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Abstract

This paper solves for the profit maximising strategy of a durable–goods monopolist when
incoming demand varies over time. Each period, additional consumers enter the market;
these consumers can then choose whether and when to purchase. We first characterise
the consumer’s utility maximisation problem and, under a monotonicity condition, show
the profit maximising allocation can be solved through a myopic algorithm, which has an
intuitive marginal revenue interpretation. Consumers’ ability to delay creates an asymmetry
in the optimal price path, which exhibits fast increases and slow declines. This asymmetry
pushes the price level above that charged by a firm facing the average level of demand.
Applications of this framework include deterministic demand cycles, one–off shocks and IID
demand draws. The optimal policy outperforms renting and can be implemented by a time
consistent best–price provision.

1 Introduction

In her classic 1979 paper, Nancy Stokey asks whether a firm that faces a fixed set of consumers
can use time to discriminate between them. By lowering its price over time, the firm can increase
its sales to low valuation consumers. Such a strategy, however, will lead some high valuation
consumers to postpone their purchases. Stokey concludes that the profit maximising strategy
is to forgo the opportunity to discriminate, setting the price equal to the static monopoly price
and holding it there forever. Sales only occur in the first period and no consumer ever delays.
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Relaxing the assumption that demand is given at time zero and never refreshed, Conlisk,
Gerstner, and Sobel (1984) and Sobel (1991) allow a homogenous set of consumers to enter
the market each period. They show that, once again, the profit maximising strategy is to set
the price equal to the static monopoly price. On the equilibrium path, there are sales in each
period, but no consumer ever delays.

The purpose of the current paper is to ask: what happens when incoming demand varies
over time? We explore how time can be used to discriminate between different generations,
how prices will vary over time, and how many consumers will delay on the equilibrium path.

Variation in demand arises naturally in many markets. For example, each September,
thousands of students return to universities and colleges across Canada. Canadian Tire, a large
retailer, responds to this influx of new consumers by holding a back–to–school sale, reducing
prices on furniture, stationary and kitchen utensils. While the price reduction helps increase
profits from price–sensitive students, it also induces consumers who would have bought in July
and August to delay their purchases. When choosing their September price, Canadian Tire must
therefore trade off these two effects. Anticipating the back–to–school sale, Canadian Tire must
also consider how to alter prices in August in order to mitigate consumer delay. Furthermore,
the firm must take into account the fact that any reduction in the August price will lead even
more July consumers to postpone their purchases.

Demand for a product may change over its life cycle. The Rogers–Bass “innovation adop-
tion curve” classifies the types of consumers who adopt a new product at different stages of
the diffusion process. For example, innovators, the first group to adopt, are described as “ven-
turesome and daring” (Bass (1969, p. 216)). This suggests that consumers who considered
purchasing Sony’s PS2 when it launched in 2000 have different demand characteristics from
those consumers entering the market five years later. Demand may also be uncertain over time.
When a record company releases a new CD, it may capture a mainstream audience (with elastic
demand) or just appeal to the artist’s core fans (with inelastic demand).

Allowing different generations to have different demand functions has the potential to sig-
nificantly complicate the analysis of the problem. If Canadian Tire charges a very low price in
September, then consumers in July and August will delay their consumption. From the profit
maximisation problem, one can then derive optimal prices for July, August and September.
Given these optimal prices, one must then verify that some consumers from July and August
do indeed delay their purchases. Of course, we could equally well have initially assumed that
the September price will only be low enough so that consumers born in August, but not those
born in July, will delay. Since each generation has a different demand function, this will lead to
a different set of optimal prices. One can then compare these cases and pick the one that max-
imises profits. One can also see that, in general, this approach is very unwieldy, exemplifying
the problem of working in prices. In addition, this illustrates that when demand is changing
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over time, the most challenging part of the problem is to identify which generations purchase
in which periods.

Rather than working in prices, this paper will solve the problem by working in quantity
space. We first analyse each consumer’s purchase decision as an optimal stopping problem.
Using this formulation, the consumers’ purchasing rule is characterised by a sequence of cutoffs:
at any time t, a consumer purchases if their valuation lies above the time–t cutoff. We then
use mechanism design to eliminate prices and describe the firm’s profit as a function of these
cutoffs. This transformation allows us to reduce the firm’s problem to choosing the sequence
of cutoffs to maximise profit.

Under a monotonicity condition on marginal revenue, the profit–maximising cutoffs are
characterised by a myopic algorithm, where the allocation at time t depends only upon the
consumers who have entered the market up to time t. Consumers are forward–looking and
prices depend upon the sequence of future demand; the optimal allocations, however, only
depend upon past demand. The myopic nature of this algorithm enables us to analyse any
stochastic sequence of demand functions: monotone demand paths, demand cycles, permanent
or transitory demand shocks, IID demand draws, and so on. The optimal prices can then be
derived from the consumers’ utility maximisation problem.

The optimal myopic algorithm has an intuitive interpretation: The incoming demand curve
in any period t can be associated with a marginal revenue curve, where marginal revenue is
with respect to price, not quantity. In the first round, the firm sells the good to consumers with
positive marginal revenue (net of costs). In each period thereafter, the firm adds the marginal
revenue of the old consumers who have yet to buy to the marginal revenue of the new agents,
forming a cumulative marginal revenue function. The firm then sells the good to agents with
positive cumulative marginal revenue.

Consumers’ ability to delay induces an asymmetry in the optimal price path. When demand
grows stronger over time, in that valuations tend to rise, the firm will want to increase their
price. Agents then have no incentive to delay and the firm can discriminate between the different
generations, charging the monopoly price against the incoming generation—the myopic price.

When demand weakens over time, in that valuations tend to fall, the firm will want to
decrease their price over time. Charging the myopic price, however, will now lead to falling
prices, causing some consumers to delay their purchases. Anticipating this delay, the firm slows
the rate at which prices fall. The price path is flattened so much that prices always stay above
the price chosen by a firm who pools all generations together and prices against the average
level of demand—the average–demand price.

The contrast between increases and decreases in demand is stark. If there is a permanent
and unanticipated increase in demand, the price quickly jumps up to the new higher monopoly
price. However, if demand falls, the price will jump down a little and slowly fall towards the
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lower monopoly price over time.
This asymmetry between demand increases and decreases crucially affects the firm’s optimal

pricing policy. When demand follows stationary cycles, it leads to sharp price increases and
gentle declines. This is shown in Figure 1, where the lower panel describes which generations
purchase in which periods.

During the first quarter of the cycle, as demand rises from its average level to the peak of
the boom, the price rises quickly. For the other three–quarters of the cycle, as demand falls and
then returns to its average position, the price slowly falls. These price cycles are stationary,
showing no decline in amplitude no matter how long the market has existed. The price is
minimised not in the period of lowest demand, but in the last period of the slump, just before
demand returns to its average position. The asymmetry between increases and decreases in
demand also raises the price level: price always exceeds the average–demand price. This means
introducing variation in demand leads to an increase in all prices. In other words, when the
firm has more information about demand cycles, all consumers are made worse off and social
welfare is reduced.

The basic model makes two assumptions of note. First, there is no resale. There are many
goods for which this is the right assumption: one–time experiences, (e.g. a trip to Disneyland),
intermediate products (e.g. aluminium), regulated markets (e.g. plutonium), potential lemons
(e.g. computers), goods with high transactions costs (e.g. fridges) or those with emotional
attachment (e.g. diamonds). However such an assumption is not innocuous. With perfect
resale, price variations decrease in amplitude as the market gets older; without resale, the
market fluctuations never abate. With resale, the price responds symmetrically to changes in
demand; without resale, price movements are highly asymmetric. Introducing resale has no
effect on allocations if and only if new demand falls over time; otherwise the presence of resale
lowers the monopolist’s profits. Since renting is identical to commitment pricing with resale,
renting attains maximal profits if and only if demand is declining.

Second, it is assumed that the monopolist can perfectly commit to a sequence of prices.
With homogenous demand and no commitment, there are many equilibria ranging from the
those which are very bad for the firm to others which are close to the full–commitment outcome,
as examined by Conlisk, Gerstner, and Sobel (1984) and Sobel (1991). This paper should thus
be viewed as establishing the best possible outcome for the firm. This seems particularly
reasonable if the firm is concerned about its reputation across several durable–goods markets.
In addition, there are contractual solutions to the commitment problem. We extend the result of
Butz (1990) by showing that a best–price provision can implement the optimal scheme without
pre–commitment. This time–consistency result, however, depends upon the absence of resale.
With resale, we show that a best–price provision may not be time–consistent.

The precursors of this paper are the models of Stokey (1979), Conlisk, Gerstner, and Sobel
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(1984) and Sobel (1991), as examined in Section 3.2. Other authors introduce dynamics into
durable goods models in different ways. Conlisk (1984), Laffont and Tirole (1996), Biehl (2001)
and Board (2004) have stochastic valuations, cost variations have been analysed by Stokey
(1979) and Levhari and Pindyck (1981), while Dudine, Hendel, and Lizzeri (2005) consider
storable goods. When consumers and the firm have different discount rates, the optimal price
may fall over time as examined by Sobel and Takahashi (1983), Landsberger and Meilijson
(1985) and Wang (2001). There is also a line of work where the good depreciates over time and
consumers are allowed to scrap the product, such as Rust (1985, 1986), Waldman (1996) and
Hendel and Lizzeri (1999).

The current paper solves for the optimal price sequence of a durable–goods monopolist,
but one can also look at more general mechanisms. For example, Segal (2003) shows that,
without the entry of new generations, the optimal mechanism in a durable goods model can be
implemented by a price mechanism if marginal costs are constant or there are large numbers of
consumers. Both of these assumptions are satisfied in our model.

The paper is organised as follows: Section 2 describes the model. Section 3 derives the
firm’s optimal control problem which is solved in Section 4. Section 5 discusses applications
including monotone demand paths, one–off shocks, demand cycles and IID demand. Section 6
examines the effect of information structures and discount rates. Section 7 analyses resale and
renting, while Section 8 concludes. Omitted proofs are contained in the Appendix.

2 Model

Time is discrete, t ∈ {1, . . . , T}, where we allow T = ∞. Demand and the discount rate are
allowed to be uncertain, depending on the state of the world ω ∈ Ω. The information possessed
by consumers and the firm is described by a filtered space (Ω,F , {Ft}, Q), where F are the
measurable sets, Ft is the information partition at time t, which grows finer over time, and Q

is the probability measure. The common discount rate, δt ∈ [0, δ] ⊂ [0, 1), is Ft–adapted, i.e.
{ω : δt ≤ x} ∈ Ft for all x ∈ (0, 1). This means that at time t, consumers and the firm know
δt. Let the discounting up to time t be ∆t =

∏t
s=1 δs, where ∆t := 0 for t ≥ T + 1.

A consumer with valuation θ ∈ [θ, θ] who purchases at time t ∈ {1, . . . , T,∞} and price pt

obtains utility
(θ − pt)∆t

A consumer always has the option not to purchase, in which case they have zero utility and are
said to buy at time t = ∞.

Each period, consumers of measure ft(θ) enter the market. Let Ft(θ) be the absolutely
continuous distribution function, where Ft(θ) is the total number of agents (and not necessarily
equal to one), and denote the survival function by F t(θ) := Ft(θ)− Ft(θ). The time–t demand
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function, ft(θ), is Ft–adapted, so while consumers and the firm may not know future demand,
they do know current demand. This assumption is trivially satisfied if demand is deterministic.

Consider a consumer of type (θ, t) with valuation θ who enters in period t. Given a sequence
of Ft–adapted prices, {pt}, they have the problem of choosing a purchasing time τ(θ, t) : Ω →
{t, . . . , T,∞} to maximise expected utility,

ut(θ) = sup
τ
E [(θ − pτ )∆τ ] (2.1)

where “E” is the expectation over Ω. The purchasing time is a random variable taking values
in {t, . . . , T,∞}, where the decision to buy at time s depends on information available at time
s, i.e. {ω : τ(θ, t) ≤ s} ∈ Fs (∀s). Let τ∗(θ, t) be the earliest solution to this problem, which
exists by Lemma 1 in Section 3.3.

The firm’s problem is to choose Ft–adapted prices {pt} to maximise profit. Assume marginal
cost is constant and normalise it to zero. This yields expected profit

Π = E
[

T∑

t=1

∫ θ

θ
∆τ∗(θ,t)pτ∗(θ,t) dFt

]
(2.2)

where τ∗(θ, t) maximises the consumer’s utility (2.1).

3 Solution Technique

3.1 Firm’s Problem

Consumers choose their purchase times optimally, so we can apply the envelope theorem to the
utility maximisation problem (2.1). The space of stopping times is complicated so we will use
the generalised envelope theorem of Milgrom and Segal (2002).1 This yields utility,

ut(θ) = E
[∫ θ

θ
∆τ∗(x,t) dx + ut(θ)

]
(3.1)

Since the seller will always choose prices pt ≥ θ (∀t), it will be the case that ut(θ) = 0 (∀t).
Integrating by parts, consumer surplus from generation t is

∫ θ

θ
ut(θ) dFt = E

[∫ θ

θ
∆τ∗(θ,t)F t(θ) dθ

]
(3.2)

1This envelope theorem requires that the set of optimal purchasing times is nonempty, which is true by Lemma
1 in Section 3.3.
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Expected welfare from generation t is defined by

Wt := E
[∫ θ

θ
∆τ∗(θ,t)θ dFt

]
(3.3)

with total welfare W =
∑

t Wt. Since costs are zero, the welfare maximising pricing scheme
is to set all prices equal to zero. Expected profit equals welfare (3.3) minus consumer surplus
(3.2),

Π = E
[

T∑

t=1

∫ θ

θ

[
∆τ∗(θ,t)θ − ut(θ)

]
dFt

]

= E
[

T∑

t=1

∫ θ

θ
∆τ∗(θ,t)mt(θ) dθ

]
(3.4)

where mt(θ) := θft(θ)− F t(θ) is marginal revenue with respect to price.2

Profit is thus the discounted sum of marginal revenues. Notice how the marginal revenue
gained from agent (θ, t) is the same no matter when they choose to buy. That is, an agent’s
marginal revenue is determined when they are born, and sticks to them forever.

The firm’s problem is to choose prices {pt} to maximise profit (3.4) subject to consumers
choosing their purchasing time τ∗(θ, t) to maximise utility (2.1).

3.2 Special Cases

We now consider three special cases that will serve as useful benchmarks for what follows.
Example 1 comes from Stokey (1979), where there is a single demand curve of consumers and
entry never occurs. Example 2 supposes the monopolist can set a different price schedule for
each generation. Example 3 is the homogenous entry model of Conlisk, Gerstner, and Sobel
(1984).

Example 1 (Single Generation). If ft(θ) = 0 for t ≥ 2, then profit (3.4) reduces to

Π =
∫ θ

θ
∆τ∗(θ,t)m1(θ) dθ (3.5)

2It is more common to use marginal revenue with respect to quantity, MRt(θ) := mt(θ)/ft(θ). However,
since we will be adding demand across generations, summing demand curves horizontally, it is easier to work
with marginal revenue with respect to price. In any case, both mt(θ) and MRt(θ) have the same roots, and are
thus interchangeable in pricing formulae.
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To maximise (3.5) the firm would like to set purchasing times as follows:

τ∗(θ, 1) = 1 if m1(θ) ≥ 0
τ∗(θ, 1) = ∞ if m1(θ) < 0

That is, the firm would like positive marginal revenue consumers to purchase immediately, and
the rest to never buy. If m1(θ) is increasing this optimal policy can be implemented by setting

p∗1 = m−1
1 (0)

p∗t ≥ m−1
1 (0) if t ≥ 2

Since the price is increasing, consumers buy in period 1 or never buy at all. A consumer then
buys in period 1 if and only if θ ≥ m−1

1 (0), which is the same as m1(θ) ≥ 0. 4

Example 2 (Discrimination between Generations). Next, suppose the firm could tell
the different cohorts apart and set a price ps

t for generation s in time t. The firm would then
implement Stokey’s solution for each cohort. That is,

ps
t = m−1

s (0) if t = s

ps
t ≥ m−1

s (0) if t ≥ s + 1

Hence if the myopic monopoly price grows over time, m−1
t (0) ≥ m−1

t−1(0), the seller can
simply charge the myopic price, p∗t = m−1

t (0), and need not discriminate. 4

Example 3 (Homogenous Demand). Finally, suppose demand is identical in each period,
ft(θ) = f0(θ) (∀t). The firm can implement the discriminatory optimum from Example 2 by
setting p∗t = m−1

0 (0) (∀t). 4

3.3 The Cutoff Approach

As suggested by Examples 1–3, rather than solving for prices directly, it is easier to solve for the
optimal purchasing rule and back out prices. This approach works since prices {pt} only enter
into profits (3.4) via the purchasing rule τ∗(θ, t)—a standard feature of quasi–linear mechanism
design problems. This is analogous to solving a standard monopoly model in quantities and
using the demand curve to derive prices.

Lemma 1. The earliest purchasing rule, τ∗(θ, t), has the following properties:
[existence] τ∗(θ, t) exists.
[θ–monotonicity] τ∗(θ, t) is decreasing in θ.
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[non–discrimination] If τ∗(θ, tL) ≥ tH then τ∗(θ, tL) = τ∗(θ, tH), for tH ≥ tL.
[right–continuity] {θ : τ∗(θ, tL) ≤ tH} is closed, for tH ≥ tL.

Proof. [existence], [θ–monotonicity], [non–discrimination] follow from Lemma 4 in Appendix
A.1, which describes properties of the set of optimal stopping rules. These properties also
apply to the least element by Topkis (1998, Theorem 2.4.3). [right–continuity] follows from the
continuity of ut(θ) in θ.

Lemma 1 implies the optimal stopping rule τ∗(θ, t) can be characterised by a sequence of
cutoffs. The cutoff θ∗t is the lowest value agent from generation t that purchases in period t,

θ∗t := min{θ : τ∗(θ, t) = t}.

That is, consumers in the market in period t will buy if their valuation exceeds θ∗t . If demand
is uncertain, these cutoffs are Ft–adapted random variables. For generation t ≤ t′ the updated
cutoff, θ∗(t′; t), is the lowest value agent from generation t who buys by time t′,

θ∗(t′; t) := min
t≥s≥t′

θ∗s (3.6)

If t′ < t then set θ∗(t′; t) = ∞. Consumer θ from generation t will then buy in period t′ if

θ ∈ [θ∗(t′; t), θ∗(t′ − 1; t))

A simple three–period example is shown in Figure 2, where we suppose θ∗1 > θ∗3 > θ∗2.
The firm’s problem is then to choose cutoffs {θ∗t } to maximise profit (3.4).
We have shown that we can move from prices to cutoffs. The reverse is also true: prices can
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be backed out from any sequence of cutoffs. First suppose T is finite. In the last period, an
agent with value θ∗T is indifferent between buying and not, so the firm sets p∗T = θ∗T . In earlier
periods an agent with value θ∗t should be indifferent between buying in period t and waiting.
Hence prices are determined by the following algorithm:3

∆t(θ∗t − p∗t ) = max
τ≥t+1

E [(θ∗t − p∗τ )∆τ |Ft] (3.7)

= E
[
(θ∗t − p∗τ(θ∗t ,t+1))∆τ(θ∗t ,t+1)|Ft

]

where τ(θ∗t , t + 1) = min{τ ≥ t + 1 : θ∗t ≥ θ∗τ}. When T is infinite, there is no last period,
but equation (3.7) remains valid. One can then calculate prices by truncating the problem,
calculating prices for a finite T and letting T →∞, as shown by Chow, Robbins, and Siegmund
(1971, Theorems 4.1 and 4.3).

4 Optimal Pricing

4.1 Ordering Demand Functions

It will be useful to consider a method to rank demand curves. Period H is said to have higher
demand than period L if m−1

H (0) ≥ m−1
L (0), so the optimal static monopoly price is higher

under FH(θ) than FL(θ). There may, however, be more people under the “low” demand, i.e.
FH(θ) ≤ FL(θ), as is the case in the “back–to–school” example in the Introduction.

A sufficient condition for period H to have higher demand than period L is that FH(θ) is
larger than FL(θ) in hazard order, FH(θ)/fH(θ) ≥ FL(θ)/fL(θ). Suppose θL is distributed
according to FL(θ), which is log–concave. Then FH(θ) is larger than FL(θ) in hazard order,
and consequently m−1

H (0) ≥ m−1
L (0), in the following examples:

(a) Upwards Shift. θH := θL + ε for some constant ε > 0.

(b) Upwards Pivot. θH := αθL for α > 1.

(c) Outwards Shift. fH(θ) := αfL(θ/α) for α > 1.

Let the marginal revenue from a set of generations A ⊂ {1, . . . , T} be denoted mA(θ) :=∑
s∈A ms(θ). Similarly, let m≤t(θ) :=

∑
k≤t mk(θ) be total marginal revenue of consumers who

have entered the market by time t.
3If the cutoffs lie in (θ, θ) these prices are unique. An equivalent way to obtain prices is to equate (2.1) and

(3.1) under the optimal purchasing time τ∗(θ, t).
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Figure 3: Two–Period Example

4.2 Deterministic Two–Period Model

To gain some intuition behind the solution, consider two–period model, where demand is de-
terministic and the discount rate δ is constant. In this case, profit (3.4) reduces to

Π =
∫ θ

θ∗1
m1(θ) dθ + δ

∫ θ

θ∗2

[
m2(θ) + 1{θ<θ∗1}m1(θ)

]
dθ

Assume that the marginal revenue functions, mt(θ), are increasing. One can now derive the
optimal policy via calculus; however, the approach is not particularly illuminating. In contrast,
the following argument is easy to generalise.

First, consider the increasing demand case, m−1
2 (0) ≥ m−1

1 (0), as shown in Figure 3A.4

Example 2 demonstrates that the optimal rule is the myopic policy θ∗t = m−1
t (0). To verify

this, consider fixing the second period cutoff and choosing θ∗1. If the firm sells to type (θ, 1) in
period 1, they will obtain profit of m1(θ). If the firm does not sell to type (θ, 1) in period 1,
they may end up selling to the agent in period 2, yielding profit δm1(θ), or they may never
sell to the agent, yielding profit 0. If m1(θ) ≥ 0 then m1(θ) ≥ max{δm1(θ), 0}, so the firm
is always better off selling now, independent of future cutoffs. Conversely, if m1(θ) < 0 then

4Figure 3 is created using the Weibull distribution.
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m1(θ) < min{δm1(θ), 0} and the firm is always better off not selling. So the profit–maximising
rule is simple: sell to an agent of type (θ, 1) in period 1 if and only if m1(θ) ≥ 0.

In period 2, selling to agents with valuation θ ∈ [
m−1

1 (0), θ
]

yields a marginal revenue
of m2(θ). For valuations θ ∈ [

θ,m−1
1 (0)

)
, the firm also sells to first generation agents and

marginal revenue is m1(θ) + m2(θ). Hence the firm faces the cumulative marginal revenue,
M2(θ) := m2(θ)+min{m1(θ), 0}. Since demand is increasing the firm can sell to all generation
2 agents with positive marginal revenue, θ ≥ m−1

2 (0), without having to sell to any more
generation 1 agents. One can imagine the cutoff θ∗2 being slowly reduced, including more and
more agents. The firm then stops at m−1

2 (0), since going further will include negative marginal
revenue agents from generation 2 and will eventually include negative marginal revenue agents
from generation 1. This yields the cutoffs θ∗t = m−1

t (0) for t = 1, 2.
Second, consider the decreasing demand case, m−1

2 (0) ≤ m−1
1 (0), as shown in Figure 3B.

As in the increasing demand case, the firm should sell to an agent in period 1 if and only if
m1(θ) ≥ 0. However, the second period is different. If the firm were to sell to all the generation
2 agents with positive marginal revenue, θ ≥ m−1

2 (0), they would include some generation
1 agents with negative marginal revenue who did not buy in the first round. Thus the firm
increases the cutoff until the total marginal revenue from both generations, m≤2(θ), equals zero.
This yields the cutoffs θ∗t = m−1

≤t (0) for t = 1, 2.
When demand is increasing, only generation 2 buys in period 2. Hence the firm only cares

about the marginal revenue from the second generation when choosing its cutoff. In comparison,
when demand is decreasing, both generations are active in period 2. Hence the firm cares about
the total marginal revenue from both generations when choosing its cutoff.

4.3 General Solution

Definition 1. Cumulative marginal revenue equals Mt(θ) := mt(θ) + min{Mt−1(θ), 0}, where
M1(θ) := m1(θ).

Assumption (A1). Mt(θ) is quasi–increasing (∀t).5

The assumption that mt(θ) is quasi–increasing is often used in mechanism design and
holds for most common distributions (e.g. normal, lognormal, exponential). If mt(θ) is quasi–
increasing and demand is increasing, in that m−1

t (0) ≥ M−1
t−1(0), then Mt(θ) is automatically

quasi–increasing. If mt(θ) is quasi–increasing and demand is decreasing, then Mt(θ) is quasi–
increasing if the demand reduction is not too great.6

5A function M(θ) is (strictly) quasi–increasing if M(θL) ≥ 0 =⇒ M(θH) ≥ (>)0 for θH > θL. Define the
root of a quasi–increasing function by M−1(0) := sup{θ : Mt(θ) < 0}. If M(θ) < 0 (∀θ) then M−1(0) := θ. If
M(θ) ≥ 0 (∀θ) then M−1(0) := θ.

6 What does “too great” mean? First, consider the linear demand example, where ft(θ) = 1 on [0, 2bt]. Mar-
ginal revenue, mt(θ) = 2(θ − bt), is increasing on [0, 2bt]. If maxt bt ≤ 2mint bt, each mt(θ) is strictly increasing
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Theorem 1. Under A1, the profit–maximising cutoffs are given by θ∗t = M−1
t (0).

Proof. Let Πt be expected profit from generation t, and Π≥t be the profit from generations
{t, . . . , T}. Denote the positive and negative components by M+

t (θ) := max{Mt(θ), 0} and
M−

t (θ) := min{Mt(θ), 0}. The proof will proceed by induction, starting with period t = 1.
Fix {τ(θ, t′)} for t′ ≥ 2, and consider the optimal choice of τ(θ, 1). Notice that the non–

discrimination condition in Lemma 1 implies τ(θ, 1) ∈ {1, τ(θ, 2)}. Splitting up the profit
equation (3.4), Π = Π1 + Π≥2,

Π = E
[∫ θ

θ
E [

∆τ(θ,1)M
+
1 (θ) + ∆τ(θ,1)M

−
1 (θ) | F1

]
dθ

]
+ Π≥2

≤ E
[∫ θ

θ
E [

∆1M
+
1 (θ) + ∆τ(θ,2)M

−
1 (θ) | F1

]
dθ

]
+ Π≥2

The second line solves for the optimal choice of τ(θ, 1). Since M1(θ) is measurable with respect
to F1, the optimal choice is τ∗(θ, 1) = 1 if M1(θ) ≥ 0 and τ∗(θ, 1) = τ(θ, 2) if M1(θ) < 0. This
is independent of the choice of τ(θ, 2). If M1(θ) is quasi–increasing, this purchasing rule can be
implemented by setting θ∗1 = M−1

1 (0).
Continuing by induction, consider period t. Suppose θ∗s = M−1

s (0) for s < t. Fix {τ(θ, t′)}
for t′ ≥ t, and consider the optimal choice of τ(θ, t). The non–discrimination condition in
Lemma 1 implies τ(θ, t) ∈ {t, τ(θ, t+1)}. Splitting the profit equation, Π = Π≤t−1+Πt+Π≥t+1,

Π = E
[

t−1∑

s=1

∫ θ

θ
∆sM

+
s (θ) dθ

]
+ E

[∫ θ

θ
E [

∆τ(θ,t)M
+
t (θ) + ∆τ(θ,t)M

−
t (θ) | Ft

]
dθ

]
+ Π≥t+1

≤ E
[

t−1∑

s=1

∫ θ

θ
∆sM

+
s (θ) dθ

]
+ E

[∫ θ

θ
E [

∆tM
+
t (θ) + ∆τ(θ,t+1)M

−
t (θ) | Ft

]
dθ

]
+ Π≥t+1

The optimal choice of stopping rule is τ∗(θ, t) = t if Mt(θ) ≥ 0 and τ∗(θ, t) = τ(θ, t + 1) if
Mt(θ) < 0. If Mt(θ) is quasi–increasing, this stopping rule can be implemented by setting
θ∗t = M−1

t (0).

In the first period, the monopolist can either sell to agent θ and gain ∆1m1(θ), or postpone
selling to this agent and gain ∆tm1(θ) if they eventually sell in period t. Since ∆t < ∆1 the

and continuous on [0, maxt bt], implying Mt(θ) is quasi–increasing. Second, consider log–linear demand, where
ft(θ) = exp(−tλt)/λt on [0,∞). Marginal revenue, mt(θ) = exp(−θλt)(θ/λt − 1), is increasing on [0, 2λt]. If
maxt λt ≤ 2mint λt, each mt(θ) is strictly increasing and continuous on [0, maxt λt], again implying Mt(θ) is
quasi–increasing. Moreover, computational analysis suggests that with two generations and log–linear demand
Mt(θ) is always quasi–increasing, suggesting the assumption is quite robust. These two examples were picked for
there algebraic simplicity, but seem to be representative of many other distributions (e.g. normal, lognormal).
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monopolist should sell to the agent if and only if m1(θ) ≥ 0. In period 2, and every subsequent
period, the firm sums the marginal revenue of the new consumers and that of old agents who
have yet to buy. This cumulative marginal revenue is given by Mt(θ) = mt(θ) + M−

1 (θ),
whereupon the monopolist again sells to agents with valuation θ if and only if their marginal
revenue is positive, Mt(θ) ≥ 0.

This algorithm is completely myopic: It says the optimal cutoff point at period t only
depends upon the consumers who have entered by time t. That is, the optimal cutoff at time t

is independent of future demand and the discount rate.

4.4 Active Generations

In the Introduction we said that the key part of the problem is to work out out which generations
buy in a given period. At time tH , we will say a generation tL is active if some members of
generation tL purchase in period tH . Theorem 2 characterises the set of active generations and
uses this to provide an alternative derivation of the optimal cutoffs.

Definition 2. The upper active set is A(tH) := {tL ≤ tH : θ∗t ≤ θ∗(tH − 1; tL)}.
Lemma 2. The upper active set has the following properties:
(a) A(t) = {a, . . . , t} for some a ≤ t.
(b) A(t) ⊃ A(t− 1) or A(t) = {t}.
Proof. (a) t ∈ A(t) since M−1

t (0) ∈ [θ, θ] < ∞. A(t) is connected since θ∗(tH − 1; tL) is
increasing in tL. (b) If t′ ∈ A(t− 1) then θ∗(t− 1; t′) = θ∗(t− 1; t− 1). If {t− 1} ∈ A(t) then
t′ ∈ A(t).

Lemma 2(a) says that generation s + 1 is active when s is active, and that the current
generation is always active. Lemma 2(b) says that once two generations are pooled, they are
never separated. Define A(t) := {{a, . . . , t} : a ≤ t} as the collection of possible active sets at
time t.

Theorem 2. Suppose A1 holds. Then Mt(θ) is the lower envelope of {mA(θ) : A ∈ A(t)} and
the optimal cutoffs are given by

θ∗t = max
A∈A(t)

m−1
A (0) (4.1)

When A = A(t), this maximum is obtained. Moreover, if Mt(θ) is strictly quasi–increasing and
continuous then A(t) is the maximal set in A(t) such that m−1

A (0) = θ∗t .

Proof. Fix t and pick an arbitrary A ∈ A(t). That is, A = {a, . . . , t} for some a ≤ t. By
construction,

t∑
s=a

ms(θ) = Mt(θ) +
t−1∑
s=a

M+
s (θ)−M−

a−1(θ) (4.2)
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Hence Mt(θ) ≤ mA(θ). Cumulative marginal revenue can also be written as

Mt(θ) =
∑

s≤t

ms(θ)1θ<θ∗(t−1;s) (4.3)

so for any θ, ∃A ∈ A(t) such that Mt(θ) = mA(θ). That is, Mt(θ) = min{mA(θ) : A ∈ A(t)}.
Since Mt(θ) ≤ mA(θ), if Mt(θ) ≥ 0 then mA(θ) ≥ 0, ∀A ∈ A(t). That is, M−1

t (0) ≥
maxA∈A(t) m−1

A (0) ≥ m−1
A(t)

(0). To obtain the reverse inequality, (4.3) implies that for small

ε > 0, Mt(θ∗t − ε) = mA(t)(θ
∗
t − ε). Hence M−1

t (0) ≤ m−1
A(t)

(0). Putting this together, M−1
t (0) =

m−1
A(t)

(0).

Fix t and define A∗(t) to be the maximal set such that m−1
A∗(t)(0) = M−1

t (0). Since
m−1

A(t)
(0) = M−1

t (0) it must be that A(t) ⊂ A∗(t). In order to obtain a contradiction, sup-

pose A∗(t) = A(t) ∪ B for some nonempty set B, where b = max{t : t ∈ B}. Since
b 6∈ A(t), θ∗b < θ∗t . Mb(θ) lies below mB(θ) and is strictly quasi–increasing so there is a
small ε > 0 such that mB(θ∗t − ε) ≥ Mb(θ∗t − ε) > ε. Moreover, Mt(θ) is continuous so
ε can be chosen sufficiently small such that mA(t)(θ

∗
t − ε) = Mt(θ∗t − ε) ∈ (−ε, 0). Hence

mA∗(t)(θ∗t − ε) = mA(t)(θ
∗
t − ε) + mB(θ∗t − ε) > 0, and m−1

A(t)
(0) > m−1

A∗(t)(0), contradicting the

assumption that m−1
A∗(t)(0) = M−1

t (0).

Theorem 2 can be interpreted in two steps. Firstly, the optimal cutoffs are determined
by the marginal revenue of the active generations. This is as one would expect from the first
order condition of the firm’s profit maximising problem, taking the set of active generations as
exogenous. Secondly, the set of active generations is chosen to maximise the cutoff. Intuitively
one can think of quantity at time t slowly being released. The first units will go to members
of the current generation with the highest valuations. Generation t continues to receive all
the units until the value drops below θ∗(t − 1; t − 1), the highest unserved valuation from the
previous generation. The next units then get split between the generations t and t − 1. This
continues until the valuation being served falls below θ∗(t− 1; t− 2), at which point generation
t − 2 also starts to receive the new units. This process continues until the firm stops issuing
units, at which point the active generations are those that have received some positive quantity.

The following example shows the optimal policy can be deceptively simple.

Example 4 (Linear Demand). Suppose ft(θ) = 1 on [0, 2bt] where bt ∈ [10, 20].7 Under
Theorem 1 the monopolist should sell quantity bt each period. This is the same as the quantity
sold by a firm who could completely discriminate between different cohorts. This equivalence is
analogous to the property that average quantity sold remains unaffected by third–degree price
discrimination when demand is linear (Tirole (1988, p.139)). See Appendix A.2. 4

7The bounds on bt ensure Mt(θ) is quasi–increasing. See footnote 6.
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4.5 Ironing

Theorem 1 assumes the cumulative marginal revenue Mt(θ) is quasi–increasing (A1). If this
fails in a one–period model, one can calculate the ironed marginal revenue M1(θ) (e.g. Myerson
(1981)). The firm then sells to an agent if and only if M1(θ) ≥ 0. Unfortunately, in the multi–
period, the myopic policy of ironing each Mt(θ) individually may not work, as the following
example shows.

Example 5. Suppose T = 2, δ constant, [θ, θ] = [0, 1] with m1(θ) = 1 − 4 · 1[1/2,1] and
m2(θ) = −10 + 20 · 1[1/2,1]. This yields M1(θ) = −1 so a myopic policy suggests not awarding
the good to any agent. In period 2, M2(θ) = −9 + 16 · 1[1/2,1] which is quasi–increasing with
M−1

2 (0) = 1/2 yielding revenue 7δ/2. However if the firm sells to consumers [0, 1] in period 1
and [1/2, 1] in period 2 then revenue is −1 + 10δ/2 which is preferable if δ ≥ 2/3. 4

The problem in Example 5 is that demand decreases over time.8 In period 1, the existence
of negative marginal revenue agents may stop the monopolist selling to all positive marginal
revenue consumers. However, if these negative consumers end up buying anyway, the firm should
take this into account in its ironing calculation. Since the firm now has to be forward–looking,
the simple myopic policy in Theorem 1 no longer holds.

4.6 Best–Price Provisions and Time Consistent Pricing

Applying the revenue equivalence theorem, Proposition 1 shows that the optimal allocation
(Theorem 1) can be implemented by a best–price provision. Moreover, the best–price provision
is time–consistent so the firm need not commit to a sequence of prices at time 0, so long as
they can promise to honour the best price agreement.9

A best–price provision works as follows: In each period the firm announces a price pBP
t .

If a consumer buys in period t and the price then falls, they are then given a rebate equal
to the difference in the prices. In each subsequent period s, they are given a rebate equal
to min{pBP

t , . . . , pBP
s } − min{pBP

t , . . . , pBP
s−1}. In discounted terms, the consumer purchasing in

period t pays
T∑

s=t

(∆s −∆s+1)min{pBP
t , . . . , pBP

s }

Proposition 1. Suppose A1 holds. Then the firm’s optimal policy under a best–price provision
is to set pBP

t = M−1
t (0), inducing the same allocation and profits as Theorem 1. This policy is

time consistent.
8If demand increases, in that m−1

2 (0) ≥ m−1
1 (0), then each period can be treated separately and the myopic

ironing policy is optimal.
9Butz (1990) reaches a similar conclusion in a model with declining demand and resale. When demand is

allowed to increase, however, the introduction of resale means that the best–price provision may not be time
consistent, as shown in Section 7.2.
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Proof. Under a best–price provision an agent of type (θ, t) will purchase as soon as the price
falls below θ, so the set of implementable allocations is characterised by Lemma 1. Profits are
given by equation (3.4) so the optimal cutoffs are given by Theorem 1 and implemented by
setting pBP

t = θ∗t .
To prove time consistency, let the time consistent cutoffs be denoted by θBP

t . At each point
in time t, the firm chooses pBP

t to maximise profits from period s ≥ t,

ΠBP
≥t = E

[∫ θ

θ

T∑
s=t

s∑

r=1

∆s1τ(θ,r)=smr(θ) dθ

]

Since θBP
t = pBP

t , we can also think of the firm choosing θBP
t directly. However, notice that the

difference

Π−ΠBP
≥t = E

[∫ θ

θ

t−1∑

s=1

s∑

r=1

∆s1τ(θ,r)=smr(θ) dθ

]

is independent of θBP
t , so the choice of θBP

t also maximises total profits, Π.

5 Applications

This Section will apply the Theorems 1 and 2 to different paths of demand functions. We will
examine how cutoffs change over time, how long agents wait before purchasing and the time
path of prices.

Assumption (A2). mt(θ) is strictly increasing and continuous in θ and m−1
t (0) ∈ (θ, θ) (∀t).

This Section (as well as Section 7) uses Assumption A2 rather than A1. This stricter
monotonicity assumption simplifies proofs and helps provide a cleaner characterisation of de-
mand cycles (Section 5.3). If mt(θ) is quasi–increasing and demand variation is not too great
then A2 will hold for all relevant valuations. For linear and log–linear demand, this means
demand cannot double between the lowest and highest periods (see footnote 6). Versions of
many of these results also extend to A1.10

Lemma 3. Suppose A2 holds. Then
(a) m−1

1 (0) > m−1
2 (0) implies m−1

{1,2}(0) ∈ (m−1
2 (0),m−1

1 (0))
(b) m−1

1 (0) ≥ m−1
2 (0) implies m−1

{1,2}(0) ∈ [m−1
2 (0),m−1

1 (0)]

Proof. Omitted.
10To illustrate, A1 is sufficient for the “if” part of the monotone demand characterisation (Proposition 2).

Similarly, when demand cycles, cutoffs are stationary (Proposition 4) and, using Theorem 2, cutoffs and prices
exceed the average–demand price (Proposition 5).
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5.1 Monotone Deterministic Demand: Fast Rises and Slow Falls

Definition 3. Demand is increasing if m−1
t+1(0) ≥ m−1

t (0). Demand is weakly decreasing if
m−1
≤t (0) ≥ m−1

t+1(0).

Increasing demand means that the myopic monopoly price against the incoming generation
rises over time. Weakly decreasing demand means the myopic monopoly price against the
incoming generation is lower than the monopoly price against the sum of the previous demands.

Proposition 2 characterises the optimal cutoffs and prices when demand is growing or falling.
These results are simple extensions of the two–period solution in Section 4.2.

Proposition 2. Suppose demand is deterministic and A2 holds. Optimal cutoffs are given by
θ∗t = m−1

t (0) (∀t) if and only if demand is increasing. This can be implemented by prices

p∗t = m−1
t (0)

Optimal cutoffs are given by θ∗t = m−1
≤t (0) if and only if demand is weakly decreasing. This can

be implemented by prices

p∗t =
T∑

s=t

E
[(

∆s

∆t
− ∆s+1

∆t

)
m−1
≤s(0)

∣∣∣∣ Ft

]
(5.1)

where ∆T+1 := 0.

Proof. [If]. Increasing demand case: For t = 1, θ∗1 = m−1
1 (0). Suppose θ∗s = m−1

s (0) for s < t

and consider period t. Mt(θ) = mt(θ) on [θ∗t−1, θ] = [m−1
t−1(0), θ], using the induction hypothesis.

Demand is increasing so M−1
t (0) = m−1

t (0).
Decreasing demand case: For t = 1, θ∗1 = m−1

≤1(0). Suppose θ∗s = m−1
≤s(0) for s < t

and consider period t. Mt(θ) = m≤t(θ) on [θ, min{θ∗1, . . . , θ∗t−1}] = [θ, m−1
≤t−1(0)], using the

induction hypothesis. Demand is weakly decreasing so Lemma 3 implies m−1
≤t (0) ≤ m−1

≤t−1(0)
and hence M−1

t (0) = m−1
≤t (0).

[Only If]. Increasing demand case: Applying the contrapositive, suppose m−1
t (0) < m−1

t−1(0).
Theorem 2 means θ∗t ≥ m−1

{t−1,t}(0) > m−1
t (0), using Lemma 3.

Decreasing demand case: Applying the contrapositive, suppose m−1
t (0) > m−1

≤t−1(0). Theo-
rem 2 means θ∗t ≥ m−1

t (0) > m−1
≤t (0), using Lemma 3.

Prices can then be derived from equation (3.7). With increasing demand, this is imme-
diate. With weakly decreasing demand, prices obey the AR(1) equation (θ∗t − p∗t ) = E [(θ∗t −
p∗t+1)δt+1|Ft]

When demand is increasing over time, the firm can charge the optimal myopic price, p∗t =
m−1

t (0). Since the price is increasing, no consumers will delay their purchases, and the problem
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can be broken into T disjoint sub–problems (see Example 2 in Section 3.2). In contrast, if the
firm charges the myopic price when demand is decreasing then there will be much delay. The
firm takes this into account and chooses the cutoff points so that at time t, agent θ buys if the
“past average” marginal revenue, m≤t(θ), is positive. Prices are then given by a geometric sum
of future “past average” monopoly prices.

Two price paths, mentioned in the introduction, will serve as useful benchmarks.

Definition 4. The myopic price is pM
t := m−1

t (0). The average–demand price is pA :=
limt→T m−1

≤t (0), assuming the limit exists.

The myopic price is the price charged by a monopolist who only takes the current generation
of consumers into account, ignoring the previous ones. By Example 2, this equals the optimal
price when the monopolist can discriminate between generations. It is also the optimal price if
consumers are banned from delaying consumption. The average–demand price is charged by a
monopolist who faces average demand 1

T

∑T
t=1 Ft(θ) each period. This is also the price charged

by an uninformed firm which knows total demand over the T periods, but does not know the
demand each period.11

Figure 4A compares different price paths under increasing demand.12 As can be seen,
p∗t = pM

t is increasing. Since agents never delay their purchases under increasing demand, the
optimal price path is independent of the discount factor.

This can be contrasted to decreasing demand, as shown in Figure 4B. Here p∗t is decreasing,
starting off below the myopic price and ending above it. The optimal price p∗t converges to the
average–demand price from above as t → T . That is,

lim
t→T

[p∗t − pA] = lim
t→T

T∑
s=t

E
[(

∆s

∆t
− ∆s+1

∆t

)
(m−1

≤s(0)−m−1
≤t (0))

∣∣∣∣ Ft

]
= 0

since every convergent sequence is cauchy. The discount factor is also relevant when demand
decreases: price falls towards the average–demand price as agents become more patient. (For
more on discounting, see Section 6.2.)

5.2 One–Off Shocks in Demand

The model can be used to rigorously analyse permanent and transitory shocks to demand. This
subsection describes the demand path and sketches the consequences of a permanent shock.

11The uncertainty interpretation assumes the firm cannot update their strategy over time, perhaps because
because sales are unobservable in the short term.

12Figures 1, 4 and 5 are generated using linear demand curves. In particular, values have measure 1 on [0, bt]
where bt ∈ [20, 30]. The discount rate is δ = 0.9 in Figures 4–5 and δ = 0.75 in Figure 1. Example 4 in Section
5.3 further analyses the linear demand specification.
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Demand is constant for the first t′ − 1 periods, with mt(θ) = mα(θ). There are two states
of the world. In state ωα, demand stays at mt(θ) = mα(θ) for t ∈ {t′, . . . , T}. In state ωβ,
demand shifts to mt(θ) = mβ(θ) for t ∈ {t′, . . . , T}. To complete the description of the world,
suppose the state of the world is realised in period t′′ ≤ t′ and let the ex–ante probability of
state ωα be α.

First, suppose demand jumps upwards, m−1
β (0) ≥ m−1

α (0). Prices start at m−1
α (0) until time

t′ − 1 and then, if demand increases, jump upwards to m−1
β (0).

Second, suppose demand jumps downwards, m−1
β (0) ≤ m−1

α (0). Prices start at m−1
α (0) and

slowly decrease until time t′′. In state ωα the price then jumps upwards to m−1
α (0). In state

ωβ the price then jumps down a little and slowly converges to m−1
β (0). The case of α ≈ 1 and

t′′ = t′ is shown in Figure 4C.

5.3 Deterministic Demand Cycles

This subsection examines the optimal price path when demand follows deterministic cycles. The
sequence of demand functions is described by K repetitions of {F1, . . . , FT }, where T < ∞ but
we allow K = ∞. Denote the period t of cycle k by tk. An example of this was seen in Figure
1 in the Introduction, which also illustrates the set of active agents, A(t) (which is defined
below). One can see the pattern of sharp price increases and slow declines; these intuitively
follow from Proposition 2. When new demand is growing, the price rises quickly along with the
myopic price and there is no delay. When new demand is falling, agents delay their purchases
and the price falls much more slowly. The picture also illustrates other regularities that occur
after the first cycle:

1. Cutoffs and prices follow a stationary pattern.

2. Cutoffs and prices always lie above the average–demand price.

3. The lowest cutoff and price occur in the last period of the slump.

Propositions 4–6 correspond to these results. First, it will useful to define the lower active
set.

Definition 5. The lower active set is A(tH) := {tL ≤ tH : θ∗t < θ∗(tH − 1; tL)}.

The lower active set will often look very similar to the upper active set, but is particularly
useful in the analysis of demand cycles. Lemma 2 applies to the lower active set, as does a
version of Theorem 2.

Proposition 3. Under A2, m−1
A(t)(0) = θ∗t . Moreover, A(t) is the minimal set in A(t) such

that m−1
A (0) = θ∗t .
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Proof. Using (4.3) and A2, Mt(θ∗t ) = mA(t)(θ∗t ) = 0. By A2, this uniquely defines θ∗t = m−1
A(t)(0).

Fix t and let A∗(t) be the minimal set such that m−1
A∗(t)(0) = θ∗t . In order to attain a

contradiction, suppose A = A∗ ∪ B for some nonempty set B, where b = max{t : t ∈ B}.
Since b ∈ A(t), we have θ∗b > θ∗t and M−

b (θ∗t ) < 0. Using equation (4.2), 0 = Mt(θ∗t ) ≤
mA∗(t)(θ∗t ) + M−

b (θ∗t ) < 0, yielding a contradiction.

Proposition 4. Suppose demand follows deterministic cycles and A2 holds. Then |A(t)| ≤ T .
Hence if k ≥ 2, the cycles are stationary, θ∗tk = θ∗t2.

Proof. Suppose |A(t)| > T . Define the set A such that A(t) = A ∪ B where B consists of the
union of {1, . . . , T} sets and |A| ≤ T . Then m−1

A(t)(0) ≤ max{m−1
A (0),m−1

{1,...,T}(0)} by Lemma 3,
contradicting the fact that A(t) is the smallest set to achieve the maximum in Theorem 2.

Proposition 4 means the cutoffs will be the same for each cycle k ≥ 2. This substantially
simplifies analysis: when k ≥ 2, we can use modular arithmetic to write the collection of possible
active sets at time t, A(t), as

AK(t) = {{a, . . . , t} : a ∈ {1, . . . , T}} (mod–T )

The cutoff and price are minimised at time

t := min{argmint∈{1,...,T}{θ∗tk : k ≥ 2}}

A consumer who does not buy in period t will never buy. Hence the market effectively resets
at period t, enabling us to throw out all previous generations. This means that the starting
position of the cycle only matters for the first t periods, at which point the stationary cycles
start.

Prices are determined by equation (3.7). For cycles k ∈ {2, . . . ,K − 1}, the prices are
stationary with boundary condition p∗t = θ∗t = m−1

{1,...,T}(0), using Proposition 5(a). For the
final cycle, where k = K and t > t, the relevant boundary condition is p∗T = θ∗T . Since there is
not as much scope for delay, prices in the last cycle may be higher than in previous cycles.

Proposition 5. Suppose demand follows cycles with k ≥ 2 and A2 holds. Then
(a) The lowest optimal cutoff equals the average–demand price. Hence agents buy later under
optimal pricing.
(b) The lowest optimal price equals the average–demand price.
(c) Under the optimal price path, in comparison to average–demand pricing, profits are higher,
utility is lower for every type (θ, t) and welfare is lower for every generation.

23



Proof. (a) If k ≥ 2 then {1, . . . , T} ∈ A(t) and Theorem 2 implies θ∗t ≥ m−1
{1,...,T}(0). Equation

(4.2) implies

m{1,...,T}(θ∗t ) = Mtk(θ∗t ) +
tk−1∑

s=tk−1+1

M+
s (θ∗t )−M−

tk−1
(θ∗t ) = 0

using (1) the definition θ∗t , (2) the fact that θ∗s ≥ θ∗tk for s ∈ {tk−1 + 1, . . . , tk − 1} and (3)
θ∗tk ≥ θ∗tk−1

. Thus θ∗t = m−1
{1,...,T}(0) = pA

t .
(b) p∗t = θ∗t = pA

t .
(c) Profit is lower under the average–demand price regime by revealed preference. The utility

of any customer (3.1) and welfare of any generation (3.3) is higher under the average–demand
price since the cutoffs are always higher.

In each period, the cutoff is higher than if the monopolist faced average demand, the price
is higher, and welfare and consumer surplus are lower. That is, all consumers are made worse
off by the ability of the monopolist to discriminate between generations. Intuitively, during
a high demand period, the price will be high, and only the high demand generations will be
active. However, during a low demand period, both high and low generations will be active.
Thus the high demand cohorts exert a negative externality on the low cohorts, raising the price
to an average level.

With quasi–linear utility, the indirect utility function is convex in prices, suggesting price
variation benefits consumers because of the option value. However, Proposition 5 shows that
when prices are endogenous, price variation may hurt all consumers. The result can also be
contrasted with the standard view that the welfare effect of third degree price discrimination is
indeterminate (e.g. Tirole (1988, p. 137)). Inter– and intra–temporal price discrimination can
have very different properties.

Define a cycle as simple if m−1
t (0) − m−1

t−1(0) is nonzero and has at most two changes of
sign. That is, each cycle has one “boom” and one “slump”.

Proposition 6. Suppose demand follows cycles with k ≥ 2 and A2 holds. Then t obeys

m−1
t (0) ≤ m−1

{1,...,T}(0) ≤ m−1
t+1(0)

When the cycle is simple, this uniquely defines t.

Proof. First, Proposition 5(a) and Theorem 2 imply m−1
{1,...,T}(0) = θ∗t ≥ m−1

t (0). Second, by
the definition of t, A(t + 1) = {t + 1}. Hence m−1

t+1(0) ≥ m−1
{1,...,T}(0). When the cycle is simple,

this uniquely defines t and implies A(t) = {1, . . . , T}.

In a simple cycle, t is uniquely defined as the last period of the slump, just before new
demand returns to its long run average. In literary terms: The darkest hour is just before
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dawn.

5.4 IID Demand

The model allows demand to be uncertain enabling us to study the effect of incoming co-
horts that are independently and identically distributed (IID).13 Each period, demand is drawn
from {mx(θ)}x with probability measure µ(x) for x ∈ [0, 1], where higher indices imply higher
demand: m−1

xH
(0) ≥ m−1

xL
(0), for xH ≥ xL.

In this setting, we can define the average–demand price by pA := [
∫

mx(θ)dµ(x)]−1(0). As
in the deterministic setting, this is the optimal price for a monopolist who is ignorant about
demand. Example 6 explicitly derives the optimal price schedule in a two–period model.

Example 6 (T=2 with IID Demand). Denote the demand in the first and second period
by m1(θ) = mx1(θ) and m2(θ) = mx2(θ) respectively and suppose the discount rate is constant.
Theorem 2 implies θ∗1 = m−1

x1
(0) and θ∗2 = max{m−1

{x1,x2}(0),m−1
x2

(0)}. The second period price
is p∗2 = θ∗2, while the initial price is given by

p∗1 =
(

1− δ

∫ x1

0
dµ(x)

)
m−1

x1
(0) + δ

∫ x1

0
m−1
{x1,x}(0) dµ(x) (5.2)

If demand of the first generation is low, then demand is likely to increase and p∗1 is determined by
the first generation’s demand, m−1

x1
(0). If demand of the first generation is high, then demand is

likely to decrease and p∗1 is determined by both generations’ demand, m−1
{x1,x2}(0). The extreme

cases when x1 ∈ {0, 1} are directly analogous to the monotone demand results in Proposition
2. The general principle is that p∗1 is affected by a state of the world only if the first generation
is active in that state. 4

When there are more periods, it becomes harder to solve the option problem required to
back out prices. However, one can make comparisons as the number of periods grows large.
This next result is the stochastic analogue to Proposition 5.

Proposition 7. Suppose demand is IID, {mx(θ)}x are uniformly bounded and A2 holds. Then
limt→∞ θ∗t ≥ pA and limt→∞ p∗t ≥ pA a.s..

Proof. Define gt(θ) = 1
t

∑t
s=1 ms(θ) and g(θ) =

∫
mx(θ)dµ(x). The strong law of large numbers

implies that gt(θ)
as→ g(θ) pointwise ∀θ ∈ [θ, θ]. The collection {mx(θ)}x is uniformly bounded

and increasing so the Glivenko–Cantelli Theorem (Davidson (1994, Theorem 21.5)) states that
supθ |gt(θ)− g(θ)| as→ 0. Since g(θ) is strictly increasing m−1

{1,...,t}(0) = g−1
t (0) as→ g−1(0) = pA.

Finally, {1, . . . , t} ∈ A(t) so Theorem 2 implies limt→∞ θ∗t ≥ pA a.s..
13Other sequences of demand functions are have interesting properties. One nice example arises where demand

curves are linear with the intercept following a random walk. In this model, the asymmetric treatment of increases
and reductions in demand means the ex–ante expectation of θ∗t is increasing in t.
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In the long run, the price should be at least as high as the average demand price. Moreover,
it will often be strictly higher (e.g. if m−1

t (0) > pA). This means that prices increase when
there is more demand variation, or when the firm has more information about the incoming
demand.

6 Comparative Statics

This Section explores the properties of the optimal policy given in Theorem 1. Consequently
we only require the weaker monotonicity condition, A1.

6.1 Information Structure

Theorem 1 can be used to address the effect of varying uncertainty about future demand.

Proposition 8. Consider two information structures Ft and F ′t such that mt(θ) is Ft ∩ F ′t–
adapted and suppose A1 holds. Then utilities and profit are the same under both information
structures.

Proof. Utility and profit are determined by τ(θ, t), as shown in equations (3.1) and (3.4). By
Theorem 1, this is independent of the information structure if mt(θ) is measurable with respect
to Ft.

Proposition 8 shows that under the optimal mechanism, payoffs are independent of informa-
tion, if consumers and the firm know current demand. Prices, however, will be different under
different information structures. Proposition 8 very much depends upon the simple structure
of the optimal solution and may fail without A1.

To consider an application of Proposition 8, recall the examples of unexpected shocks in
Section 5.2. In this example, demand may receive a permanent demand shock at time t′, which
agents find out about at time t′′ ≤ t′. Proposition 8 then says that agents should be indifferent
over the announcement time, t′′.

So far we have made two assumptions about agents’ information. First, the firm and con-
sumers possess the same information. If firms and consumers possess different information,
and both know current demand, the monopolist would still like to implement the cutoffs given
by Theorem 1. If the firm knows more than consumers, the prices are determined by con-
sumers’ information sets and payoffs are the same as under symmetric information. However,
if consumers know more than firms, then there may be no prices to implement the optimal
cutoffs.

26



Second, we suppose agents know demand ft(θ) at time t. Without this assumption, there
are two problems. First, the firm may engage in experimentation. Second, the firm may delay
purchases until they have better information about demand.

6.2 Prices and Discount Rates

Proposition 9. Suppose A1 holds. Then increasing δt a.e. reduces price p∗s a.e., for s < t. As
δt

as→ 1 (∀t) so (p∗t −mins≥t θ∗t )
as→ 0. As δt

as→ 0 (∀t) so (p∗t − θ∗t )
as→ 0.

Proof. (a) Pick t and consider increasing δt a.e.. By backwards induction, price p∗s is indepen-
dent of δt for s ≥ t. Continuing by induction, pick s < t and suppose future prices are (weakly)
decreasing in δt. An increase in δt thus increases the utility of an agent with value θ∗s if they
choose to delay, given by the right hand side of equation (3.7). Thus the price p∗s decreases.

(b) Suppose δt
as→ 1 (∀t). Equation (3.7) implies that that agent waits for the lowest price,

p∗t
as→ min{θ∗t ,mins>t{p∗s}}. With the boundary condition p∗T = θ∗T , this implies p∗t

as→ mins≥t θ∗t .
(c) Suppose δt

as→ 0 (∀t). Then ∆τ(θ∗t ,t+1)/∆t
as→ 0 and the right hand side of equation (3.7)

converges to zero.

When agents are impatient (δt ≈ 0), the firm simply sets the price equal to the current
optimal cutoff, p∗t = θ∗t . As agents become more patient, consumers find it less costly to delay,
reducing the prices required to implement any sequence of cutoffs. In the limit, when agents
are completely patient, they wait for the lowest price and the price is determined by the lowest
cutoff in all future periods, p∗t = mins≥t θ∗t .

Since discount rates are allowed to be uncertain, it is also easy to analyse the impact of
changes in interest rates. For example, an unexpected increase in future interest rates will
increase today’s price. Again, this depends upon the myopic nature of the optimal policy in
Theorem 1.

7 Resale and Renting

So far it has been assumed that there is no resale. This is reasonable if the good is a one–time
experience or is associated with high transactions costs. This section analyses the opposite
case: perfect resale.

Each period t, the consumer obtains discounted rental utility (∆t−∆t+1)θ, where ∆T+1 = 0.
As before, demand ft(θ) enters the market each period, where ft(θ) and ∆t are Ft–adapted.
Throughout this section assume that A2 holds. Consider two alternative policies:

1. The firm rents the good at price Rt each period.
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2. The firm sells the good, committing to a price schedule {pR
t }, where perfect resale is

possible and the seller is allowed to buy goods back.

Bulow (1982) and Butz (1990) show these policies induce the same profits and utilities.

Theorem 3. Suppose A2 holds and the monopolist either rents the good or they sell the good
and allow resale. Then the profit–maximising cutoffs are given by θR

t = m−1
≤t (0).

Proof. Both policies induce allocations of the form {θ : θ ≥ θR
t } for some θR

t ∈ [θ, θ]. When
renting (policy 1), each period can be treated separately, so at time t the good should be
allocated to {θ : m≤t(θ) ≥ 0}. Under A2, this is implemented by setting θR

t = m−1
≤t (0). When

the firm commits to a sequence of sale prices and allows resale (policy 2) the set of implementable
allocations is also of the form {θ : θ ≥ θR

t }. Hence the revenue equivalence theorem implies
that the optimal policy and profit are identical to those when renting.

When the monotonicity assumption A2 fails, the firm should simply iron m≤t(θ) (∀t).
The rental price under the optimal strategy is Rt = (1 − δt+1)m−1

≤t (0). The optimal price
path with resale, pR

t , can be derived from the AR(1) system,

(θR
t − pR

t ) = E [(θR
t − pR

t+1)δt+1|Ft]

The resale price is thus the geometric sum of future rental values, as given by equation
(5.1). Hence, if limits exist, the resale price converges to the average–demand price, pA :=
limt→T m−1

≤t (0). Intuitively, after enough time, the resale market grows very large and the firm
loses the ability to discriminate.

7.1 The Effect of Resale

Figure 5 can be used to assess the effect of resale. With resale, troughs and peaks are treated
symmetrically, and the cycles decrease in amplitude as the size of the resale market engulfs
new production. In the limit, the resale price converges to the average–demand price. Without
resale, price cycles are highly asymmetric and are stationary. The reason for this difference is
that with resale, a low valuation consumer may buy if they anticipate the price to rise, and
so all previous generations remain active. In contrast, without resale, only the high demand
generations remain active.

Proposition 10. Suppose A2 holds. Then cutoffs and profits are lower with resale than without
resale. Moreover, resale has no effect on allocations if and only if demand is weakly decreasing.

Proof. (a) Since {1, . . . , t} ∈ A(t), θR
t ≤ θ∗t by Theorem 2.
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(b) Using Theorem 1, profits without resale are

Π = E
[∫ θ

θ

T∑

s=1

∆sM
+
s (θ)dθ

]
= E

[∫ θ

θ

T∑

t=1

(∆t −∆t+1)
t∑

s=1

M+
s (θ) dθ

]

changing the order of summation and noting ∆s =
∑T

t=s(∆t −∆t+1). Profits with resale are

ΠR = E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)m+
≤t(θ) dθ

]

= E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
max

{
0,Mt(θ) +

t−1∑

s=1

M+
s (θ)

}]
dθ

]

≤ E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
max{0,Mt(θ)}+

t−1∑

s=1

max{0,M+
s (θ)}

]
dθ

]

= E
[∫ θ

θ

T∑

t=1

(∆t −∆t+1)

[
t∑

s=1

M+
s (θ)

]
dθ

]
= Π

where the second line uses equation (4.2) and the third uses Jensen’s inequality.
(c) Proposition 2 shows θ∗t = m−1

≤t (0) if and only if m−1
≤t−1(0) ≥ m−1

t (0). Thus when demand
is not declining, Mt(θ) < 0 and m≤t(θ) ≥ 0 for θ ∈ [m−1

≤t (0),M−1
t (0)) and the inequality in (b)

is strict.

With resale, Coase (1972) and Bulow (1982) argue that renting achieves the same profits
as selling, as shown in Theorem 3. Without resale, Proposition 10 implies that selling strictly
outperforms renting, unless demand is weakly decreasing with probability one.

The following examples examine the welfare effect of resale. Example 7 shows that with
linear demand, resale improves welfare. However, Example 8 shows that the welfare effect may
be ambiguous.

Example 7 (Linear Demand). Suppose ft(θ) = 1 on [0, 2bt], where bt ∈ [10, 20]. With resale
the optimal quantity sold in period t is bt, which is the same as without resale (Example 4).
Resale increases allocative efficiency and hence welfare. See Appendix A.2. 4

Example 8. Suppose T = 2 and δ is constant. (a) Suppose θ1 = 1 with mass 1 and θ2 ∼ U [0, 4].
With resale, cutoffs are (θR

1 , θR
2 ) = (1, 1) yielding welfare (8 + 15δ)/8. Without resale, cutoffs

are (θ∗1, θ
∗
2) = (1, 2) and welfare is (8 + 12δ)/8, lower than with resale. (b) Suppose θ1 ∼ U [0, 2]

and θ2 = 2 with mass 1. With resale, cutoffs are (θR
1 , θR

2 ) = (1, 2) yielding welfare (6 + 10δ)/8.
Without resale, cutoffs are (θ∗1, θ

∗
2) = (1, 2) and welfare is (6 + 16δ)/8, higher than with resale.

4
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With linear demand curves, resale increases welfare, reduces profits and therefore increases
consumer surplus. Yet it is not the case that all consumers are better off. To see this, consider
a two–period model with increasing demand. The first (low–demand) cohort prefers no resale
since they then avoid being pooled with the second (high–demand) cohort. For the same reason
the second generation prefers resale.14 However, if demand follows cycles, as in Section 5.3, all
consumers will prefer resale, if they are born late enough. This follows because with resale,
prices converge to the average–demand price; while without resale, prices always exceed the
average–demand price (Proposition 5).

7.2 Best–Price Provisions and Resale

Section 4.6 shows that without resale, a best–price provision implements the optimal selling
strategy in a time consistent manner. Butz (1990) argues that a best–price provision is also time
consistent when resale is allowed. Butz, however, assumes that prices fall over time. In contrast,
Example 9 shows that when prices can increase a best–price scheme is not time consistent.

Example 9. Suppose T = 2, demand is deterministic, δ is constant and A2 holds. Consider a
firm that uses a best–price provision and chooses prices sequentially. If demand is decreasing,
m−1

1 (0) ≥ m−1
2 (0), the subgame perfect outcome is θ∗1 = m−1

1 (0) and θ∗2 = m−1
{1,2}(0). If

demand is not decreasing, m−1
1 (0) < m−1

2 (0), the subgame perfect outcome is θ∗1 ≥ m−1
1 (0) and

θ∗2 < m−1
{1,2}(0). Hence the commitment solution is time consistent under a best–price policy if

and only if demand is decreasing. See Appendix A.3 for a proof. 4
When demand is increasing, the commitment price pR

t increases over time. A little extra
production in the second period then lowers the price below pR

2 , but does not lead to rebates.
Hence the firm does not internalise the effect of this extra production on its first period self.

The firm can, however, achieve the maximal profit from Theorem 3 in a time consistent
manner through renting or a price–updating policy. Price–updating works as follows: In period
t, the firm chooses a price pPU

t and agents choose whether to purchase or not. In each subsequent
period s, an agent who owns the good is asked to pay pPU

s+1 − pPU
s , so decreasing the price leads

to rebates, while increasing the price leads to surcharges.

Proposition 11. Suppose there is resale and A2 holds. The firm’s optimal policy under a price–
updating scheme is to set pPU

t = m−1
≤t (0) inducing the same allocation and profits as Theorem

3. This policy is time consistent.
14Naive intuition might suggest that the first (low–demand) generation are better off under resale since they

have the option to sell to the second (high–demand) generation. However this is incorrect: the firm knows the
first generation will resell and raises prices in the first period. Hence the agents with relatively low valuations,
who buy in period 1 and resell in period 2, exert a negative externality on the high valuation agents from the
first generation, who buy and never resell.
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Proof. By purchasing the good in period t and reselling it at time t + 1, an agent must pay
(1 − δt+1)pPU

t , taking into account the price updating and capital gain. The scheme is thus
identical to renting with a rental price (1− δt+1)pPU

t and is thus time consistent.

8 Conclusion

This paper characterises the monopolist’s optimal pricing strategy with varying demand. When
new demand grows stronger, the price rises quickly, unhindered by the presence of old con-
sumers. In contrast, when new demand becomes weaker, the price falls slowly as consumers
delay their purchases. This asymmetry between rises and falls leads to an increase in the price
level which harms consumers and reduces welfare below that induced by a monopolist who
charges the optimal monopoly price against the average level of demand.

There are a number of papers that analyse how markups change over the business cycle (e.g.
Rotemberg and Woodford (1999)). Our paper, in contrast, has said little about how prices and
quantities relate. Example 4 in Section 5.3 shows that with linear demand curves, the optimal
quantity equals the myopic quantity and therefore markups are pro-cyclical. On the other hand,
markups are counter-cyclical in the “back–to–school” example in the Introduction. In general,
we have seen that the movement of the markup is determined by marginal revenues and can be
partially separated from the movement of quantities. To make further predictions, one needs to
restrict the possible sequence of demand curves, either through theoretical or empirical means.
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A Omitted Material

A.1 Properties of the Consumer’s Maximisation Problem

Lemmas 4 establishes some properties of the agent’s utility maximisation problem (2.1).
Denote the set of maximisers by τ̂(θ, t). Comparing two stopping rules, let τH ≥ τL if

τH(ω) ≥ τL(ω) (a.e.–ω ∈ Ω). Comparing two sets of stopping rules, τ̂H ≥ τ̂L in strict set order
if τ ′ ∈ τ̂H and τ ′′ ∈ τ̂L imply that τ ′ ∨ τ ′′ ∈ τ̂H and τ ′ ∧ τ ′′ ∈ τ̂L.

Lemma 4. The consumer’s optimal purchase decision has the following properties:
(a) τ̂(θ, t) is a nonempty sublattice and contains a greatest and least element.
(b) Every selection from τ̂(θ, t) is decreasing in θ.
(c) If tH ≥ tL then τ̂(θ, tH) = τ̂(θ, tL) ∩ {tH , . . . , T}, in states where the latter is nonempty.
Hence τ̂(θ, t) is increasing in t in strict set order.

Proof. (a) Nonemptiness of τ̂(θ, t) follows from Klass (1973, Theorem 1). The set of optimal
rules is characterised by Klass (1973, Theorem 6) and contains a least and greatest element.
The least element can be found by using the rule: stop when current utility is weakly greater
than the continuation utility (Chow, Robbins, and Siegmund (1971, Theorem 4.2)). Since the
set of purchasing times is a lattice and ut(θ) is modular in τ (i.e. both super– and submodular),
the set of maximisers is a sublattice by Topkis (1998, Theorem 2.7.1).

(b) ut(θ) has strictly decreasing differences in (θ, τ), since δt < 1, and is modular in τ .
Hence every selection is decreasing by Topkis (1998, Theorem 2.8.4).

(c) If in states A ∈ F , τ ∈ τ̂(θ, tL)∩{tH , . . . , T} maximises the utility of (θ, tL) it must also
maximise the utility of (θ, tH) who has a smaller choice set.

Let τ∗(θ, t) be the least element from τ̂(θ, t). If τ ∈ τ̂(θ, t) then τ = τ∗(θ, t) (a.e.–θ) for
any state ω, by Lemma 4(b). Consequently we can assume the consumer chooses purchasing
rule τ∗(θ, t) without affecting the firm’s profits. Several properties of τ∗(θ, t) are described in
Lemma 1.

A.2 Linear Demand: Examples 4 and 7

The model has particularly clean predictions when demand is linear: ft(θ) = 1 on [0, 2bt], where
bt ∈ [10, 20]. This section demonstrates that:
(a) Under the optimal policy (Theorem 1) the firm sells bt in period t.
(b) Under complete discrimination the firm sells bt in period t. Moreover, welfare and consumer
surplus are lower than under the optimal policy.
(c) Under resale/renting the firm sells bt in period t. Moreover, welfare and consumer surplus
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are higher than under the optimal policy.

Allocations, quantities and payoffs under optimal policy. Marginal revenue is mt(θ) = 2(θ−
bt), so Theorem 2 implies the optimal cutoff is

θ∗t =
1

|A(t)|
∑

s∈A(t)

bs =: bA(t)

where |A(t)| is the number of elements in the upper active set.
To derive quantity sold let us use the following construction. Using Lemma 2 pick a subset

of periods {t1, . . . , tn} ⊂ {1, . . . , t−1} such that ∩iA(ti) = ∅ and ∪iA(ti) = {1, . . . , t−1}. Then
for generation s ∈ A(ti), θ∗(t−1; s) = bA(ti)

. By Lemma 2, we then have A(t) = ∩n
i=kA(ti)∪{t}

for some k ∈ {1, . . . , n}. In period t sales are made to agents born after period tk−1 and the
quantity sold is

Qt =
∑

tk−1<s≤t−1

[θ∗(t− 1; s)− θ∗(t; s)] + [2bt − θ∗(t; t)]

=
n∑

i=k

∑

s∈A(ti)

[bA(ti)
− bA(t)] + [2bt − bA(t)]

=




n∑

i=k

∑

s∈A(ti)

bA(ti)
+ bt


−


 ∑

s∈A(t)

bA(t)


 + bt

=


 ∑

s∈A(t)

bs


−


 ∑

s∈A(t)

bs


 + bt = bt

Welfare from sales in period t equals,

∆t

∑

s≤t

∫ θ∗(t−1;s)

θ∗(t;s)
θ dθ =

∆t

2

[
n∑

i=k

|A(ti)|b2
A(ti)

+ 4b2
t − |A(t)|b2

A(t)

]

Allocations, quantities and payoffs under complete discrimination. Suppose the firm can
completely discriminate between generations, as in Example 2. In period t an agent buys if
they are from generation t and θ ≥ bt. Hence quantity bt is sold in period t. This is the same
as under the optimal policy (see above).

Under complete discrimination welfare from sales in period t equals,

∆t

∫ 2bt

bt

θ dθ =
3
2
∆tb

2
t
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This is less than welfare without complete discrimination since Jensen’s inequality implies

n∑

i=k

|A(ti)|
|A(t)| b

2
A(ti)

+
1

|A(t)|b
2
t ≥ b2

A(t)

Hence the welfare generated at each point in time is larger without discrimination, and welfare
across all periods must also be larger, independent of the discount rate. Intuitively, the same
quantity is allocated as in the optimal policy, but less efficiently. Profit is larger and welfare
lower under discrimination, so consumer surplus is also lower.

Allocations, quantities and payoffs under resale/renting. Suppose the good can be resold.
Theorem 3 implies that the time t cutoff is given by

θR
t =

1
t

∑

s≤t

bs

The quantity sold up to period t is
∑

s≤t(2bt − θR
t ) =

∑
s≤t bs. Hence quantity bt is sold in

period t. This is the same as without resale (see above).
Welfare with resale in period t is

(∆t −∆t+1)
∑

s≤t

∫ 2bt

θR
t

θ dθ = (∆t −∆t+1)
∑

s≤t

[
2b2

t − [θR
t ]2

]

In rental terms, welfare without resale in period t is

(∆t −∆t+1)
∑

s≤t

∫ 2bt

θ∗(t;s)
θ dθ = (∆t −∆t+1)

∑

s≤t

[
2b2

t − [θ∗(t; s)]2
]

Welfare is then greater with resale since

∑

s≤t

[θ∗(t; s)]2 ≥ 1
t


∑

s≤t

θ∗(t; s)




2

=
1
t


∑

s≤t

bs




2

=
1
t

[
tθR

t

]2
=

∑

s≤t

[θR
t ]2

where the first equality uses the fact that the firm sells quantity bt each period under Theorem
1. Intuitively, welfare is higher with resale since the same quantity is allocated more efficiently.
With resale, profits are lower and welfare higher, so consumer surplus is also higher.

A.3 Best–Price Policy with Resale: Example 9

Suppose T = 2, δ is constant and A2 holds. For convenience let us drop the “BP” superscripts.
Fix the period 1 price and cutoff (p1, θ

∗
1). In period 2 the firm chooses p2 inducing cutoff
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θ∗2 = p2. Price p2 is chosen to maximise

Π2 = p2[F {1,2}(p2)− F 1(θ∗1)]− F 1(θ∗1)max{0, p1 − p2}

The optimal choice of p2 is then given by

p∗2 = m−1
{1,2}(0) if p1 ≥ m−1

{1,2}(0) (A.1)

< m−1
{1,2}(0) if p1 < m−1

{1,2}(0)

Thus p∗2 ≤ max{p1,m
−1
{1,2}(0)}.

In period 1 consumers’ purchasing decision depends upon the current price p1 and their
expectation of the second period price pe

2. The utility of agent θ∗1 who buys in period 1 and
sells in period 2 is

(1− δ)θ∗1 − p1 + δpe
2 + δ max{0, p1 − pe

2} (A.2)

Since agent θ∗1 must be indifferent between buying and not, setting (A.2) equal to zero yields
the first period price

p1 = (1− δ)θ∗1 + δ max{θ∗1, pe
2} (A.3)

Fix θ∗1 and consider two cases. First suppose θ∗1 ≥ m−1
{1,2}(0). Equation (A.3) implies

p1 ≥ θ∗1 ≥ m−1
{1,2}(0). Equation (A.1) implies θ∗2 = p∗2 = m−1

{1,2}(0).
Second suppose θ∗1 < m−1

{1,2}(0). Since p∗2 ≤ m−1
{1,2}(0), equation (A.3) implies p1 < m−1

{1,2}(0).
Equation (A.1) implies θ∗2 = p∗2 < m−1

{1,2}(0).
Now let us examine the optimal period 1 cutoffs. First, suppose demand is decreasing.

The firm can choose θ∗1 = m−1
1 (0) ≥ m−1

{1,2}(0) which induces θ∗2 = m−1
{1,2}(0) in period 2. This

implements the commitment optimum and is therefore optimal in period 1.
Next, suppose demand is not decreasing. If the firm chooses θ∗1 = m−1

1 (0) < m−1
{1,2}(0) the

optimal period 2 choice is p∗2 < m−1
{1,2}(0) and the firm overproduces. Hence the commitment

optimum is not implementable. It can be shown that the period 2 cutoff θ∗2 is increasing in
period 1 cutoff θ∗1. It follows that the optimal period 1 cutoff satisfies θ∗1 ≥ m−1

1 (0).
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