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Motivation

How do societies learn about innovations?

I New products, e.g. electric cars.

I New production techniques, e.g. pineapples.

I New sources of finance, e.g. microfinance.

Two sources of information

I Social information acquired from neighbors.

I Private information if inspect innovation.

How does diffusion depend on the network?

I Is diffusion faster in more interconnected societies?

I Is diffusion faster in more centralized societies?
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The Social Purchasing Funnel

Develop Need

Consideration
(Social Info)

Inspection
(Private Info)

Adoption
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Social Learning Curves

Modeling approach

I Agents learn private information after inspection.

I Characterize social learning curves for any network via ODEs.

Social learning in tree networks

I Learning from neighbors, and neighbors’ neighbors

I Learning from direct vs. indirect links

Network structure

I Learning from backward and correlating links.

I Characterize agent’s favorite network.

I Compare centralized and decentralized networks.
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“A significant gap in our knowledge concerns short-run
dynamics and rates of learning in these models....The
complexity of Bayesian updating in a network makes this
difficult, but even limited results would offer a valuable
contribution to the literature.”

Golub, Sadler, in Oxford Handbook 2016
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Model
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Model

Players and Products

I I players i on exogenous, directed network G.

I Product quality θ ∈ {L,H}, where Pr(H) = π0.

Timing: Player i

I . . . enters at iid “time” ti ∼ U [0, 1].

I . . . observes which of her neighbors Ni adopt product by ti.

I . . . can inspect product at iid cost ci ∼ F .

I . . . adopts product iff inspected and θ = H.

Payoffs

I Player gets 1 if adopts; 0 otherwise, net of inspection cost ci.
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The Inference Problem

i sees j has adopted

I Quality is high, θ = H

i sees j has not adopted

I j tried product, but quality is low, θ = L?

I j chose not to try product (maybe k did not adopt)?

I j has not yet entered, tj ≥ t?
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Example



Introduction Model Example General Networks Trees Network Structure Imperfect Information The End

Directed Pair

Definition: Adoption rate

xi,t: Probability i adopts product H by time t

Leader, j:

ẋj,t = Pr(j inspect) = F (π0)

Follower, i:

ẋi,t = Pr(i inspect)
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Directed Pair

Definition: Adoption rate

xi,t: Probability i adopts product H by time t

Leader, j:

ẋj,t = Pr(j inspect) = F (π0)

Follower, i:

ẋi,t = 1− Pr(i not inspect)
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Directed Pair

Definition: Adoption rate

xi,t: Probability i adopts product H by time t

Leader, j:

ẋj,t = Pr(j inspect) = F (π0)

Follower, i:

ẋi,t = 1− Pr(j not adopt)× Pr(ci high)
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Directed Pair

Definition: Adoption rate

xi,t: Probability i adopts product H by time t

Leader, j:

ẋj,t = Pr(j inspect) = F (π0)

Follower, i:

ẋi,t = 1− (1− xj,t)(1− F (π∅t ))

with posterior π∅t =
π0(1−xj,t)

π0(1−xj,t)+1−π0
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Directed Pair

Definition: Adoption rate

xi,t: Probability i adopts product H by time t

Leader, j:

ẋj,t = Pr(j inspect) = F (π0)

Follower, i:

ẋi,t = 1− (1− xj,t)(1− F̃ (1− xj,t))

where F̃ (1− x) := F
(

π0(1−x)
π0(1−x)+1−π0

)
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Agent i’s Social Learning Curve
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Assumptions: c ∼ U [0, 1], π0 = 1/2.
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General Networks: Preliminaries
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Individual Adoption Rates . . . are not enough

A general formula for individual adoption rates

I x−iNi,t
: Probability some of i’s neighbors adopt H by t ≤ ti.

ẋi = 1− (1− x−iNi
)(1− F̃ (1− x−iNi

))

But cannot recover joint xNi
(or x−iNi

) from marginals xj
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The Social Learning Curve

Definition: i’s social learning curve

I x−iNi,t
: Probability some of i’s neighbors adopts H by t ≤ ti.

Fact: i’s information Blackwell-increasing in x−iNi

I i’s signal structure

≥ 1 adopt 0 adopt

θ = H x−iNi
1− x−iNi

θ = L 0 1

I Signal x < x′ equiv. to “losing” adopt signal with prob. x′−x
x′ .
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Social Learning and Adoption

Assumption: Costs have a bounded hazard rate (BHR) if

f(c)

1− F (c)
≤ 1

(1− c)c
for c ∈ [0, π0] (1)

I Satisfied if f(c) weakly increasing, e.g. c ∼ U [0, 1]

I At bottom, when c ≈ 0, always satisfied as RHS →∞.

I At top, holds with equality when f(c) ∝ 1/c2
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Social Learning and Adoption

Assumption: Costs have a bounded hazard rate (BHR) if

f(c)

1− F (c)
≤ 1

(1− c)c
for c ∈ [0, π0] (1)

Lemma 1.
Assume BHR. Adoption (xi,t)t rises in information (x−iNi,t

)t.

Idea

I Recall adoption probabilities are conditional on θ = H

I Hence E[πt|H] exceeds π0 and increases in information x−iNi,t

I Compare: Increase in adoption given a neighbor adopts
Decrease in adoption given no neighbor adopts
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Social Learning and Adoption

Assumption: Costs have a bounded hazard rate (BHR) if

f(c)

1− F (c)
≤ 1

(1− c)c
for c ∈ [0, π0] (1)

Lemma 1.
Assume BHR. Adoption (xi,t)t rises in information (x−iNi,t

)t.

Counterexample

I Suppose F ∼ U [0, π0]

I Adoption maximized for zero social learning.
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Social Learning Improves over Time

Lemma 2.
In any network, agent i’s information Blackwell improves over
time. Under BHR, her adoption probability increases over time.

Idea

I Over time more people adopt, so x−iNi,t
increases in t.

I Apply Lemma 1.
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Information Aggregation in Complete Networks
I Lowest cost type, c := sup{c|F (c) = 0}.

Lemma 3 (HSW ’12, HH ’13).

In a complete network with I →∞ agents:
(a) Bad products fail, PrLI (i inspects)→ 0.
(b) Good products succeed, PrHI (i inspects)→ 1, iff c = 0.

Proof
I Adoption: For all t > 0, as I →∞, x−iNi,t

converges to

x̄ := inf{x : F̃ (1− x) = 0}

I By definition π(1−x̄)
1−πx̄ = c, and so x̄ = 1 iff c = 0.

I Inspection: If θ = L at ti = t:

PrLI (i inspects) = F̃ (1− x−iNi,t
)→ 0
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Information Aggregation in Complete Networks
I Lowest cost type, c := sup{c|F (c) = 0}.

Lemma 3 (HSW ’12, HH ’13).

In a complete network with I →∞ agents:
(a) Bad products fail, PrLI (i inspects)→ 0.
(b) Good products succeed, PrHI (i inspects)→ 1, iff c = 0.

Proof
I Adoption: For all t > 0, as I →∞, x−iNi,t

converges to

x̄ := inf{x : F̃ (1− x) = 0}

I By definition π(1−x̄)
1−πx̄ = c, and so x̄ = 1 iff c = 0.

I Inspection: If θ = H at ti = t:

PrHI (i inspects) = 1− (1− x−iNi,t
)(1− F̃ (1− x−iNi,t

))→ x̄
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General Networks: Characterization
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A Larger State Space

State of network λ ∈ {∅, a, b}I

I λi = ∅: i hasn’t moved yet, t ≤ ti.
I λi = a: i has moved, tried, and adopted the product.

I λi = b: i has moved, but not adopted the product.

Agent i’s knowledge in state λ

Λ(i, λ) := {λ′ : λ′i = λi, λj = a iff λ′j = a for all j ∈ Ni}

Additional notation

I Distribution z = (zθλ), and zθΛ :=
∑

λ∈Λ z
θ
λ for sets Λ.

I For λ with λi = a, b, write λ−i for “same state with λi = ∅”.
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State Transitions

Three agents (i, j, k), state λ = (λi, λj, λk)

λ−j =(∅, ∅, b)

λ−k=(∅, a, ∅)

λ=(∅, a, b)

(a, a, b)

(b, a, b)
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ODE for General Networks

Theorem 1.
Given quality θ = L,H, the state evolves according to the ODE:

żHλ = − 1

1− t
∑
i:λi=∅

zHλ

+
1

1− t
∑
i:λi=a

zHλ−iF̃

(
zH

Λ(i,λ−i)

zL
Λ(i,λ−i)

)

+
1

1− t
∑
i:λi=b

zHλ−i

[
1− F̃

(
zH

Λ(i,λ−i)

zL
Λ(i,λ−i)

)]
zLλ = (1− t)#{i:λi=∅}t#{i:λi=b}0#{i:λi=a}

Implications

I Existence, uniqueness, discrete-time approximation ...

I But: ODE cannot be computed, since it is 3I -dimensional.
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Tree Networks
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Trees

I Abstract from Self-reference and Correlation problems.

I Approximate large random network with finite degree.

I Resemble hierarchies seen in firms or on Twitter.

Network G is ...

I . . . a tree if there is at most one path i→ . . .→ j.

I . . . regular with degree d if every node has out-degree d.
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Adoption in Trees

Conditional independence

I (xj)j∈Ni independent of λi = ∅.
I Neighbors’ adoption (xj)j∈Ni conditionally independent.

Probability some of i’s neighbors Ni adopts:

x−iNi
= xNi = 1−

∏
j∈Ni

(1− xj)

Individual adoption rates

ẋi = 1− (1− xNi)(1− F̃ (1− xNi))

I I-dimensional ODE.
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Adoption in Regular Trees

Probability some neighbor adopts

1− (1− x)d

Evolution of individual adoption rates

ẋ = 1− (1− x)d(1− F̃ ((1− x)d))

I 1-dimensional ODE.
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Comparative Statics in Tree Networks
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Social Learning Curves: More Informed Neighbors
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Assumptions: c ∼ U [0, 1], π0 = 1/2.
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Social Learning Curves: More Neighbors
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Regular tree with d neighbors, c ∼ U [0, 1], π0 = 1/2.
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Social Learning Improves in Links

I Consider tree Ĝ with subtree G ⊆ Ĝ. Adoption rates: x̂i, xi.

Theorem 2.
Assume BHR. Social learning improves in links: For any agent i,

xNi ≤ x̂N̂i
(*)

Prove (*) by induction

I Leaves i of G: xNi = 0 ≤ x̂N̂i

I Fix any i and assume (*) holds for all j ∈ Ni.

I By BHR, agent j adopts more xj ≤ x̂j .
I Additionally, i has more neighbors, Ni ⊆ N̂i. Thus:

xNi = 1−
∏
j∈Ni

(1− xj) ≤ 1−
∏
j∈N̂i

(1− x̂j) = x̂N̂i



Introduction Model Example General Networks Trees Network Structure Imperfect Information The End

Direct vs Indirect Links
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Direct vs Indirect Links

~̇x = 1− (1− ~x)(1− F̃ (1− ~x)) ≤ 1− (1− ~x)(1− F̃ (1))
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Direct vs Indirect Links

~xt ≤
F̃ (1)

1− F̃ (1)
exp((1− F̃ (1))t− 1)
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Direct vs Indirect Links

~xt ≤
F̃ (1)

1− F̃ (1)
exp((1− F̃ (1))t− 1)

x̌t = x{j,k},t = 1− (1− F̃ (1)t)2
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Direct vs Indirect Links
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Theorem 3.
Two direct links are superior to line of indirect ones: x̌t > ~xt.
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Beyond Trees
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Are All Links Beneficial?

Rationale for Theorem 2

I Indirect links induce neighbors to inspect.

I Learn from neighbors’ inspections and adoptions.

How about correlating and backward links?

i

j

k

i j
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Adding a Correlating Link

i

j

k

i

j

k

The correlating link lowers i’s information and utility

I Agent i’s only learns from j if k has not adopted.

I In this event, adding j → k reduces j’s adoption.
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Adding a Backward Link

i j i j

The backward link lowers i’s information and utility

I Before ti, agent j never observes adoption by i.

I x−ij,t : Probability j adopts product H by t ≤ ti.

ẋ−ij,t = Pr(j inspect|i not)
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Adding a Backward Link

i j i j

The backward link lowers i’s information and utility

I Before ti, agent j never observes adoption by i.

I x−ij,t : Probability j adopts product H by t ≤ ti.

ẋ−ij,t = F̃ (1− x−ji,t ) ≤ F̃ (1)

x−ij,t ≤ F̃ (1)t = xj,t

where xj,t is j’s adoption probability in i→ j.
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Self-Referential and Correlating Links

G is i-tree iff ...

1 i has no backward links B := {j → i}.
2 i’s neighbors j, j′ ∈ Ni are independent: Sj ∩ Sj′ = ∅;

in particular, there are no correlating links C := {j → j′}.

Adding self-referential and correlating links to an i-tree

Ĝ with G ( Ĝ ⊂ G ∪ C ∪B.

Theorem 4.
Backward and correlating links harm i’s learning: x̂−iNi

< xNi .

Idea: Links C ∪B only matter when they convey bad news.
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Optimality of the Star Network

The i-Star

Theorem 5.
The i-star maximizes i’s learning: For any G 6= G∗, x̂∗N∗i

> x−iNi
.

In i-Star

I i observes no adoption at ti then cj > π ∀{j : tj < ti}. (*)

In arbitrary network G, if (*) holds

I j with lowest tj observes no adopt. ⇒ does not inspect.

I j′ with next-lowest tj′ observes no adopt. ⇒ does not inspect.
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Centralized Networks vs. Decentralized Networks

Theorem 6.
Assume BHR, and all agents have d neighbors. All agents prefer
large random network over complete network.

Idea

I Agent i’s optimal network is the i-star.

I Complete network worse: add correlated and reverse links.

I Random network better under BHR: add new information.
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Imperfect Information from Adoption
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Imperfect Learning

Agents have idiosyncratic preferences

I Adopt with probability qθ in state θ.

Social learning curves

I May see multiple adoptions

I Let {x−iA,t, y
−i
A,t} be prob. A ⊂ Ni adopt if θ ∈ {H,L}.

Adoption rates in general network

ẋi = qH
∑
A⊆Ni

x−iA F̃

(
x−iA
y−iA

)
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Imperfect Learning

Agents have idiosyncratic preferences

I Adopt with probability qθ in state θ.

Social learning curves

I May see multiple adoptions

I Let {x−iA,t, y
−i
A,t} be prob. A ⊂ Ni adopt if θ ∈ {H,L}.

Adoption rates in tree

ẋi = qH
∑
A⊆Ni

xAF̃

(
xA
yA

)
for xA =

∏
j∈A

xj
∏

j∈Ni\A

(1− xj)
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Imperfect Learning

Agents have idiosyncratic preferences

I Adopt with probability qθ in state θ.

Social learning curves

I May see multiple adoptions

I Let {x−iA,t, y
−i
A,t} be prob. A ⊂ Ni adopt if θ ∈ {H,L}.

Adoption rates in regular tree of degree d

ẋ = qH
d∑

ν=0

x(ν,d)F̃

(
x(ν,d)

y(ν,d)

)
for x(ν,d) :=

(
ν
d

)
xν(1− x)d−ν
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Comparative Statics: Blackwell Sufficiency

Experiment (x̂, ŷ) is more informative than (x, y) iff

x̂

ŷ
≥ x

y
and

1− x̂
1− ŷ

≤ 1− x
1− y

(0,0)

(1,1)

(1,0)

(0,1)

(x, y)

(x̂, ŷ)

y

x

“Not” const.

“Adopt” const.
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Comparative Statics for Trees

Lemma 2.
Assume BHR. If social learning curves of Ni are more informative
then i’s adoption is more informative.

This implies that on trees

I Adoption is more informative over time.

I Adoption is more informative in direct and indirect links.

I Adoption is more informative if qH rises or qL falls.

Also in some examples

I Self-referential links lower informativeness of adoption.
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Imperfect Information of Networks
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Imperfect Information Poisson Trees

Known neighbors: Observes A and Ni

I Probability of ι neighbors: P (ι|k) := e−kkι/ι!

ẋ =

∞∑
ι=0

P (ι|k)[1− (1− x)ι(1− F̃ ((1− x)ι))]

Unknown neighbors: Observes only A, not Ni

I Probability no neighbor adopts: e−kx

ẋ = 1− e−kx(1− F̃ (e−kx))

Under BHR, more social learning with known neighbors.

I The number of neighbors Ni is directly informative.

I This compounds and increases everyone’s information.
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Deterministic vs Random Trees
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Deterministic vs Random Trees

I Random tree with D links, known neighbors

˙̂x = E[1− (1− x̂)D(1− F̃ ((1− x̂)D))]

I Deterministic tree with d = E[D] links

ẋ = 1− (1− x)d(1− F̃ ((1− x)d)) =: φ(x, d)

If π0 ≤ 1/2, c ∼ U [0, 1], more social learning in Determ. tree.

I φ(x, d) concave in d, and so E[φ(x,D)] < φ(x, d).

I Hence x̂ ≤ x, and so E[1− (1− x̂)D] ≤ 1− (1− x)d
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Undirected Poisson Networks

Two Complications
I i’s neighbors j have P (·|k) + 1 neighbors.

I Before ti, j conditions on λi = ∅.

Known neighbors
I j has ι ∼ P (·|d) neighbors (and i, who has not adopted)

ẋ =

∞∑
ι=0

P (ι|d)[1− (1− x)ι(1− F̃ ((1− x)ι+1))]

Unknown neighbors
I Complications cancel, since j can’t see i before ti.

I j observes ν ∼ P (·|dx) adoptions from ι ∼ P (·|d) neighbors.

I Same adoption rates xt as in directed Poisson network.
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Conclusion

A tractable model of learning in networks

I Agents learn private information after inspection.

I Exogenous network, independent of timing.

Social learning curves

I Describe full dynamics via ODEs.

I “Value function” of links in trees.

I Effects of undirected learning and correlation.

I Optimality of the star network.

Future work

I Impact of network on aggregates: Welfare, diffusion.

I Policies: Pricing, advertising and seeding.

I And much more. . .
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