
Experimentation in Networks∗

Simon Board†and Moritz Meyer-ter-Vehn‡

February 15, 2024

Abstract

We propose a model of strategic experimentation on social networks in which forward-
looking agents learn from their own and neighbors’ successes. In equilibrium, private
discovery is followed by social diffusion. Social learning crowds out own experimenta-
tion, so total information decreases with network density; we determine density thresh-
olds below which agents’ asymptotic learning is perfect. By contrast, agent welfare is
single-peaked in network density and achieves a second-best benchmark level at inter-
mediate levels that strike a balance between discovery and diffusion.

1 Introduction

The discovery and diffusion of innovations are key drivers of long-term economic growth.
This is illustrated by the seminal papers of Griliches (1957) and Coleman, Katz, and Menzel
(1957) that document the spread of new technologies by farmers and doctors. From the per-
spective of societal welfare, discovery and diffusion are complements: Mokyr (1992) argues
that both are required for sustained economic progress. From an individual strategic per-
spective, they are substitutes: Grossman and Stiglitz (1980) famously point out that if prices
aggregate information efficiently, then individual agents have no incentive to privately gener-
ate such information. Economic theory has made large strides in understanding information
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acquisition and aggregation in centralized settings such as financial markets, auctions, and
collective experimentation. These incentives are less well understood in decentralized set-
tings, where information slowly diffuses through society. This paper seeks to reconcile these
forces in a parsimonious equilibrium model of experimentation in networks.

The classic paper on this topic, Bala and Goyal (1998), considers myopic non-Bayesian
agents who do not reason about the behavior of their neighbors. This shortcuts strategic
considerations and allows one to solve the model as a sequence of static decision problems. By
contrast, our agents are forward-looking and Bayesian, so they reason about the network and
future learning opportunities. To maintain tractability, we impose structure on the network
and assume agents learn via perfect good news events; this reduces each agent’s problem
to choosing a deterministic cutoff time, with social learning described by simple ordinary
differential equations, opening the gate to a myriad of questions about experimentation in
networks.

We use this new approach to study how asymptotic information and welfare depend on
network density, as measured by either the degree in regular random networks or by the core
size in core-periphery networks. For either measure we show that agents’ asymptotic infor-
mation decreases monotonically in network density and they eventually learn the truth when
the network is sufficiently sparse. By contrast, welfare is single-peaked in network density
and attains a second-best welfare benchmark when density is intermediate; such networks
both encourage generation of information and quickly diffuse the discoveries. Collectively,
these results paint a clear picture about learning dynamics, information aggregation, and
welfare in networks of forward-looking, Bayesian agents.

In the model, I agents (Iris, John, Kata. . .) are connected by an exogenous network (e.g.
clique, tree, core-periphery). They can each exert effort experimenting with a new technology
whose state is high or low; effort generates successes at random times iff the state is high.
Agents learn from their own and neighbors’ successes but do not observe neighbors’ effort.
This simple model captures a number of applications: Consider farmers learning about the
success of a new crop from neighbors, doctors learning about a new drug from colleagues, or
landowners learning the best way to extract shale gas from nearby frackers.

In Section 3, we first characterize Iris’s best-response to arbitrary strategies of others.
Observing a success perfectly reveals the high state and she exerts effort forever after. Before
this time Iris’s effort, or “experimentation”, is based on her social learning curve, i.e. the
expected effort of her neighbors. We show that Iris’s dynamic experimentation problem is
solved by a simple cutoff strategy: In the absence of success, Iris stops experimenting at some
cutoff time τi. An increase in social information crowds out Iris’s private experimentation,
lowering her cutoff time: Unsuccessful past social learning makes Iris pessimistic, while future
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social information lowers the information value of her own experimentation.
Next, we illustrate how to generate Iris’s social learning curve from others’ cutoff times via

examples. In the clique network, social learning is fast but shallow: The agents collectively
experiment as much as a single agent would by herself. Adding agents speeds up learning
but does not raise aggregate information because the density of the network chokes off
experimentation prematurely. In the line network, social learning is deep but slow: The
agents collectively experiment an infinite amount. Eventually they learn the state perfectly,
but the sparsity of the network constrains the speed of learning.

In Section 4, we study the effect of network density on asymptotic information and wel-
fare. Specifically, we consider two canonical classes of networks (regular random networks
and core-periphery networks) as I →∞. To study aggregate information, define the asymp-
totic information to be the total information created by society; there is asymptotic learning
if asymptotic information is unbounded, meaning that the agents eventually learn the state.
To study welfare, we propose a second-best benchmark that upper bounds equilibrium util-
ity (of the worst-off agent) across all networks. The clique does not attain this benchmark
because the network is too dense and agents do not generate enough information; the line
does not attain it either because the network is too sparse and learning is too slow. But
we show that both large random networks and large core-periphery networks do attain the
benchmark when network density is intermediate.

We first study large regular random networks with degree nI . This model encompasses
sparse trees, where nI does not depend on I, and dense cliques, where nI/I → 1. Theorem 1
completely characterizes asymptotic information and welfare as functions of network density.
Asymptotic information falls in network density and asymptotic learning obtains if density
is below a threshold. Specifically the agents fully learn if the time-diameter (the typical
time for information to travel between two agents) exceeds a threshold σ∗. Welfare is single-
peaked in network density and attains the second-best benchmark if nI →∞ and nI/I → 0.
Intuitively, asymptotic learning requires sparsity to sustain experimentation incentives; high
welfare requires intermediate density to ensure both generation and prompt diffusion of
information.

To study the role of network position on experimentation incentives we next turn to
core-periphery networks, where KI core agents connect to everyone while I − KI periph-
eral agents connect only to all core agents. In equilibrium, core agents have more social
information than peripherals, so experiment less and have higher utility. While core agents
experiment little themselves (if at all), they serve an important role as information brokers
connecting the peripherals. As I → ∞, asymptotic learning and welfare exhibit similar
properties to large random networks, with core size substituting for the degree. Theorem 2
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completely characterizes asymptotic information and welfare as functions of network density.
Asymptotic information decreases in network density and asymptotic learning obtains if KI

remains below a threshold κ∗. Welfare is single-peaked in network density and attains the
second-best benchmark if KI exceeds κ∗ and KI/I → 0.

Our two families of networks differ in their network structure and thus exhibit different
social learning dynamics. In large random networks, independent successes are achieved over
time by agents scattered throughout the network; for a typical agent, all this social infor-
mation arrives in a single burst at a fixed time σ. By contrast, in core-periphery networks,
independent successes are achieved in the first instant by a small fraction of peripherals;
for a typical peripheral agent, this initial burst of social information arrives slowly as it is
filtered through the core. The resulting cumulative social learning curves are thus convex
for large random networks but concave for core-periphery networks.

Our analysis of large random networks and core-periphery networks points to a funda-
mental tradeoff between social learning and welfare. These goals are often thought to be
aligned: Hayek (1945) famously emphasizes the importance of information aggregation for
allocative efficiency. However, in our model agents must be incentivized to acquire infor-
mation, so the fast diffusion required for second-best welfare can lower total information.
Indeed, for core-periphery networks the two goals are mutually exclusive.

1.1 Literature

At the core of the paper is a “perfect good news” model of strategic experimentation with
unobserved actions and private payoffs. In the context of a clique, Keller, Rady, and Cripps
(2005) study a good-news model with observed actions and private payoffs, Bonatti and
Hörner (2011) consider a good-news model with unobserved actions and public payoffs, and
Bonatti and Hörner (2017) consider a bad-news model with unobserved actions and private
payoffs. In all of these papers, equilibrium is in mixed strategies. Specifically, in the first
two papers, agents gradually phase out their experimentation as the public belief approaches
the exit threshold. In our model, agents use simple cutoff strategies; this allows us to go
beyond the clique and solve for equilibria in rich classes of networks. We also think that the
assumptions of unobserved actions and private payoffs is a natural way to model a network
of farmers, doctors or frackers whose externalities are purely informational.

Observational learning in networks was pioneered by Bala and Goyal (1998) who study
myopic, non-Bayesian agents and provide conditions on the network under which (i) agents
reach a consensus and (ii) the agents learn the state.1 Subsequent work has generalized

1Sadler (2020b) characterizes outcomes more completely in Bala-Goyal’s model with Brownian learning.
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these two limit results in models with forward-looking, Bayesian agents who incorporate
the future value of information when choosing to experiment. Rosenberg, Solan, and Vieille
(2009) consider a very general model that encompasses strategic experimentation in networks,
and shows that all agents eventually play the same action. Camargo (2014) considers a
continuum-agent model with “random sampling”, and shows that information aggregates if
each action is myopically optimal for a positive measure of agents’ heterogeneous priors.
By focusing on good news learning, we can characterize learning dynamics at each point in
time, rather than restricting attention to long-run behavior. This is important because agents
care about when innovations diffuse and not just if they diffuse; indeed, this consideration
underlies the contrast between sparse networks that induce asymptotic learning and the
denser networks that maximize welfare.2

Most closely related to our model, Salish (2015) embeds a discrete-time version of Keller,
Rady, and Cripps’s (2005) strategic experimentation model in a network. Neighbors observe
each others’ actions, which thus signal successes of second neighbors; Salish side-steps such
signaling by introducing an additional learning channel, whereby successes are automatically
transmitted across the network, one link per period. The paper shows that experimentation
tends to phase out over time, and that ring and star networks aggregate more information
than the clique. By contrast, our best-responses are determined by simple cutoffs, allowing
us to characterize aggregate information and welfare as functions of network density.

The complexity of Bayesian updating has led some authors to consider reduced-form
models of information acquisition and aggregation. For example, Bramoullé and Kranton
(2007) and Galeotti and Goyal (2010) consider a local public goods game where each agent
chooses a contribution level, and benefits from her neighbors’ contributions. Since our agents’
optimally choose a deterministic stopping time, we recover the tractability of the reduced-
form models of experimentation in a model of Bayesian learning.

In seeking to characterize learning dynamics in networks, the paper is related to Board
and Meyer-ter-Vehn (2021). In that paper, myopic agents sequentially choose to acquire
information at a single point in time. Here, forward-looking agents simultaneously choose
to acquire information at every point in time. The different models give rise to different
economic forces: The forward-looking agents in this paper anticipate the arrival of future

2A parallel literature considers dynamic learning games where private information is initially endowed to
agents, instead of being learned over time. Gale and Kariv (2003) show that consensus must emerge when
agents are Bayesian and myopic. Mossel, Sly, and Tamuz (2015) extend this result to forward-looking agents,
and also show that agents eventually learn the state if the network is not too connected (e.g. the network
is undirected with bounded degree). Another classic literature considers agents who move in sequence,
learning from (a subset of) prior agents. Acemoglu et al. (2011) show that society learns the state if signals
are unbounded and agents (indirectly) observe an unbounded number of agents. Mossel et al. (2020) unify
many of the results in these literatures by looking at steady-state asymptotic behavior.
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social information which crowds out their private experimentation, and the repeated choices
give rise to the clean distinction between an experimentation phase and a contagion phase.
This paper also focuses on a different question: How does aggregate information and welfare
change with network density?

The paper also complements a growing empirical literature on innovation and social
learning. Fetter et al. (2020) study the effect of disclosure requirements on the choice of
chemical inputs in the shale gas industry. They find that improved disclosure increases
inter-firm social learning but decreases innovation; this is precisely the tradeoff underlying
our welfare results. Hodgson (2021) studies the effects of information sharing in a structural
model of oil exploration and development. As in our model, forward-looking firms experiment
and free-ride on others’ experimentation but, as in Bala and Goyal (1998), their beliefs are
not Bayesian in that they do not draw inferences about others’ beliefs from their action
choices or their past exploration rights. In the development literature, Foster and Rosenzweig
(1995), Munshi (2004) and Bandiera and Rasul (2006) show that imperfect information is
a major barrier to the adoption of new crops, and that social learning crowds out farmers’
experimentation. These papers focus on the agents’ best-responses but do not address how
information diffuses across a network. Recently, this latter question was taken up by Banerjee
et al. (2021) and Beaman et al. (2021) using a non-Bayesian DeGroot model of learning.3

Overall, these literatures lack a simple equilibrium framework with forward-looking Bayesian
agents that can be estimated and used for counterfactuals. This paper proposes such a
framework.

2 Model

Network. Agents {1, ..., I} are connected by an undirected network g ⊆ {1, ..., I}2 that
represents who observes whom. If i (Iris) observes j (John), we write i→ j or (i, j) ∈ g, and
call j a neighbor of i. The set of Iris’s neighbors is Ni(g). The network may be deterministic
or random; denote the random network by G with realization g.

Game. The agents seek to learn about the quality θ ∈ {L,H} of a new technology. Time
is continuous, t ∈ [0,∞). At time t = 0, the common prior is Pr(θ = H) = p0. At each
time t, agent i privately chooses effort Ai,t ∈ [0, 1] at flow cost c. This effort results in
successes with Poisson arrival rate Ai,tI{θ=H}. Agent i observes her own and her neighbors’

3There are a variety of other papers that study the impact of social learning on the adoption of new agri-
cultural technology (Besley and Case (1994), Conley and Udry (2010), BenYishay and Mobarak (2019)), fi-
nancial innovations (Banerjee et al. (2013),), health interventions (Kremer and Miguel (2007), Dupas (2014)),
and consumer products (Goolsbee and Klenow (2002), Moretti (2011), Bailey et al. (2022)).
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past successes, but not others’ actions. If the network is random, she knows G but nothing
about the realization g.

Payoffs. Agents receive payoff x > c from their own successes. Payoffs are discounted at
rate r > 0, so Iris’s net present value equals

Vi = max
{Ai,t}t≥0

E

[∫ ∞
0

e−rtAi,t(xI{θ=H} − c)dt
]

(1)

where the expectation is taken over quality θ, network G, and past observed successes on
which Ai,t conditions. We solve for weak perfect Bayesian equilibria, where agents who have
observed a success infer that θ = H.

Interpretation. The model assumes that actions are unobservable and generate observable
success with a (stochastic) delay. Jointly, these assumptions lead to the slow diffusion of
successes much like an epidemiological SI model. Focusing on a single, indirect mechanism
of information transmission also makes the analysis tractable from a strategic perspective:
It implies that agents use cutoff strategies rather than the mixed strategies in Keller, Rady,
and Cripps (2005)’s symmetric equilibrium, and limits agents’ ability to signal (e.g. exerting
effort to trigger a neighbor to experiment).

We now map the model to the introductory applications (doctors, farmers and frackers).
First, we discuss how to interpret payoffs which, in the model, arrive at Poisson frequency
when an agent exerts effort in state θ = H.

• Poisson arrival of payoffs. Suppose doctors learn about the effectiveness of a new drug.
The drug does not work with every patient, but in state θ = H, it works at Poisson
frequency. When using the drug, the doctor pays a flow cost c and receives benefit x
at Poisson intervals, when the drug is effective.

• Flow payoff interpretation. Suppose farmers learn if a new crop works in their climate.
While experimenting they pay a flow cost c, representing the opportunity cost of land.
Experimentation takes time as they must try different inputs (e.g. watering patterns,
fertilizer). When the new crop succeeds, they use it thereafter and receive flow payoff
(1 + r)x− c.

• Lump-sum payoff interpretation. Suppose frackers learn whether they can extract
natural gas from the ground. They pay flow cost c when experimenting, representing
the cost of trying different chemical mixtures. If their exploration succeeds, they receive
lump-sum payoff x+ (x− c)/r, representing the value of the gas.
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Under the second and third interpretation, agents only observe any neighbor succeed once;
this does not matter since observing one success reveals θ = H perfectly.

Second, we assume that neighbors’ successes are observable. In the applications, this
may be because the neighbors see the success directly (e.g. a farmer brings their new crop
to market), the neighbors see the agent’s payoff from succeeding (e.g. the farmer buys a
new truck), or the neighbors see a piece of hard information that someone shares (e.g.
the local Bayer representative tells other farmers about the crop’s success). The method
of communication affects the identity of neighbors, and thus the density of the resulting
network. For example, relatively few people will see the farmer’s new truck (leading to a
sparse network), whereas the Bayer representative may tell all their clients (leading to a
dense network).

Third, we assume that neighbors’ actions are unobservable. In the applications, this
means a farmer does not know whether other farmers are planting the new crop, a doctor
does not know whether colleagues are prescribing the drug, and a fracker does not know
whether other landowners are actively exploring. We also assume agents do not directly
communicate with one another (other than successes). Indeed, an agent has little incentive
to reveal her failures which tend to make her neighbors more pessimistic and lower their
experimentation. These assumptions ensure that news spreads slowly over the network.

3 General Analysis

We start with a general analysis of best responses: Section 3.1 shows agents use cutoff
strategies, while Section 3.2 derives comparative statics.4 Section 3.3 then characterizes
equilibrium in three examples, while Section 3.4 establishes general equilibrium existence
and discusses equilibrium uniqueness.

3.1 Best Responses: Cutoff Strategies

In this section, we characterize the best response of a generic agent, Iris, given arbitrary
strategies of other agents.

As a benchmark, consider the single-agent experimentation problem, or equivalently Iris’s
problem when she has no neighbors. After her first success, she sets Ai,t = 1 and obtains

4The results in Section 3.1 and 3.2 extend far beyond the networks of Section 2, for instance to directed
or time-varying networks, or to agents with private information about the network, specifically about their
own degree |Ni(g)|.
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continuation value y := (x− c)/r. Before that, her posterior belief evolves according to

pt = P ∅(t) :=
p0e
−t

p0e−t + 1− p0

.

Iris thus experiments until time τ̄ when her belief hits the single-agent threshold belief pτ̄ =

p := c/(x + y). It is also useful to define the myopic threshold belief p̄ := c/x, where Iris
would stop if she ignored the future benefit of success, y.

Returning to the general problem where Iris learns from her neighbors Ni(G), write Ti for
Iris’s first success time, and Si := minj∈Ni(G) Tj for her neighbors’ first success time. After Iris
observes a success at min{Ti, Si}, she chooses maximal effort and receives continuation value
y. We can thus restrict attention to earlier times, and write {a∅i,t}t≥0 for her experimentation,
i.e. her effort before min{Ti, Si}. Define Iris’s rate of social learning by

bi,t := E−i

 ∑
j∈Ni(G)

Aj,t

∣∣∣∣t < Si

 , (2)

where the expectation E−i is taken over the random network G and others’ success times
{Tj}j 6=i, conditional on θ = H and assuming that no-one has observed a success by i.
We also define the cumulative of Iris’s experimentation α∅i,t :=

∫ t
0
a∅i,sds and social learning

βi,t :=
∫ t

0
bi,sds. We generally refer to both {bi,t} and {βi,t} as Iris’s social learning curve;

when referring specifically to βi,t, we call it the cumulative social learning curve. Since Iris’s
experimentation is unobservable to others and her own success effectively ends the game for
her, Iris takes {bi,t} as given. We thus study the best response {a∅i,t} to {bi,t}, and drop the
i subscript for the rest of the section.

When θ = H, the random time min{T, S} has hazard rate a∅t + bt, implying chance
exp(−(α∅t + βt)) of observing no success before t, and a posterior belief equal to

pt = P ∅
(
α∅t + βt

)
.

Truncating (1) at min{T, S} renders Iris’s stochastic control problem deterministic,

V = max
{a∅t }t≥0

∫ ∞
0

e−rt
(
p0e
−(α∅t+βt) + (1− p0)

) ((
a∅t (x+ y) + bty

)
pt − a∅t c

)
dt. (3)

Intuitively, Iris gets x + y when she succeeds, y when a neighbor succeeds, and effort costs
c. The chance of no success by time-t is e−(α∅t+βt) when θ = H, and one when θ = L.

Clearly, Iris experiments for beliefs above the myopic threshold, pt ≥ p̄. Conversely,
equation (3) implies that Iris stops experimenting below the single-agent threshold, pt ≤ p.
For beliefs pt ∈ [p, p̄], her choice depends on her social learning. To avoid trivialities, we
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1p⌧

optimal cuto↵
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Figure 1: Beliefs. The agent always experiments for posterior beliefs pt above the myopic cutoff p̄, and
never below the single-agent cutoff p.

assume p0 ∈ (p, 1). We say the prior is optimistic if p0 > p̄ and pessimistic if p0 < p̄.5

An optimistic agent always engages in some experimentation, no matter her social learning
curve.

We first claim that Iris uses a cutoff strategy in that she experiments maximally until
some cutoff time τ and then stops, a∅t = I{t≤τ}.6 Intuitively, it makes no sense to stop
experimenting at some τ ′ but then resume it after neighbors’ lack of success over [τ ′, τ ′′].
For a more rigorous argument, suppose Iris shirks at time t but works at time t + δ, and
consider the effect of front-loading effort ε from t + δ to t. This has two consequences.
First, if the effort pays off, i now gets to enjoy the success earlier, raising her value by
rδ(pt(x + y) − c)ε, which is positive in the relevant range of posteriors, pt > p. Second, if
one of her neighbors succeeds over [t, t+ δ], she ends up working at both t and t+ δ, raising
her value by ptbtδε(x− c) > 0. Thus, Iris prefers to front-load experimentation, so optimally
uses a cutoff time τ with cutoff belief pτ ∈ [p, p̄], illustrated in Figure 1.

To characterize the optimal cutoff τ , define Iris’s experimentation incentives at time-t,

ψt := pt

(
x+ ry

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
− c. (4)

To understand (4), suppose that successes from Iris’s neighbors arrive at constant rate b,
so (4) simplifies to pt(x + r

r+b
y) − c. If she raises the cutoff from t to t + δ, she gains

the expected payoff from a success pt(x + y)δ, forgoes the expected benefit of future social
learning pt( b

r+b
y)δ, and incurs cost cδ. The experimentation incentives are the sum of these

three effects. We summarize this discussion as follows:

Proposition 1. Given social information {bt}, the agent’s optimal experimentation is given
by the cutoff strategy a∅t = I{t≤τ}, where the cutoff time τ ∈ (0, τ̄ ] uniquely solves ψτ = 0 if
ψ0 > 0, and τ = 0 if ψ0 ≤ 0.

5We are pragmatic about calling the boundary case p0 = p̄ optimistic or pessimistic.
6Of course, “stopping” is provisional in the sense that Iris starts to work again when she observes one of

her neighbors succeed at some t > τ .
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Proof. The proof in Appendix A.1 formalizes the front-loading argument and shows that
the marginal payoff from experimentation at the cutoff is proportional to ψt, which in turn
single-crosses from above in t.

Proposition 1 reduces the potentially complicated experimentation problem of a forward-
looking, Bayesian agent to choosing one number, τ , which is characterized by setting (4)
to zero. This tractability allows us to characterize equilibria for rich classes of networks.
In contrast to Proposition 1, the seminal papers on strategic experimentation in the clique
network, Keller, Rady, and Cripps (2005) and Bonatti and Hörner (2011), both have agents
gradually phase out effort in equilibrium. This difference arises because free-riding incentives
are greater in their models: In Keller, Rady, and Cripps (2005), actions are observable, so
Iris’s neighbors get pessimistic when her experimentation fails; in Bonatti and Hörner (2011),
payoffs are public, so Iris does not want to exert effort if others are about to succeed.

3.2 Best Responses: Comparative Statics

This section derives two useful comparative statics on Iris’s value and her optimal cutoff as
a function of social learning.

Lemma 1. Higher cumulative social learning {βt}t≥0 raises value V and lowers the cutoff
τ .

Proof. Higher {βt} constitutes Blackwell-better information and raises V . Experimentation
incentives (4) fall both in pre-cutoff learning βτ which lowers the cutoff belief pτ = P ∅(τ+βτ )

and in future learning {bt}t≥τ . To show that ψτ falls in cumulative learning {βt}, we need to
compare the impact of “early” and “late” increases in bt. Specifically, differentiating time-τ
experimentation incentives (4) with respect to time-t social learning, we get7

−∂ψτ
∂bt

=

pτ
(
ry
∫∞
τ
e−

∫ s
τ (r+bu)duds+ x− c

)
for t < τ

pτry
∫∞
t
e−

∫ s
τ (r+bu)duds for t > τ,

(5)

where the case t < τ uses ∂pτ
∂bt

= −pτ (1 − pτ ) and (1 − pτ )(x + ry
∫∞
τ
e−

∫ s
τ (r+bu)duds) =

x + ry
∫∞
τ
e−

∫ s
τ (r+bu)duds − (ψτ + c). Clearly, (5) is positive and falls in t, weakly for t < τ

and discontinuously at t = τ . Thus, earlier learning reduces incentives more, so ψτ falls as a
function of {βt}. Since ψt strictly single-crosses from above (by the proof of Proposition 1),
the solution τ of ψτ = 0 falls in {βt}.

7Formally, define ∂ψτ
∂bt

= limε→0
1
ε (ψτ ({bt,εs }s≥0)− ψτ ({bs}s≥0)) where bt,εs := bs + I{s∈[t−ε,t]}.
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Equation (5) tells us that pre-cutoff learning βτ crowds-out the agent’s experimentation
more than post-cutoff learning {bt}t≥τ . After the cutoff, it crowds out the option value of
own experimentation ry

∫∞
τ
e−

∫ s
τ (r+bu)duds, as seen in the second line of (5) for t = τ . Before

the cutoff, the additional term x−c in the first line of (5) represents the reduced opportunity
of achieving a first success at τ .8

In Appendix A.2, we show that Iris’s learning curve {βt} rises in other agents’ cutoffs.
Together with Lemma 1, this means that τi falls in τ−i, so the game has strategic substitutes.9

Our second result provides a tool for rich comparisons of equilibrium values. Lemma 1
is of limited value for such comparative statics because the order on social learning {βt} is
highly incomplete. To obtain a sharper tool, the proof of Lemma 2 shows that by truncating
the integral expression for an agent’s value (3) at τ we can write the agent’s value as a
function of only two variables: the cutoff τ , and pre-cutoff social learning βτ

V =
p0x− c

r
+ e−rτ

(
p0e
−βτ−τ (x− c)− (1− p0)c

r − 1

r

)
=: V(τ, βτ ). (6)

Before τ , Iris exerts effort anyway, so does not care about the timing of social learning {bt}t≤τ .
After τ , learning {bt}t≥τ matters only via the continuation value Vτ = pτy

∫∞
τ
bse
−
∫ s
τ (r+bu)duds =

pτ (x+ y)− c,10 which is a function of (τ, βτ ) since pτ = P ∅(τ + βτ ).

Lemma 2. For any social learning curve {βt} with ψ0 ≥ 0 and optimal cutoff τ , the agent’s
value is given by (6). The function V(τ, βτ ) falls in both arguments, with ∂τV < ∂βV < 0.

Proof. See Appendix A.3.

The fact that V(τ, βτ ) falls in βτ may sound counterintuitive. It occurs because we fix the
optimal stopping time τ , as characterized by ψτ = 0. A rise in pre-cutoff learning βτ must
be compensated by a fall in post-cutoff learning {bt}t≥τ in order to keep τ constant. More
strongly, since pre-cutoff learning has a discontinuously larger effect on ψτ than post-cutoff
learning by (5), we must reduce the latter by a larger amount to compensate. In contrast to
(5), the effect of social learning on value, ∂V/∂bt, is continuous in t, so the combination of
a small raise of bτ−ε and a large drop of bτ+ε decreases value.

8For optimistic agents, p0 > p̄, this asymmetry is stark. A finite amount βt = τ̄ of pre-cutoff learning
fully crowds out incentives by inducing pt < p and so ψt < 0. In contrast, no amount of post-cutoff learning
fully crowds out incentives since ψ0 > p0x− c > 0 for any {βt}.

9Strategic substitutes owe to our assumption of perfect good news learning. Duffie, Malamud, and Manso
(2014) show the possibility of strategic complementarity in a game in which agents acquire imperfect signals
and then engage in dynamic bilateral trade in randomly matched pairs.

10The first equality leverages the fact that all learning after τ is social {bt}t≥τ , and the second leverages
the indifference condition ψτ = 0.
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Figure 2: Equilibrium Analysis.

Lemma 2 assumes ψ0 ≥ 0, so her stopping time is characterized by ψτ = 0.11 This
assumption is satisfied in the random networks in Section 4.2 where all agents exert some
effort, and for peripheral agents in the core-periphery networks in Section 4.3.

Lemma 2 is key to compare equilibrium welfare across agents and networks since τ and
βτ are easily characterized in equilibrium. For example, suppose one agent optimally shirks
τ = 0, while another optimal works τ ′ > 0. Since βτ = 0 and βτ ′ ≥ 0, the shirker has higher
utility than the worker, V(0, 0) > V(τ ′, βτ ′).

3.3 Equilibrium: Examples

So far, we studied Iris’s best response τi as a function of reduced-form social learning curves
{βi,t}. To close the model in equilibrium we must study how individual cutoffs τ−i = {τj}j 6=i
aggregate into {βi,t}, as illustrated in Figure 2. Here we demonstrate this aggregation in
three canonical example networks, foreshadowing the more general analysis in Section 4.

Example 1 (Clique). Assume that all I agents observe each other. We claim there is
a unique equilibrium in which all agents equally divide the single-agent experimentation
between them; that is, τi = τ̄ /I for all agents i, where τ̄ solves P ∅(τ̄) = p. The resulting
social learning curve is illustrated in Figure 3(a). As I rises, aggregate information is constant
while welfare rises as learning accelerates and agents share the cost of experimentation.

We prove our claim in two steps. First, the agents collectively experiment as one isolated
agent,

∑
i τi = τ̄ . This is because any agent who experiments the longest expects no social

information after her cutoff, bi,s = 0 for s > τi. Hence she faces the first-order condition of
11Otherwise, if the agent receives too much social information and ψ0 < 0, her value equals V = V0 =

p0y
∫∞

0
bse
−(rs+βs)ds = p0(x+ y)− c− ψ0 = V(0, 0)− ψ0 > V(0, 0).
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Figure 3: Social Learning Curves. This picture illustrates the rate of social learning bit as defined in
equation (2) for Examples 1-3, as described in the text.

the single-agent problem, P ∅(
∑

j τj)(x+ y)− c = 0 = p(x+ y)− c. Second, the agents split
total experimentation evenly, τj = τ̄ /I. This is because all agents are indifferent when pt

reaches p and prefer to front-load experimentation, so they all experiment until τ̄ /I.12 4

Example 2 (Line). Consider the following (infinite) network:13

. . .↔ j′ ↔ i↔ j ↔ k ↔ . . .

In the unique symmetric equilibrium, private discovery in an initial experimentation phase
of length τ is followed by social diffusion in a contagion phase. For example, suppose Kata
succeeds in the experimentation phase, while Iris and John and John′ do not. After τ , Kata’s
success means that Kata and John continue to work while Iris shirks. Eventually John also
succeeds and Iris resumes work.

Let at be i’s expectation of j’s effort conditional on not seeing a success

at := E−i [Aj,t|t < Si] = 1− Pr −i (t < Tk|t < Tj) I{τ<t}. (7)

The second equality uses that, in the absence of observing Iris succeed, John works at times
12The uniqueness of equilibrium is notable since public good problems with linear costs feature a continuum

of equilibria. Bramoullé and Kranton (2007) select an equilibrium via a stability criterion while Galeotti and
Goyal (2010) select via a network formation game; we resolve this indeterminacy through impatience. In
experimentation papers there are also asymmetric equilibria (e.g. Keller, Rady, and Cripps (2005), Bonatti
and Hörner (2011)). As discussed after Proposition 1, free-riding incentives are weaker in our paper, leading
putative asymmetric equilibria to unravel.

13This example has infinite agents but we can approximate it with a sequence of finite random networks
that generate circles of exploding size. These finite networks admit unique, symmetric equilibria, that
converge to the symmetric equilibrium described here (see Appendix C).
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after τ iff Kata has succeeded. Further,

Pr −i (t < Tk|t < Tj) =
Pr−i (t < Tj, Tk)

Pr−i (t < Tj)
=
e−τ−αt

e−αt
= e−τ . (8)

The denominator is the chance that John’s cumulative experimentation αt =
∫ t

0
asds fails to

yield a success. For the numerator, the hazard rate of the success time min{Tj, Tk} equals 2

in the experimentation phase t ≤ τ ; in the contagion phase t > τ , the lack of success by i, j, k
implies Aj,t = 0, so the hazard rate drops to E−i [Ak,t|t < Tj, Tk] = E−j [Ak,t|t < Tk] = at.

Substituting (8) into (7) yields at = 1− e−τ I{τ<t}, which is constant at t > τ . While the
unconditional probability that Kata has succeeded, and hence John works, rises over time,
this positive effect is exactly offset by conditioning on the bad news event that John has not
succeeded yet, t < Tj.

Since Iris has two neighbors, her social learning curve equals bi,t ≡ 2(1 − e−τ I{τ<t}), as
illustrated in Figure 3(b). Using (4), the equilibrium stopping time τ solves

ψτ = P ∅(3τ)

(
x+

r

r + 2(1− e−τ )y
)
− c = 0. (9)

4

Example 2′ (Tree). Generalizing Example 2, we consider an (infinite) tree where everyone
has n neighbors. Iris’s expectation of neighbor John’s effort in (7) now considers the event
that none of his n− 1 other neighbors k has succeeded. In turn, 1− at in (8) becomes

Pr −i (t < Tk,∀k ∈ Nj|t < Tj) =
Pr−i (t < Tj, Tk,∀k ∈ Nj)

Pr−i (t < Tj)
=
e−τ−(n−1)αt

e−αt
. (10)

The denominator is the same as (8). For the numerator, the hazard rate of the success time
min{Tj, Tk, Tk′ , . . .} equals n in the experimentation phase t ≤ τ ; in the contagion phase
t > τ , the lack of success by k, k′, ... implies Aj,t = 0, so the hazard rate drops to at for each
of j’s neighbors k other than i.

Simplifying and differentiating (10), Iris’s belief follows the ODE

ȧ = (n− 2)a(1− a) (11)

with initial condition aτ = 1 − e−(n−1)τ given by the probability that one of John’s n − 1

other neighbors succeeded in the experimentation phase.14

14We can rewrite (11) as d
dt log at

1−at = n− 2 and solve in closed-form for at = 1/(1 + exp(−(n− 2)(t+γ)))

with constant γ determined by the initial condition aτ = 1− e−(n−1)τ .
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For the line, n = 2, we recover the time-invariant beliefs at ≡ 1 − e−τ . For n ≥ 3, Iris’s
belief rises over time because the good news from John’s expected inflow of information
outweighs the bad news from his observed lack of success. The net effect is captured by the
factor (n − 2) in (11): The more neighbors John has, the faster he observes a success, and
the faster Iris’s rate of social learning increases. 4

Example 3 (Star). The star consists of one core agent (Kata, k) and L peripheral agents
(Lili, `), and undirected links between k and each `. In any equilibrium, peripherals use a
common cutoff τ` (by Proposition 3). Moreover, Kata learns faster than the peripherals and
so experiments less herself, τk < τ` (by Lemma 5). Indeed, for p0 < p̄ and large L, Kata does
not experiment herself, τk = 0.15

When τk = 0, information is generated by peripherals, but flows via Kata who serves
as the information broker. If a peripheral succeeds before τ`, Kata sees this and starts to
work; her eventual success then triggers all other peripherals to work. The resulting social
learning curve for peripheral agent Lili b`,t undergoes two phases, illustrated in Figure 3(c).
Up to time τ`, it increases because of other peripherals’ experimentation. After τ`, no more
additional information is created, and b`,t falls as the information filters through Kata and
Lili becomes pessimistic about Kata having seen a success. These dynamics are analogous
to water that flows into a reservoir while the peripherals experiment, and slowly drains out
through a bottleneck as Kata conveys the information. 4

3.4 Equilibrium: Existence and Uniqueness

We round off our preliminary analysis by establishing equilibrium existence and limited
uniqueness results.

Proposition 2. Equilibrium exists.

Proof. We argue that the best-response mapping in cutoff vectors {τ ∗j } : [0, τ̄ ]I → [0, τ̄ ]I

is continuous, which implies equilibrium existence by Brouwer’s fixed point theorem. First
note that i’s social learning curve {bi,t}t≥0, defined in equation (2), is pointwise continuous
in {τj}j 6=i for all t 6= τj. Then, Lebesgue’s dominated convergence theorem implies that
incentives ψi,t in (4) are also continuous in {τj}j 6=i for all t. Finally, since ψi,t strictly single-
crosses in t (see the proof of Proposition 1), its root τ ∗i ({τj}j 6=i) is also continuous.

Uniqueness is more difficult. We are not aware of networks with multiple equilibria, but
can only prove uniqueness under strong assumptions. For a deterministic network g and

15This is analogous to the equilibrium where peripheral agents provide all of the public good in Bramoullé
and Kranton’s (2007) static, reduced-form model of experimentation (right panel of their Figure 1b).
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agents i 6= j, define gi↔j to be the same network when switching i and j.16 For a random
network G, define Gi↔j by Pr(Gi↔j = g) = Pr(G = gi↔j) for all g. In analogy to sequences
of random variables, we say that i and j are exchangeable in G iff Gi↔j = G; network G is
exchangeable if Gi↔j = G for any pair of agents i, j.

Proposition 3. If i and j are exchangeable in G, then in any equilibrium τi = τj.

Proof. See Appendix A.4.

For an intuition, consider a deterministic network where i and j are not connected. By
contradiction assume τj < τi. Since i’s additional learning over [τj, τi] is more immediate
to i than to j, who only benefits indirectly via some other agent k, we can argue that
min{Ti, Si} is smaller than min{Tj, Sj}. This greater chance of learning the state depresses
i’s experimentation incentives below j’s, leading to the contradiction that τj > τi.

Corollary 1. Exchangeable networks have a unique equilibrium, characterized by a cutoff
τ ∈ (0, τ̄), such that τi = τ for all i.

Proof. Proposition 3 implies that all agents must share the same cutoff τ . Uniqueness follows
from strategic substitutes: When agents j 6= i raise their cutoff τ−i, i’s social learning rises
(see Appendix A.2), which in turn lowers own experimentation τi by Lemma 1.

Exchangeability is so demanding that only two deterministic networks satisfy it, the clique
and the empty network: If j ∈ Ni(g), exchangeability implies k ∈ Ni(g) and j ∈ Nk(g) for
all k 6= i, j, so g is the clique. A weaker notion of symmetry is vertex-transitivity: For
each i, j, there is a graph automorphism of g that maps i to j. By the proof of Corollary
1, vertex-transitive networks have exactly one symmetric equilibrium; but we do not know
whether there are additional, asymmetric equilibria.17

With this said, many natural classes of random networks, such as the random networks
studied in Section 4.2, are exchangeable and Corollary 1 applies.18 Moreover, Proposition 3
is useful beyond exchangeable networks; for instance, equilibria in core-periphery networks
in Section 4.3 are characterized by one cutoff τk for all core-agents and another cutoff τ` for
all peripherals.

16Formally, given g, we can define gi↔j by three types of links. First, links involving i and j: (i, j) ∈ gi↔j
iff (i, j) ∈ g. Second, links involving one third party: (i, k) ∈ gi↔j iff (j, k) ∈ g, and (j, k) ∈ gi↔j iff (i, k) ∈ g.
Third, links between third parties: (k, `) ∈ gi↔j iff (k, `) ∈ g.

17A case in point is the four-agent ring ... ↔ i ↔ j ↔ k ↔ ` ↔ i ↔ ...; it is vertex-transitive, but not
exchangeable since i (but not j) is linked to `, and so g 6= gi↔j . However, i, k are exchangeable, as are j, `;
any equilibrium must thus have τi = τk and τj = τ`. The two equilibrium conditions for these two cutoffs
are easy to derive, but we do not know how to prove that τi = τj .

18Another natural class of exchangeable networks fixes an arbitrary deterministic or random graph, and
then assigns agents to nodes at random. Agents thus know the global structure of the network, but not their
own location. We do not know if this class of networks captures all exchangeable networks.
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4 Density of Links

We now turn to the main question of the paper: How do learning and welfare depend on
network density? Section 4.1 introduces some terminology and a second-best benchmark for
welfare. Section 4.2 studies large random networks. Section 4.3 studies large core-periphery
networks. The results for asymptotic learning and welfare in these two sections run parallel
to one another, but the learning dynamics differ.

4.1 Bounds on Learning and Welfare

First consider aggregate information. We study large networks via sequences of networks
{GI}I∈N and write βI := minj β

I
j,∞ for the social information of the least-informed agent. If

GI admits multiple equilibria, we consider the infimum values of βI . We define asymptotic
information as β = lim infI→∞ βI . There is asymptotic learning if β = ∞, so all agents
eventually learn the state.

Next consider welfare. Iris’s value is trivially bounded above by the value of learning the
state perfectly immediately, Vi < p0y. Another, less obvious, upper bound on agents’ value
comes from the fact that for i to socially learn, some other agent j 6= i must generate that
social information. By Lemma 2 and equation (6), this implies that minj Vj < V(0, 0) =

p0(x+ y)− c.19 This motivates an upper bound on Rawlsian welfare that we refer to as the
welfare benchmark,

V ∗ := min{p0y, p0(x+ y)− c},

illustrated in Figure 4 as a function of p0. Given a sequence of networks {GI}I∈N, let V I :=

minj V
I
j be the expected welfare of the worst-off agent. If GI admits multiple equilibria, we

consider the infimum values of V I . Define asymptotic welfare as V = lim infI→∞ V I .
While asymptotic learning and the welfare benchmark are both driven by social learning

{βt}, asymptotic learning focuses on the long run while welfare incorporates discounting. For
optimistic priors p0 ≥ p̄, the welfare benchmark requires agents learn the state immediately,
so clearly they also learn asymptotically. For pessimistic priors p0 < p̄, asymptotic learn-
ing and the welfare benchmark are opposing goals. Recall that the value function V(τ, β)

from Lemma 2 falls in τ . Thus, the welfare benchmark V ∗ = V(0, 0) requires individual
experimentation to vanish max1≤i≤I τ Ii → 0, while asymptotic learning requires aggregate
information to diverge,

∑I
i=1 τ

I
i → ∞. For core-periphery networks, we will see that these

19This upper bound relies on agents using equilibrium strategies. Consider a sequence of clique networks
in which agents use symmetric cutoffs τ I that vanish individually lim τ I = 0 but explode in aggregate
lim Iτ I = 0. Agents’ payoffs approach p0y, which exceeds p0(x + y) − c for pessimistic priors p0 < p̄.
However, in equilibrium, such agents have a strict incentive to shirk for large I (see Example 1).
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Figure 4: Welfare as a Function of the Prior p0: The figure shows the benchmark upper bound V ∗

and the single-agent lower bound. The benchmark V ∗ is piece-wise linear with a downward kink at the
myopic cutoff, p̄. The figure also shows welfare in our three examples. The blue line shows the infinite
clique (Example 1) in which welfare is V(0, τ̄), where τ̄ is the single-agent experimentation. The magenta
line shows the infinite line (Example 2) in which welfare is V(τ, 2τ), where τ satisfies (9). The red line shows
the infinite star (Example 3); welfare equals the benchmark V(0, 0) for p ≤ ps and otherwise V(τ, τ), where
τ satisfies (12). The figure assumes the benefit and cost of experimentation are x = 4 and c = 3 and the
interest rate is r = 1/2.

two conditions are mutually exclusive.
Our main results, Theorem 1 and 2, show that sequences of random networks and core-

periphery networks can attain asymptotic learning β = ∞ when network density is small,
and the welfare benchmark V ∗ when network density is intermediate.20

We illustrate these concepts with the three examples from Section 3.3.

Example 1, continued (Clique). In a finite network, the agents share the single-agent
experimentation, τi = τ̄ /I. As I →∞, individual experimentation vanishes and all learning
is social with asymptotic information β = τ̄ . Agents’ receive all their social information be-
fore stopping, βτ = τ̄ , so asymptotic welfare equals V(0, τ̄). More concretely, agents’ beliefs

20In both cases, the proof of the Theorem characterizes unique limit points for {βI} and {V I}, so the
lim inf equals the ordinary limit. In the large random networks equilibria are unique, so taking the infimum
over equilibrium values is moot. In finite core-periphery networks, we do not know whether equilibrium is
unique, but the unique characterization of the limit points does not rely on taking the infimum over equilibria
and rather applies for any equilibrium selection.
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instantly jump to 1 (if there is a success) or drop to p (if there is no success). The payoff to
the former is y, so the equilibrium values converge to V(0, τ̄) = (p0 − p)y/(1 − p) < V ∗, as
illustrated in Figure 4. The speed of diffusion in the clique chokes off discovery and means
that agents neither asymptotically learn nor obtain the welfare benchmark. 4

Example 2, continued (Line). In this infinite network, each agent experiments for
time τ > 0, where τ solves (9). Asymptotic learning obtains since social learning βt =

2(τ + (1 − e−τ )(t − τ)) is unbounded. However, agents learn too slowly and they do not
attain the welfare benchmark. Specifically, each agent experiments for τ and learn τ from
each neighbor before stopping, so βτ = 2τ and welfare equals V(τ, 2τ) < V ∗. 4

Example 3, continued (Star). When there is a large number of peripherals, the core
agent Kata shirks, τk = 0. The peripherals thus do all the experimentation and have the
lowest information and welfare, so we focus on them. We show in Section 4.3 that agents
asymptotically learn iff p0 ≥ ps. The threshold ps is defined so that peripheral agents barely
work at t = 0 if they think Kata will instantly learn the state and choose bk,t ≡ 1 thereafter,

ψ`,0 = ps
(
x+

r

r + 1
y

)
− c = 0. (12)

Note that ps < p, so agents asymptotically learn if they have an optimistic prior.
The welfare result is exactly the opposite: Agents attain the welfare benchmark iff p0 ≤

ps. For a high prior, p0 > ps, the peripheral agents experiment in the limit, τ` > 0, meaning
Kata instantly learns. Thus a peripheral agent learns βτ` = τ` before stopping and has value
V(τ`, τ`) < V(0, 0) = V ∗.21 For a low prior, p0 ≤ ps, the peripherals stop experimenting in
the limit, τ` = 0, and since βτ` < τ`, their value converges to its upper bound V ∗ = V(0, 0).22

Thus, asymptotic learning and the welfare benchmark are not only distinct concepts, but in
fact mutually exclusive (for generic priors p 6= ps). 4

4.2 Large Random Networks

We first study large random networks. This is a tractable and canonical class of networks
that can capture realistic contagion dynamics. For simplicity we focus on regular networks,
where agents all have the same number of neighbors. This class is rich enough to encompass

21The latter equality presumes p0 ≤ p̄. For p0 > p̄, the welfare benchmark V ∗ = p0y requires immediate
perfect social information, which is clearly impossible with a single neighbor.

22It may appear paradoxical that the welfare upper bound V ∗ is achieved for low, but not high prior beliefs
p0. This is because V ∗ itself rises as function of p0, and is hence a more demanding benchmark for high p0.
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the clique and trees, as in Sadler (2020a) and Board and Meyer-ter-Vehn (2021). After our
main result, we discuss which insights generalize to non-degenerate degree distributions

We construct a regular random network as follows. Each of the I agents has n̂I ≥ 2 link
stubs. We randomly draw pairs of stubs and connect them into undirected links. We then
prune self-links (from i to i), multi-links (from i to j), and if n̂II is odd the single leftover
stub. We assume that agents observe nothing about the network realization, not even their
own degree; omitting such information seems innocuous since agents asymptotically know
their degree (see Lemma 3, below).

By construction, the random network is exchangeable, so Corollary 1 implies there is
a unique equilibrium. Denote the symmetric cutoff by τ I and agents’ value by V I . We
consider sequences of such networks with degrees {n̂I}, and assume existence of the limits
ν := lim n̂I ≥ 2,23 λ := lim n̂I/ log I and ρ̂ := lim n̂I/I, possibly equal to ∞.

Let N I be the number of realized links of a random agent. Some stubs may fail to form
links, so N I is random with expectation nI := E[N I ] < n̂I . We now argue that we can
ignore this complication as I →∞.

Lemma 3. As the network grows large, I →∞,
(a) Realized degree: N I/nI

D→ 1.
(b) Expected degree: nI/I → 1− e−ρ̂. If ρ̂ = 0, then nI/n̂I → 1.
(c) Social information at the cutoff time: lim βIτI = limnIτ I .

Proof. See Appendix B.1.

Part (a) means agents essentially know their realized degree N I . Part (b) means we can
ignore the distinction between stubs and links when ρ̂ = 0. And part (c) means agents do
not update N I during the experimentation phase, a consequence of part (a).

We next introduce three relevant regions of limit network density:

(1) Sparse networks. Here, agents have a bounded number of links, with ν := lim n̂I =

limnI ∈ {2, 3, ...}. Such networks approximate trees in the following local sense: For
any agent i and any r ∈ N, the probability that i has ν first neighbors, ν(ν − 1)

second neighbors, ..., ν(ν − 1)r−1 neighbors at distance r, and all these agents are
distinct converges to one as I → ∞. Appendix C show that contagion dynamics and
equilibrium converge to those of infinite trees in Example 2.

(2) Intermediate networks. Here, agents’ links are of order log I, with λ := lim n̂I/ log I =

limnI/ log I ∈ (0,∞). In such networks, information spreads across the network in
finite time, as in Milgram (1967)’s six degrees of separation. Indeed, Lemma 4 below

23The restriction n̂I ≥ 2 ensures that the component of a typical agent has size proportional to I.
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shows that the inverse 1/λ measures the network’s time-diameter, i.e. the time for
information to travel between two random agents in the network.24

(3) Dense networks. Here, agents are connected to a fixed proportion of other agents
ρ := limnI/I = 1−e−ρ̂ ∈ [0, 1]. Agents are at most two links apart and we approximate
the clique from Example 1 when ρ = 1.

The set of network densities is the union {ν|ν ∈ N}∪{λ · log I|λ ∈ [0,∞]}∪{ρ · I|ρ ∈ [0, 1]},
endowed with its natural order, after identifying ∞ · log I with 0 · I.25

We now define the threshold density for asymptotic learning. For pessimistic priors,
p0 < p̄, let σ∗ ∈ [0,∞) be such that perfectly learning the state at time σ∗ renders an agent
indifferent about experimenting at t = 0. Using (4)

ψ0 = p0

(
x+ (1− e−rσ∗)y

)
− c = 0. (13)

Here, e−rσ∗y is the post-experimentation continuation value. For optimistic priors, p0 ≥ p̄,
set σ∗ = 0.

Theorem 1. In random networks {n̂I} as I →∞:
(a) Asymptotic information β is a decreasing function of network density: It attains

asymptotic learning β =∞ iff λ ≤ 1/σ∗, and strictly falls when λ ≥ 1/σ∗.26

(b) Welfare V is a single-peaked function of network density: It strictly rises when ν <∞,
attains the benchmark V ∗ iff ν =∞ and ρ = 0, and then strictly falls when ρ > 0.

Proof. See Appendix B.2

Asymptotic learning requires sparse networks. Intuitively, denser networks accelerate
diffusion, crowd out discovery, and undermine learning in the long run. Welfare attains the
benchmark when network density is intermediate. Intuitively, welfare discounts the future
and so relies on both information generation and its quick dissemination.

Theorem 1 goes beyond traditional threshold theorems (see, e.g. Jackson (2010), Section
4.2.2). First, we solve for the exact threshold for asymptotic learning within the logarithmic

24This time-diameter 1/λ = lim(log I/nI) is smaller than the typical diameter estimate for large random
networks lim(log I/ log nI). The smaller diameter reflects a faster contagion process: contagion in our model
does not travel one link in every discrete time period; rather each link transmits continuously with rate one.
Much like compound interest, this allows nodes infected at t′ ∈ [t, t+ 1] to begin transmitting immediately,
instead of having to wait until t+ 1.

25This order treats many sequences of networks as equally dense. For instance, nI = log log I or nI =
(log I)1/2 both correspond to ν =∞, λ = 0. Theorem 1 shows that asymptotic information β and welfare V
of a sequence of networks {nI} only depends on its limit density (ν, λ, ρ).

26For optimistic priors p0 ≥ p̄, where 1/σ∗ = ∞, asymptotic information is perfect iff ρ = 0 and strictly
falls in ρ > 0.
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Figure 5: Large Random Networks for Pessimistic Priors, p0 ≤ p. The top panel shows asymptotic
information β as a function of network density, as described in Theorem 2(a). The middle panel shows
welfare V as a function of network density, as described in Theorem 2(b). The bottom panel shows the
cumulative social learning curves of a typical agent in three canonical cases, as discussed in the text. Note,
σ∗ is defined by (13), β(λ) by (15), and β∗ by (16).
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range, λ ≤ 1/σ∗. Second, we characterize learning and welfare for network densities where
the upper bounds are not attained.

Figure 5 illustrates Theorem 1 for p0 < p̄. The top and middle panels sketch asymptotic
information β and welfare V as functions of network density. The bottom panel illustrates the
underlying cumulative social learning curves {βt} for our three regions of network density.27

We discuss Figure 5 in order of increasing network density.
We begin with sparse networks, ν < ∞. As I → ∞, these networks approximate trees,

with independent information across Iris’s neighbors. Cumulative social learning in the
contagion phase {βt}t≥τ , illustrated in Figure 5(i), is convex with rate bt = nat described
by (11). This convexity reflects the fact that an agent has ν first-degree neighbors, ν(ν − 1)

second-degree neighbors, ν(ν− 1)2 third-degree neighbors etc., so contagion accelerates over
time. Each agent experiments for a bounded time τ > 0, which ensures asymptotic learning,
while welfare falls short of the benchmark, V(τ, ντ) < V(0, 0). The proof shows that τ = τ(ν)

falls in ν, and V(τ, ντ) rises in ν.
Next, we characterize diffusion in intermediate and dense networks, ν =∞. As illustrated

in Figure 5(ii) and (iii), the cumulative social learning curve {βt} is a step-function with a
single step at time σ. That is, agents observe the first success at time σ, or never. In
analogy to epidemiological contagion processes, we also say that agents get “exposed” at σ.
For intermediate networks, we have σ = σ(λ) > 0; for dense networks, we have σ = 0.

To state the underlying result, consider any sequence of cutoffs {τ I} (not necessarily
equilibrium) with limit σ := lim − log τI

nI
∈ [0,∞]. Let S be the binary random time with

Pr(S = σ) = 1− e− lim IτI and Pr(S =∞) = e− lim IτI ,28 and index i’s exposure time SIi by I.

Lemma 4. Assume ν = ∞. As I → ∞, i gets exposed at time σ or never, SIi
D→ S, and

learns all generated information, lim Iτ I = β.

Proof. The full proof is in Appendix B.3. For an intuition, suppose Iris’s neighbors are
a negligible share of the population, ρ = 0. At τ I , the chance at least one agent has
succeeded is 1−e−IτI , and there are approximately nIIτ I exposed agents. The contagion then
grows exponentially at rate nI (which itself diverges nI → ∞), so there are approximately
nIIτ Ien

I t exposed agents at time t and, heuristically, everyone is exposed when nIIτ IenI t = I,
or t = − log(nIτI)

nI
→ σ.29 This argument slightly overstates exposures because of double-

counting. But this problem scales with the share of exposed agents and we only need the
27The more intuitive rates of social learning {bt} in Figure 3 fail to exist for ν =∞.
28Note that others’ information equals total information, lim(I − 1)τ I = lim Iτ I , both when τ I → 0 and

when τ I is bounded away from 0 (so both limits are infinite).
29Recalling footnote 24, here we see the difference between typical discrete-time contagion models where

exposed agents grow like e(lognI)t and our continuous-time model with the faster rate en
It.
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argument as long as this share is negligible; once a fixed share of the population is exposed,
all agents are exposed immediately since nI →∞. The proof uses Chernoff bounds to make
these arguments rigorous.

To sharpen Lemma 4, note that the time-diameter upper-bounds the exposure time

σ = lim
− log τ I

nI
= lim

log I − log Iτ I

nI
=

1

λ
− lim

log Iτ I

nI
. (14)

With finite aggregate information, β = lim Iτ I < ∞, they coincide σ = 1/λ; but with
β = ∞, a diverging number of agents succeed during experimentation, so exposure can
happen earlier, σ ≤ 1/λ.

With this characterization of social learning curves for any cutoffs τ I , we now return to
the question of equilibrium. For intermediate networks, the proof of Theorem 1 shows that
pre-cutoff learning must vanish, (nI + 1)τ I → 0.30 Welfare thus converges to the benchmark
V(τ I , nIτ I)→ V(0, 0) = V ∗.

Turning to asymptotic information, the indifference condition (4) at t = 0 when antici-
pating information β at exposure time σ becomes

p0

(
x+

(
1− e−rσ(1− e−β)

)
y
)
− c = 0. (15)

For low-density intermediate networks with λ ∈ (0, 1/σ∗), an exposure time equal to the
time-diameter σ = 1/λ > σ∗ would render experimentation incentives (15) positive for any
β. That is, if the delay exceeded σ∗, no amount of information could fully crowd out own
experimentation. Equilibrium must therefore feature σ(λ) = σ∗ < 1/λ implying infinite
information, β(λ) = ∞, by (14), so (15) becomes (13). Thus, in this range, the exposure
time and information are independent of network density.

For high-density intermediate networks λ ∈ (1/σ∗,∞), perfect learning β = ∞ would
render incentives (15) negative for any σ(λ) ≤ 1/λ < σ∗. That is, learning is so fast that
perfect information at σ(λ) would choke off experimentation entirely. Instead, equilibrium
must feature finite information, β(λ) < ∞, implying σ(λ) = 1/λ by (14). The resulting
(σ(λ), β(λ)) = (1/λ, β(λ)) are described by initial indifference (15) and illustrated by the
dashed line in Figure 5(ii). As density λ rises from 1/σ∗ to ∞,the exposure time σ(λ) falls
from σ∗ to 0, and asymptotic information β(λ) falls from β(λ) =∞ at λ = 1/σ∗, as captured
by (13), to β∗ = β(∞) defined by

p0(x+ e−β
∗
y) = c. (16)

30Intuitively, with ν =∞ and ρ = 0 the ratio of second neighbors to first neighbors diverges, so non-zero
pre-cutoff learning implies immediate, perfect post-cutoff learning and chokes off experimentation for p0 < p̄.
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Intuitively, the higher incentives due to earlier learning are compensated by less information
β(λ) in order to maintain indifference.

Finally, consider dense networks, where agents are connected to a fixed proportion ρ ∈
(0, 1) of others. Learning is immediate as seen in Figure 5(iii). Such networks are analogous
to the clique. With total information β, agents learn ρβ before stopping and (1 − ρ)β

immediately after stopping. The indifference condition

P ∅(ρβ)
(
x+ e−(1−ρ)βy

)
= c

then determines total information β. The solution β falls in ρ, and since learning is immedi-
ate, welfare also falls in ρ. As ρ → 1, we approach the clique, with asymptotic information
β → τ̄ and welfare V → V(0, τ̄).

Theorem 1 is stated for regular, undirected networks. The analysis immediately extends
to regular directed networks. Networks with nondegenerate degree distributions introduce
an alternative possibility for asymptotic learning to fail: An agent may be isolated, or
more generally the size of her limit component may be finite. This arises with positive
probability in Erdos-Renyi networks with bounded expected degree nI ; asymptotic learning
then requires intermediate network density with ν = ∞ and λ ≤ 1/σ∗. We study networks
with heterogeneous, finite degrees in Board and Meyer-ter-Vehn (2024).31

4.3 Core-Periphery Networks

In this section we study core-periphery networks. Theorem 2 shows that asymptotic informa-
tion falls with network density while welfare is single-peaked, echoing Theorem 1 for random
networks. This analysis serves three purposes. First, core-periphery networks are of intrinsic
interest: They are used to describe financial markets (e.g. Li and Schürhoff (2019)) and
can arise endogenously in network formation models (Galeotti and Goyal (2010)). Second,
core-periphery networks allow us to examine the role of network position for information
generation. Third, core-periphery networks have a different neighborhood structure, with
relatively few first neighbors in the core slowly transmitting the information generated by
the more numerous peripherals. As a result, social learning curves are then concave rather
than convex in the contagion phase.

A core-periphery network is an undirected, deterministic network that consists of K core
agents and L = I −K peripheral agents. The core agents k are connected to everyone. The

31Networks with non-degenerate degree distributions challenge our assumption that agents do not observe
their own degree. The role of this assumption is to guarantee symmetry, so equilibrium is unique and charac-
terized by a single cutoff by Corollary 1. If instead agents observe their degree, equilibrium is characterized
by a multi-dimensional fixed point, which makes it difficult to derive comparative statics.
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Figure 6: Core-Periphery Network with K = 2 core agents and L = 6 peripherals.

peripheral agents ` are only connected to core agents. See Figure 6 for an illustration. When
K = 1, we have the star from Example 3.32

Lemma 5. Any equilibrium in a core-periphery network is characterized by two cutoffs, τk
for all agents in the core, and τ` for all peripherals. Core agents work less, τk < τ`, and have
higher values, Vk > V`.

Proof. By exchangeability and Proposition 3, equilibrium is characterized by cutoffs (τk, τ`).
Core agents k observe all successes immediately, so have greater total information than
peripherals who observe some successes with delay, βk,t + min{t, τk} > β`,t + min{t, τ`} for
all t > 0. Lemma 7 in Appendix A.4 implies τk < τ`.33 Since peripherals experiment more,
core agents have greater social learning, βk,t > β`,t for all t > 0, so Vk > V` by Lemma 1.

We now characterize equilibrium cutoffs. Core agents k observe all successes immediately,
so their social learning follows bk,t ≡ (K − 1)I{t≤τk} + LI{t≤τ`}. Experimentation incentives
(4) are given by

ψk,τk = P ∅(Iτk)

(
x+ y

(
1−

(
1− e−(r+L)(τ`−τk)

) L

r + L

))
− c (17)

where the opportunity cost is the continuation value from having L peripherals experiment
over [τk, τ`]. In equilibrium, ψk,τk ≤ 0 with equality if τk > 0.

32Lemma 5 and its proof apply as stated to nested split graphs (Koenig, Tessone, and Zenou (2014)). In
such networks, high-degree agents work less and have higher values than low-degree agents in any equilibrium.

33There is a subtlety here. Lemma 1 tells us that more social learning leads to less experimentation, but
this is insufficient to conclude that core agents experiment less. For example, consider the star network and
assume peripherals do not experiment; the core agent then has no social information but the same amount
of total information as peripherals. Lemma 7 adapts the arguments from Lemma 1 to show that greater
total learning (including self-learning) implies less experimentation.
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Peripheral agents ` only observe the successes of core agents, so their social learning b`,t
equalsK before τk and then drops toKat where at := Pr −`(T`′ < t for at least one `′ 6= `|t <
Tk for all k) is the conditional probability that some other peripheral agent has succeeded
by t and hence the core agents are working. This follows

ȧ

1− a = (L− 1)I{t≤τ`} −Ka =

L− 1−Ka t ∈ (τk, τ`)

−Ka t > τ`
(18)

with boundary condition aτk = 1 − e−(L−1)τk , as shown in Appendix B.4. Before τ`, social
learning at rises because of experimentation by the other L− 1 peripherals, tempered by the
lack of success by the K core agents. After τ`, only the latter effect remains, so learning
b`,t = Kat slows down. Using equation (4), peripherals’ cutoff τ` > 0 then solves

ψ`,τ` = P ∅
(
K

(
τk +

∫ τ`

τk

asds

)
+ τ`

)(
x+ ry

∫ ∞
τ`

e
−
∫ t
τ`

(r+Kas)dsdt

)
− c = 0.

For fixed I < ∞, we do not know whether the equilibrium cutoffs (τk, τ`) are unique, but
the proof of Theorem 2 shows that any equilibrium converges to the same limit.

In order to cleanly characterize how social information and welfare depend on the network
density, we consider sequences of core-periphery networks with core sizes {KI}I∈N. We
assume the following two limits exist. Let κ := limKI ∈ N ∪ {∞} be the limit of absolute
core size, and ρ := limKI/I ∈ [0, 1] the limit of relative core size, as a proportion of the
population. The set of network densities is the union {κ|κ ∈ N} ∪ {ρ · I|ρ ∈ [0, 1]} endowed
with its natural order.

We now define a threshold on core size that is critical for both asymptotic learning
and welfare. For pessimistic priors p0 < p̄, define κ∗ ∈ (0,∞) such that learning from κ∗

core agents who experiment forever, b`,t ≡ κ∗, renders a peripheral agent indifferent about
experimenting at t = 0,

ψ`,0 = p0

(
x+

r

r + κ∗
y

)
− c = 0. (19)

For optimistic priors, p0 ≥ p̄, set κ∗ =∞.

Theorem 2. In core-periphery networks {KI} and any equilibria {τ Ik , τ I` } as I →∞:
(a) Asymptotic information β is a decreasing function of network density: It attains

asymptotic learning β =∞ iff κ ≤ κ∗, and strictly falls when κ ≥ κ∗.34

(b) Welfare V is a single-peaked function of network density: It strictly rises when κ ≤ κ∗,
34For optimistic priors p0 ≥ p̄, where κ∗ =∞, asymptotic information is perfect iff ρ = 0 and strictly falls

in ρ > 0.
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it attains the benchmark V ∗ iff κ ∈ [κ∗,∞] and ρ = 0, and strictly falls when ρ > 0.

Proof. See Appendix B.5.

As I →∞, asymptotic learning is achieved for sufficiently small core size; welfare attains
the benchmark for intermediate core size. Figure 7 illustrates Theorem 2 for p0 < p̄. The top
and middle panels sketch asymptotic information β and welfare V as functions of core size.
The bottom panel illustrates three typical social learning curves {β`,t}. While asymptotic
learning and second-best welfare may a priori seem to be related goals, Theorem 2 shows that
for pessimistic priors they are generically mutually exclusive. Asymptotic learning requires
a small core size κ ≤ κ∗, while second-best welfare requires a large core size κ ≥ κ∗.35

As with random networks, there are three regions of network density with qualitatively
different social learning dynamics. First, consider a small core κ < κ∗, as illustrated in Figure
7(i). The exploding number of peripherals experiment for a bounded time interval, τ` > 0,
and collectively create an exploding amount of information in an instant. This crowds out
experimentation by core agents. Peripherals choose to experiment since the flow of social
information is restricted by the small core size. Formally, β`,t = Kt so equation (19) implies
ψ`,0 > 0 given than κ < κ∗. Asymptotic learning obtains, but since each peripheral generates
a non-vanishing amount of information, welfare falls short of the benchmark V(τ`, κτ`) < V ∗.

Second, consider an intermediate core κ ∈ (κ∗,∞), as illustrated in Figure 7(ii).36 With
this core size, perfect information from peripherals would crowd out peripherals’ experimen-
tation incentives. In equilibrium, peripheral agents lower their cutoffs, limiting their total
information β(κ) = lim(I −KI − 1)τ I` < ∞. The level of β(κ) is determined by peripheral
agents’ indifference condition at t = 0,

ψ`,0 = p0

(
x+ ry

∫ ∞
0

e−(rt+β`,t)dt

)
− c = 0 (20)

where `’s social learning curve satisfies 1−e−β`,t = (1−e−β(κ))(1−e−κt). Intuitively, ` learns
the state if some peripheral learned it and a core agent succeeds. As in the star, b`,t falls over
time as agents grow pessimistic about the chance that one of them succeeded. Asymptotic
learning fails, but agents do obtain the welfare benchmark, V(0, 0), as pre-cutoff learning
(κ+ 1)τ I` vanishes. For large κ, the core transmits information increasingly fast, reinforcing

35The pessimistic prior assumption is important. For optimistic priors, p0 ≥ p̄, it is easier to motivate
agents to experiment. Our welfare benchmark requires asymptotic learning and both of these goals are
obtained if κ =∞ and ρ = 0. While this is a single point 0 ·I in our density order, there any many sequences
that satisfy both conditions, e.g. KI = log I, KI = log log I, KI =

√
I.

36For optimistic priors, p0 ≥ p̄, this region is empty. But, as pointed out in footnote 35, there are many
networks with κ =∞ and ρ = 0.
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Figure 7: Core-Periphery for Pessimistic Priors, p0 ≤ p. The top panel shows asymptotic information
β as a function of network density, as described in Theorem 2(a). The middle panel shows welfare V as a
function of network density, as described in Theorem 2(b). The bottom panel shows the learning curves of
a peripheral agent in three regions of network density, as discussed in the text. Note, β∗ is defined by (16),
κ∗ by (19) and β(κ) by (20).
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the crowding out and reducing asymptotic information. When κ = ∞ but ρ = 0, β = β∗

solves (16), so β`,t jumps to β∗ and remains constant thereafter.
Third, consider a large core ρ ∈ (0, 1], as illustrated by Figure 7(iii). Now core agents

generate a non-vanishing share of total information. Social learning becomes immediate,
β`,t = βk,t = β for all t > 0, and core agents’ indifference condition becomes

P ∅(βk,τ )
(
x+ ye−(β−βk,τ )

)
− c = 0

with pre-cutoff learning βk,τ = lim Iτ Ik . This equation together with the analogous, but more
involved expression for peripherals’ pre-cutoff learning lim βI

`,τI`
, pin down aggregate infor-

mation β which falls in ρ. As ρ → 1, we approach the clique, with asymptotic information
β → τ̄ and welfare V → V(0, τ̄).

These results are reassuringly parallel to the ones for random networks in Section 4.2. In
both cases, asymptotic information decreases in density, while welfare is single-peaked. The
underlying economic forces share similarities that transcend these two cases. For example,
the general tension between learning and welfare for pessimistic priors p0 < p̄, is apparent
from the welfare benchmark, V ∗ = V(0, 0), which requires individual experimentation to
vanish, undermining asymptotic learning. However, significant differences arise from the
higher ratio of second neighbors to first neighbors. First, the contrast between asymptotic
information and welfare is starker. With p0 < p̄, asymptotic learning and second-best welfare
are mutually exclusive under core-periphery networks; this stems from the small diameter
together with the discreteness of the core size. By contrast, large random networks with
intermediate network density λ ∈ [0, 1/σ∗] accommodate both goals as information aggrega-
tion occurs a long way from the typical agent and the learning time σ adjusts continuously
to its equilibrium level. Second, social learning slows down over time in core-periphery net-
works with a finite core, as the information trickles through the core. By contrast, social
learning speeds up over time in random networks, as the number of indirect neighbors grows
exponentially with path length.

In our core-periphery network, peripheral agents connect to all core agents. In financial
applications, one might assume instead that peripheral broker-dealers each connect to a
single hub agent, in a fully connected core. This network is sparser than our core-periphery
networks in that the information flow between a typical pair of peripherals `, `′ must pass
through their associated pair of core agents k, k′, instead of any core agent. This bounds
peripherals’ social learning b`,t ≤ t, which in turn bounds their welfare below V ∗ when κ∗ > 1.
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5 Conclusion

In Mokyr’s (1992, p. 176) study of the history of innovation, he writes that, in addition to
financial incentives,

“decentralization was equally important because it meant that search and exper-
imentation were carried out by many independent units, possibly over and over
again. This duplication of effort was not the most cost effective way of engag-
ing in technological process [. . . ] But this system minimizes the probability of a
technological opportunity being missed.”

This paper has studied such a decentralized society and showed that welfare is single-peaked
in network density. Centralized societies quickly spread information and minimize the waste-
ful duplication of effort, but innovations are more likely to be missed (i.e. society fails to
aggregate information). Thus, our results formalize the general concern that the rise of in-
terconnectedness (e.g. social media) may crowd out original thought and opinion formation,
and lead to less informed societal outcomes.

When it comes to a particular application, when is a network too dense? Indeed, a farmer
might be part of a scarce network (if they learn about successful crops from neighbors) or a
dense network (if they learn from Bayer representatives). Our analysis provides a detail-free
thought experiment for the critical network density. If a farmer is happy to experiment
even if she knows some other farmers have already succeeded, then the network is “sparse”,
asymptotic learning obtains, and institutions that enhance diffusion tend to raise welfare (e.g.
the founding of agricultural universities in the 19th century). If she instead waits to learn via
diffusion, the network is “dense”, asymptotic learning fails, and further raising density may
lower welfare (e.g. global research networks). Of course, our model abstracts from practical
considerations that are important for policy recommendations: For example, the first agent
to succeed may obtain higher profits, or Bayer may subsidize early adoption of the crop. To
inform policies, one would also wish to solve for socially optimal experimentation patterns.

This paper focuses on the role of networks in facilitating social learning. Another possibil-
ity is that I →∞ agents are connected in a clique network and observe others’ successes with
a fixed delay σ > 0. Fix p0 < p̄ and define σ∗ as in equation (13). When σ > σ∗, initial ex-
perimentation incentives are positive, so τ := lim τ I > 0 solves P ∅(τ)(x+(1−e−r(σ−τ))y) = c.
Agents learn perfectly at σ, but welfare is below second-best V(τ, 0) < V ∗. Conversely, when
σ < σ∗, perfect learning at σ would eliminate experimentation incentives for finite I, so total
information β < ∞ solves (15). Since τ I ≈ β/I → 0, welfare is second-best V(0, 0) = V ∗.
As in core-periphery networks, perfect learning and the welfare benchmark are generically

32



incompatible. In contrast, in large random networks the learning time σ is endogenous, and
equals σ∗ for a wide range of intermediate network densities.

Finally, we return to the classic paper of Bala and Goyal (1998) for a more detailed
comparison. Two key long-run predictions carry over: Individual beliefs converge due to
the martingale convergence theorem and, in connected networks, agents’ beliefs converge
to consensus. However, two important differences arise. First, our forward-looking agents
experiment strategically, and so can achieve asymptotic learning and/or second-best welfare
even for pessimistic initial beliefs, p0 < p̄. The second type of difference stems from more
technical modeling assumptions. For example, asymptotic learning fails in Bala and Goyal’s
famous “royal family” example, in which a small clique of “royals” are observed by everyone
while a directed line of “peasants” are only observed by their neighbor. Intuitively, if all
royals receive strong negative signals in period 1, everyone switches to the safe action forever
after. By contrast, our agents asymptotically learn because some peasants succeed during the
initial experimentation phase, which then spreads to everybody else. The key is that perfect
good news learning (or continuous-time experimentation with repeated imperfect Poisson
signals) generates unbounded signals which can overturn any imperfect social information.
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A Appendix: Proofs from Section 3

A.1 Proof of Proposition 1 (Cutoff strategies)

To formalize the discussion surrounding the statement of Proposition 1, we first introduce
a shorthand for the time-t discount factor on time-s payoffs in the event that i observes no
success over [t, s] from (3)

Λt,s := e−r(s−t)(pte
−
∫ s
t (a∅u+bu)du + 1− pt) = e−

∫ s
t r+pu(a∅u+bu)du,

where the second expression integrates by parts and is convenient for taking derivatives.
Next we generalize Iris’s value of optimal experimentation (3) to time-t continuation payoffs
from arbitrary experimentation

Πt = Πt({a∅s}, {bs}) =

∫ ∞
t

Λt,s

(
ps(a

∅
s(x+ y) + bsy)− a∅sc

)
ds. (21)

We will show that front-loading incentives are positive, equal to

− d

dt

∂Π0

∂a∅t
= Λ0,t

(
r (pt(x+ y)− c) + ptbt(x− c)

)
(22)

The term r (pt(x+ y)− c) is the time-value of front-loading own experimentation from t+ δ

to t, while ptbt(x − c) captures the value of additional experimentation that arises when a
neighbor succeeds in [t, t + δ]. Since (22) is positive, agents maximally front-load effort, so
cutoff strategies are optimal.

To establish the second derivative (22), we first derive convenient expressions for Π and
its various first derivatives. Truncating (3) for Π0 at time-t, we get

Π0 =

∫ t

0

Λ0,s

(
ps(a

∅
s(x+ y) + bsy)− a∅sc

)
ds+ Λ0,tΠt. (23)

To compute ∂Πt/∂pt, Bayes’ rule implies Λt,sps = e−r(s−t)pte−
∫ t
s (a∅u+bu)du, and we rewrite (21)

as

Πt =

∫ ∞
t

e−r(s−t)
(
pte
−
∫ s
t (a∅u+bu)du

(
a∅s(x+ y) + bsy

)
− (pte

−
∫ s
t (a∅u+bu)du + 1− pt)a∅sc

)
ds

(24)

Writing at :=
∫∞
t
e−r(s−t)

(
a∅sc
)
ds with time-derivative ȧt = rat − a∅t c, Πt + at is a linear

function of the posterior belief pt, and so

∂Πt

∂pt
=

1

pt
(Πt + at) (25)
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To compute ∂Π0/∂a
∅
t , define the derivative of the posterior belief pt = P ∅ (αt + βt) with

respect to “experimentation just before t”,

∂pt({a∅s}s≥0)

∂a∅t
= lim

ε→0

1

ε

(
pt({at,εs }s≥0)− pt({a∅s}s≥0)

)
= −pt(1− pt)

where at,εs := a∅s + I{s∈[t−ε,t]}; also ∂Λ0,t/∂a
∅
t = −ptΛ0,t. Similarly, differentiating payoff (23)

wrt a∅t and using (25),

∂Π0

∂a∅t
= Λ0,t

(
pt(x+ y)− c+

∂Πt

∂pt

∂pt

∂a∅t
− ptΠt

)
= Λ0,t

(
pt(x+ y)− c− (1− pt)at − Πt

)
(26)

Turning to the time-derivatives, we first note ṗt = −(a∅t + bt)pt(1 − pt), ∂Λt,s/∂t =

(r + pt(a
∅
t + bt))Λt,s, and ∂Λ0,t/∂t = −(r + pt(a

∅
t + bt))Λ0,t, differentiate (21)

Π̇t = −
(
pt(a

∅
t (x+ y) + bty − a∅t c

)
+
(
r + pt(a

∅
t + bt)

)
Πt,

and then differentiate (26) to get (22)

Λ−1
0,t

d

dt

∂Π0

∂a∅t
=− (r + pt(a

∅
t + bt))

(
pt(x+ y)− c− (1− pt)at − Πt

)
− pt(1− pt)(a∅t + bt)(x+ y + at)

− (1− pt)(rat − a∅t c) +
(
pt(a

∅
t (x+ y) + bty)− a∅t c

)
−
(
r + pt(a

∅
t + bt)

)
Πt

=− r (pt(x+ y)− c)− ptbt(x− c).

Having established that cutoff strategies are optimal, we now show that the optimal
cutoff is the unique solution of ψτ = 0. For cutoff strategies a∅s = I{s≤t} we have at =∫∞
t
e−r(s−t)

(
a∅sc
)
ds = 0 and (24) simplifies to

Πt = pty

∫ ∞
t

e−r(s−t)bse
−
∫ s
t bududs = pty

(
1− r

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
,

where the last equality uses integration by parts. Then (26) simplifies to

Λ−1
0,t

∂Π(I{s≤t})
∂a∅t

= pt(x+ y)− c− Πt = pt

(
x+ ry

∫ ∞
t

e−
∫ s
t (r+bu)duds

)
− c = ψt. (27)

Since Λ−1
0,t > 0 and ∂Π(I{s≤t})/∂a∅t falls in t, ψt strictly single-crosses from above.

For future reference we summarize some properties of

ψτ ({βt}) = P ∅(τ + βτ )

(
x+ ry

∫ ∞
τ

e−r(s−τ)−(βs−βτ )ds

)
− c. (28)
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First, note that while (4) and (5) express ψ instead as a function of the social learning
rate {bt}, the definition and most properties of ψ extend to any increasing (not necessarily
continuous or positive) cumulative social learning curve βt.

Lemma 6. Properties of ψτ ({βt}).
(a) Equation (28) falls in {βt}, and thus also in {bt} with partial derivative given in (5).
(b) Equation (28) strictly single-crosses from above in τ , and is equi-Lipschitz continuous

in τ for all uniformly bounded {bt}.
(c) The root τ of ψτ = 0 falls in {βt}, and strictly falls in {bt}.

A.2 Proof of Strategic Substitutes

Here we show that i’s social learning {βi,t} rises in other agents’ cutoffs τ−i. Assume others
raise their cutoffs, τ−i ≤ τ ′−i. Realize independent “potential success times” {T ι−i} according
to independent Poisson processes with arrival rate 1; j’s first actual success is the smallest
T ιj with Aj,t = 1. Write T−i, T ′−i for the first actual success times given cutoffs τ−i ≤ τ ′−i,
assuming throughout that no agent j 6= i observes a success by i.

Since we have fixed strategies, each agent j 6= i succeeds earlier when they use the higher
cutoffs, Tj ≥ T ′j for all {T̃ ι−i}. This follows by induction over the contagion process with
initial successes during experimentation as induction anchor. Hence agent i sees a success
earlier, Si = minj∈Ni(G) Tj ≥ minj∈Ni(G′) T

′
j = S ′i for all {T̃ ι−i}, and so i’s social learning curve

is higher βi,t = − log Pr−i(t < Si) ≤ − log Pr−i(t < S ′i) = β′i,t. By Lemma 1, the associated
cutoffs are ranked τi ≥ τ ′i , so cutoffs are strategic substitutes.

This proof also implies that social learning {βi,t} increases in network density for fixed
τ−i. Specifically, order deterministic networks by set inclusion g ⊆ g′ in {1, ..., I}2, and
extend this order to random networks, by writing G � G′ if they are coupled to networks
G̃ ⊆ G̃′.37 Then, we get Tj ≥ T ′j also for all realizations of {T ι−i} and the coupled networks
G̃, G̃′. Thus, a rise in G raises {βi,t} and lowers τi by Lemma 1.

37Random variables X,X ′ are coupled to X̃, X̃ ′ if they have the same marginal distributions and X̃, X̃ ′
are defined on the same probability space.
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A.3 Proof of Lemma 2 (Characterization of V)

We first derive (6)

V =

(
p0

∫ τ

0

e−
∫ t
0 (r+bs+1)ds(x+ (bt + 1)y − c)dt

)
−
(

(1− p0)

∫ τ

0

e−rtcdt

)
+ e−rτ

(
p0e
−βτ−τ + (1− p0)

)
Vτ

= p0y(1− e−βτ−(r+1)τ )− (1− p0)c
1− e−rτ

r
+ e−rτ

(
p0e
−βτ−τ (x+ y − c)− (1− p0)c

)
=
p0x− c

r
+ e−rτ

(
p0e
−βτ−τ (x− c)− (1− p0)c

r − 1

r

)
.

The first line conditions on θ at time-0 and truncates flow payoffs at t = τ . The second line
evaluates the first integral using x − c = ry, and the last term using p0e

−βτ−τ + (1 − p0) =

p0e
−βτ−τ/pτ by Bayes’ rule, and Vτ = pτy

∫∞
τ
bte
−
∫∞
t (r+bs)dsdt = pτ (x+y)− c (using ψτ = 0).

The last line uses y = (x− c)/r and reorders terms.
The monotonicity in βτ is immediate from (6). To see the monotonicity in τ , note that

the first term in (6) is the payoff from experimenting forever. Thus, the second term is the
option value of stopping earlier, which must be positive. Then

∂τV = −re−rτ
(
p0e
−βτ−τ (x− c)− (1− p0)c

r − 1

r

)
− e−rτp0e

−βτ−τ (x− c)

< −e−rτp0e
−βτ−τ (x− c) = ∂βV < 0.

(29)

A.4 Proof of Proposition 3 (Equal Cutoffs of Equals)

The result uses two Lemmas. For social learning {βt} and the associated optimal cutoff
τ , define total learning βt + min{t, τ}. So defined, PrH(min{S, T} ≤ t) = 1 − exp(−(βt +

min{t, τ})), where PrH is taken over the network G and success times of all agents {Tj}
including i, conditional on θ = H.

Lemma 7. Higher total learning, βt + min{τ, t} ≥ β̂t + min{τ̂ , t} for all t, is associated with
lower cutoffs, τ ≤ τ̂ .

This is closely related to Lemma 1, that lower social learning {βt} ≤ {β̂t} implies higher
cutoffs τ ≥ τ̂ . Lemma 7 shows additionally that the higher cutoff cannot lead to higher total
learning. Intuitively, all learning (both social and own) crowds out incentives.

Lemma 8. Fix a network G, cutoffs {τk}k 6=i,j and τ∗ < τ ∗, and write k’s first success time

as {Tk} if τi = τ ∗, τj = τ∗, and {T ′k} if τi = τ∗, τj = τ ∗. Then min{Ti, Si}
D

� min{T ′i , S ′i}.38

38As always, Si = minj∈Ni(G){Tj} and S′i = minj∈Ni(G){T ′j}.

40



Lemma 8 is intuitive: Additional experimentation during [τ∗, τ ∗] is more immediate and
useful to i when done by i herself instead of j.

Proof of Proposition 3. By contradiction, assume τi > τj. Exchangeability, Gi↔j = G,

implies min{Tj, Sj} D
= min{T ′i , S ′i}. Lemma 8 then implies min{Ti, Si}

D

� min{Tj, Sj}.
Noting the connection between total learning and the time of the first observed success,
PrH(min{S, T} ≤ t) = 1− exp(−(βt + min{τ, t})), this implies {βi,t + min{τi, t}} ≥ {βj,t +

min{τj, t}} and so, by Lemma 7, τi ≤ τj.

Proof of Lemma 7. Lemmas 1 and 6 study incentives ψτ as a function of social learning {βt};
we now study ψτ as a function of total learning {βt + min{t, τ}}.

By contradiction assume that βt + min{τ, t} ≥ β̂t + min{τ̂ , t} for all t, yet τ > τ̂ . Define
β̃t := β̂t − (τ − τ̂); clearly β̃t ≤ βt, and so Lemma 1 implies

ψτ ({β̃t}) ≥ ψτ ({βt}) = 0.

Since β̃τ + τ = β̂τ + τ̂ and b̃u = b̂u for u ≥ τ , time-τ experimentation incentives for the social
learning curve {β̂t} are also positive

e
∫ τ
0 r+pu(âu+b̂u)du∂Π̂(I{t≤τ̂})

∂aτ
= P ∅(β̂τ + τ̂)

(
x+ ry

∫ ∞
τ

e−
∫ s
τ (r+b̂u)duds

)
− c = ψτ ({β̃t}) ≥ 0

where the first equality follows as in (27), using âu = 0 at u ≥ τ since τ > τ̂ . Front-loading,
(22), then implies

∂Π̂(I{t≤τ̂})
∂aτ̂

>
∂Π̂(I{t≤τ̂})

∂aτ
≥ 0

contradicting the optimality of cutoff τ̂ .

Proof of Lemma 8. As a baseline, write T̄k for k’s first success time in network G when i

and j both use cutoff τ∗. For each realization of (T̄i, S̄i), we dynamically realize {Tk, T ′k}k as
follows. In a first step, raising τi (or τj) from τ∗ to τ ∗ begets new success opportunities on
[τ∗,min{τ ∗, T̄i, S̄i}] (successes after min{T̄i, S̄i} have already been realized in the baseline).
Thus, we draw an exponential random variable Z ∼ Exp(1), and set

Ti, T
′
j =

τ∗ + Z if τ∗ + Z ≤ min{τ ∗, T̄i, S̄i},
T̄ otherwise.

In subsequent steps, we trace the effects of additional successes in the first step through the
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network. Since this cascade starts at τ∗ + Z (if at all) and successes are not instantaneous,
we have Tk ∈ (τ∗ + Z, T̄k] for all k 6= i and T ′k ∈ (τ∗ + Z, T̄k] for all k 6= j.

So defined, if τ∗ + Z > min{τ ∗, T̄i, S̄i}, no additional successes realize, so Tk = T ′k = T̄k

for all k; a fortiori min{Ti, Si} = min{T ′i , S ′i} = min{T̄i, S̄i}. If τ∗ + Z ≤ min{τ ∗, T̄i, S̄i} we
have min{Ti, Si} = τ∗ + Z ≤ min{T ′i , S ′i} with equality iff j is a neighbor of i. All told,

min{Ti, Si}
D

� min{T ′i , S ′i} with equality iff j is a neighbor of i.

B Appendix: Proofs from Section 4

B.1 Proof of Lemma 3 (Links in Large Random Networks)

Part (a): We will show separately that for every ε > 0

Pr
[
N I ≥ (1 + ε)I(1− e−n̂I/I)

]
→ 0, (30)

Pr
[
N I ≤ (1− ε)I(1− e−n̂I/I)

]
→ 0. (31)

This implies that the number of links converges to 1 − e−n̂
I/I in distribution, N I/(I(1 −

e−n̂
I/I))

D→ 1, and a fortiori in expectation, nI/(I(1− e−n̂I/I))→ 1.
Start with the upper bound, (30). We can restrict attention to ρ̂ = lim n̂I/I < ∞; for

ρ̂ = ∞, we have (1 + ε)I(1 − e−n̂
I/I) > I for any ε > 0 and large enough I, so trivially

Pr[N I ≥ (1 + ε)I(1− e−n̂I/I)] = 0.
Realize Iris’s n̂I stubs k one after another, and keep track of the number of stubs KI(m)

used to reach degree m; if i has less than m neighbors set KI(m) := n̂I+1. When connecting
Iris’s kth stub to her mth neighbor, I − m potential new neighbors with n̂I(I − m) stubs
compete with n̂Im− (2k − 1) remaining stubs of Iris and her m− 1 neighbors, sandwiching
the success rate between I−m

I
and I−m

I−2
. Writing Y I

` for independent (shifted) geometric

random variables with success rate I−`
I

we can thus upper-bound KI(m)
D

�∑m
`=1 Y

I
` .

The chance of m or more neighbors is then upper-bounded by

Pr
[
N I ≥ m

]
= Pr

[
KI(m) ≤ n̂I

]
≤ Pr

[
m∑
`=1

Y I
` ≤ n̂I

]
≤ inf

ξ≥0
exp

(
ξn̂I +

m∑
`=1

logE[e−ξY
I
` ]

)

= inf
ξ≥0

exp

(
ξ(n̂I −m)−

m∑
`=1

log
1− e−ξ`/I

1− `/I

)
(32)

where the second inequality is a Chernoff-bound, and the final equality evaluates the moment
generating function of the shifted geometric distribution, E[e−ξY

I
` ] = e−ξ(1−`/I)

1−e−ξ`/I .
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Since log I−e−ξ`
I−` rises in `, the last term in (32) is lower-bounded by

m∑
`=1

log
1− e−ξ`/I

1− `/I ≥
∫ m

0

(∫ 1−e−ξ`/I

1−`/I

1

x
dx

)
d` =

∫ 1

1−m/I

(∫ min{eξI(1−x),m}

I(1−x)

1

x
d`

)
dx

=

∫ 1−e−ξm/I

1−m/I

m− I(1− x)

x
dx+

∫ 1

1−e−ξm/I

I(1− x)(eξ − 1)

x
dx

= I
[
(1−m/I) log(1−m/I)− eξ

(
1− e−ξm/I

)
log(1− e−ξm/I)

]
.

For any ε > 0, we now set m = mI :=
⌈
(1 + ε)I(1− e−n̂I/I)

⌉
, substitute back into the

term in parentheses in (32), and divide by I

ξ
n̂I −mI

I
− (1−mI/I) log(1−mI/I) + eξ

(
1− e−ξmI/I

)
log(1− e−ξmI/I) =: ΓI(ξ, ε)

with limit Γ(ξ, ε) as I →∞. So defined, (32) becomes

Pr
[
N I ≥ (1 + ε)I(1− e−n̂I/I)

]
≤ inf

ξ≥0
exp

(
IΓI(ξ, ε)

)
(33)

The derivative Γξ(0, ε) = ρ̂ + log(1 − (1 + ε)(1 − e−ρ̂)) vanishes for ε = 0 and falls in ε.
Thus, for any ε > 0 we have Γξ(0, ε) < 0. Also, Γ(0, ε) = 0, and so Γ(ξ, ε) < 0 for small ξ,
and ΓI(ξ, ε) < 0 uniformly for large I. Thus, (33) vanishes for I →∞, implying (30).

The lower bound (31) follows analogously.

Part (b): By the proof of part (a) nI = E[N I ] approximates I(1−e−n̂I/I), and so limnI/I =

1− e−ρ̂. Further, since

I(1− exp−n̂
I/I) = I

(
n̂I

I
− 1

2

(
n̂I

I

)2

+
1

6

(
n̂I

I

)3

− ...
)

I(1− exp−n̂
I/I)/n̂I − 1 (and hence nI/n̂I − 1) is of order n̂I/I, which vanishes for ρ̂ = 0.

Part (c): Since At = 1 for t < τ , we have βIτI =
∫ τI

0
E−i[N I |t < SIi ]dt. For I finite,

E−i[N I |t < SIi ] < nI (and so βIτI < nIτ I) because lack of success, t < SIi , indicates fewer
neighbors N I . To bound the effect of such updating, we note that conditional on |N I−nI | ≤
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εnI , and so N I ≤ (1 + ε)nI , we have Pr−i(t < SIi ||N I − nI | ≤ εnI) ≥ e−(1+ε)nI t. Thus

Pr−i(|N I − nI | ≤ εnI |t < SIi )

Pr−i(|N I − nI | > εnI |t < SIi )
=

Pr−i(|N I − nI | ≤ εnI)

Pr−i(|N I − nI | ≥ εnI)

Pr−i(t < SIi ||N I − nI | ≤ εnI)

Pr−i(t < SIi ||N I − nI | > εnI)

≥ Pr−i(|N I − nI | ≤ εnI)

Pr−i(|N I − nI | ≥ εnI)
e−(1+ε)nI t (34)

We show below that nIτ I is bounded. This bounds e−(1+ε)nI t away from 0 for all t ≤ τ I .

Thus, as the prior likelihood-ratio of |N I − nI | ≤ εnI on the RHS of (34) diverges as
I → ∞ (by part (a)), so does the posterior likelihood-ratio on the LHS of (34), implying
E−i[N I |t < SIi ]/nI → 1 and so βIτI/(n

Iτ I)→ 1, finishing the proof of part (c).
To show that nIτ I is bounded, assume it was not. Then we could choose τ̂ I < τ I such

that nI τ̂ I is bounded, but with limit limnI τ̂ I > τ̄ . Applying the above argument to nI τ̂ I

instead of nIτ I , we get lim βIτ̂I = limnI τ̂ I > τ̄ , and so pτI < pτ̂I = P ∅(βIτ̂I + τ̂ I) < p for large
I, contradicting pτ ∈ [p, p̄] as illustrated in Figure 1.

B.2 Proof of Theorem 1 (Large Random Networks)

B.2.1 ν <∞: Trees

We wish to show that that V rises in ν for finite degrees ν <∞. We characterized the heuris-
tic equilibrium in the infinite regular tree in Example 2’; write τ (ν) for the equilibrium cutoff
and a(ν)

t (τ) for the neighbor’s expected experimentation for an arbitrary cutoff τ . Appendix
C shows that equilibrium in the large random networks converge to these heuristics.

We first show that τ (ν) falls in ν. For a given cutoff τ > 0, we have a(ν+1)
t (τ) > a

(ν)
t (τ)

for all t ≥ τ . To see this, at the cutoff we have a(ν+1)
τ (τ) = 1− e−ντ > 1− e−(ν−1)τ = a

(ν)
τ (τ),

and this ranking prevails for t > τ since the RHS of (11) rises in ν. Additionally, a(ν)
t (τ)

rises in τ , strictly for τ < t. By Lemma 6, for any τ ≤ τ (ν+1)

0 = ψτ (ν+1)({(ν + 1)a
(ν+1)
t (τ (ν+1))}) ≤ ψτ ({(ν + 1)a

(ν+1)
t (τ)}) < ψτ ({νa(ν)

t (τ)}),

so in equilibrium we must instead have τ (ν) > τ (ν+1), as desired.
Below, we argue more strongly that

(ν + 1)τ (ν) ≥ (ν + 2)τ (ν+1) (35)

It follows that equilibrium values are increasing in degree. By Lemma 2,

V (ν+1) = V(τ (ν+1), (ν+2)τ (ν+1)−τ (ν+1)) > V(τ (ν+1), (ν+1)τ (ν)−τ (ν+1)) > V(τ (ν), ντ (ν)) = V (ν),
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where the first inequality uses (35), and the second that adding τ (ν)− τ (ν+1) > 0 to the first
argument of V and subtracting it from the second argument decreases V .

To see (35), assume by contradiction that τ (ν+1)

τ (ν)
> ν+1

ν+2
> ν−1

ν
. Then a

(ν)

τ (ν)
= 1 −

e−(ν−1)τ (ν) < 1 − e−ντ
(ν+1)

= a
(ν+1)

τ (ν+1) , and since the ODE (11) rises in ν, the inequality
a

(ν)

τ (ν)+δ
< a

(ν+1)

τ (ν+1)+δ
is preserved for all δ > 0. We thus get

0 = ψτ (ν)({νa(ν)
t (τ (ν))}) = P ∅((ν + 1)τ (ν))

(
x+ ry

∫ ∞
δ=0

exp
(
−rδ − να(ν)

τ (ν)+δ

)
dδ

)
− c

> P ∅((ν+2)τ (ν+1))

(
x+ ry

∫ ∞
δ=0

exp
(
−rδ − (ν + 1)α

(ν+1)

τ (ν+1)+δ

)
dδ

)
−c = ψτ (ν+1)

(
{(ν + 1)a

(ν+1)
t (τ (ν+1))}

)
contradicting the fact that τ (ν+1) is the equilibrium cutoff. This contradiction establishes
(35), and so V (ν+1) > V (ν).

B.2.2 ν =∞

In this case, equilibrium cutoffs must vanish, τ I → 0; otherwise the posterior-belief at the
cutoff P ∅((nI + 1)τ I) → 0, choking off experimentation incentives. Lemma 4 characterizes
the limit of social learning curves as bursts of social information of size β at time σ, i.e. step
functions βt = βI{t≥σ}; for σ = 0, we split the burst into pre-cutoff information βτ :=

limnIτ I = lim(nI + 1)τ I , and post-cutoff information β − βτ . The equilibrium indifference
condition becomes

ψτ = limψIτI = p(βτ )

(
x+ ry

∫ ∞
0

e−rt−(βt−βτ )dt

)
− c

= p(βτ )
(
x+

(
1− e−rσ(1− e−(β−βτ ))y

) )
− c = 0. (36)

To solve for βτ , β, σ we complement (36) with the simple observation that

βτ
β

=
limnIτ I

lim Iτ I
= lim

nI

I
= ρ, (37)

and two conditions linking the learning time σ = lim − log τI

nI
to pre-cutoff learning βτ and

total learning β. First, bounded total learning implies the learning time equals the network’s
time-diameter

If β = lim Iτ I <∞, then σ = lim
log(Iτ I)− log τ I

nI
=

1

λ
. (38)
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Second, non-vanishing pre-cutoff learning implies immediate learning

If βτ = limnIτ I > 0, then σ = lim
log(nIτ I)− log τ I

nI
= 0. (39)

Case 1: ρ = 0 and p0 > p̄. The optimistic prior together with the equilibrium condition (36)
require non-vanishing pre-cutoff learning, βτ > 0, and so by (39) immediate learning, σ = 0.
Since ρ = 0, (37) implies perfect learning β =∞. Perfect immediate learning, β =∞, σ = 0,
in turn implies the welfare benchmark V = p0y = V ∗.

Case 2: ρ = 0 and p0 ≤ p̄. We first observe βτ = 0. Otherwise, if βτ > 0, the proof for Case 1
implies β =∞ and σ = 0, and so experimentation incentives ψτ < p0x−c ≤ 0, contradicting
equilibrium. This implies the welfare benchmark, limV(τ I , nIτ I) = V(0, 0) = V ∗.

Turning to asymptotic information, we now show that β =∞ iff λ ≤ 1/σ∗, and β strictly
decreases in density above this threshold. First assume λ ≤ 1/σ∗.39 If by contradiction
learning was imperfect β < ∞, social learning happens too late, at σ = 1/λ ≥ σ∗ by (38),
so experimentation incentives are strictly positive

ψτ = p0

(
x+ (1− e−rσ(1− e−β))y

)
− c > p0

(
x+ (1− e−rσ∗)y

)
− c = 0,

contradicting equilibrium.
Next assume λ > 1/σ∗. This induces early social learning σ ≤ 1/λ < σ∗, and equilibrium

indifference

p0

(
x+ (1− e−rσ(1− e−β))y

)
− c = ψτ = 0 = p0

(
x+ (1− e−rσ∗)y

)
− c

requires β <∞. Moreover, β = β(σ) rises in σ, and so falls in λ = 1/σ.

Case 3: ρ > 0. Then βτ = ρβ > 0; (39) then implies σ = 0, so (36) becomes p(ρβ)
(
x+ e−(1−ρ)βy

)
=

c. Since pre-cutoff learning lowers experimentation incentives more than post-cutoff learn-
ing by (5), total learning β = β(ρ) falls in ρ. Success is observed either immediately, with
probability p0(1− e−β), or never; so welfare V = p0(1− e−β)y also falls in ρ.

B.3 Proof of Lemma 4 (Degenerate Exposure Time)

With probability e−IτI , no agent succeeds by τ I , and so SIi =∞; from here on we condition on
the complementary event that at least one agent succeeds during experimentation, triggering
a contagion process. For now, we also restrict attention to lim n̂I/I = 0, so that n̂I/nI → 1

39For p0 = p̄, we have σ∗ = 0, so this condition is always satisfied.
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by Lemma 3(a). This allows us to work with n̂I for finite I, but switch to nI in the limit
where σ := lim − log τI

nI
. We discuss the case lim n̂I/I > 0 later.

The overarching proof strategy is to separate the “geographical”/network aspects of the
contagion process from its timing. Specifically, we realize the randomness of the network GI

as agents succeed. To emphasize the analogy to epidemiological SI contagion processes, we
refer to agents who have succeeded as infected. When k agents are infected, let XI

k be the
random number of exposed agents, i.e. that have observed a success but have yet to succeed
themselves. Clearly XI

k ≤ n̂Ik; a (relative) exposure gap, ΓIk :=
n̂Ik−XI

k

n̂Ik
> 0, opens up after

an exposed j agent succeeds because the exposing agent i already succeeded and cannot
be re-exposed, or a stub of a succeeding agent connects to an already exposed agent. For
ε > 0, write EI(ε) := {ΓIk < 3ε for all k ≤ εI/n̂I} for the event that the gap process remains
bounded in early stages of the contagion.

Lemma 9. For any ε > 0, limI→∞ Pr−i
(
EI(ε)

)
= 1.40

We postpone the proof of Lemma 9; the idea is that with XI
k ≤ εI exposed agents, ε

small, and n̂I large, most stubs expose new agents.
For small ε, Lemma 9 means that after the approximately τ II initial infections in the

experimentation phase, the contagion process resembles a collection of tree networks em-
anating from these “seeds” at exponential rate n̂I . We now argue that as n̂I → ∞, this
contagion process reaches a negligible fraction of all agents at any t < σ = lim − log τI

n̂I
, but

approximately all agents at any t̄ > σ.
Specifically, write T Ik for the kth infection time, and KI for the (random) number of

infected agents at τ I . Also define inter-arrival times in the contagion phase ∆I
k := T Ik+1−T Ik

for k > KI and ∆I
k := T Ik+1 − τ I for k = KI . The proof idea is to apply Chernoff bounds

to T Ik − τ I =
∑k−1

`=KI ∆I
` . Towards this goal, note that conditional on the realization of the

“geographical exposure process” {XI
k}k∈[KI ,εI/n̂I ], inter-arrival times ∆I

k are independent with
arrival rate XI

k . Conditional on EI(ε) we have XI
k ∈ [(1− 3ε)n̂Ik, n̂Ik], and so

E−i[e−ξ∆
I
k |EI(ε)] ≤ n̂Ik

n̂Ik + ξ
for all ξ ≥ 0, (40)

E−i[eξ∆
I
k |EI(ε)] ≤ (1− 3ε)n̂Ik

(1− 3ε)n̂Ik − ξ for all ξ ∈ [0, (1− 3ε)n̂Ik). (41)

40Throughout this proof, we use the standard probability measure Pr−i over the network G and others’
success times T−i, conditional on observing no success from i, which is the relevant measure for the time of
i’s first observed success SIi . As I → ∞, this coincides with the notationally simpler (but less meaningful)
measure Pr over the network G and all agents’ success times {Tj}. We omit the dependence of Pr−i on I
for notational simplicity.
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We now derive upper and lower bounds for the kth success time T Ik in the contagion phase
k ∈ [KI , εI/n̂I ]; in the limit I →∞ these bounds are then shown to imply vanishing chances
of getting exposed before σ and after σ, respectively. The upper bound is as follows

Pr −i(T Ik ≤ τ I + δ|EI(ε), KI) = Pr −i
(

k−1∑
`=KI

∆I
` ≤ δ|EI(ε)

)
≤ inf

ξ≥0
eξδ

k−1∏
`=KI

E−i[e−ξ∆
I
` |EI(ε)]

≤ inf
ξ≥0

exp

(
ξδ −

k−1∑
`=KI

(
log(n̂I`+ ξ)− log(n̂I`)

))

≤ inf
ξ∈[0,n̂I ]

exp

(
ξδ −

k−1∑
`=KI

ξ

n̂I

(
log(n̂I(`+ 1))− log(n̂I`)

))

= inf
ξ∈[0,n̂I ]

exp

(
ξ

(
δ − log k − logKI

n̂I

))
(42)

The first equality drops the τ I to focus on time since the cutoff, the first inequality is a
Chernoff-bound, the second uses (40), the third uses the concavity of the logarithm, and the
final equality collapses the telescopic sum.

Next, we argue that for fixed ε > 0 and the integer floor k =
⌊
εI/n̂I

⌋
, the fraction on

the RHS of (42) (which approximates the time for the contagion process to reach k agents)
converges to σ = lim − log τI

n̂I
:

log
⌊
εI/n̂I

⌋
− logKI

n̂I
D→ σ (43)

For β̄ = lim Iτ I <∞, this follows becauseKI is almost surely bounded above, so as n̂I →∞,
all terms other than log I

n̂I
vanish, and lim log I

n̂I
= lim log I−log β̄

n̂I
= lim − log τI

n̂I
= σ. For β̄ =∞, it

follows because, by the law of large numbers, KI

IτI
D→ 1; equivalently, logKI−log I−log τ I

D→ 0

so the LHS of (43) becomes − log τI

n̂I
, whose limit is σ.

Exposing any positive fraction ε > 0 of nodes requires infecting at least εI/n̂I agents,
and the chance of this at any time t < σ vanishes

lim
I→∞

Pr −i(T IbεI/n̂Ic ≤ τ I + t) = lim
I→∞

Pr −i(T IbεI/n̂Ic ≤ τ I + t|EI(ε)) ≤ inf
ξ≥0

exp (ξ (t− σ)) = 0.

The equality uses Lemma 9, and the inequality (42) and (43). Then Pr−i(T IbεI/n̂Ic ≤ t)→ 0.
Finally, for any population share ε > 0, the probability that a given agent i has been

exposed by time t is bounded above by the sum of that share ε and the probability that
more than share ε has been exposed by time t, Pr−i(SIi ≤ t) ≤ ε + Pr−i(T IbεI/n̂Ic ≤ t). Since
this inequality holds for any ε > 0, we have

lim
I→∞

Pr −i(SIi ≤ t) ≤ lim
ε→0

lim
I→∞

(
ε+ Pr −i(T IbεI/n̂Ic ≤ t)

)
= 0. (44)
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Turning to the lower bound for T Ik , using the same steps as for (42), but with (41)
substituting for (40) for the second inequality

Pr −i(T Ik ≥ τ I + δ|EI(ε), KI) ≤ inf
ξ≥0

e−ξδ
k−1∏
`=KI

E−i[eξ∆
I
` |EI(ε)]

≤ inf
ξ≥0

exp

(
−ξδ +

k−1∑
`=KI

(
log((1− 3ε)n̂I`)− log((1− 3ε)n̂I`− ξ)

))

≤ inf
ξ∈[0,(1−3ε)n̂I ]

exp

(
−ξδ +

k−1∑
`=KI

ξ

(1− 3ε)n̂I
(
log((1− 3ε)n̂I`))− log((1− 3ε)n̂I(`− 1))

))

= inf
ξ∈[0,(1−3ε)n̂I ]

exp

(
−ξ
(
δ − log(k − 1)− log(KI − 1)

(1− 3ε)n̂I

))
As for the upper bound, for k =

⌊
εI/n̂I

⌋
the fraction on the RHS converges, log(εI/n̂I−1)−log(KI−1)

(1−3ε)n̂I
D→

σ/(1− 3ε), so for any δ̄ > σ/(1− 3ε) in the limit

lim
I→∞

Pr −i(T IbεI/n̂Ic ≥ τ I + δ̄|EI(ε)) ≤ inf
ξ≥0

exp

(
−ξ
(
δ̄ − σ

1− 3ε

))
= 0.

Conditional on EI(ε),
⌊
εI/n̂I

⌋
infections guarantee ε(1 − 3ε)I exposures by τ I + δ̄. For

small ε′ > 0, approximately ε′ε(1 − 3ε)I of these get infected by τ I + δ̄ + ε′, generat-
ing approximately n̂Iε′ε(1 − 3ε)I new exposure possibilities; that is, an exploding number
n̂Iε′ε(1 − 3ε) → ∞ for every agent. Now, for any t̄ > σ, we choose ε, ε′ > 0 small enough,
and I large enough that τ I + δ̄+ ε′ < t̄ for δ̄ := σ/(1−3ε) + ε′ > σ. As I →∞, all remaining
nodes get exposed before τ I + δ̄ + ε′ and thus before t̄ with probability

lim
I→∞

Pr −i(SIi ≤ t̄) = 1. (45)

Jointly, (44) and (45) for any t < σ < t̄ establish Lemma 4.

The case lim n̂I/I > 0. So far we assumed lim n̂I/I = 0 so that limnI/n̂I = 1. Otherwise,
we have ρ = limnI/I = 1 − exp(− lim n̂I/I) > 0, implying βτ = ρβ > 0 and so the desired
learning time equals σ = 0 by (39). To see that learning is indeed immediate, note that the
first infection exposes fraction ρ > 0 of nodes. The paragraph preceding (45) then implies
that everyone is exposed immediately thereafter.

Proof of Lemma 9. We will construct p(ε) < 1 such that for large I and any k ≤ εI/n̂I the
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chance of a large exposure gap is bounded above via

Pr −i(ΓIk > 3ε) < p(ε)n̂
Ik. (46)

Since EI(ε) is the complement of the union of these events over k ≥ 1, Boole’s inequality
implies 1− Pr −i(EI(ε)) ≤∑∞k=1 p(ε)

n̂Ik = p(ε)n̂
I
/(1− p(ε)n̂I )→ 0, which implies (46).

We construct p(ε) and show (46) with the help of Chernoff bounds. The increment
XI
k −XI

k−1 counts the newly exposed agents at the kth infection. If j was exposed himself,
he exposes n̂I − 1 others and is himself deducted from XI

k ; if j was not exposed, he exposes
n̂I others. Each agent exposed by j was already exposed with probability at most kn̂I/I.
Thus, writing Yν for iid binary random variables with Pr(Yν = 1) = kn̂I/I, and Yν = 0 else,
we can upper bound the absolute exposure gap

n̂IkΓIk = n̂Ik −XI
k =

k∑
`=1

(
n̂I − (XI

` −XI
`−1)

) D

� 2k +
kn̂I∑
ν=1

Yν (47)

Now define p(ε) := infξ≥0

(
E[eYνξ]
e2εξ

)
. We have p(ε) < 1 since E[Yν ] = kn̂I/I < ε, and so

E[eYνξ]
e2εξ

≈ 1+E[Yν ]ξ
1+2εξ

≤ 1+εξ
1+2εξ

< 1 for small ξ > 0. For I large, such that εn̂I > 2, we then get
the following Chernoff-upper bound for the RHS of (47)

Pr

2k +
kn̂I∑
ν=1

Yν > 3εn̂Ik

 ≤ Pr

 kn̂I∑
ν=1

Yν > 2εn̂Ik

 ≤ inf
ξ≥0

(
E[eYνξ]

e2εξ

)n̂Ik
= p(ε)n̂

Ik

which together with (47) implies (46), and hence Lemma 9.

B.4 Proof of Equation (18)

We apply Bayes’ rule

1−at =
Pr −`(∀k, `′ : t < Tk, T`′)

Pr −`(t < T`,∀k : t < Tk)
=


exp(−(K+L)t)
exp(−(K+1)t)

= exp (−(L− 1)t) t < τk
exp(−Kτk−Lt))

exp
(
−K

(
τk+

∫ t
τk
asds

)
−t
) = exp

(
−(L− 1)t+K

∫ t
τk
asds

)
t ∈ (τk, τ`)

exp(−Kτk−Lτ`))
exp
(
−K

(
τk+

∫ t
τk
asds

)
−τ`

) = exp
(
−(L− 1)τ` +K

∫ t
τk
asds

)
t > τ`

and then differentiate wrt t.
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B.5 Proof of Theorem 2 (Core-Periphery Networks)

The challenge with this proof is the complexity of characterizing two outcome variables,
asymptotic information and welfare, for a myriad of cases. Specifically we must consider six
different network densities κ Q κ∗, ρ = 0, ∈ (0, 1), or = 1, and pessimistic priors p0 < p̄ as
well as optimistic ones. While some arguments apply to all of these cases, each case also has
its idiosyncrasies.

We structure the exposition in order of increasing network density, characterizing asymp-
totic information and welfare in parallel and emphasizing the case of pessimistic priors p0 < p̄.
But to avoid repetitions, we sometimes break this linear narrative by bracketing out argu-
ments that apply more broadly.

As in the paper body, we superscript variables in finite networks with the network size
I, e.g. τ I` , and drop the superscript in the limit, e.g. τ` := limI→∞ τ I` . A priori the limit
is well-defined only for some subsequence, but the analysis characterizes all limits under
consideration uniquely.

Asymptotic information equals β = lim βI = lim(KIτ Ik + LIτ I` ) since the network is
connected and each agent’s own experimentation τ Ik,` (which in principle is excluded from
the social information β) is negligible as I →∞. It will be useful to decompose β into core
agents’ pre-cutoff learning ΥI

k := Iτ Ik and post-cutoff learning ΥI
` := LI(τ I` − τ Ik ).

We can already note two bounds on Υk,Υ`: Total information β = Υk + Υ` is strictly
positive: By contradiction, β = 0 means agents face the single-agent problem, choose τk =

τ` = τ̄ > 0 and so β = ∞. Any agent’s pre-cutoff learning βτ is no larger than τ̄ , recalling
from (4) that P ∅(βτ )(x+ y)− c ≥ ψτ = 0. For core agents, this means Υk ≤ τ̄ . Thus, there
is asymptotic learning iff Υ` =∞; a sufficient (but not necessary) condition is τ` > 0.

B.5.1 Case 1: Bounded core size κ <∞

Preliminaries. We first establish a necessary and sufficient condition for maximal social
learning by peripherals

β`,t ≡ κt iff Υ` =∞. (48)

If Υ` = ∞, core agents immediately observe a peripheral succeed, and then work forever
after. If Υ` <∞, the probability of a success 1− e−(Υk+Υ`) is less than one, bounding above
b`,t ≤ κ(1− e−(Υk+Υ`)) < κ for t > τk.

By Lemma 1, the social learning upper-bound (48) implies an incentive lower-bound

ψ`,0 ≥ ψκ
`,0

:= p0

(
x+

r

r + κ
y

)
− c (49)
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with equality iff Υ` =∞.
We distinguish three cases, κ Q κ∗; for optimistic priors p0 ≥ p̄, we have κ∗ =∞, and so

only case 1a is relevant.

Case 1a: κ < κ∗. Since ψκ
`,0

falls in κ, we have ψκ
`,0
> ψκ

∗

`,0
= 0, so ψ`,0 > 0, and continuity

of ψ`,0 implies τ` > 0, and asymptotic learning Υ` = ∞. By Lemma 2, welfare is bounded
below the benchmark V(τ`, κτ`) < V(0, 0) = V ∗. Quantitatively, Υ` = ∞ and (48) imply
β`,t = κt, so welfare increases in κ by Lemma 1.

For p0 ≥ p̄, only one argument needs adapting: the welfare benchmark now equals
V ∗ = p0y which requires immediate and perfect social learning, βt = ∞ for t > 0. Clearly,
β`,t = κt falls short of this benchmark.

Case 1b: κ = κ∗. Now ψκ
`,0

= 0. We show asymptotic learning, Υ` = ∞, by contradiction:
By (49), Υ` < ∞ would imply ψ`,0 > 0 and so τ` > 0, leading to the contradiction that
Υ` = ∞. In turn, Υ` = ∞ implies by (48) and (49) that ψ`,0 = ψκ

`,0
= 0 and so τ` = 0 and

κτ` = 0, attaining the welfare benchmark V(0, 0) = V ∗.

Case 1c: κ ∈ (κ∗,∞). Now ψκ
`,0
< 0. Asymptotic learning fails because Υ` =∞ would imply

by (48) and (49) that ψ`,0 = ψκ
`,0
< 0 and so τ I` = 0 for large I and Υ` = 0. In turn, Υ` <∞

implies τ` = 0 and ψ`,0 = 0. To quantify information, we first claim that Υk = lim Iτ Ik = 0:
Indeed, core agents receive all social information immediately, βk,t = Υk + Υ` for all t > 0,
while peripherals’ learning is bounded by β`,t ≤ κt. This bounds incentives of core agents
above ψk,0 < ψ`,0 = 0, and so τ Ik = 0 for large I.41

Social information thus equals Υ`. We now show this falls in κ: Peripherals observe a
success by time t iff at least one peripheral succeeds during experimentation, and then a core
agent succeeds during (0, t]; thus 1−e−β`,t = (1−e−Υ`)(1−e−κt).42 Since the RHS rises with
both κ and Υ` and experimentation incentives ψ`,0 fall in {β`,t}, the equilibrium condition
ψ`,0 = 0 implies that a rise in information transmission κ must be compensated by a fall in
aggregate information Υ`. For future reference, we note that as κ→∞, the learning curve
β`,t converges to Υ` for each t > 0, and so peripherals’ indifference condition converges to
p0(x+ e−Υ`y) = c, pinning down aggregate information Υ`.

Finally, since τ` = κτ` = 0, welfare attains the benchmark V(0, 0) = V ∗.
41We also get τ Ik = 0 for large I and Υk = 0 in cases 1a,b with p0 < p̄, where ψk,0 < 0 is ensured by

βk,t =∞ for all t > 0.
42Solving for β`,t and differentiating yields b`,t = κ e−κt(1−e−Υ` )

e−κt(1−e−Υ` )+e−Υ`
, generalizing (48).
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B.5.2 Case 2: Exploding core κ =∞

Preliminaries. We first assume ρ < 1, and cover the case ρ = 1 separately. We prepare the
ground with two preliminary lemmas.

Lemma 10. Assume κ =∞, ρ < 1, and any prior p0 > p.
(a) Individual learning vanishes: τ Ik , τ I` → 0.
(b) Social learning is immediate: For all t > 0, βIk,t, βI`,t → Υk + Υ`.

Proof. Part (a) follows by the upper bound on pre-cutoff learning βτ ≤ τ̄ . For core agents,
βIk,t = (I − 1)τ Ik ≤ τ̄ . For peripherals,

βI`,τI`
= KIτ Ik +

∫ τI`

τIk

KIaItdt (50)

where core agents’ expected effort aIt from (18) drifts towards min{(LI − 1)/KI , 1} and is
hence bounded away from 0 by our assumption that ρ < 1. The upper bound, βI`,τ` < τ̄ thus
requires the domain to vanish, τ I` → 0, as the integrand explodes, KI →∞.

Turning to part (b), the conditional probability that some agent i has observed a neighbor
succeed by t < τ I` is sandwiched via(
1− exp(−(Iτ Ik + (LI − 1)τ I` ))

) (
1− exp(−KI(t− τ I` ))

)
< 1−exp(−βIt ) < 1−exp(−(ΥI

k+ΥI
`))

The upper bound is the probability that any agent succeeds. The lower bound is the prob-
ability that some agent j 6= i succeeds during experimentation, times the probability that a
core agent succeeds in [τ I` , t]. Both bounds converge to 1− exp(−(Υk + Υ`)) as I →∞.

Lemma 10(b) implies that success is observed either immediately, with probability p0(1−
e−(Υk+Υ`)), or never; so welfare of both core agents and peripherals equals Vk = V` = p0(1−
e−(Υk+Υ`))y and our monotonicity results for social information apply equally to welfare.

Lemma 10(b) implies that social learning of both core agents and peripherals occurs in
two bursts: one before the cutoff and one immediately after, and both approaching t = 0.
For such learning with burst sizes β− and β+, the indifference condition (4) becomes

Ψ(β−, β+) := P ∅(β−)(x+ e−β
+

y)− c = 0. (51)

Recalling the effects of social learning on experimentation incentives (5) and ry = x− c, the
solution of (51) has slope

−dβ
+

dβ−
=
∂β−Ψ

∂β+Ψ
=
e−β

+
y + x− c
e−β+y

= 1 + reβ
+

. (52)
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To apply (51) to core agents and peripherals, write asymptotic pre-cutoff learning as
β`,τ` = lim βI

`,τI`
, experimentation incentives as ψ`,τ` = limψI

`,τI`
, and similarly for core agents,

substituting “k” for “`”.43 For core agents, β− = βk,τk = Υk, β+ = Υ`, and (51) coincides
with the limit of (17) as L→∞.44

Lemma 11. Assume κ =∞, ρ < 1, and any prior p0 > p.
(a) Core agents’ indifference condition converges to

Ψ(Υk,Υ`) = P ∅(Υk)
(
x+ e−Υ`y

)
− c = 0. (53)

(b) Pre-cutoff learning of core agents and peripherals coincides: β`,τ` = Υk.

Proof. Part (a): For internal cutoffs τ Ik > 0, the indifference conditions ψI
k,τIk

= 0 converge
to (53). By contradiction, assume that τ Ik = 0 for large I, so that Υk = 0 and ψk,τk = ψk,0 =

p0

(
x+ e−Υ`y

)
− c < 0. Using Lemma 10(b) (immediate learning by both core agents and

peripherals) and the greater importance of pre-cutoff learning (52), strict shirking incentives
by core agents carry over to peripherals45

ψ`,τ` = Ψ(β`,τ` ,Υ` − β`,τ`) ≤ Ψ(0,Υ`) = ψk,τk < 0.

Thus τ I` = 0 for large I, leading to the contradiction that Υk + Υ` = 0 and ψk,0 = ψ`,0 =

p0 (x+ y)− c = Ψ(0, 0) > 0.
Part (b): This follows from the fact that core agents and peripherals have the same value,

and so V(0,Υk) = Vk = V` = V(0,Υ`).

Lemma 11 establishes two conditions for Υk,Υ`. Below we show they admit a unique
solution; a corner solution for ρ = 0, and an internal one for ρ ∈ (0, 1).

Case 2a: ρ = 0. In this case we get a corner solution for Υk,Υ` with Υk/Υ` = 0. Indeed,
using Lemma 11(b), pre-cutoff learning is a vanishing proportion of post-cutoff learning

Υk = β`,τ` = lim βI`,τI`
< limKIτ I` = lim

KI

LI
LIτ I` ≤ “

ρ

1− ρ(Υk + Υ`)”. (54)

Since ρ = 0, we must have either Υk = 0 or Υ` =∞ (then the last term “0 · ∞” is not well
defined), or both.

43Note that even though τ I` → τ` = 0, β`,τ` is distinct from, and generally greater than the other limit
β`,0 = limβI`,0 = 0.

44For peripherals, we get an explicit expression of β`,τ` in Υk,Υ` only for ρ > 0, (57).
45Note the contrast to the case with bounded core size κ <∞ (and p0 < p̄), where peripherals learn slower

than core agents, so that ψk,τk < ψ`,τ` = 0.
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For pessimistic priors p0 < p̄, core agents’ indifference (53) rules out asymptotic learning,
so Υ` < ∞ and (54) implies Υk = 0. In turn, aggregate information Υ` solves Ψ(0,Υ`) =

p0

(
x+ e−Υ`y

)
− c = 0.46

For p0 ≥ p̄, Υk solves P ∅(Υk) = p̄ and Υ` = ∞.47 Core agents’ indifference (53) clearly
requires experimentation until the myopic threshold, P ∅(Υk) ≤ p̄. If, by contradiction, core
agents experiment past the myopic threshold, P ∅(Υk) < p̄, then (53) implies Υ` < ∞, and
(54) leads to the contradiction that Υk = 0.

Case 2b: ρ ∈ (0, 1). In this case we get an internal solution for Υk,Υ`. We first further
operationalize Lemma 11(b) by replacing the upper bound in (54) with an explicit expression
for peripherals’ pre-cutoff learning β`,τ` in terms of Υk,Υ`, (57). To analyze (50) as the
integrand KIaIt explodes and the integration domain [τ Ik , τ

I
` ] vanishes, we rescale time aIt :=

aIt/I . The ODE (18) for core agents’ experimentation intensity thus becomes

I
ȧIt

1− aIt
=


LI − 1 t < Iτ Ik

LI − 1−KIaIt t ∈ (Iτ Ik , Iτ
I
` )

−KIaIt t > Iτ I`

(55)

Recalling ρ,Υk,Υ`, as I →∞, the solution aIt converges to the solution at of

ȧ

1− a
=


1− ρ t < Υk

1− ρ− ρa t ∈ (Υk,Υk + Υ`/(1− ρ))

−ρa t > Υk + Υ`/(1− ρ)

(56)

Peripherals’ pre-cutoff learning (50) then converges to

β`,τ` = ρ

(
Υk +

∫ Υk+Υ`/(1−ρ)

Υk

atdt

)
, (57)

so we can rewrite Lemma 11(b) as

Φ(ρ,Υk,Υ`) := ρ

(
Υk +

∫ Υk+Υ`/(1−ρ)

Υk

atdt

)
−Υk = 0. (58)

We can now characterize equilibrium learning.

46This is the same indifference condition we found in case 1c as κ → ∞, so aggregate information is
continuous in this limit.

47In the borderline case with p0 = p̄, we get both Υk = 0 and Υ` =∞.
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Proof of Theorem 1 (flipped)
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Figure 8: Solutions of Φ(ρ,Υk,Υ`) = 0 and Ψ(Υk,Υ`) = 0.

Lemma 12. For all ρ ∈ [0, 1], equations (53), (58) admit a unique solution (Υk,Υ`). This
solution satisfies 0 < Υk,Υ` <∞, and aggregate information Υk + Υ` falls in ρ.

The proof of Lemma 12 relies on the following generalization of Leibniz’s integral rule:
For Lipschitz-continuous functions f, g and some cutoff s > 0, let xt be the continuous
solution of an ODE

ẋ =

f(x) for t < s

g(x) for t > s

with initial condition x0. We write xt(s) to emphasize the importance of the cutoff, and
assume g(xs(s)) 6= 0.

Lemma 13. For any ∆ > 0

∂

∂s

∫ s+∆

s

xt(s)dt =
f(xs(s))

g(xs(s))
(xs(s+ ∆)− xs(s)) (59)

Proof of Lemma 12. Equation (58) together with Υk + Υ` > 0 and the fact that the solution
a of (56) is bounded away from zero imply Υk > 0, and in turn that 0 < Υ` < ∞. Thus,
asymptotic learning fails.

To solve (53), (58), we note that Φ clearly rises in ρ and Υ`. We show below that it falls
in Υk. Hence zero-sets of Φ in (Υ`,Υk)-space are increasing and shift left when ρ rises to ρ′,
as illustrated in Figure 8. Recalling from (52) that zero-sets of Ψ are decreasing with slope
−1/(1 + re−Υ`) > −1, equations (53), (58) admit a unique solution (Υk,Υ`). A rise in ρ

shifts this solution left on the zero-set of Ψ, so Υk + Υ` falls.
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Leibniz’s Rule
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Figure 9: Proof of Leibniz Rule. In both figures the difference of between the integral of the upper
solid line, xt(s + δ) over t ∈ [s + δ, s + δ + ∆], and the lower solid line, xt(s) over t ∈ [s, s + ∆], equals the
difference in the integrals of the shaded lines. E.g. in the left picture this is difference between xt(s) over
t ∈ [s+ ∆, s+ δ′ + ∆] and xt(s) over t ∈ [s, s+ δ′], which is the RHS of (61) after substituting t = s+ δ̃.

In fact, the monotonicity of Υk + Υ` extends to the boundary points ρ = 0, 1: We recall
that for ρ = 0 all learning is post-cutoff, Υk = 0,Ψ(0,Υ`) = 0,48 and anticipate that for
ρ = 1 all learning is pre-cutoff, Υ` = 0,Ψ(Υk, 0) = 0, thus attaining the extreme points on
the zero set of Ψ(Υk,Υ`) = 0 as illustrated in Figure 8.

To show that Φ falls in Υk, we write a∗ = aΥk and a∗ = aΥk+Υ`/(1−ρ), assume that
1− ρ− ρa∗ 6= 0, and then argue49

∂Φ

∂Υk

= −(1− ρ) + ρ
1− ρ

1− ρ− ρa∗
(a∗ − a∗) = −(1− ρ)

1− ρ− ρa∗
1− ρ− ρa∗

< 0.

The first equality follows from Lemma 13 by substituting s = Υk and ∆ = Υ`/(1−ρ) for the
integral boundaries, xt = at for the trajectory, f(a) = (1 − ρ)(1 − a) for the law-of-motion
before s = Υk, and g(a) = (1−ρ−ρa)(1−a) after Υk. The middle equality is simple algebra,
and the final inequality owes to the fact that ȧ/(1− a) = 1− ρ− ρa from (56) cannot switch
signs on [Υk,Υk + Υ`/(1− ρ)], so that 1−ρ−ρa∗

1−ρ−ρa∗ > 0.

Proof of Lemma 13. The Leibniz rule evaluates the LHS of (59) “vertically”, computing
∂
∂s
xt(s) = limδ→0

1
δ
(xt(s + δ) − xt(s)) for fixed t ∈ [s, s + ∆]. Since the ODE ẋ = g(x) is

48This assumes p0 < p̄. For p0 ≥ p̄, asymptotic information is infinite for ρ = 0, and hence trivially greater
than the finite learning for ρ > 0.

49Since at = 1 − exp(−(1 − ρ)t) for t < Υk, there exists at most one value of Υk with 1 − ρ − ρaΥk = 0.
Since Φ is continuous in Υk and decreasing in Υk everywhere else, it decreases everywhere.
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autonomous, it is more economical to compare the trajectories {xt(s + δ)}t and {xt(s)}t
“horizontally”, as illustrated in Figure 9.

Formally, assume first that f(s) and g(s) have the same sign, and for δ > 0 small, let
δ′ > 0 solve xs+δ′(s) = xs+δ(s+ δ). At s+ δ′ the original trajectory “merges” with the shifted
trajectory and since ẋ = g(x) is autonomous we get xs+δ′+δ̂(s) = xs+δ+δ̂(s+ δ), as illustrated
in Figure 9(left). Thus∫ δ+∆

δ

xs+δ̃(s+ δ)dδ̃ =

∫ ∆

0

xs+δ+δ̂(s+ δ)dδ̂ =

∫ ∆

0

xs+δ′+δ̂(s)dδ̂ =

∫ δ′+∆

δ′
xs+δ̃(s)dδ̃ (60)

using the change of variable δ̃ = δ + δ̂ in the first equality, and δ̃ = δ′ + δ̂ in the last. Thus

∫ s+∆+δ

s+δ

xt(s+ δ)dt−
∫ s+∆

s

xt(s)dt =

∫ δ+∆

δ

xs+δ̃(s+ δ)dδ̃ −
∫ ∆

0

xs+δ̃(s)dδ̃

=

∫ δ′+∆

δ′
xs+δ̃(s)dδ̃ −

∫ ∆

0

xs+δ̃(s)dδ̃ =

∫ ∆+δ′

∆

xs+δ̃(s)dδ̃ −
∫ δ′

0

xs+δ̃(s)dδ̃ (61)

where the first equality uses the change of variables t = s+ δ̃, the second uses (60), and the
third cancels identical terms

∫ ∆

δ′
xs+δ̃(s)dδ̃. In the limit

∂

∂s

∫ s+∆

s

xt(s)dt = lim
δ→0

δ′

δ
(xs+∆(s)− xs(s)) =

f(xs(s))

g(xs(s))
(xs+∆(s)− xs(s)) ,

where we used that at first-order δ′g(xs(s)) = δf(xs(s)).
If f and g have different signs, we let δ′ > δ solve xs+δ′(s + δ) = xs(s), so δf(s) + (δ′ −

δ)g(s) = 0, as illustrated in Figure 9(right). Analogous arguments as above then show

∂

∂s

∫ s+∆

s

xt(s)dt = lim
δ→0

δ′ − δ
δ

(xs(s)− xs+∆(s)) =
f(xs(s))

g(xs(s))
(xs+∆(s)− xs(s)) .

Case 2c: ρ = 1. While Lemmas 10 and 11 and most other substantive intermediate results
remain true for ρ = 1, their proofs divide by 1 − ρ, and sometimes invoke that L → ∞.
Instead of re-proving everything, we provide a separate analysis, solely based on the function
Ψ and its derivatives, (51)-(52), and the ODE (55). Specifically we will show that

Ψ(Υk,Υ`) ≤ ψk,τk ≤ 0 = ψ`,τ` = Ψ(Υk + Υ`, 0) (62)

Together with (52), this implies Υ` = 0, so the inequalities in (62) must hold with equality.
In particular 0 = Ψ(Υk, 0) = P ∅(Υk)(x + y) − c, so total information is as in the clique
Υk + Υ` = Υk = τ̄ .

We now show (62). The first inequality takes the limit of the strict inequality Ψ(ΥI
k,Υ

I
`) <
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ψI
k,τIk

, which reflects that core agents’ observe post-cutoff information ΥI
` with a delay. The

second inequality and the first equality reflect (the limits of) peripherals’ indifference and
core agents’ weak shirking incentives at their respective cutoffs.

Only the last equality in (62), which states that peripherals’ learning is entirely pre-cutoff,
requires a novel argument and the assumption ρ = 1. Intuitively, information transmission
by KI core agents is infinitely faster than generation by LI peripherals. Formally, we will
show that peripherals’ aggregate post-cutoff learning vanishes

KI

I

∫ ∞
IτI`

aItdt→ 0. (63)

By (63), peripherals pre-cutoff learning βI
`,τI`

converges to total information Υk+Υ`, implying
the last equality in (62).

To see (63) we first argue that aIt → 0 for all t. By line one of (55), aIt ≤ LIt/I ≤
LI τ̄ /I → 0 for all t < Iτ Ik < τ̄ ; at t > Iτ Ik , lines two and three of (55) imply ȧIt < 0 when
aIt ≥ LI/KI → (1 − ρ)/ρ = 0. All told, aIt → 0 for all t. Turning to the aggregate in (63),
line three of (55) states that aIt decays exponentially at rate (1 − aIt )K

I/I. Since this rate
converges to 1, we have

∫∞
IτI`

aItdt− aI
IτI`
→ 0. Together with aI

IτI`
→ 0, this implies (63).
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Online Appendix
This convergence theorem will appear in Board and Meyer-ter-Vehn (2024), which should
be ready in Summer 2024. Since there is currently no public version of the working paper,
we include the material as an online appendix for the time being.

C Tree Approximation

Recall the equilibrium cutoff τ I and social learning curve bI in the n-regular configuration
network with I nodes, and write τ ∗ and na∗t for the heuristic equilibrium cutoff and so-
cial learning curve in the infinite, regular n-tree, i.e. let {a∗t}t≥τ∗ solve (11) with boundary
condition a∗τ∗ = 1− e−(n−1)τ∗ and let τ ∗ solve ψτ∗({na∗t}) = 0.

Proposition 4. The equilibria of the large random networks with degree n converge to the
equilibria of the respective infinite regular n-trees: τ I → τ and bIt → nat for all t 6= τ .

Notation and conventions. For an arbitrary cutoff τ ∈ [0, τ̄ ], write the social learning curve
in the I-agent network as BI(τ) = {BIt (τ)}t; in the unique equilibrium, bIt = BIt (τ I) and
ψτI (b

I) = 0. Analogously, in the infinite regular n-tree T , define A(τ) = {At(τ)}t as follows:
For t < τ , At(τ) := 1; for t > τ , it is the solution of (11), ȧ = (n− 2)a(1− a) with boundary
condition aτ = 1 − e−(n−1)τ . In equilibrium, (τ ∗, a∗ = {a∗t}) uniquely solve a∗ = A(τ ∗)

and ψτ∗(na
∗) = 0. Convergence of sequences of functions bI = {bIt} as I → ∞ is always

point-wise for all but at most one t, namely the cutoff t = τ ∗.

We will prove that τ I → τ ∗ and that bIt → na∗t for all t 6= τ ∗. We restrict attention to a
subsequence where τ I converges to some τ∞. The triangle inequality implies that for all I

|ψτ∞(nA(τ∞))| ≤|ψτ∞(nA(τ∞))− ψτ∞(nA(τ I))|
+|ψτ∞(nA(τ I))− ψτ∞(BI(τ I))|
+|ψτ∞(BI(τ I))− ψτI (BI(τ I))|+ |ψτI (BI(τ I))|

As I →∞, the first term vanishes by continuity of At(τ) in τ for all t 6= τ∞, and continuity
of ψτ∞(b) in b = {bt}. The second term vanishes by continuity of ψτ∞(b) in b = {bt} and
because for all t ≥ 0

lim
I→∞

sup
τ∈[0,τ̄ ]

|BIt (τ)− nAt(τ)| = 0, (64)

as we show below. The third term vanishes by Lemma 6(b). The fourth term is 0 for all I
since τ I is the equilibrium cutoff of GI .
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Thus, ψτ∞(nA(τ∞)) = 0. Since τ ∗ is the unique solution of this equation, we have
τ∞ = τ ∗. Since the subsequence of τ I that converges to τ∞ was arbitrary, the entire se-
quence τ I converges to τ ∗ as desired. The triangle inequality then implies |bIt − na∗t | =

|BIt (τ I)− nAt(τ ∗)| ≤ |BIt (τ I)− nAt(τ I)|+ n|At(τ I)−At(τ ∗)| → 0 for all t 6= τ ∗.

Proof of (64); social learning converges for fixed τ . Fix an agent i, and consider times t > τ .
Let T I,ri be the event that “i’s r-neighborhood is a n-tree”, that is, i has n neighbors, n(n−1)

second neighbors, ..., n(n − 1)r−1 agents at distance r, and all of these agents are distinct.
For all fixed r and t, limI→∞ Pr(T I,ri )→ 1. For the upcoming arguments, we state that this
convergence also conditional on the event {θ = H, t < Si}

lim
I→∞

Pr −i(T I,ri |t < Si)→ 1. (65)

We will now define upper and lower bounds art (τ), ārt (τ) for the expected effort of i’s
neighbors j in both the network aI,rt (τ) := E−i[AIj,t|T I,ri , t < Si] and in the infinite tree
At(τ). We show below that

lim
r→∞

sup
τ∈[0,τ̄ ]

|ārt (τ)− art (τ)| = 0. (66)

Then, by the triangle inequality

|BIi,t(τ)− nAt(τ)| ≤ |BIt (τ)− naI,rt (τ)|+ |naI,rt (τ)− nAt(τ)|
≤ n(1− Pr −i(T I,ri |t < Si)) + n|ārt (τ)− art (τ)|

and so (65) and (66) imply

lim
r→∞

lim
I→∞

sup
τ∈[0,τ̄ ]

|BIi,t(τ)−nAt(τ)| ≤ lim
r→∞

lim
I→∞

n(1−Pr −i(T I,ri |t < Si))+ lim
r→∞

sup
τ∈[0,τ̄ ]

n|ārt (τ)−art (τ)| = 0

which is (64), since the LHS does not depend on r.

Proof of (66); construction of the bounds art , ārt and their convergence. We define the bounds
art , ā

r
t (dropping τ for a moment to ease notation) as i’s expectation over neighbor j’s effort

conditional on pessimistic/optimistic assumptions about successes of distant agents. Specif-
ically, we define expectations E−i,r, Ē−i,r over the first success times Ti of all agents k with
distance 1, ..., r from i, both of which condition on T I,ri , θ = H and the fact that i’s neighbors
j have not seen i succeed. Additionally, E−i,r conditions on no “leaf agent” ` with distance r
from i having observed a success from an “outside” agent at distance r+1 from i; conversely,
Ē−i,r conditions on every “leaf agent” ` having observed a success from an “outside” agent.
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We then set art := E−i,r[Aj,t|t < Tj] and ārt := Ē−i,r[Aj,t|t < Tj].
We proceed by induction over r. For r = 1, this means a1

t ≡ 0, ā1
t ≡ 1 for t > τ . More

generally, for r > 1, i’s neighbor j shirks at t > τ iff none of his n − 1 other neighbors
k ∈ Nj(G)\{i} have succeeded.

1− art =
Pr−i(t < Tj, t < Tk∀k ∈ Nj\{i})

Pr−i(t < Tj)
=

exp
(
−nτ − (n− 1)

∫ t
τ
ar−1
s ds

)
exp

(
−τ −

∫ t
τ
arsds

) (67)

The last equality is analogous to the undirected line in Example 4: The denominator follows
because the hazard rate of Tj equals 1 before τ and ars after. In turn the event in the
numerator has hazard rate n when all agents experiment before τ ; after τ , having observed
no success j shirks, while the expected effort of each of his n − 1 neighbors k equals ar−1

s

since the event T I,ri implies T I,r−1
j . We rewrite (67) as an ODE

ȧr = ((n− 1)ar−1 − ar)(1− ar) (68)

with arτ = 1− e−(n−1)τ . The upper bounds ārt also obey (68) with anchor ā1
t ≡ 1.

Since successes outside T I,ri only affect j’s expected effort via the leaf agents, and the
solution of (68) is monotone in ar−1, the so-defined functions indeed bound expected effort,
art < aI,rt ,At < ārt . Moreover, the monotonicity of (68) together with a1 ≡ 0 implies that
ar increases in r and so converges to some a∞ = {a∞t (τ)}t which must then solve (11), so
a∞t (τ) = At(τ) for all t. Similarly, ār(τ)→ A(τ). Since art (τ), ārt (τ),At(τ) are all increasing
and equi-Lipschitz in τ , the convergence is uniform in τ ∈ [0, τ̄ ], so we have proven (66).
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