ {1, . . . ,T } by m A(θ): = ∑

s∈A ms(θ), and let m≤t (θ): = m{1,...,t}(θ).

3.2. Special cases

We now consider three special cases that will serve as useful benchmarks. Example 1 comes
from Stokey (1979), where there is a single demand curve of consumers and entry never occurs.
Example 2 supposes that the monopolist can set a different price schedule for each generation.
Example 3 is the homogenous entry model of Conlisk et al. (1984).

Example 1 (Single generation). If ft (θ) = 0 for t ≥ 2, then profit (3.4) reduces to

� =
θ∫

θ

�τ∗(θ,t)m1(θ)dθ. (3.5)

To maximize (3.5), the firm would like to set purchasing times as follows:

τ ∗(θ,1) = 1, if m1(θ) ≥ 0,

τ ∗(θ,1) = ∞, if m1(θ) < 0.

5. It is more common to use marginal revenue with respect to quantity, MRt (θ): = mt (θ)/ ft (θ). However, since
we will be adding demand across generations, summing demand curves horizontally, it is easier to work with marginal
revenue with respect to price. In any case, both mt (θ) and MRt (θ) have the same roots and are thus interchangeable in
pricing formulae.

6. A sufficient condition for period H to have higher demand than period L is that FH (θ) is larger than FL (θ) in
hazard order, F H (θ)/ fH (θ) ≥ F L (θ)/ fL (θ).

c© 2008 The Review of Economic Studies Limited
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That is, the firm would like positive marginal revenue consumers to purchase immediately
and the rest to never buy. If m1(θ) is increasing in θ , this optimal policy can be implemented by
setting

p∗
1 = m−1

1 (0),

p∗
t ≥ m−1

1 (0), if t ≥ 2.

Since the price is increasing, consumers buy in period 1 or never buy at all.

Example 2 (Discrimination between generations). Next, suppose the firm could tell the
different cohorts apart and set a price ps

t for generation s in time t. The firm would then imple-
ment Stokey’s solution for each cohort. That is,

ps
t = m−1

s (0), if t = s,

ps
t ≥ m−1

s (0), if t ≥ s +1.

Hence, if demand grows over time, m−1
t (0) ≥ m−1

t−1(0), the seller can simply charge the
myopic price, p∗

t = m−1
t (0), and need not discriminate.

Example 3 (Homogenous demand). Finally, suppose demand is identical in each period,
ft (θ) = f1(θ) (∀ t). The firm can implement the discriminatory optimum from Example 2 by
setting p∗

t = m−1
1 (0) (∀ t).

3.3. The cut-off approach

As suggested by Examples 1–3, rather than solving for prices directly, it is easier to solve for the
optimal purchasing rule and back-out prices. This approach works since prices {pt } only enter
into profits (3.4) via the purchasing rule τ ∗(θ, t)—a standard feature of quasi-linear mechanism
design problems. This is analogous to solving a standard monopoly model in quantities and using
the demand curve to derive prices.

Lemma 1. The earliest purchasing rule, τ ∗(θ, t), has the following properties:

(a) Existence. τ ∗(θ, t) exists.
(b) θ -monotonicity. τ ∗(θH , t) ≤ τ ∗(θL , t), for θH ≥ θL .
(c) Non-discrimination. If τ ∗(θ, tL) ≥ tH , then τ ∗(θ, tL) = τ ∗(θ, tH ), for tH ≥ tL .
(d) Right-continuity. {θ : τ ∗(θ, tL) ≤ tH } is closed, for tH ≥ tL .

Proof.

(a) The set of optimal purchasing rules is characterized by backwards induction. The minimal
element can be attained by using the rule: stop when current utility is weakly greater than
the continuation utility (Chow, Robbins and Siegmund, 1971, Theorem 4.2).

(b) ut (θ) has strictly decreasing differences in (θ,τ ), since δt < 1, and is (weakly) supermod-
ular in τ . Hence, every optimal selection is decreasing by Topkis (1998, Theorem 2.8.4).

(c) If τ ∗(θ, tL) ≥ tH , then the problems of agents (θ, tL) and (θ, tH ) are identical. Hence, the
earliest purchasing times coincide.

(d) Right continuity follows from the fact that ut (θ) is continuous in θ . ‖
c© 2008 The Review of Economic Studies Limited
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FIGURE 2

This figure shows a three-period example assuming θ∗
1 > θ∗

3 > θ∗
2 . Taking the cut-offs as given, it illustrates which

agents purchase in which periods

Lemma 1 implies that the optimal purchasing time τ ∗(θ, t) can be characterized by a se-
quence of cut-offs. The cut-off θ∗

t is the lowest value agent from generation t who purchases in
period t ,

θ∗
t : = min{θ :τ ∗(θ, t) = t}.

That is, consumers in the market in period t will buy if their valuation exceeds θ∗
t . For generation

tL ≤ tH , the updated cut-off, θ∗(tH ; tL), is the lowest value agent from generation tL who buys
by time tH ,

θ∗(tH ; tL): = min
tH ≥s≥tL

θ∗
s . (3.6)

If tH < tL , then set θ∗(tH ; tL) = ∞. Consumer θ from generation tL will then buy in period
tH if

θ ∈ [θ∗(tH ; tL),θ∗(tH −1; tL)).

A simple three-period example is shown in Figure 2.
We have shown that we can move from prices to cut-offs. The reverse is also true: prices

can be backed out from any sequence of cut-offs. First suppose T is finite. In the last period, an
agent with value θ∗

T is indifferent between buying and not, so the firm sets p∗
T = θ∗

T . In earlier
periods, an agent with value θ∗

t should be indifferent between buying in period t and waiting.
Hence, prices are determined by the following algorithm:7

�t (θ
∗
t − p∗

t ) = max
τ≥t+1

(θ∗
t − p∗

τ )�τ (3.7)

=
(
θ∗

t − p∗
τ(θ∗

t ,t+1)

)
�τ(θ∗

t ,t+1),

where τ(θ∗
t , t + 1) = min{τ ≥ t + 1 : θ∗

t ≥ θ∗
τ }. When T is infinite, there is no last period, but

equation (3.7) remains valid. One can then calculate prices by truncating the problem, calculating
prices for a finite T and letting T → ∞, as shown by Chow et al. (1971, Theorems 4.1 and 4.3).

The firm’s problem is thus to choose cut-offs {θ∗
t } to maximize profit (3.4).

4. OPTIMAL PRICING

This section presents the main results of the paper. Section 4.1 characterizes the optimal cut-
offs using a simple myopic algorithm. Section 4.2 provides an alternative characterization of the

7. If the cut-offs lie in (θ,θ), these prices are unique. An equivalent way to obtain prices is to equate (2.1) and
(3.1) under the optimal purchasing time τ∗(θ, t).
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optimal cut-offs that identifies which generations purchase in which periods. Finally, Section 4.3
shows that the optimal policy can be implemented by a time-consistent best-price provision.

4.1. General solution

Definition 1. Cumulative marginal revenue equals Mt (θ) := mt (θ) + min{Mt−1(θ),0},
where M1(θ) := m1(θ).

We make the following weak monotonicity (WM) assumption.

Assumption (WM). Mt (θ) is quasi-increasing (∀ t).8

The assumption that mt (θ) is quasi-increasing (i.e. that revenue from generation t is quasi-
concave in price) holds for most common distributions (e.g. normal, lognormal, exponential).
If mt (θ) is quasi-increasing and demand is increasing, in that m−1

t (0) ≥ M−1
t−1(0), then Mt (θ)

is automatically quasi-increasing. If mt (θ) is quasi-increasing and demand is decreasing, then,
broadly speaking, Mt (θ) is quasi-increasing if the demand reduction is not too great. For exam-
ple, with linear or semi-log demand, WM is satisfied if demand does not double between the
lowest and highest periods.9

Theorem 1. Under WM, the profit-maximizing cut-offs are given by θ∗
t = M−1

t (0).

Proof. Let �t be the profit from generation t , and �≥t be the profit from generations
{t, . . . ,T }. Denote the positive and negative components by M+

t (θ): = max{Mt (θ),0} and
M−

t (θ): = min{Mt (θ),0}. The proof will proceed by induction, starting with period t = 1.
Fix {τ(θ, t ′)} for t ′ ≥ 2, and consider the optimal choice of τ(θ,1). Notice that the non-

discrimination condition in Lemma 1 implies that τ(θ,1) ∈ {1,τ (θ,2)}. Splitting up the profit
equation (3.4), � = �1 +�≥2,

� =
θ∫

θ

[�τ(θ,1)M
+
1 (θ)+�τ(θ,1)M

−
1 (θ)]dθ +�≥2

≤
θ∫

θ

[�1M+
1 (θ)+�τ(θ,2)M

−
1 (θ)]dθ +�≥2.

The second line solves for the optimal choice of τ(θ,1), setting τ ∗(θ,1) = 1 if M1(θ) ≥ 0
and τ ∗(θ,1) = τ(θ,2) if M1(θ) < 0. This is independent of the value of τ(θ,2). If M1(θ) is
quasi-increasing, this purchasing rule can be implemented by setting θ∗

1 = M−1
1 (0).

Continuing by induction, consider period t . Suppose θ∗
s = M−1

s (0) for s < t . Fix {τ(θ, t ′)}
for t ′ > t , and consider the optimal choice of τ(θ, t). The non-discrimination condition in Lemma
1 implies that τ(θ, t) ∈ {t,τ (θ, t +1)}. Splitting the profit equation � = �≤t−1 +�t +�≥t+1,

8. A function M(θ) is (strictly) quasi-increasing if M(θL ) ≥ 0 �⇒ M(θH ) ≥ (>)0 for θH > θL . Define the root
of a quasi-increasing function by M−1(0): = sup{θ :Mt (θ) < 0}. If M(θ) < 0 (∀θ) then M−1(0): = θ . If M(θ) ≥ 0 (∀θ)
then M−1(0): = θ .

9. For linear demand, ft (θ) = 1 on [0,2bt ]. Marginal revenue, mt (θ) = 2(θ − bt ), is increasing on [0,2bt ],
so Mt (θ) is quasi-increasing if maxt bt ≤ 2mint bt . For semi-log demand, ft (θ) = exp(−θ/λt )/λt . Marginal revenue,
mt (θ) = exp(−θ/λt )(θ/λt −1), is increasing on [0,2λt ], so Mt (θ) is quasi-increasing if maxt λt ≤ 2mint λt . These two
examples were picked for their algebraic simplicity, but seem to be representative of many other distributions.
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� =
t−1∑
s=1

θ∫
θ

[�s M+
s (θ)]dθ +

θ∫
θ

[�τ(θ,t)M
+
t (θ)+�τ(θ,t)M

−
t (θ)]dθ +�≥t+1

≤
t−1∑
s=1

θ∫
θ

[�s M+
s (θ)]dθ +

θ∫
θ

[�t M
+
t (θ)+�τ(θ,t+1)M

−
t (θ)]dθ +�≥t+1.

The optimal choice of purchasing time is τ ∗(θ, t) = t if Mt (θ) ≥ 0 and τ ∗(θ, t) = τ(θ, t +1)
if Mt (θ) < 0. If Mt (θ) is quasi-increasing, this purchasing rule can be implemented by setting
θ∗

t = M−1
t (0). ‖

In the first period, the firm can either sell to agent θ and gain �1m1(θ) or postpone selling
to this agent and gain �tm1(θ) supposing they eventually sell in period t . Since �t < �1, the
firm should sell to the agent if and only if m1(θ) ≥ 0. In period 2, and every subsequent period,
the firm sums the marginal revenue of the new consumers and that of old agents who have yet
to buy. This cumulative marginal revenue is given by Mt (θ) = mt (θ)+ M−

1 (θ), whereupon the
firm sells to an agent with valuation θ if and only if their cumulative marginal revenue is positive,
Mt (θ) ≥ 0.

This algorithm is completely myopic: the optimal cut-off point at period t only depends
upon the consumers who have entered by time t . Consequently, the optimal cut-off at time t is
independent of both the future demand and the discount rate.10

4.2. Active generations

In the Introduction we said that the key part of the problem is to work out which generations
buy in which periods. At time tH , we will say that a generation tL is active if some members of
generation tL purchase in period tH . Theorem 2 characterizes the set of active generations and
uses this to provide an alternative derivation of the optimal cut-offs.

Definition 2. The upper active set is A(tH ) := {
tL ≤ tH : θ∗

tH ≤ θ∗(tH −1; tL)
}
.

Lemma 2. The upper active set has the following properties:

(a) A(t) = {a, . . . , t} for some a ≤ t .
(b) A(t) ⊃ A(t −1) or A(t) = {t}.

Proof. (a) t ∈ A(t) since M−1
t (0) ∈ [θ,θ ] < ∞. A(t) is connected since θ∗(tH − 1; tL) is

increasing in tL . (b) If t ′ ∈ A(t −1) then θ∗(t −1; t ′) = θ∗(t −1; t −1). Therefore, if {t −1} ∈ A(t)
then t ′ ∈ A(t). ‖

Lemma 2(a) says that the current generation is always active and that the set of active agents
is connected. Lemma 2(b) says that once two generations are pooled, they are never separated.
Define A(t): = {{a, . . . , t}:a ≤ t} as the collection of possible active sets at time t .

10. If WM fails, the optimal policy may no longer be myopic. To see this, suppose Mt (θL ) > 0 and Mt (θH ) < 0,
for θH > θL . The firm could then serve both (θL ,θH ) in period t or could serve neither type. This calculation depends
on whether these types would buy next period, and hence on future demand. Nevertheless, the result is quite robust: if
WM holds in periods {1, . . . , t}, then Theorem 1 will apply for the first t periods.
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Theorem 2. Suppose WM holds. Then, Mt (θ) is the lower envelope of {m A(θ):A ∈A(t)}
and the optimal cut-offs are given by

θ∗
t = max

A∈A(t)
m−1

A (0). (4.1)

When A = A(t), this maximum is obtained. Moreover, if Mt (θ) is strictly quasi-increasing
and continuous then A(t) is the maximal set in A(t) such that m−1

A (0) = θ∗
t .

Proof. Fix t and pick an arbitrary A ∈ A(t). That is, A = {a, . . . , t} for some a ≤ t . By
construction,

t∑
s=a

ms(θ) = Mt (θ)+
t−1∑
s=a

M+
s (θ)− M−

a−1(θ). (4.2)

Hence, Mt (θ) ≤ m A(θ). Cumulative marginal revenue can also be written as

Mt (θ) =
∑
s≤t

ms(θ)1θ<θ∗(t−1;s) (4.3)

so for any θ,∃A ∈A(t) such that Mt (θ) = m A(θ). That is, Mt (θ) = min{m A(θ) : A ∈A(t)}.
Since Mt (θ) ≤ m A(θ), if Mt (θ) ≥ 0 then m A(θ) ≥ 0,∀ A ∈ A(t). That is, M−1

t (0) ≥
maxA∈A(t) m−1

A (0) ≥ m−1
A(t)

(0). To obtain the reverse inequality, equation (4.3) and the definition

of A(t) imply that for small ε > 0, Mt (θ
∗
t −ε) = m A(t)(θ

∗
t −ε) < 0. Hence, M−1

t (0) ≤ m−1
A(t)

(0).

Putting this together, M−1
t (0) = m−1

A(t)
(0).

Fix t and define A∗(t) to be the maximal set such that m−1
A∗(t)(0) = M−1

t (0). Since m−1
A(t)

(0) =
M−1

t (0) it must be that A(t) ⊂ A∗(t). In order to obtain a contradiction, suppose A∗(t) = A(t)∪ B
for some non-empty set B, where b = max{t : t ∈ B}. Since b �∈ A(t), θ∗

b < θ∗
t . Mb(θ) lies be-

low mB(θ) and is strictly quasi-increasing so there is a small ε > 0 such that mB(θ∗
t − ε) ≥

Mb(θ
∗
t − ε) > ε. Moreover, Mt (θ) is continuous so ε can be chosen sufficiently small such that

m A(t)(θ
∗
t −ε) = Mt (θ

∗
t −ε) ∈ (−ε,0). Hence, m A∗(t)(θ∗

t −ε) = m A(t)(θ
∗
t −ε)+mB(θ∗

t −ε) > 0,
and m−1

A(t)
(0) > m−1

A∗(t)(0), contradicting the supposition that m−1
A∗(t)(0) = M−1

t (0). ‖

Theorem 2 can be interpreted in two steps. First, the optimal cut-offs are determined by
the marginal revenue of the active generations. This is as one would expect from the first-order
condition of the firm’s profit-maximizing problem, taking the set of active generations as exoge-
nous. Second, the set of active generations A(t) maximizes the average monopoly price m−1

A (0).
Intuitively, generation tL is only active in period tH if they come from a relatively high-demand
generation, and therefore pulls up the average monopoly price.

The following example shows that the optimal policy can be deceptively simple.

Example 4 (Linear demand). Suppose ft (θ) = 1 on [0,2bt ] where bt ∈ [10,20].11 Under
Theorem 1, the monopolist sells quantity bt each period (see Board, 2005, for a proof). This is the
same as the quantity sold by a firm who could completely discriminate between different cohorts.
This equivalence is analogous to the property that average quantity sold remains unaffected by
third-degree price discrimination when demand is linear (Tirole, 1988, p. 139).

11. The bounds on bt ensure that Mt (θ) is quasi-increasing.
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4.3. Best-price provisions and time-consistent pricing

Applying the revenue equivalence theorem, Proposition 1 shows that the optimal policy can be
implemented by a best-price provision. Moreover, the best-price provision is time consistent so
the firm need not commit to a sequence of prices at time 0, so long as they can promise to honour
the best-price agreement.12

A best-price provision works as follows. In each period, the firm announces a price pBP
t .

If a consumer buys in period t and the price then falls, they are then given a rebate equal
to the difference in the prices. In each subsequent period s, they are given a rebate equal to
min{pBP

t , . . . , pBP
s }− min{pBP

t , . . . , pBP
s−1}. In discounted terms, the consumer purchasing in pe-

riod t pays
T∑

s=t

(�s −�s+1)min{pBP
t , . . . , pBP

s }.

Proposition 1. Suppose WM holds. Then, the firm’s optimal policy under a best-price
provision is to set pBP

t = M−1
t (0), inducing the same allocation and profits as Theorem 1. This

policy is time consistent.

Proof. Under a best-price provision, an agent of type (θ, t) will purchase as soon as the
price falls below θ , so the set of implementable allocations is characterized by Lemma 1. Profits
are given by equation (3.4) so the optimal cut-offs are given by Theorem 1 and implemented by
setting pBP

t = M−1
t (0).

To prove time consistency, suppose that each period the firm chooses price pBP
t to maxi-

mize its future profits. Since agents purchase as soon as the price falls below their valuation, the
induced cut-off is given by θBP

t = pBP
t , and we can suppose the firm chooses the cut-offs θBP

t
directly. Denoting the updated cut-off by θBP(s; r): = mins′∈{r,...,s} θBP

s′ , receipts from generation
r in period s equal

�BP
r,s = θBP(s; r)Fr (θ

BP(s; r))− θBP(s −1; r)Fr (θ
BP(s −1; r))

=
θ∫

θ

1τ(θ,r)≤smr (θ)dθ −
θ∫

θ

1τ(θ,r)<smr (θ)dθ

=
θ∫

θ

1τ(θ,r)=smr (θ)dθ.

Summing over different generations, profits from period t onwards are given by

�BP≥t =
T∑

s=t

s∑
r=1

θ∫
θ

�s1τ(θ,r)=smr (θ)dθ. (4.4)

The firm chooses the cut-off, θBP
t , to maximize future profits (4.4). This choice also maxi-

mizes total profits, �, since the difference

12. Butz (1990) reaches a similar conclusion in a model with declining demand and resale. When demand is allowed
to increase, however, the presence of resale means that the best-price provision will generally not be time consistent.
Intuitively, when demand in period 2 is higher than in period 1, the firm can raise production in the second period above
the commitment solution without lowering p2 below p1, and therefore without triggering a rebate.
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�−�BP≥t =
t−1∑
s=1

s∑
r=1

θ∫
θ

�s1τ(θ,r)=smr (θ)dθ

is independent of θBP
t . ‖

5. APPLICATIONS

This section applies Theorems 1 and 2 to different paths of demand functions. We examine how
cut-offs change over time, the amount of delay, and the time path of prices.

Assumption (SM). mt (θ) is strictly increasing and continuous in θ , and m−1
t (0) ∈ (θ,θ)

(∀ t).

This section uses strong monotonicity (SM), which implies WM. This SM assumption
simplifies proofs and helps provide a cleaner characterization of demand cycles (Section 5.2).
Broadly speaking, if mt (θ) is quasi-increasing and demand variation is not too great, then SM
will hold for all relevant valuations. For linear and semi-log demand, this means that demand
cannot double between the lowest and the highest periods.13

Lemma 3. Suppose SM holds. Then,

(a) m−1
1 (0) > m−1

2 (0) implies that m−1
{1,2}(0) ∈ (m−1

2 (0),m−1
1 (0));

(b) m−1
1 (0) ≥ m−1

2 (0) implies that m−1
{1,2}(0) ∈ [m−1

2 (0),m−1
1 (0)].

Proof. Omitted. ‖

5.1. Monotone demand: fast rises and slow falls

Consider the two-period model, illustrated in Figure 3. In the first period, θ∗
1 = m−1

1 (0), indepen-
dent of second-period demand. In the second period, the cut-off depends on the demand path. If
demand is increasing, m−1

1 (0) ≤ m−1
2 (0), then M−1

2 (0) = m−1
2 (0). Intuitively, the firm can sell to

all generation 2 agents with positive marginal revenue without having to sell to any more gener-
ation 1 agents. Further lowering the cut-off is then undesirable since the firm will sell to negative
marginal revenue agents from generation 2 and, if the cut-off is sufficiently low, negative marginal
revenue agents from generation 1. Conversely, if demand is decreasing, m−1

1 (0) ≥ m−1
2 (0), then

M−1
2 (0) = m−1

≤2(0). If the firm were to sell to all the generation 2 agents with positive marginal
revenue, it must also sell to some generation 1 agents with negative marginal revenue who did
not buy in the first period. Thus, the firm increases the cut-off until the total marginal revenue
from both generations equals zero.

This two-period example also illustrates the asymmetry of the optimal price path. Suppose
demand is either high or low, mH (θ) or mL(θ). When demand increases, prices increase rapidly:
p∗

1 = m−1
L (0) and p∗

2 = m−1
H (0). Conversely, when demand decreases, prices decrease slowly:

13. See footnote 9. Versions of many of these results also extend to WM. This weaker assumption is sufficient
for the “if” part of the monotone demand characterization (Proposition 2). Similarly, when demand follows cycles,
cut-offs are stationary (Proposition 3) and, using Theorem 2, cut-offs and prices exceed the average demand price
(Proposition 4).
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FIGURE 3

This figure shows a two-period example created using the Weibull distribution. It shows cumulative marginal revenue,
equal to the lower envelope of [m{1,2}(θ),m2(θ)], when demand (A) increases over time and (B) decreases over time

p∗
1 = (1 − δ)m−1

H (0)+ δm−1
{L ,H}(0) ≤ m−1

H (0) and p∗
2 = m−1

{L ,H}(0) ≥ m−1
L (0). These results can

easily be extended to monotone demand paths lasting any number of periods.

Definition 3. Demand is increasing if m−1
t+1(0) ≥ m−1

t (0) (∀ t). Demand is weakly decreas-
ing if m−1≤t (0) ≥ m−1

t+1(0) (∀ t).

Proposition 2. Suppose SM holds. Optimal cut-offs are given by θ∗
t = m−1

t (0) (∀ t) if and
only if demand is increasing. Moreover, these cut-offs can be implemented by prices

p∗
t = m−1

t (0).

Optimal cut-offs are given by θ∗
t = m−1≤t (0) (∀ t) if and only if demand is weakly decreasing.

Moreover, these cut-offs can be implemented by prices

p∗
t =

T∑
s=t

(
�s

�t
− �s+1

�t

)
m−1≤s (0). (5.1)

Proof. We prove the result for the weakly decreasing demand case; the increasing de-
mand case is similar. First, suppose demand is weakly decreasing. In period 1, θ∗

1 = m−1
≤1(0).

Continuing by induction, suppose θ∗
s = m−1≤s (0) for s < t and consider period t . Mt (θ) = m≤t (θ)

on [θ,min{θ∗
1 , . . . ,θ∗

t−1}] = [θ,m−1
≤t−1(0)], using the induction hypothesis. Demand is weakly de-

creasing so Lemma 3 implies that m−1≤t (0) ≤ m−1
≤t−1(0) and hence M−1

t (0) = m−1≤t (0). Given these
cut-offs, equation (3.7) implies that prices obey the AR(1) equation (θ∗

t − p∗
t ) = (θ∗

t − p∗
t+1)δt+1,

yielding equation (5.1).
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Next, suppose demand is not weakly decreasing. That is, m−1
t (0) > m−1

≤t−1(0) for some t .
Theorem 2 means that θ∗

t ≥ m−1
t (0) > m−1≤t (0), using Lemma 3. ‖

Two price paths, mentioned in the Introduction, will serve as useful benchmarks.

Definition 4. The myopic price is pM
t := m−1

t (0). The average demand price is pA:=
limt→T m−1≤t (0), assuming the limit exists.14

The myopic price is the price charged by a monopolist who only takes the current generation
of consumers into account, ignoring the previous ones. The average demand price is charged by
a monopolist who faces average demand 1

T

∑T
t=1 Ft (θ) each period.

When demand is increasing, the price equals the myopic price in all periods. Conversely,
when demand is decreasing, the price starts off below the myopic price and ends up above
it. In fact, prices fall so slowly that they converge to the average demand price from above.
That is,

lim
t→T

[p∗
t − pA] = lim

t→T

T∑
s=t

[(
�s

�t
− �s+1

�t

)
(m−1≤s (0)−m−1≤t (0))

]
= 0

since every convergent sequence is Cauchy.

5.2. Demand cycles

This subsection examines the optimal price path when demand follows deterministic cycles. The
sequence of demand functions is described by K repetitions of {F1(θ), . . . , FT (θ)}, where we
denote period t of cycle k by t[k]. An example of this was seen in Figure 1 in the Introduction,
which also illustrates the lower active set, A(t), as defined below. One can see the pattern of sharp
price increases and slow declines; these intuitively follow from Proposition 2. The picture also
illustrates other regularities that occur after the first cycle:

1. Cut-offs and prices follow a stationary pattern.
2. Cut-offs and prices always lie above the average demand price.
3. The lowest cut-off and price occur in the last period of the slump.

Propositions 3–5 correspond to these results. First, it will useful to define the lower active set.

Definition 5. The lower active set is A(tH ) := {
tL ≤ tH : θ∗

tH < θ∗(tH −1; tL)
}
.

The lower active set will often look very similar to the upper active set but is particularly
useful in the analysis of demand cycles. Lemma 2 applies to the lower active set, as does a version
of Theorem 2.

Theorem 2′. Suppose SM holds. Then, the optimal cut-offs are given by

θ∗
t = max

A∈A(t)
m−1

A (0). (5.2)

When A = A(t), this maximum is obtained. Moreover, A(t) is the minimal set in A(t) such
that m−1

A (0) = θ∗
t .

14. Assume SM holds. The limit exists if demand is weakly decreasing, demand follows cycles, or T is finite.
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Proof. Equation (5.2) is a restatement of (4.1). Using (4.3) and SM, Mt (θ
∗
t ) = m A(t)

(θ∗
t ) = 0. By SM, this uniquely defines θ∗

t = m−1
A(t)(0).

Fix t and let A∗(t) be the minimal set such that m−1
A∗(t)(0) = θ∗

t . In order to attain a contradic-
tion, suppose A = A∗ ∪ B for some non-empty set B, where b = max{t :t ∈ B}. Since b ∈ A(t), we
have θ∗

b > θ∗
t and M−

b (θ∗
t ) < 0. Using equation (4.2), 0 = Mt (θ

∗
t ) ≤ m A∗(t)(θ∗

t )+ M−
b (θ∗

t ) < 0,
yielding a contradiction. ‖

Proposition 3. Suppose demand follows deterministic cycles and SM holds. Then
|A(t)| ≤ T . Hence, if k ≥ 2, the cycles are stationary, θ∗

t[k]
= θ∗

t[2]
.

Proof. Suppose |A(t)| > T . Define the set A such that A(t) = A ∪ B where B consists of
the union of {1, . . . ,T } sets and |A| ≤ T . Then m−1

A(t)(0) ≤ max{m−1
A (0),m−1

{1,...,T }(0)} by Lemma
3, contradicting the fact that A(t) is the smallest set to achieve the maximum in Theorem 2′. ‖

Proposition 3 means that the cut-offs will be the same for each cycle k ≥ 2. This substan-
tially simplifies analysis: when k ≥ 2, we can use modular arithmetic to write the collection of
possible active sets at time t as AT (t) = {{a, . . . , t} : a ∈ {1, . . . ,T }}. The cut-off and price are
minimized at time

t := min{argmint∈{1,...,T }{θ∗
t[k]

: k ≥ 2}}.
A consumer who does not buy in period t will never buy. Hence, the market effectively resets

at period t , enabling us to throw out all previous generations. This means that the starting position
of the cycle only matters for the first t periods, at which point the stationary cycles start.15

Prices are determined by equation (3.7). For cycles k ∈ {2, . . . , K −1}, the prices are station-
ary with boundary condition p∗

t = θ∗
t = m−1

{1,...,T }(0), using Proposition 4(a). For the final cycle,
where k = K and t > t , the relevant boundary condition is p∗

T = θ∗
T . Since there is not as much

scope for delay, prices in the last cycle may be higher than in previous cycles.

Proposition 4. Suppose demand follows cycles with k ≥ 2 and SM holds. Then,

(a) The lowest optimal cut-off equals the average demand price. Hence, agents buy later under
optimal pricing.

(b) The lowest optimal price equals the average demand price.
(c) When compared to average demand pricing, the optimal price path induces higher profits,

lower welfare for every generation, and lower utility for every type (θ, t).

Proof.

(a) If k ≥ 2 then {1, . . . ,T } ∈ A(t) and Theorem 2 implies that θ∗
t ≥ m−1

{1,...,T }(0). Equation
(4.2) implies

m{1,...,T }(θ∗
t ) = Mt [k]

(θ∗
t )+

t [k]−1∑
s=t [k−1]+1

M+
s (θ∗

t )− M−
t [k−1]

(θ∗
t ) = 0

using (1) the definition θ∗
t , (2) the fact that θ∗

s ≥ θ∗
t [k]

for s ∈ {t [k−1] + 1, . . . , t [k] − 1}, and

(3) θ∗
t [k]

≥ θ∗
t [k−1]

. Thus, θ∗
t = m−1

{1,...,T }(0) = pA
t .

15. Formally, for any t[1] > t [1],θ
∗
t[1]

= θ∗
t[2]

. To see this observe that A(t[2]) = {a[2], . . . , t[2]}, where a[2] > t [2].
Since {a[1], . . . , t[1]} ∈A(t[1]), Theorem 2 implies that θ∗

t[1]
≥ θ∗

t[2]
. Conversely,A(t[1]) ⊂A(t[2]), so θ∗

t[2]
≥ θ∗

t[1]
.
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(b) Using part (a), p∗
t = θ∗

t = pA
t .

(c) Profit is higher under the optimal scheme by revealed preference. The utility of any cus-
tomer (3.1) and welfare of any generation (3.3) are lower under the optimal scheme since
the cut-offs are higher. ‖

Cut-offs and prices are always higher than if the monopolist faced average demand, while
welfare and consumer surplus are always lower. That is, all consumers are made worse off by the
ability of the monopolist to discriminate between generations. Intuitively, during high-demand
periods, only high-demand generations are active and the price is high. However, during low-
demand periods, both high and low generations are active and the price is middling. By delaying,
the high-demand cohorts thus exert a negative externality on the low cohorts, raising prices.

With quasi-linear utility, the indirect utility function is convex in prices, suggesting that
price variation benefits consumers because of the option value. However, Proposition 4 shows
that when prices are endogenous, price variation may hurt all consumers. The result can also
be contrasted with the standard view that the welfare effect of third-degree price discrimination
is indeterminate (e.g. Tirole, 1988, p. 137). Inter- and intratemporal price discrimination clearly
have quite different properties.

Define a cycle as simple if m−1
t (0)− m−1

t−1(0) is nonzero and has at most two changes of
sign, where m0(θ): = mT (θ). That is, each cycle has one “boom” and one “slump”.

Proposition 5. Suppose demand follows cycles with k ≥ 2 and SM holds. Then t obeys

m−1
t (0) ≤ m−1

{1,...,T }(0) ≤ m−1
t+1(0). (5.3)

When the cycle is simple, equation (5.3) uniquely defines t.

Proof. First, Proposition 4(a) and Theorem 2 imply m−1
{1,...,T }(0) = θ∗

t ≥ m−1
t (0). Second,

by the definition of t , A(t + 1) = {t + 1}. Hence, Theorem 2′ implies that m−1
t+1(0) = θ∗

t+1 ≥
m−1

{1,...,T }(0). ‖

In a simple cycle, prices are minimized in the last period of the slump, just before demand
returns to its long-run average. In literary terms: The darkest hour is just before dawn.

6. STOCHASTIC DEMAND

In this section, we extend the results of Section 4 to stochastic demand and discounting. We then
apply these results to i.i.d. demand draws. The model is as follows.

Information. Demand and the discount rate are allowed to be uncertain, depending on the
state of the world ω ∈ 	. The information possessed by consumers and the firm is described by
a filtered space (	,F,{Ft }, Q), where F are the measurable sets, Ft is the information partition
at time t , which grows finer over time, and Q is the probability measure. The discount rate δt and
incoming demand ft (θ) are Ft adapted, so consumers and the firm know δt and ft (θ) at time t .16

Consumers’ problem. A consumer of type (θ, t) faces a sequence of Ft -adapted prices
{pt }. They then have the problem of choosing a purchasing time τ(θ, t) : 	 → {t, . . . ,T,∞} to
maximize expected utility,

16. Note, δt is Ft adapted if {ω : δt ≤ x} ∈Ft for all x ∈ (0,1).
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ut (θ) = sup
τ

E[(θ − pτ )�τ ], (6.1)

where “E” is the expectation over 	. The purchasing time is a random variable taking values in
{t, . . . ,T,∞}, where the decision to buy at time s depends on information available at time s, that
is, {ω : τ(θ, t) ≤ s} ∈ Fs (∀s). Again, let τ ∗(θ, t) be the earliest solution to this problem.

Firm’s problem. The firm chooses Ft -adapted prices {pt } to maximize profit,

� = E

⎡
⎢⎣ T∑

t=1

θ∫
θ

�τ∗(θ,t) pτ∗(θ,t)d Ft

⎤
⎥⎦

where τ ∗(θ, t) maximizes the consumer’s utility (6.1).

6.1. Optimal pricing

We first analyse the consumer’s problem, as in Section 3.3. The earliest purchasing rule exists
and is unique up to its equivalence class (Klass, 1973, Theorem 6). As in Lemma 1, there exists
a version of this optimal purchasing time that obeys “θ -monotonicity” and “non-discrimination”,
and can therefore be characterized by a sequence of Ft -adapted cut-offs, {θ∗

t }.
Assuming that Mt (θ) is quasi-increasing on the realized demand path, the optimal cut-offs

are characterized by Theorems 1 and 2 (the proofs immediately extend). The myopic nature
of the optimal policy means that uncertainty about future demand has no effect on the optimal
allocation. This implies, for example, that if realized demand is monotone, then the optimal
allocations are characterized by Proposition 2.

Given a set of cut-offs, prices can then be derived by backwards induction:

�t (θ
∗
t − p∗

t ) = max
τ≥t+1

E[(θ∗
t − p∗

τ )�τ |Ft ].

While cut-offs only depend on realized demand, prices depend on the cut-offs in all future
states and thus on all possible demand realizations.17

6.2. i.i.d. demand

To illustrate how to apply the above results, suppose incoming cohorts are i.i.d. Each period,
demand is drawn from {mx (θ)}x with probability measure µ(x) and support x ∈ [0,1], where
higher indices imply higher demand: m−1

xH
(0) ≥ m−1

xL
(0), for xH ≥ xL . Also suppose that SM

holds (∀ x).
In this setting, we can define the average demand price by pA: = [∫

mx (θ)dµ(x)
]−1

(0).
This is the optimal strategy for a monopolist who must charge a constant price. Example 5
explicitly derives the optimal price schedule in a two-period model.

17. We have assumed that consumers and the firm possess the same information about future demand. However,
the results are quite robust: due to the myopic nature of the optimal policy, the firm would still like to implement the
cut-offs in Theorem 1 even if consumers have different information. If the firm is more informed, these cut-offs can be
implemented by prices that are adapted to the consumers’ information sets. If the firm is less informed, then there may be
no prices adapted to the firm’s information set that implement the optimal cut-offs. However, in this case, the firm should
be able to extract consumers’ information by playing off different agents against each other.
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Example 5 (T = 2 with i.i.d. demand). Denote the demand in the first and second period
by m1(θ) = mx1(θ) and m2(θ) = mx2(θ), respectively, and suppose the discount rate is constant.
Theorem 2 implies that θ∗

1 = m−1
x1

(0) and θ∗
2 = max

{
m−1

{x1,x2}(0),m−1
x2

(0)
}
. The second-period

price is p∗
2 = θ∗

2 , while the initial price is given by

p∗
1 =

⎛
⎝1− δ

x1∫
0

dµ(x)

⎞
⎠m−1

x1
(0)+ δ

x1∫
0

m−1
{x1,x}(0)dµ(x).

If demand of the first generation is low, then demand is likely to increase and p∗
1 is deter-

mined by the first-period demand, m−1
x1

(0). If demand of the first generation is high, then demand
is likely to decrease and p∗

1 is determined by the pooled demand, m−1
{x1,x2}(0). The extreme cases

when x1 ∈ {0,1} are directly analogous to the monotone demand results in Proposition 2. The
general principle is that p∗

1 is affected by a state of the world if and only if the first generation is
active in that state.

When there are more periods, it becomes harder to solve the optimal stopping problem
required to back-out prices. However, one can make comparisons as the number of periods grows
large. This next result is the stochastic analogue to Proposition 4.

Proposition 6. Suppose demand is i.i.d., {mx (θ)}x are uniformly bounded, and SM holds
(∀ x). Then liminft→∞ θ∗

t = pA and liminft→∞ p∗
t = pA almost surely.

Proof. First, we show that liminft→∞ θ∗
t ≥ pA almost surely. Define gt (θ) = 1

t

∑t
s=1 ms(θ)

and g(θ) = ∫
mx (θ)dµ(x). The strong law of large numbers implies that gt (θ)

a.s.→ g(θ) point-
wise ∀θ ∈ [θ,θ ]. The collection {mx (θ)}x is uniformly bounded and increasing so the Glivenko–
Cantelli Theorem (Davidson, 1994, Theorem 21.5) states that supθ |gt (θ)− g(θ)| a.s.→ 0. Since
g(θ) is strictly increasing, m−1

{1,...,t}(0) = g−1
t (0)

a.s.→ g−1(0) = pA. Finally, {1, . . . , t} ∈ A(t) so
Theorem 2 implies that liminft→∞ θ∗

t ≥ pA a.s.
Next, we show that liminft→∞ θ∗

t ≤ pA almost surely. Suppose the cumulative marginal
revenue evaluated at pA exceeds zero at times {tn}, so that t0: = 0 and tn : = min{m > tn−1:
Mt (pA) ≥ 0}. Similarly, let s0: = 0 and sn : = min{m > tn−1:m{1,...,t}(pA) ≥ 0}. Since m{1,...,t}(pA)
is a random walk with mean zero, Pr(s1 < ∞) = 1 (Durrett, 1995, Theorems 3.2.2 and 3.2.7).
By definition of Mt (·), t1 = s1 and hence Pr(t1 < ∞) = 1. Thus, Pr(tn < ∞) = Pr(t1 < ∞)n = 1
for all n, and Pr(θ∗

t ≤ pA i.o.) = Pr(Mt (pA) ≥ 0 i.o.) = 1, as required. Putting this together,
Pr(liminfθ∗

t = pA) = 1 and hence Pr(liminf p∗
t = pA) = 1. ‖

In the long run, the price should be at least as high as the average demand price. Moreover,
the price will often be strictly higher (e.g. when m−1

t (0) > pA). This means that prices will tend
to increase when there is more demand variation or when the firm has more information about
incoming demand.

7. RESALE AND RENTING

So far it has been assumed that there is no resale. This is reasonable if the good is a one-time
experience or is associated with high transaction costs. This section analyses the opposite case:
perfect resale.

Each period t , the consumer obtains discounted rental utility (�t − �t+1)θ , where
�T+1 = 0. As before, demand ft (θ) enters the market each period, where the induced marginal
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revenue function satisfies SM. We also suppose ft (θ) and �t are deterministic, although the
results immediately extend to the stochastic case. Consider two alternative policies:

1. The firm rents the good at price Rt each period.
2. The firm sells the good, committing to a price schedule {pR

t }, where perfect resale is pos-
sible and the seller is allowed to buy goods back.

Coase (1972) and Bulow (1982) show that these policies induce the same profits and utilities.

Theorem 3. Suppose SM holds and the monopolist either rents the good or they sell the
good and allow resale. Then the profit-maximizing cut-offs are given by θ R

t = m−1≤t (0).18

Proof. Both policies induce allocations of the form {θ : θ ≥ θ R
t } for some θ R

t ∈ [θ,θ ].
When renting (policy 1), the time-t profit is given by

θ∫
θ

(�t −�t+1)1θ≥θ R
t

m≤t (θ)dθ.

The firm would therefore like to allocate the good to {θ : m≤t (θ) ≥ 0}. Under SM, this is
implemented by setting θ R

t = m−1≤t (0). When the firm commits to a sequence of sale prices and
allows resale (policy 2), the approach in Section 3.1 can be used to derive the total profit,

�R =
T∑

t=1

θ∫
θ

(�t −�t+1)1θ≥θ R
t

m≤t (θ)dθ.

Again, the optimal policy is to set θ R
t = m−1≤t (0). ‖

The rental price under the optimal strategy is Rt = (1−δt+1)m
−1≤t (0). The optimal price path

with resale, pR
t , can be derived from the AR(1) system

(θ R
t − pR

t ) = (θ R
t − pR

t+1)δt+1.

The resale price is thus the geometric sum of future rental values, as given by equation
(5.1). Hence, the resale price converges to the average demand price, pA: = limt→T m−1≤t (0), if
this limit exists. Intuitively, after enough time, the resale market grows very large and the firm
loses the ability to discriminate.

7.1. The effect of resale

Figure 4 can be used to assess the effect of resale. With resale, troughs and peaks are treated
symmetrically, and the cycles decrease in amplitude as the size of the resale market engulfs new
production. In the limit, the resale price converges to the average demand price. Without resale,
price cycles are highly asymmetric and are stationary. The reason for this difference is that with
resale, a low-valuation consumer may buy if they anticipate the price to rise, so all previous
generations remain active. Without resale, only the high-demand generations remain active.

Proposition 7. Suppose SM holds.

18. When SM fails, the firm should simply iron m≤t (θ) (∀ t).
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FIGURE 4

This figure shows how resale affects prices and allocations when demand follows cycles. It assumes that valuations
have measure 1 on [0,bt ], bt ∈ [20,30], and the discount factor is δ = 0·9

(a) Cut-offs and profits are lower with resale than without resale.
(b) Cut-offs and profits are unaffected by resale if and only if demand is weakly decreasing.

Proof.

(a) Since {1, . . . , t} ∈ A(t), θ R
t ≤ θ∗

t by Theorem 2. Using Theorem 1, profits without resale
are

� =
θ∫

θ

T∑
s=1

�s M+
s (θ)dθ =

θ∫
θ

T∑
t=1

(�t −�t+1)

t∑
s=1

M+
s (θ)dθ

noting that �s = ∑T
t=s(�t − �t+1) and changing the order of summation. Profits with

resale are

�R =
θ∫

θ

T∑
t=1

(�t −�t+1)m
+≤t (θ)dθ

=
θ∫

θ

T∑
t=1

(�t −�t+1)

[
max

{
0, Mt (θ)+

t−1∑
s=1

M+
s (θ)

}]
dθ
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≤
θ∫

θ

T∑
t=1

(�t −�t+1)

[
max{0, Mt (θ)}+

t−1∑
s=1

max{0, M+
s (θ)}

]
dθ

=
θ∫

θ

T∑
t=1

(�t −�t+1)

[
t∑

s=1

M+
s (θ)

]
dθ = �,

where the second line uses equation (4.2) and the third uses Jensen’s inequality.
(b) When demand is weakly decreasing, allocations and profits are identical, by Proposition

2. When demand is not weakly decreasing, there exists a t such that m−1
t (0) > m−1

≤t−1(0).
Theorem 2 means that M−1

t (0) = θ∗
t ≥ m−1

t (0) > m−1≤t (0), using Lemma 3. Thus, Mt (θ) <

0 and m≤t (θ) ≥ 0 for θ ∈ [m−1≤t (0), M−1
t (0)) and the inequality in (a) is strict. ‖

With resale, Coase (1972) and Bulow (1982) argue that renting achieves the same profits
as selling, as shown in Theorem 3. Without resale, Proposition 7 implies that selling strictly
outperforms renting, unless demand is weakly decreasing. Consequently, when there is demand
variation, the firm has an incentive to shut down any secondary market.

From a welfare perspective, the effect of resale is generally ambiguous. However, Example
6 shows that, with linear demand, resale improves welfare.

Example 6 (Linear demand). Suppose ft (θ) = 1 on [0,2bt ], where bt ∈ [10,20]. With
resale, the optimal quantity sold in period t is bt , which is the same as without resale (Example
4). Resale increases allocative efficiency and hence welfare (see Board, 2005, for a proof).

With linear demand curves, resale increases welfare, reduces profits, and therefore increases
consumer surplus. Yet it is not the case that all consumers are better off. To see this, consider a
two-period model with increasing demand. The first (low-demand) cohort prefers no resale since
they then avoid being pooled with the second (high-demand) cohort. For the same reason, the sec-
ond generation prefers resale. However, if demand follows cycles, as in Section 5.2, all consumers
will prefer resale, if they are born sufficiently late. With resale, prices converge to the average
demand price; without resale, prices always exceed the average demand price (Proposition 4).

8. CONCLUSION

This paper has studied a durable-goods monopolist facing fluctuations in incoming demand. Such
fluctuations occur in many markets. When launching a new product, demand is uncertain, with
the tastes of laggards unlike those of early adopters. With seasonal goods, the preferences of
transitory customers are different from those of repeat buyers. And over the longer term, demand
changes as a function of demographics and inter-generational tastes.

In this paper, we derived a technique to solve the firm’s two-dimensional mechanism design
problem, characterizing the optimal allocations by a simple myopic algorithm. We then used this
solution to examine how different demand paths are propagated by the firm’s pricing strategy.
When new demand grows stronger, the price rises quickly, unhindered by the presence of old
consumers. In contrast, when new demand becomes weaker, the price falls slowly as consumers
delay their purchases. This asymmetry between rises and falls leads to an increase in the price
level, reducing welfare below that under average demand pricing.

The model has made a number of simplifying assumptions, abstracting from other aspects of
the firm’s decision problem. First, we assumed that demand is exogenously given. In practice, the
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arrival of new customers can be affected by marketing and the timing of new product launches.
Second, while we allowed the firm to learn about the process-generating demand, we assumed
that it always knows current demand. This excluded the possibility that the firm may learn about
demand through its pricing policy. Third, we assumed that all consumers are equally good at
arbitraging price fluctuations. In general, one would like to design pricing policies that perform
well when some customers are less able to time their purchases. Hopefully, future research will
address some of these issues.
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