
Econometrica, Vol. 89, No. 6 (November, 2021), 2601–2635

LEARNING DYNAMICS IN SOCIAL NETWORKS

SIMON BOARD
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This paper proposes a tractable model of Bayesian learning on large random net-
works where agents choose whether to adopt an innovation. We study the impact of the
network structure on learning dynamics and product diffusion. In directed networks,
all direct and indirect links contribute to agents’ learning. In comparison, learning and
welfare are lower in undirected networks and networks with cliques. In a rich class of
networks, behavior is described by a small number of differential equations, making the
model useful for empirical work.
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1. INTRODUCTION

HOW DO COMMUNITIES, ORGANIZATIONS, OR ENTIRE SOCIETIES learn about innova-
tions? Consider consumers learning about a new brand of electric car from friends, farm-
ers learning about a novel crop from neighbors, or entrepreneurs learning about a source
of finance from nearby businesses. In all these instances, agents learn from other’s choices,
so the diffusion of the innovation depends on the social network. One would like to know:
Do agents learn more quickly in a highly connected network? Do products diffuse faster
in a more clustered network?

This paper proposes a tractable Bayesian model to answer these questions, and char-
acterizes the diffusion of innovation in the social network via a system of differential
equations. In contrast to most papers in the literature (e.g., Acemoglu et al. (2011)), our
results speak to learning dynamics at each point in time, rather than focusing on long-run
behavior. We thus recover the tractability of the reduced-form models of diffusion (e.g.,
Bass (1969)) in a model of Bayesian learning. Understanding the entire dynamics is im-
portant because empirical researchers must identify economic models from finite data,
and because in practice, governments and firms care about when innovations take off, not
just if they take off.

Our paper has two contributions. First, we describe how learning dynamics depend on
the network structure. For large random networks, we show that an agent typically ben-
efits when her neighbors have more links. However, additional links that correlate the
information of an agent’s neighbors or create feedback loops can muddle her learning.
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FIGURE 1.—Illustrative networks. The left panel shows an Erdős–Rényi network; social learning is de-
scribed by a one-dimensional ODE (13). The middle panel shows a random network with triangles; social
learning is described by a two-dimensional ODE (18)–(19). The right panel shows a random network with
homophily; social learning is described by a four-dimensional ODE (42).

For example, welfare is lower in a “clustered” network than in a random “bilateral” net-
work with the same degree distribution. These results can help us understand how the
diffusion of products and ideas changes with the introduction of social media, differs be-
tween cities and villages, and is affected by government programs that form new social
links (e.g., Cai and Szeidl (2018)).

Our second contribution is methodological. The complexity of Bayesian updating
means that applied and empirical papers typically study heuristic behavior on the ex-
act network (e.g., Golub and Jackson (2012), Banerjee et al. (2013)). In comparison, we
take a “macroeconomic approach” by studying equilibrium behavior on an approximate
network. Figure 1 illustrates random networks exhibiting cliques and homophily that we
can analyze with low-dimensional ODEs. Given a “real life” network, one can then study
diffusion and learning on an approximate network with the same network statistics (e.g.,
agents’ types, degree distributions, cluster coefficients).

In the model, agents are connected via an exogenous network. They may know the en-
tire network (our “deterministic” networks) or only their local neighborhood (our “ran-
dom” networks). An agent “enters” at a random time and considers a product whose
quality is high or low. For example, a driver’s car breaks down, and she contemplates buy-
ing a new brand of electric car. The agent observes which of her neighbors has adopted
the product and chooses whether to inspect the product at a cost (e.g., via a test drive).
Inspection perfectly reveals the common quality, and the agent adopts the product if its
quality is high.

The agent learns directly from her neighbors via their adoption decisions; she also
learns indirectly from further removed agents as their adoption decisions influence her
neighbors’ inspection (and adoption) decisions. The agent’s own inspection decision is
thus based on the hypothesized inspection decisions of her neighbors, which collectively
generate her social learning curve (formally, the probability that at least one of her neigh-
bors adopts a high-quality product as a function of time). In turn, her adoption decision
feeds into the social learning curves of her neighbors.

In Section 2, we characterize agents’ adoption decisions via a system of ordinary differ-
ential equations (ODEs). We start with some simple deterministic examples (e.g., chains,
complete networks) that can be characterized by one-dimensional ODEs. These provide
intuition and serve as building blocks for our large random networks. For general net-
works, the dimension of this system is exponential in the number of agents, since one
must keep track of the joint adoption probabilities; for example, if two agents have a
neighbor in common, their adoption decisions are correlated.
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In Section 3, we turn to large random networks, where agents know their neighbors but
not their neighbors’ neighbors. Such incomplete information is both realistic and simpli-
fies the analysis: the less agents know, the less they can condition on, and the simpler their
behavior. Formally, we model network formation via the configuration model: Agents
draw link-stubs that we randomly connect in pairs or triples. In the limit economy with in-
finitely many agents, we characterize adoption behavior both for directed networks with
multiple types of agents (e.g., Twitter) and undirected networks with cliques (e.g., Face-
book) in terms of a low-dimensional system of ODEs.1 Intuitively, large networks locally
resemble trees of elemental networks (e.g., links, cliques), where information outside an
element is independent. In such trees, it suffices to keep track of adoption within each
element, ignoring any correlation. We validate our analysis by showing that equilibrium
behavior in large finite networks converges to the solution of these ODEs.

The ODEs allow for sharp comparative statics of social learning as a function of the
network structure. Given a mild condition on the hazard rate of inspection costs, an
agent’s adoption rate rises in her social information. Therefore, more neighbors lead to
more adoption, which leads to more information, which leads to more adoption, and so
on. Thus, an agent benefits from both direct and indirect links. However, not all links
are equally beneficial. We show that learning is superior in a bilateral network than in a
clustered network with the same degree distribution. Intuitively, if i’s neighbors j and k
observe one another, then j’s lack of adoption makes k more pessimistic and raises the
probability that neither of them adopts the product. We also show that learning is superior
in a directed network than in an undirected network with the same degree distribution.
Intuitively, i’s neighbor j cannot see i adopt prior to the time i enters; thus the backward
link j→ i makes j more pessimistic, lowering his adoption and i’s information, precisely
when i needs to make a decision.

Finally, we connect our theory to prominent themes in the literature on learning in
networks. First, we extend the model to allow for correlation neglect (e.g., Eyster and
Rabin (2014)) and show that it reduces learning and welfare. Intuitively, agent i’s mis-
specification causes her to overestimate the chance of observing an adoption, and means
she grows overly pessimistic when none of her neighbors adopt; this reduces i’s adoption
and other agents’ social information. Second, we reconsider the classic question of infor-
mation aggregation (e.g., Smith and Sørensen (1996), Acemoglu et al. (2011)) by letting
the network and average degree grow large. When the network remains sparse, agents
aggregate information perfectly; yet when it becomes clustered, information aggregation
may fail. Thus, adding links may lower social welfare.

1.1. Literature

The literature on observational learning originates with the classic papers of Baner-
jee (1992) and Bikhchandani et al. (1992). In these models, agents observe both a pri-
vate signal and the actions of all prior agents before making their decision. Smith and
Sørensen (2000) show that “asymptotic learning” arises if the likelihood ratio of signals
is unbounded. Smith and Sørensen (1996) and Acemoglu et al. (2011) dispense with the
assumption that agents observe all prior agents’ actions, and interpret the resulting obser-
vation structure as a social network. The latter paper generalizes Smith and Sørensen’s
(2000) asymptotic learning result to the case where agents are (indirectly) connected to

1The directed network with multiple types has one ODE per type. The undirected network with cliques has
one ODE per type of link (i.e., bilateral links and triangles).
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an unbounded number of other agents. Subsequent papers quantify the amount of infor-
mation aggregation when signals are bounded (e.g., Monzón and Rapp (2014), Lobel and
Sadler (2015)).

Our model departs from these papers in two ways. First, we study agents’ choice of
whether to inspect the good given their social information. In many applications, such as
buying an electric car, it seems natural that agents have to acquire information about the
good (via test drives and reviews) rather than being born with it. A few recent papers
consider models of this flavor. Assuming agents observe all predecessors, Mueller-Frank
and Pai (2016) and Ali (2018) show asymptotic learning is perfect if experimentation costs
are unbounded below. Lomys (2020) reaches the same conclusion in a network setting
if the network is sufficiently connected. Like Mueller-Frank and Pai (2016) and Lomys
(2020), we assume that inspection reveals quality perfectly.

Second, we study product adoption and assume that agents observe only the adoption
decisions of their neighbors, but not their entry times or inspection decisions. This as-
sumption is consistent with the classic observational learning model, and is reasonable in
many applications. For example, the above driver observes whether any neighbors drive
the new electric car, but is unlikely to interrogate neighbors who drive alternative cars
why they did not adopt the new innovation. A number of papers have analyzed related
problems in complete networks. Guarino et al. (2011) suppose an agent sees how many
others have adopted the product, but not the timing of others’ actions or even her own ac-
tion. Herrera and Hörner (2013) suppose an agent observes who adopted and when they
did so, but not who refrained from adopting. Hendricks et al. (2012) suppose an agent
knows the order in which others move, but sees only the total number of adoptions; as
in our model, the agent then uses this public information to acquire information before
making her purchasing decision. These papers characterize asymptotic behavior and find
an asymmetry in social learning: good products may fail but bad products cannot succeed.
In Section 4.1, we show a similar result applies in our setting.2

These two complementary modeling choices allow us to characterize equilibria in terms
of simple social learning curves. Agents enter without private information, but learn qual-
ity perfectly upon inspection. This cleanly separates the role of social information (which
determines the inspection decision) and private information (which determines the adop-
tion decision). Additionally, agents do not observe when their neighbors move and never
see neighbors adopting low-quality goods. This further simplifies the agent’s problem to
a binary decision at a single information set: Should an agent inspect when no neighbor
has yet adopted?

Our contribution over the prior literature then lies in the questions we address. Tradi-
tionally, herding papers ask whether society correctly aggregates information as the num-
ber of agents grows. In their survey of observational learning models, Golub and Sadler
(2016) write: “A significant gap in our knowledge concerns short-run dynamics [� � �] The
complexity of Bayesian updating in a network makes this difficult, but even limited results
would offer a valuable contribution to the literature.” In this paper we characterize such

2There is a wider literature on product adoption without learning. There are “awareness” models where
agents become aware of the product when their neighbors adopt it. One can view Bass (1969) as such a model
with random matching; Campbell (2013) studies diffusion on a fixed network. There are also models of “local
network goods” where agents want to adopt the product if enough of their neighbors adopt. Morris (2000)
characterizes stable points in such a game. Sadler (2020) puts these forces together and studies diffusion of
a network good where agents become aware of it from their neighbors. Banerjee (1993) and McAdams and
Song (2020) integrate awareness and social learning, allowing people to infer a good’s quality from the time at
which they become aware of it.
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“short-run” learning dynamics in rich classes of social networks that allow for homophily,
clustering, and arbitrary degree distributions. We then study how an agent’s information
and welfare vary with the network structure.3

2. MODEL

The Network. A finite set of I agents is connected via an exogenous, directed network
G⊆ I × I that represents who observes whom. If i (she) observes j (he), we write i→ j
or (i� j) ∈ G, say i is linked to j, and call j a neighbor of i. The set of i’s neighbors is
Ni(G). Agents may have incomplete information about the network. We capture such
information via finite signals ξi ∈�i and a joint prior distribution over networks and signal
profiles μ(G�ξ). A random network is given by G = (I���μ). To be more concrete, we
consider several special cases:

• Deterministic network G. Signal spaces are degenerate, |�i| = 1, and the prior μ
assigns probability one to G. While complete information might seem to simplify
matters, in fact learning dynamics become very complicated once we move beyond
the simplest networksG; this motivates us to study random networks with incomplete
information.

• Directed configuration model with finite types θ ∈ �. Agents draw types θ and ran-
dom stubs for each type θ′. We then randomly connect the type θ′ stubs to type θ′

agents. Agents know how many outlinks of each type they have. For example, Twitter
users know what kind of other users they follow. We study this model in Section 3.1.

• Undirected configuration model with binary links and triangles. Agents draw d̄ binary
stubs and d̂ pairs of triangle stubs. We then randomly connect binary stubs in pairs,
and pairs of triangle stubs in triples. Agents know how many binary and triangle links
they have. For example, consider groups of friends linked on Facebook. We study this
model in Sections 3.2–3.5.

The Game. The agents seek to learn about the quality of a single product of quality
q ∈ {L�H} = {0�1}. Time is continuous, t ∈ [0�1]. At time t = 0, agents share a common
prior Pr(q=H) = π0 ∈ (0�1), independent of network G and signals ξ.

Agent i develops a need for the product, or enters, at time ti ∼ U[0�1].4 She observes
which of her neighbors have adopted the product and updates her belief about product
quality to πi. The agent can then inspect the product at cost κi ∼F [κ� κ̄], with bounded
pdf f . If she inspects the product, she observes its quality and adopts it iff q =H. If the
agent does not inspect, she can either pass on the product or adopt it blindly, without
inspection. Entry times ti and inspection costs κi are private information, independent
within agents, and i.i.d. across agents. All of these are independent of product quality q,
the network G, and agents’ signals ξ.

Adopting the product yields utility 1 if quality is high and −M if quality is low, whereas
nonadoption yields utility 0. Behavior is then as follows: If agent i sees a neighbor adopt,
her posterior is πi = 1 and she adopts blindly. If she sees no adoption, her posterior
is πi ≤ π0. We assume M ≥ π0/(1 − π0), so adopting blindly is dominated in this case;

3A different approach is to look at the rate at which agents’ beliefs converge. For example, Hann-Caruthers,
Martynov, and Tamuz (2018) compare the cases of “observable signals” and “observable actions” in the classic
herding model of Bikhchandani et al. (1992).

4The uniform distribution is a normalization: ti should not be interpreted as calendar time, but rather as
time-quantile in the product life cycle.
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the agent thus inspects if κi ≤ πi and otherwise passes on the product. We assume that
some cost-types inspect at the prior belief, κ< π0. Our solution concept is Bayesian Nash
equilibrium.

Remarks. As discussed in Section 1.1, the two salient aspects of our social learning
model are inspection and adoption. Having agents enter without private information and
learn quality perfectly upon inspection cleanly separates the role of social and private
information. The adoption aspect makes learning asymmetric. If agent i sees that j has
adopted, she knows that quality is high. Conversely, if j has not adopted, this may be
because (i) he has yet to develop a need for the product, (ii) he developed a need but
chose not to inspect, or (iii) he inspected and quality is low.

Additionally, we assume that agents adopt the product iff quality is high. A single adop-
tion is thus proof of high quality and induces agents to adopt blindly; conversely, agents
who observe no adoption get more pessimistic and either inspect the product or pass on
it. Jointly, these assumptions reduce agent i’s problem to a binary decision at a single
information set: Whether or not to inspect if none of her neighbors have adopted by ti.
The analysis is unchanged if, due to idiosyncratic preferences, agents adopt high-quality
products with probability αH < 1. In Section 4.2, we discuss a model variant where agents
also adopt low-quality products with probability αL > 0.

2.1. Examples: Directed Networks

The next two examples of directed trees (i.e., networks where any two agents i, j are
connected by at most one path i→ ·· · → j) illustrate agents’ inference problem.

EXAMPLE 1—Directed Pair i→ j: Suppose there are two agents, Iris and John. John
has no social information, while Iris observes John. Let xj�t be the probability that John
adopts product H by time t.5 He enters uniformly over t ∈ [0�1], and so the time-
derivative ẋj�t equals the probability he adopts conditional on entering at time t. Since
he inspects iff κj ≤ π0 and then always adopts product H, we have ẋj = Pr(j adopt) =
Pr(j inspect) = F (π0), where we drop the time subscript.

Iris, in turn, learns from John’s adoption. We thus interpret John’s adoption curve xj
as Iris’s social learning curve. If John has adopted, Iris infers that quality is high and also
adopts. Conversely, if John has not adopted, Iris’s posterior that quality is high is given by
Bayes’ rule,

π(xj) := (1 − xj)π0

(1 − xj)π0 + (1 −π0)
� (1)

Iris inspects if κi ≤ π(xj). As xj rises over time, Iris becomes more pessimistic when John
does not adopt. All told, Iris’s adoption rate equals

ẋi = 1 − Pr(i not adopt)

= 1 − Pr(j not adopt) × Pr(i not inspect|j not adopt)

= 1 − (1 − xj)
(
1 − F(

π(xj)
)) =:�(xj)� (2)

5Since no agent adopts when q = L, it suffices to keep track of the adoption probability conditional on
q=H .
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The function �, which maps i’s social information xj to her own adoption ẋi, plays a
central role throughout the paper.

EXAMPLE 2—Directed Chain: Suppose there is an infinite chain of agents, so Kata
observes Lili, who observes Moritz, and so on ad infinitum.6 Analogous to equation (2),
adoption in the symmetric equilibrium is governed by the ODE

ẋ=�(x)� (3)

This captures the idea that Kata’s decision takes into account Lili’s decision, which takes
into account Moritz’s decision, and so on. The simplicity of the adoption curve is in stark
contrast to the cyclical behavior seen in traditional herding models when agents observe
only their immediate predecessors (Celen and Kariv (2004)).

2.2. General Networks

We now turn to the analysis of general random networks G = (I���μ). We first study
agents’ adoption rate and their social learning curves, and show that adoption rises with
social information under a bounded hazard rate assumption. We then close the model
and establish that it admits a unique equilibrium.

We start with some definitions. As in the examples of Section 2.1, we generally de-
note agent i’s probability of adopting product H by xi. Agent i may not know the
network, and so we keep track of agents’ adoption across realizations of G and sig-
nals ξ. Let xi�G�ξ be agent i’s realized adoption curve, given (G�ξ) after taking expecta-
tions over others’ entry times tj and cost draws κj . Taking expectation over (G�ξ−i), let
xi�ξi :=

∑
G�ξ−i μ(G�ξ−i|ξi)xi�G�ξ be i’s interim adoption curve given her signal ξi. Through-

out, we drop the time subscript t for these and all other curves.
Bayesian agents form beliefs over their neighbors’ adoption decisions. Since a single

adoption by one of i’s neighbors perfectly reveals high quality, she only keeps track of
this event. Specifically, let yi�G�ξ be the probability that at least one of i’s neighbors adopts
productH by time t ≤ ti in networkG given signals ξ, and yi�ξi :=

∑
G�ξ−i μ(G�ξ−i|ξi)yi�G�ξ

be the expectation conditional on ξi.
To solve for i’s realized adoption curve xi�G�ξ, consider two cases. If she sees one of her

neighbors adopt, she updates her belief to πi = 1 and adopts blindly. Conversely, if she
sees no adoption, she updates her belief to πi = π(yi�ξi) ≤ π0 and inspects and adopts
iff her inspection cost is below this cutoff, κi ≤ ci�ξi := πi. Analogous to equation (2), i’s
realized adoption curve follows:

ẋi�G�ξ = 1 − (1 − yi�G�ξ)
(
1 − F(

π(yi�ξi)
)) =:φ(yi�G�ξ� yi�ξi)� (4)

Note that equation (4) depends on both the realized and the interim adoption probabil-
ity of i’s neighbors, yi�G�ξ and yi�ξi , respectively. The former determines whether i actually
observes an adoption, given (G�ξ); the latter determines i’s posterior belief when none
of her neighbors adopt, which depends only on i’s coarser information ξi. Taking expec-
tations over (G�ξ−i) given ξi, agent i’s interim adoption curve is then

ẋi�ξi = 1 − (1 − yi�ξi)
(
1 − F(

π(yi�ξi)
)) =φ(yi�ξi � yi�ξi) =�(yi�ξi)� (5)

6In Section 3.1, we interpret this infinite network as a limit of the finite networks in our model.
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Equation (5) captures our positive implications for the diffusion of new products.
Our primary results concern normative implications, quantifying the value of social

learning, as captured by i’s social learning curve yi�ξi . To see that this curve indeed measures
i’s learning, observe that the probability that i sees an adoption is given by

≥ 1 adopt 0 adopt
q=H yi�ξi 1 − yi�ξi
q=L 0 1

If yi�ξi = 1, then agent i has perfect information about the state; if yi�ξi < 1, she has effec-
tively lost the signal with probability 1 − yi�ξi . A rise in yi�ξi thus Blackwell-improves her
social information, and thereby her expected utility.7

Clearly, i’s social information improves over time: Since adoption is irreversible, yi�G�ξ
rises in t for every G, and hence also in expectation. Much of our paper compares social
learning curves across networks. For networks G̃ and G (with overlapping agents i and
types ξi), we write ỹi�ξi ≥ yi�ξi if social information is greater in G̃ for all t, and ỹi�ξi > yi�ξi if
it is strictly greater for all t > 0.

Social learning and adoption are linked by (5). One would think that as i collects more
information, her adoption of product H increases. Indeed, with perfect information she
always adopts. More generally, monotonicity requires an assumption.

ASSUMPTION 1: The distribution of costs has a bounded hazard rate (BHR) if

f (κ)
1 − F (κ)

≤ 1
κ(1 − κ)

for κ ∈ [0�π0]� (6)

LEMMA 1: If F has a bounded hazard rate, (6), then i’s interim adoption probability xi�ξi
increases in her information yi�ξi .

PROOF: Differentiating (5),

�′(y) = ∂1φ(y� y) + ∂2φ(y� y) = 1 − F(
π(y)

) + (1 − y) ·π ′(y) · f (π(y)
)

= 1 − F(
π(y)

) −π(y) · (1 −π(y)
) · f (π(y)

)
� (7)

where the second equality uses Bayes’ rule (1) to show

(1 − y) ·π ′(y) = −(1 − y)
π0(1 −π0)
(1 − yπ0)2 = − (1 − y)π0

1 − yπ0

1 −π0

1 − yπ0
= −π(y) · (1 −π(y)

)
�

Equation (7) captures two countervailing effects: Its first term is positive because i adopts
blindly if she observes an adoption. The second term is negative because an increase in y
makes i is more pessimistic when she sees no adoption. The aggregate effect is positive
iff BHR holds at κ = π(y). Thus if BHR holds for all κ ∈ [0�π0], then �′(y) ≥ 0 for all
y ∈ [0�1], and better information yi�ξi means higher slope ẋi�ξi and level xi�ξi . Q.E.D.

7Since agent i never adopts the low-quality product, her welfare cost consists of failing to adopt the high-
quality product and paying to inspect the low-quality product.



LEARNING DYNAMICS IN SOCIAL NETWORKS 2609

For an intuition, recall that adoption probabilities x condition on high quality, q =
H. Agent i’s expected posterior belief E[πi|H] thus exceeds the prior π0 and increases
with her information. Whether i’s adoption probability E[F (πi)|H] also increases in her
information depends on the curvature of the cost distribution F ; this is guaranteed by
BHR. In turn, BHR is satisfied if f is increasing on [0�1], which includes κ∼U[0�1] as a
special case.8

To see how Lemma 1 relies on BHR, assume the distribution F (κ) has support [0�π0];
this violates BHR since the denominator in the left-hand side of (6), 1 −F (π0), vanishes.
Without social information, agent i adopts product H with probability 1. With social in-
formation, agent i adopts with probability 1 if some neighbor adopts, and below 1 if no
neighbor adopts, since π(yi�ξi) < π0. In expectation, social information lowers agent i’s
adoption rate, contradicting Lemma 1.

Our main results, Theorems 1–4, compare social learning curves (and thus welfare)
across networks. Lemma 1 means that if we assume BHR, then the same comparisons
apply to adoption rates.9

Lastly, we close the model in equilibrium.

PROPOSITION 1: In any random network G� there exists a unique equilibrium.

The challenge with proving Proposition 1 in Appendix A.1 is to keep track of the adop-
tion probability yi of i’s neighbors on the right-hand side of (4). There are two issues. First,
the self-reflection problem: If i and j observe each other, then when i enters, she knows
that j cannot have seen her adopt, which j interprets as bad news. Second, the correla-
tion problem: when i’s neighbors j, k observe each other or share sources of information,
their adoption is correlated. The directed tree networks in Examples 1 and 2 abstract from
these problems. The next section considers complete networks where we see the effects
of self-reflection and correlation. Beyond such simple examples, the differential equation
governing equilibrium must keep track of agents’ joint adoption probabilities, whose di-
mensionality grows exponentially with the number of agents. For this reason, Section 3
considers large, random networks, where we recover simple formulas for diffusion curves
akin to the examples.

2.3. Examples: Undirected Networks

Examples 1 and 2 illustrated social learning in directed tree networks. The next two
examples prepare our analysis of undirected networks and networks with cliques in Sec-
tions 3.2 and 3.3, respectively.

EXAMPLE 3—Undirected Pair i↔ j: Agent i’s social learning curve equals i’s expec-
tation of j’s adoption curve at t ≤ ti; for convenience we denote this by x̄j . To solve for
x̄j , we must distinguish between two probability assessments of the event that j observes
i adopt. From i’s “objective” perspective, this probability equals 0 since i knows she has
not entered at t ≤ ti. From j’s “subjective” perspective, the probability equals x̄i, since j

8An increasing density guarantees f (κ) ≤
∫ 1
κ f (z)dz

1−κ ≤ 1−F (κ)
κ(1−κ) . For other densities f , BHR is automatically

satisfied when κ≈ 0 since the RHS increases to infinity. For higher costs, BHR states that the density does not
decrease too quickly, d log f (κ)/dκ≥ −2/κ. In particular, BHR holds with equality at all κ if f (κ) ∝ 1/κ2.

9As a corollary, BHR implies that interim adoption curves xi�ξi are convex in time since social information
yi�ξi increases.
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thinks he is learning from agent i given t ≤ tj . These objective and subjective probabilities
play the role of the “realized” and “interim” probabilities in equation (4), respectively.
Thus,

˙̄xj =φ(0� x̄i) = F(
π(x̄i)

)
� (8)

By symmetry, x̄i = x̄j =: x̄, reducing (8) to a one-dimensional ODE. The actual (uncondi-
tional) adoption probability follows ẋ=�(x̄).

EXAMPLE 4—Complete Network: More generally, consider the complete network of
I + 1 agents. When I = 1, this is equivalent to the undirected pair. With more agents,
agent j’s adoption before i enters depends on agent k’s adoption before both i and j
enter. One might worry about higher-order beliefs as I gets large. Fortunately, we can
side-step this complication by thinking about the game from the first mover’s perspective,
before anyone else has adopted.

To be specific, let the first adopter probability x̂ be the probability an agent adopts given
that no one else has yet adopted. Since everyone is symmetric, intuition suggests that the
first adopter attaches subjective probability (1 − x̂)I to the event that none of the other
potential first adopters has adopted. By definition, the first adopter observes no adoption
herself, and so we define x̂ as the solution of

˙̂x=φ(
0�1 − (1 − x̂)I

) = F(
π

(
1 − (1 − x̂)I

))
� (9)

generalizing equation (8). We prove the following in Appendix A.2.

LEMMA 2: In the complete network with I + 1 agents, any agent’s social learning curve is
1 − (1 − x̂)I ; the adoption probability follows ẋ=�(1 − (1 − x̂)I).

3. LARGE RANDOM NETWORKS

In this section, we characterize equilibria in large random networks, such as those in
Figure 1. This allows us to compare social learning curves across networks, and assess
the impact of more links and clustering. Moreover, these networks are sufficiently rich to
resemble reality and be used for empirical applications.

Formally, we introduce two network configuration models. In Section 3.1, we study di-
rected networks with multiple types; this nests deterministic directed trees (Examples 1
and 2) and directed stochastic block networks as special cases. We study their limit equi-
libria as the networks grow large, ensuring the network locally resembles a tree. In such a
tree, neighbors’ adoption decisions are mutually independent, thus eliminating the corre-
lation and reflection effects. We characterize equilibrium via simple ODEs and show that
more direct or indirect links improve learning.

Next, we study undirected networks with cliques. To aid intuition, we build the model
up in steps. In Section 3.2, we consider undirected random networks, such as Erdős–
Rényi, where neighbors’ decisions are mutually independent. We show that agents learn
less than in a directed network with the same degree distribution. In Section 3.3, we study
networks of cliques, where i’s neighbors’ decisions are correlated within cliques but in-
dependent across cliques. We show that agents learn less than in an undirected random
network with the same degree distribution. In Section 3.4, we study correlation neglect,
where agents are connected via a network of cliques but believe they are in a network of
independent, bilateral links. Such correlation neglect reduces social learning. Finally, in
Section 3.5 we justify the heuristic approach taken in the prior sections by nesting these
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models in a general model and confirming that the identified strategies indeed constitute
limit equilibria.

Taken together, this analysis suggests a “macroeconomic” approach to studying dif-
fusion empirically: First, calibrate a random network to the real-life network by match-
ing the pertinent network parameters (agents’ types, degree distributions, cluster coeffi-
cients). Then solve for equilibrium behavior on this approximate network. This contrasts
with the “microeconomic” approach typically used, where one studies a behavioral heuris-
tic on the actual network.

3.1. Directed Networks With Multiple Types

We first consider diffusion in large directed networks with different types of agents.
For example, think of Twitter users as celebrities, posters, and lurkers: Celebrities only
follow celebrities, while posters and lurkers follow posters and celebrities. Agents know
who they follow and know the distribution over networks, but do not know exactly who
others follow.

To formalize this idea, we generate the random network GI via the configuration model
(e.g., Jackson (2010), Sadler (2020)). For any agent i, independently draw a finite type
θ ∈ � according to some distribution with full support. For any agent with type θ, inde-
pendently draw a vector of labeled outlinks d = (dθ′)θ′ ∈ N

�; these are realizations of a
random vector Dθ = (Dθ�θ′)θ′ with finite expectation E[Dθ�θ′]. We call D = (Dθ�θ′)θ�θ′ the
degree distribution. To generate the network, connect type-θ′ outlinks to type-θ′ agents in-
dependently across outlinks. Finally, prune self-links from i to i, multilinks from i to j,
and—in the unlikely case that no type-θ′ agent was realized—all of the unconnectable
type-θ′ outlinks. Agent i’s signal ξi consists of her degree d ∈ N

� after the pruning.10

Since GI is symmetric across agents, we drop their identities i from the notation of
Section 2.2, and write the adoption probabilities, learning curves, and cost thresholds of a
degree-d agent as xd , yd , and cd = π(yd), respectively. Taking expectation over the degree
of a type-θ agent, we write xθ =E[xDθ].

When solving for equilibrium, we consider the limit as the number of agents I grows
large. The model then nests many natural special cases.

• Directed Finite Trees. In the case of Example 1, set � = {i� j} with deterministic
degrees Di�j ≡ 1 and Dj�j ≡ Dj�i ≡ Di�i ≡ 0. Every Iris-type thus observes one John-
type, and equilibrium adoption probabilities are as in Example 1.11 The following
analysis generalizes this example to any finite directed tree.

• Directed Regular Trees. In the case of Example 2, the type space is trivial and the
degree is deterministic, D≡ 1. For any finite I, the realized network G gives rise to
cycles, but as I grows large the length of these cycles grows large, and the network
approximates an infinite line. More generally, setting D≡ d > 1 gives rise to regular
directed trees.

10This definition differs from the literature on configuration models, such as Sadler (2020), in three ways.
(a) Sadler considers undirected networks, to which we turn in Section 3.2. (b) We model agent i’s degree
as a random variable Dθ′ , while Sadler fixes the realized degrees d and imposes conditions on the empirical
distribution of degrees as I grows large. (c) When a realized network G has self-links or multilinks, we prune
these links from G, while Sadler discards G by conditioning the random network on realizing no such links.
We view (b) and (c) as technicalities, and deviate from the literature because doing so simplifies our analysis.

11Conversely, a John-type is observed by a random number of Iris-types, but that does not matter for indi-
vidual adoption probabilities.
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• Directed Stochastic Block Networks. A prominent instance of networks with random
degree are Erdős–Rényi networks, which correspond to a single type and Poisson-
distributed D. More generally, stochastic block networks (which are useful for cap-
turing homophily) correspond to a multitype generalization with Poisson-distributed
Dθ�θ′ .

For large I, the random network locally resembles a tree where the adoption probabilities
of an agent’s neighbors are approximately independent. The probability that an agent with
degree d = (dθ′) observes an adoption is then approximated by yd ≈ 1 − ∏

θ′ (1 − xθ′)dθ′ .
Substituting this approximation into (5), we define (x∗

θ) to be the solution of

ẋθ =E
[
�

(
1 −

∏
θ′

(1 − xθ′)Dθ�θ′
)]
� (10)

This is a �-dimensional ODE, which is easy to compute. Note that while the number
of possible degrees is infinite, agents cannot observe their neighbors’ degrees and so we
solve the learning problem at the level of neighbors’ finite types. Thus, in the Twitter
example, we get one ODE each for celebrities, posters, and lurkers. In a regular, single-
type network with degree d, (10) simplifies to

ẋ=�(
1 − (1 − x)d

)
� (11)

and for d = 1 we recover (3).
We now show that this simple, �-dimensional ODE is a good description of adoption

behavior for large I. Formally, say that a vector of cutoff costs (cd) is a limit equilibrium of
the large directed random network with degree distribution D if it is an εI-equilibrium in
GI for some sequence (εI) with limI→∞ εI = 0. Specifically, let c∗

d := π(1 − ∏
θ′ (1 −x∗

θ′)dθ′ )
be the cutoff costs associated with (x∗

θ).

PROPOSITION 2: The cutoffs (c∗
d) are the unique limit equilibrium of the large directed

random network with degree distribution D.

PROOF: See Appendix B.1. Q.E.D.

The notion of a limit equilibrium extends our “macroeconomic perspective” from the
modeler to the agents. While the real network is finite, agents treat it as infinite; in large
networks, the resulting behavior is approximately optimal. For completeness, Appendix
D.1 in the Online Supplementary Material (Board and Meyer-ter-Vehn (2021)) provides
a “microeconomic perspective” by showing that the equilibria of the finite models GI con-
verge to (c∗

d).
Turning to the substantive question of our paper, we now argue that both direct and

indirect links improve agents’ social learning. Thus lurkers are better off if celebrities
or posters increase their number of links. While not surprising, such simple compara-
tive static results have eluded traditional herding models. Figure 2 illustrates the social
learning curves as we add links to a directed tree. The left panel compares a lone agent
(John in Example 1), an agent with one link (Iris in Example 1), and an infinite chain
(Kata in Example 2). The social learning curves shift up as neighbors add more links; the
Blackwell-ranking implies that Kata is better off than Iris, who is better off than John.
The right panel shows the social learning curves in regular networks with d = 1 (i.e., an
infinite chain), d = 5, and d = 20. Again, these social learning curves shift up, so agents
benefit from denser trees.
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FIGURE 2.—Social Learning Curves in Directed Tree Networks. The left panel illustrates Examples 1 and
2. The right panel shows regular directed trees with degree d. This figure assumes uniform inspection costs,
κ∼U[0�1], and an even prior, π0 = 1/2.

Formally, consider two degree distributions such that D̃�FOSD D in the usual multivari-
ate stochastic order. Let x∗

θ, x̃
∗
θ be the associated adoption probabilities derived from (10),

and y∗
d and ỹ∗

d be the corresponding social learning curves.

THEOREM 1: Assume F has a bounded hazard rate (6). Social learning and welfare im-
prove with links: If D̃�FOSD D,

(a) For any degree d, ỹ∗
d ≥ y∗

d .
(b) For any type θ, E[ỹ∗

D̃θ
] ≥ E[y∗

Dθ
].

PROOF: Recalling Lemma 1, assumption (6) means that �′ ≥ 0. Thus, the right-hand
side of (10) FOSD-rises in both the exogenous degree D and the endogenous adoption
probabilities xθ. Thus, the solution (x∗

θ) rises in D, x̃∗
θ ≥ x∗

θ, and so ỹ∗
d ≥ y∗

d . Taking expec-
tations over d then yields part (b).12 Q.E.D.

Part (a) says that social information rises if we fix the degree d, and thus speaks to the
value of additional indirect links. Obviously, the additional direct links also help, as shown
in part (b). This result confirms the intuition that social information is more valuable
for “visible” products (e.g., laptops) that are represented by a dense network than for
“hidden” products (e.g., PCs).

Theorem 1 is silent about the quantitative impact of direct and indirect links. The next
example emphasizes the importance of direct links.

EXAMPLE 5—Two Links vs. Infinite Chain: In Appendix B.2, we show that agent i
learns more if she has two uninformed neighbors than if she learns from the infinite di-
rected chain from Example 2. Intuitively, if i→ j→ k, then agent k affects i’s action only
if k enters first, then j enters, and then i enters. Thus, the chance of learning informa-
tion from the nth removed neighbor in the chain is 1

n! , suggesting that an infinite chain
of signals is worth less than two direct signals, as

∑∞
n=1 1/n! = e− 1< 2. Moreover, these

12If we additionally assume that the inequality D̃�FOSD D is strict and that the Markov chain on � induced
by D̃ is irreducible, we more strongly get the strict inequality ỹ∗

d > y
∗
d .
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indirect signals are intermediated (i.e., k’s signal must pass through j), which further re-
duces their information value.

3.2. Undirected Networks

We now consider undirected random networks, representing friends on Facebook, or
drivers who learn about cars from observing other drivers’ choices. To formalize this, we
use a single-type, undirected variant of the configuration model. Each agent indepen-
dently draws d ∈ N link-stubs generated by a random variable D. We then independently
connect these stubs in pairs, and prune self-links, multilinks, and residual unconnected
stubs (if the total number of stubs is odd). Appendix D.2 in the Online Supplementary
Material extends the model to multiple types.

An important feature of random undirected networks is the friendship paradox. Namely,
i’s neighbors typically have more neighbors than i herself. Formally, we define the neigh-
bor’s degree distribution D′ by

Pr
(
D′ = d) := d

E[D]
Pr(D= d)� (12)

For example, in an Erdős–Rényi network, D is Poisson and D′ = D + 1, whereas in a
regular network, D′ =D≡ d.

We now study the behavior of the limit economy as the number of agents grows large.
This allows us to treat neighbors’ adoptions as independent; Proposition 2′ in Section 3.5
justifies this approach. The simplest such network, corresponding to D ≡ 1, is the undi-
rected pair in Example 3. Following this example, we write x̄ for the probability that i’s
neighbor j has adopted at t ≤ ti. With general degree distributionD, neighbor j addition-
ally learns from another D′ − 1 independent links, from which he observes no adoption
with probability (1− x̄)(D′−1). All told, agent i expects j to observe an adoption with objec-
tive probability 1 − (1 − x̄)(D′−1), while j expects to observe an adoption with the higher,
subjective probability 1 − (1 − x̄)D′ . So motivated, define x̄∗ as the solution of

˙̄x= E[
φ

(
1 − (1 − x̄)D

′−1�1 − (1 − x̄)D
′)]
� (13)

Agent i’s actual, unconditional adoption rate then equals E[�(1 − (1 − x̄∗)D)]. Equation
(13) implies that, as in Theorem 1, social learning increases with the number of links D.
We prove this in Appendix D.3 in the Online Supplementary Material.

We now show how backward links harm social learning.

EXAMPLE 3—Undirected Pair i ↔ j, continued: Start with i → j, and consider the
effect of the backward link j → i on i’s social information, as illustrated in the left-hand
panel of Figure 3. Equation (8) implies that ˙̄xj ≤ F (π0), and so x̄j ≤ F (π0)t, which is j’s
adoption curve if he does not observe i. Thus, the link j→ i lowers i’s social information
and her utility. Intuitively, when agent i enters the market at ti, she knows that j cannot
have seen her adopt; however, j does not know the reason for i’s failure to adopt. This
makes j more pessimistic, reduces his adoption probability, and lowers i’s social learning
curve and utility. Of course, the backward link also makes j better off.

To address the overall welfare effect of backward links, we compare a network where
agents have D directed links to one with D undirected links, as illustrated in Figure 4.
Recalling neighbors’ limit adoption probabilities in directed and undirected networks x∗,
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FIGURE 3.—Networks from Examples 3 and 6. The left panel adds a backward link. The right panel adds a
correlating link.

x̄∗ from equations (10) and (13), respectively, we write y∗
d = 1 − (1 − x∗)d and ȳd = 1 −

(1 − x̄∗)d for the respective social learning curves.

THEOREM 2: Assume D′ − 1 � D in the FOSD-order. Social learning and welfare are
higher when the network is directed rather than undirected: For any degree d, y∗

d > ȳ
∗
d .

PROOF: Rewriting (10) for a single type, the adoption probability of any given neighbor
in the directed network follows:

ẋ= E[
φ

(
1 − (1 − x)D�1 − (1 − x)D

)]
� (14)

Using D′ − 1 � D � D′, ∂1φ > 0, and ∂2φ < 0, the right-hand side of (14) exceeds the
right-hand side of (13) for x = x̄. By the Single-Crossing Lemma (Appendix B.3), the
solution of (14) exceeds the solution of (13), x∗ > x̄∗, and so y∗

d > ȳ
∗
d . Q.E.D.

Theorem 2 says that fixing the degree distribution, directed networks generate better
information than undirected networks. Intuitively, in an undirected network an agent’s
neighbors cannot have seen her adopt when she enters; this makes them more pessimistic

FIGURE 4.—Comparing Directed and Undirected Networks. This figure illustrates two Erdős-Rényi net-
works from agent i’s perspective, showing i’s neighbors and their outlinks. For simplicity, the picture of the
directed network does not show inlinks to i or her neighbors; in a large network, these inlinks do not affect
i’s learning. Observe that i’s neighbors have one more outlink in the undirected network, namely the link to i;
this reflects the friendship paradox.
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and reduces social learning. Countervailing this effect is the fact that neighbors have a
higher degree in the undirected network because of the friendship paradox, D�D′. The
assumption D′ − 1 �D limits this countervailing effect.13

3.3. Clustering

One prominent feature of real social networks is clustering, whereby i’s neighbors j,
k are also linked to each other. For example, consider an agent who gets information
from her family, her geographic neighbors, and her colleagues; we think of information
as independent across groups but correlated within them.

The bilateral configuration models in the previous subsections do not give rise to such
clustering since the chance that any two neighbors of i are linked vanishes for large I.
To capture clustering, we consider the following variant of the configuration model. Each
agent independently draws D pairs of link-stubs, which are then randomly connected to
two other pairs of link-stubs to form a triangle. As in Section 3.2, we then prune self-links
and multilinks, as well as leftover pairs if the total number of pairs is not divisible by three.
Also, recall the weighted distribution D′ from (12) that captures the number of link-pairs
of a typical neighbor by accounting for the friendship paradox.

We now study the behavior of the limit economy as the number of agents grows large;
Proposition 2′ in Section 3.5 justifies this approach. Adoption is independent across neigh-
boring triangles but correlated within them. The simplest such network, corresponding to
D≡ 1, is the triangle from Example 4 with I = 2. There we argued that the learning curve
is determined by the adoption probability x̂ of the first adopter. Since the first adopter
expects to see no adoption with subjective probability (1 − x̂)2 but objectively never ob-
serves an adoption, we concluded that ˙̂x= φ(0�1 − (1 − x̂)2). For a general distribution
D, agent i’s neighbors additionally learn from anotherD′ − 1 independent triangles, from
which they observe no adoption with probability (1 − x̂)2(D′−1). All told, define x̂∗ as the
solution of

˙̂x=E[
φ

(
1 − (1 − x̂)2(D′−1)�1 − (1 − x̂)2D′)]

� (15)

Agent i’s actual, unconditional adoption rate then equals E[�(1 − (1 − x̂)2D)].
We now show how clustering can be harmful to social information and welfare.

EXAMPLE 6—Correlating Link: Assume agent i initially observes two uninformed
agents j and k, as in the right panel of Figure 3. The probability that neither adopts is
(1 − F (π0)t)2. Now, suppose we add a link from j to k, correlating their adoption out-
comes. Agent k’s behavior is unchanged, but the probability that agent i sees an adoption
decreases. This is because the probability xj|¬k that j adopts conditional on k not adopting
follows ẋj|¬k = F (π(xk)) < F (π0). Intuitively, agent i just needs one of her neighbors to
adopt. Adding the link j→ kmakes j more pessimistic and lowers his adoption probabil-
ity exactly in the event when his adoption would be informative for i, namely, when k has

13To see how the friendship paradox can overturn Theorem 2, suppose that agents are equally likely in-
formed, d = 100, or uninformed, d = 0. In the directed network, agents are equally likely to be looking at an
informed or uninformed neighbor. In contrast, in the undirected network, agents are only looking at informed
neighbors.

The condition D′ − 1 � D is tight: Assume a degenerate, binary cost distribution F with atoms at κ = 0
and κ̄ > π0; such an F is approximated by distributions that satisfy our bounded pdf assumption. Agents who
do not observe an adoption inspect iff κ = κ, irrespective of y , and so ∂2φ = 0. If the degree distribution is
Poisson, D′ − 1 =D, the right-hand sides of (13) and (14) coincide, and so y∗

d = ȳ∗
d .
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FIGURE 5.—Bilateral Links vs. Triangles. This figure illustrates two networks from agent i’s perspective. In
the left network, everyone has 2D bilateral links, where D = 2 for {i�k�m} and D = 1 for {j� l}. In the right
network, everyone is part of D triangles.

not adopted. Thus, the correlating link makes agent i worse off. Of course, this link also
makes agent j better off.

To address the overall welfare effect of correlating links, we compare an undirected
network with D pairs of link-stubs to one with 2D bilateral link-stubs, as illustrated in
Figure 5. The social learning curve equals ŷ∗

2d = 1 − (1 − x̂∗)2d in the former network, and
ȳ∗

2d = 1 − (1 − x̄∗)2d in the latter, where x̂∗ solves (15) and x̄∗ solves (13) with D replaced
by 2D.

THEOREM 3: Clustering reduces social learning and welfare: For any degree d, ŷ∗
2d < ȳ

∗
2d .

PROOF: Equation (12) implies that with 2D bilateral links, the link distribution of a
neighbor equals (2D)′ = 2D′.14 Thus, the conditional adoption probability of one’s neigh-
bor follows:

˙̄x= E[
φ

(
1 − (1 − x̄)2D′−1�1 − (1 − x̄)2D′)]

� (16)

Since ∂1φ> 0, the right-hand side of (16) exceeds the right-hand side of (15) when x̄= x̂.
Thus, the Single-Crossing Lemma implies x̂∗ < x̄∗ and so ŷ∗

2d < ȳ
∗
2d . Q.E.D.

Agents learn slower in cliques than with an equivalent number of independent links.
Intuitively, agent i needs one of her neighbors to be sufficiently optimistic that they are
willing to experiment. Cliques correlate the decisions of i’s neighbors, making them more
pessimistic in exactly the event when i most wants them to experiment.

3.4. Correlation Neglect

Bayesian updating on networks can be very complex as agents try to distinguish new and
old information. For example, Eyster and Rabin’s (2014) “shield” example shows that a
Bayesian agent i should counterintuitively “anti-imitate” a neighbor j if j’s action is also
encoded in the actions of i’s other neighbors. Instead of anti-imitating, agents may adopt

14Indeed, Pr((2D)′ = 2d) = Pr(2D= 2d) 2d
E[2D] = Pr(D= d) d

E[D] = Pr(D′ = d) = Pr(2D′ = 2d).
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heuristics, such as ignoring the correlations between neighbors’ actions (e.g., Eyster et al.
(2018), Enke and Zimmermann (2019), Chandrasekhar et al. (2020)). Our model can be
adapted to capture such misspecifications, and predicts that correlation neglect reduces
social learning.15

To model correlation neglect, we consider a configuration model where agents draw D
pairs of undirected triangular stubs, but agents believe all their information is indepen-
dent. That is, i believes that her neighbors are not connected, believes her neighbors think
their neighbors are not connected, and so on. All told, agents think that the network is as
in Section 3.2, while in reality it is as in Section 3.3.16

Consider the limit as I grows large. Since agent i believes that links are generated bi-
laterally, her subjective probability assessment that any of her neighbors has adopted,
x̄∗, solves (16). An agent with 2d links thus uses cutoff π(1 − (1 − x̄∗)2d) when choosing
whether to inspect. In reality, agent i’s neighbors form triangles (i� j�k), and so the objec-
tive probability x̌∗ that the first adopter in a triangle adopts follows a variant of the usual
first adopter triangle formula (15),

˙̌x= E[
φ

(
1 − (1 − x̌)2(D′−1)�1 − (

1 − x̄∗)2D′)]
� (17)

Intuitively, the first adopter in (i� j�k) expects to see an adoption with probability ȳ∗
2d =

1 − (1 − x̄∗)2D′ , but the objective adoption probability is y̌∗
2d = 1 − (1 − x̌∗)2(D′−1).17

Turning to the effect of correlation neglect on social learning, consider an agent with 2d
links in a network of triangles. Her social information is ŷ∗

2d = 1− (1− x̂∗)2d in equilibrium
and y̌∗

2d under correlation neglect.

THEOREM 4: Correlation neglect reduces social learning: For any degree d, y̌∗
2d < ŷ

∗
2d .

PROOF: By the proof of Theorem 2, clustering decreases neighbors’ adoption rates,
x̄∗ > x̂∗. Since ∂2φ < 0, the RHS of (17) is smaller than the RHS of (15) when x̌ = x̂.
Then the Single-Crossing Lemma implies that x̌∗ < x̂∗ and so y̌∗

2d < ŷ
∗
2d . Q.E.D.

Intuitively, when agent j believes all his sources of information are independent, he
overestimates the chance of observing at least one adoption, and grows overly pessimistic
when he observes none. This reduces j’s adoption probability and reduces agent i’s social
information.

As a corollary, correlation neglect reduces welfare: By Theorem 4, it reduces i’s social
information; additionally, it causes her to react suboptimally to her information. Ironi-
cally, while correlation neglect lowers i’s objective expected utility, it raises her subjective
expected utility: Formally, ȳ∗

2d > ŷ
∗
2d , so her subjective social information is higher than

in equilibrium. Intuitively, correlation neglect makes i overly optimistic about the chance

15There is a growing literature studying herding models with misspecified beliefs. Eyster and Rabin (2010)
and Bohren and Hauser (2021) study complete networks, while Eyster and Rabin (2014) and Dasaratha and
He (2020) consider the role of the network structure.

16To formally capture misspecification in the general model of Section 2, we drop the assumption that agents’
beliefs μ(G�ξ−i|ξi) are deduced from a common prior μ(G�ξ).

17Formally, (17) is an instance of equations (33)–(34) in Appendix B.4. All of these equations leverage the
fact that adoption dynamics in our model are modular in (i) the true network (the first argument of φ), and (ii)
agents’ behavior (the second argument of φ), which in turn depends on their beliefs about the network. It is
this modularity, which allows us to easily extend our analysis to non-equilibrium behavior, such as correlation
neglect in this section.
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of observing at least one adoption. It is precisely this over-optimism that reduces actual
adoption probabilities by flipping into over-pessimism when the adoption fails to materi-
alize.

3.5. General Undirected Networks: A Limit Result

We now define random networks that encompass the undirected links and cliques from
the last three sections and show that limit equilibria of this model are described by a
simple, two-dimensional ODE (18)–(19).

To define these networks ĜI , suppose every agent independently draws D̄ bilateral stubs
and D̂ pairs of triangle stubs with finite expectations. We connect pairs of bilateral stubs
and triples of triangular stubs at random, and then prune self-links, multilinks, and left-
over stubs (if

∑
d̄i is odd or

∑
d̂i is not divisible by three). Agents know their number of

bilateral links and triangle links after the pruning.18

Assume that I is large, and define neighbors’ link distributions D̄′ and D̂′ as in (12).
Since D̄ and D̂ are independent, a neighbor on a bilateral link has D̄′ bilateral links and
D̂ triangle link pairs, whereas a neighbor on a triangular link has D̄ bilateral links and
D̂′ triangle link pairs. As in Sections 3.2 and 3.3, agents condition on the fact that their
neighbors cannot have seen them adopt. So motivated, define (x̄∗� x̂∗) as the solution to
the two-dimensional ODE,

˙̄x=E[
φ

(
1 − (1 − x̄)D̄

′−1(1 − x̂)2D̂�1 − (1 − x̄)D̄
′
(1 − x̂)2D̂

)]
� (18)

˙̂x=E[
φ

(
1 − (1 − x̄)D̄(1 − x̂)2(D̂′−1)�1 − (1 − x̄)D̄(1 − x̂)2D̂′)]

� (19)

As in Section 3.2, x̄ is the probability that i’s bilateral neighbor j adopts before ti. Agent
j’s subjective probability of observing no adoption conditions on D̄′ bilateral links and
D̂ triangle link pairs; but from i’s objective perspective, the number of bilateral links
on which j could observe an adoption drops to D̄′ − 1. Similarly, as in Section 3.3, x̂ is
the probability that the first adopter j in one of i’s triangles adopts before ti. Agent j’s
subjective probability of observing no adoption conditions on D̄ bilateral links and D̂′

triangle link pairs; but from i’s objective perspective, the number of triangle link pairs on
which j could observe an adoption drops to D̂′ − 1.

Given beliefs (x̄∗� x̂∗), an agent with d̄ bilateral neighbors and d̂ pairs of triangular
neighbors adopts cutoffs c∗

d̄�d̂
= π(1− (1− x̄∗)d̄(1− x̂∗)2d̂), and her unconditional adoption

probability follows ẋd̄�d̂ = �(1 − (1 − x̄)d̄(1 − x̂)2d̂). We can now extend the limit result,
Proposition 2, to undirected networks with cliques.

PROPOSITION 2′: The cutoffs (c∗
d̄�d̂

) are the unique limit equilibrium of ĜI .

PROOF: See Appendix B.4. Q.E.D.

18Chandrasekhar and Jackson (2021) propose an alternative, closely related “Subgraph generation model”
(SUGM) of large random networks. SUGMs avoid the notion of link stubs and rather connect any set of
nodes into subgraphs (e.g., triangles with a specific combination of node types), independently across sets. That
model accommodates rich subgraphs more easily than our configuration model; on the other hand, it does not
allow the flexibility of specifying the degree distribution directly. But these differences are not crucial, and we
conjecture that one can solve for our social learning equilibria on SUGMs based on simple subgraphs.
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Social learning in this complex network is thus characterized by a simple, two-
dimensional ODE, (18)–(19). The model in this section is already rich enough to match
important network statistics, such as the degree distribution or the clustering coefficient.
But the logic behind equations (18)–(19) and Proposition 2′ easily accommodates addi-
tional features and alternative modeling assumptions. Allowing for larger (n+ 1)-cliques
amounts to replacing the “2” in the exponents of (18)–(19) by “n”. Allowing for multi-
ple types θ of agents is slightly more complicated since it requires keeping track of the
conditional adoption probability of type θ’s neighbor θ′ for all pairs (θ�θ′); we spell this
out in Appendix D.2 in the Online Supplementary Material. Our analysis also extends to
correlation of D̄ and D̂, and to the alternative assumption that agents know only their
total number of links but cannot distinguish bilateral from triangle links.

4. DISCUSSION

We round the paper off by studying the model’s implications for information aggrega-
tion (Section 4.1) and extending the analysis to imperfect social learning (Section 4.2).

4.1. Information Aggregation and the Value of Links

We now reconsider one of the most central issues in social learning: Does society cor-
rectly aggregate dispersed information? The configuration model provides a novel per-
spective on this question. Consider a regular network as both the degree d and the total
number of agents I grow large. We show that if I grows sufficiently faster than d, then
agents have access to a large number of almost independent signals and society correctly
aggregates information. However, if d grows too quickly, the network becomes “clus-
tered” and information aggregation can fail. As a corollary, in a large society with a fixed
number of agents, more links can introduce excessive correlation and lower everyone’s
utility.

To see the problem with clustering, recall the complete network with I + 1 agents from
Example 4 and the first adopter probability x̂I . When seeing no adoption, inspection stops
once the social information y reaches the “choke point” ȳ = π−1(κ), recalling the lowest
cost type κ < π0. As I → ∞, social information yI = 1 − (1 − x̂I)I immediately rises to ȳ
and stays there for all t > 0.19Intuitively, observing no adoption from an exploding num-
ber of agents I makes agents grow pessimistic so fast that they are willing to inspect only
at the very first instant. Learning is perfect when ȳ = 1, which is the case if and only if
κ = 0. Thus, unboundedly low costs are necessary and sufficient for information aggre-
gation, as in Mueller-Frank and Pai (2016) and Ali (2018). In particular, when κ > 0,
high-quality products fail to take off with probability 1 − ȳ > 0, in which case they fizzle
out immediately.20

This failure of information aggregation does not arise when the network remains sparse
as the degree grows. Specifically, consider the limit d→ ∞ of our large directed networks,

19Proof : To see limI→∞ yI = ȳ for all t > 0, first note that the first adopter stops experimenting, ˙̂xI = 0, when
yI = 1 − (1 − x̂I)I rises above ȳ , so yI ≤ ȳ for any I, t. For the opposite inequality, if lim supI→∞ yI < ȳ for
some t > 0, then ˙̂xI = F (π(yI)) is bounded away from 0 on [0� t], hence x̂I is bounded away from 0 at t. Then
lim supI→∞(1 − x̂I)I → 0 at t, contradicting the initial assumption that lim supI→∞ 1 − (1 − x̂I)I < ȳ ≤ 1.

20As I → ∞, agents always stop inspecting low-quality products. The asymmetry between good and bad
products is seen elsewhere in the literature (e.g., Guarino et al. (2011), Hendricks et al. (2012), and Herrera
and Hörner (2013)).
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where adoption and social information are given by ẋ∗
d = �(y∗

d) and y∗
d = 1 − (1 − x∗

d)
d ,

respectively, as defined in (11). In other words, this is the double limit of a regular random
network where first I → ∞ and then d → ∞. Since �(y) is bounded away from 0,21 we
have y∗

d → 1 for all t > 0 as d→ ∞; that is, information becomes perfect instantaneously,
irrespective of κ. Intuitively, agents’ signals on a sparse network are independent and their
joint adoption decisions become perfectly informative as the degree grows. This contrasts
with Acemoglu et al. (2011) where “for many common deterministic and stochastic net-
works, bounded private beliefs are incompatible with asymptotic learning.”22

4.2. Imperfect Social Learning

The baseline model assumes that agents adopt the product if and only if quality is high.
Observing an adoption is thus “perfect good news,” and the agent’s belief π = Pr(q=H)
jumps to 1. This simplifies the analysis by allowing us to summarize i’s social information
(at time-t) by a single number, yi. This analysis immediately extends to the case when, for
idiosyncratic reasons, agents adopt only the high-quality product with probability αH < 1.
In this section, we show how to extend the analysis to more general imperfect social learn-
ing where agents adopt the low-quality product with probability αL > 0. We first show
that in large directed random networks, agents’ learning improves with additional direct
and indirect links (as in Theorem 1). We then discuss the self-reflection and correlation
effects, arguing that backward links still inhibit learning (as in Example 3) but that corre-
lating links may improve learning (unlike in Example 6). Proofs are in Appendix C.

As in the baseline model, agent i enters at time ti ∼ U[0�1], observes which neigh-
bors have adopted by time ti, and updates her belief about quality, πi. Inspection costs
κi ∼ F[κ�κ] and perfectly reveals agent i’s utility, which is determined by the quality
q ∈ {L�H} and the agent’s idiosyncratic preference.23 Specifically, agent i’s utility from
adopting a product of quality q is random (and i.i.d. across agents), equal to vq with prob-
ability αq, and equal to −M with probability 1 − αq. As before, nonadoption yields zero
utility. Upon inspection, agent i thus adopts good q with probability αq and has expected
utility αqvq; naturally, we assume 0< αL < αH < 1 and 0< αLvL < αHvH . Given belief π,
the cutoff cost at which the agent is indifferent between inspecting and passing is given
by c(π) = π(αHvH −αLvL) +αLvL, which is linear and increasing in π. For simplicity, we
assume an even prior, π0 = 1/2, and M large enough so that agents never adopt blindly.24

21Proof : Since F (π(0)) > 0, there exists ε > 0 with F (π(y)) ≥ ε for all y ≤ ε. Then �(y) = 1 − (1 − y)(1 −
F (π(y))) ≥ max{y�F (π(y))} ≥ ε for all y .

22The distinguishing feature of our configuration model GI with exploding I is that each agent’s neighbor-
hood naturally resembles a tree. This feature does not arise naturally in Acemoglu et al’s model with one
infinite sequence of agents. Indeed, Acemoglu et al.’s positive results (e.g., their Theorem 4) rely on a carefully
crafted, slowly exploding number of “guinea pig” agents, who have little social information, and whose actions
are thus very informative about their private signals. In our model, such guinea pigs arise naturally, by virtue
of being the first to enter the market. Other differences between the models, such as the fact that their agents
enter the game with private information whereas ours choose to acquire private information, are not important
for this contrast.

23In this model, the social signals from other agents’ adoption are imperfect, while private signals from
inspection are perfect. It would be natural to consider a model with imperfect private signals (e.g., Ali (2018)),
but this would undermine the clean separation between the role of social information (which determines the
inspection decision) and private information (which determines the adoption decision), that enhances the
tractability of our analysis.

24We could alternatively adopt Hendricks et al.’s (2012) model where quality and idiosyncratic preferences
are additively separable. Our approach is useful for the interpretation of Proposition 3.
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We first study adoption on the (multitype) directed random network described in Sec-
tion 3.1. An agent with degree d ∈ N

� observes that aθ neighbors of type θ have adopted
and dθ − aθ have not. Let yqd�a be the probability of observing a ∈ N

� neighbors adopt
given quality q (as always, omitting the time subscript). Given π0 = 1/2, the posterior
probability of high quality in this event equals

πd�a = yHd�a

yHd�a + yLd�a
� (20)

We interpret Yd = (yqd�a)a�q as the agent’s information structure, and rank such structures
by the Blackwell-order �BW; this order is characterized by a mean-preserving spread of
the random posteriors �d (e.g., Börgers (2021)).25

We start with best responses. Analogous to equation (5), the adoption curve of a
degree-d agent follows:

ẋ
q
d = αq

∑
a≤d
y
q
d�aF

(
c(πd�a)

)
� (21)

Unpacking (21), yqd�a is the probability that a neighbors adopt; then the agent inspects with
probability F (c(πd�a)) and adopts with probability αq.

We now show that the informativeness of agent d’s adoption improves in her informa-
tion (as in Lemma 1). To do this, we strengthen our bounded hazard rate assumption (6)
and assume that

πF
(
c(π)

)
is convex and (1 −π)F

(
c(π)

)
is concave in π� (22)

This is satisfied if κ∼U[αLvL�αHvH], so the lowest-cost agent always inspects, while the
highest-cost agent never does.

LEMMA 1′: Assume π0 = 1/2 and F satisfies (22). In a directed random network, when an
agent’s social information Yd Blackwell-improves, her adoption rate ẋqd rises for q =H and
falls for q=L.26

We now suppose that the network becomes large, and show that more links improve
learning. In large networks, an agent’s neighbors adopt independently with probability
x
q
θ := E[xqDθ], where the expectation is taken over the random degree Dθ. Thus, we can

close (21) by computing the probability that a≤ d adopt as

y
q
d�a =

∏
θ

(
x
q
θ

)
aθ

(
1 − xqθ

)
dθ−aθ � (23)

Substituting (23) into (20) and (21) and taking expectations over Dθ = d yields a 2�-
dimensional ODE for adoption probabilities xqθ, generalizing equation (10).

25With perfect good news, we have yHd�0 = 1 − yd and yLd�0 = 1. Thus, the random posterior �d equals πd�a = 1
for a > 0, which happens with probability π0yd , and πd�0 = π(yd) with the residual probability. Since π(·) is a
decreasing function, �d is increasing in yd in the �BW order.

26In the baseline model, Lemma 1 showed that information raises adoption when q =H . Here, Lemma 1′

further shows that information lowers adoption when q = L. Thus, adoption becomes more dependent on
quality and thereby more informative.



LEARNING DYNAMICS IN SOCIAL NETWORKS 2623

THEOREM 1′: Assume π0 = 1/2 and F satisfies (22). In a large directed random network,
social learning and welfare improve with links: If D̃�FOSD D,

(a) For any degree d, Ỹd �BW Yd ,
(b) For any type θ, ỸD̃θ �BW YDθ .

We can now examine how social information depends on agents’ idiosyncratic prefer-
ences for the two goods. We say there is a broadening of good q if αq rises and vq declines
so expected utility αqvq and thus the cutoff cost c(π) remain constant. That is, the good
becomes twice as popular, but the fans are half as enthusiastic. In the opposite case, we
speak of a narrowing.

PROPOSITION 3: Assume π0 = 1/2 and F satisfies (22). In a large directed random net-
work, social information Yd rises for all d if:

(a) There is a broadening of good H.
(b) There is a narrowing of good L.
(c) There is a broadening of both L, H such that αH/αL stays constant.

Parts (a,b) reflect the idea that there is more social information if more people adoptH
and fewer people adopt L. That is, social learning can be used to learn about popularity
but not passion. In the limit, when αL = αH , there is no social learning, even if vH is far
higher than vL. Part (c) states that if both goods become twice as popular, then social
information also increases. Intuitively, lowering (αL, αH) while fixing αH/αL amounts to
losing the signal that neighbor j adopted with some probability, leading to a Blackwell-
decrease in information.

Finally, we return to the self-reflection and correlation effects. Appendix C.4 reconsid-
ers Example 3 under imperfect social learning and confirms our finding that adding the
backward link j→ i to the directed pair i→ j harms i’s learning. As before, the backward
link makes j more pessimistic, lowering his adoption of both L and H goods by equal
amounts. This is analogous to losing j’s signal with positive probability, and Blackwell-
decreases i’s information.

Appendix C.5 reconsiders Example 6, where i observes j and k, and shows that adding
the correlating link j→ k may benefit agent i. In the baseline model, the correlating link
lowers the probability that at least one of i’s neighbors adopts, and thus lowers i’s social
information. Central to this argument is the assumption that one adoption is enough.
With imperfect social learning, we present a cost distribution F (κ) where high-cost agents
require two adoptions to inspect. The correlating link then raises the probability that
both adopt, and thus raises i’s social information. This is consistent with Centola’s (2010)
experiment where clustering raises social learning.

5. CONCLUSION

Social learning plays a crucial role in the diffusion of new products (e.g., Moretti
(2011)), financial innovations (e.g., Banerjee et al. (2013)), and new production tech-
niques (e.g., Conley and Udry (2010)). This paper proposes a tractable model of social
learning on large random networks, characterizes equilibrium in terms of simple differ-
ential equations, and studies the effect of network structure on learning dynamics. The
model can be used to structurally estimate diffusion in real-world networks while main-
taining Bayesian rationality.
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We started the paper by asking about the effect of clustering and connectedness on
learning and adoption. In our baseline model, we showed that clustering unambiguously
slows learning by correlating neighbors’ adoption decisions. Connectedness thus improves
social information as long as the network remains sparse, but eventually harms learning
as the network becomes clustered. And these results on information directly apply to
adoption under our bounded hazard rate assumption (6).

Our analysis goes beyond traditional contagion models of behavior, such as Morris
(2000). Indeed, consider a binary distribution F with atoms at κ = 0 and κ̄ > π0 as in
footnote 13. Behavior is then mechanical, with agents adopting with probability F (0) if
they see no adoption, and with certainty otherwise. In this limit case of our model, net-
work density still enhances learning (Theorem 1 applies), but we lose the adverse effects
of the backward link (Example 3) and the correlating link (Example 6). Moreover, in
contrast to Section 4.1, a clique maximizes social learning.27

Moving forward, one can take the model in a number of different directions. One could
study the effect of policies, such as changing the price of the product (e.g., Campbell
(2013)) or seeding the network (e.g., Akbarpour et al. (2020)). While we studied corre-
lation neglect, one could allow for other misspecifications of beliefs (e.g., Bohren and
Hauser (2021)). Finally, one could endogenize the timing of moves by allowing skeptical
agents to delay their decision (e.g., Chamley and Gale (1994)).

APPENDIX A: PROOFS FROM SECTION 2

A.1. Proof of Proposition 1

We will characterize equilibrium adoption in a general random network G = (I���μ)
via a system of ODEs, albeit in a large state space. Denote the state of the network by
λ = {λi}i∈I , where λi ∈ {∅� a�b}. Let λi = ∅ if i has yet to enter, t ≤ ti; λi = a if i has
entered and adopted; and λi = b if i has entered and not adopted. Given state λ, let λ−i

denote the same state with λi = ∅.
Fix a network G and agents’ signals ξ, and condition on a high-quality product, q =

H. We can then describe the distribution over states by zλ�G�ξ (as always omitting the
dependence on time t). Figure 6 illustrates the evolution of the state via a Markov chain in
a three-agent example. Probability mass flows into state λ= (λi�λj�λk) = (∅� a�b) from
state λ−j as agent j enters and adopts, and from λ−k as agent k enters and doesn’t adopt.

FIGURE 6.—Illustrative Markov Transitions underlying Proposition 1.

27Proof : In the I-clique, i observes an adoption at time ti iff tj ≤ ti and κj = 0 for some j �= i. This event is
also necessary for i to observe an adoption in any other network.
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Similarly, probability flows out of state λ, and into states (a�a�b) and (b�a�b), as agent i
enters.

Quantifying these transition rates, we now argue that the equilibrium distribution over
the states λ evolves according to the following ODE:

(1 − t)żλ�G�ξ = −
∑
i:λi=∅

zλ�G�ξ +
∑

i:λi=a�∃j∈Ni (G):λj=a

zλ−i�G�ξ +
∑

i:λi=a�∀j∈Ni (G):λj �=a

zλ−i�G�ξF
(
π(yi�ξi)

)

+
∑

i:λi=b�∀j∈Ni (G):λj �=a

zλ−i�G�ξ
(
1 − F(

π(yi�ξi)
))
� (24)

To close (24), the probability that i observes an adoption at time ti = t equals yi�ξi =
E[yi�G�ξ] with yi�G�ξ = Pr(∃j ∈Ni(G) : λj = a|λi = ∅) = 1

1−t
∑
zλ�G�ξ where the sum is over

all λ with λi = ∅ and λj = a for at least one j ∈Ni(G).
To derive (24), fix a state λ. Agents i that have not yet entered, λi = ∅, enter uniformly

over time [t�1], and so probability escapes at rate zλ�G�ξ/(1 − t) for each such agent. This
outflow is the first term in (24). Turning to inflows, if λi = a then in state λ−i agent i
enters uniformly over time [t�1] and adopts blindly if one of her neighbors j ∈ Ni(G)
has adopted (the second term in (24)), and after inspecting with probability F (π(yi�ξi)) if
none of her neighbors has adopted (the third term in (24)). If λi = b, inflows from λ−i are
similarly captured by the fourth term in (24).

Given (24), the existence of a unique equilibrium follows from the Picard–Lindelöf
theorem since the boundedness of f implies the system is Lipschitz.28

REMARK: The system of ODEs (24) implies equilibrium existence and uniqueness. But
it is less useful as a tool to compute equilibrium numerically since there are 3I ×2I×I ×|�|
triples (λ�G�ξ), making it impossible to evaluate (24) numerically. Even if the network
G is common knowledge, there are still 3I states λ.

A.2. Proof of Lemma 2

We wish to study agent i’s adoption decision given that no other agent in the (I + 1)-
clique has yet adopted. Using the notation of Appendix A.1, the probability that i observes
at least one adoption when she enters at ti equals y = 1 − Pr(λj �= a for all j �= i|λi = ∅).
When agent i enters and no other agent has yet adopted, she thus adopts with probability
F (π(y)) = φ(0� y). Agents who have not adopted may either not have entered (λj = ∅)
or decided not to adopt (λj = b). Let

zν := Pr(λj = ∅ for ν others j �= i� and λj = b for the other I − ν|λi = ∅)�

Clearly, y = 1 − ∑I

ν=0 zν .
We now characterize {zν} recursively. For ν = I, the probability that no one has entered

is zI = (1− t)I . For states ν < I, probability flows in from state ν+1 as one of these agents
enters and chooses not to adopt given that no one else had adopted; this rate is given by

28In fact, if we assume that time t is discrete rather than continuous, this proof shows more strongly that our
game—much like most herding models—is dominance-solvable.
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ν+1
1−t zν+1(1 −φ(0� y)). There is also outflow at rate ν

1−t zν as one of the ν agents enters; this
scales down the time-s inflow by a factor ( 1−t

1−s )
ν at time-t. All told,

zν�t =
∫ t

0

(
1 − t
1 − s

)ν

zν+1�s
ν+ 1
1 − s

(
1 −φ(0� ys)

)
ds

= (ν+ 1)(1 − t)ν
∫ t

0
zν+1�s

1 −φ(0� ys)
(1 − s)ν+1 ds (25)

We claim that this can be inductively written as

zν�t = I!
ν! (1 − t)ν

∫ t

0

∫ s

0
� � �

∫ r

0︸ ︷︷ ︸
I−ν integrals

[(
1 −φ(0� yq)

)
� � �

(
1 −φ(0� ys)

)]
dq � � � dr ds� (26)

For ν = I, this reduces to zI�t = (1 − t)I . For the induction step, assume (26) holds for
ν+ 1 and substitute into (25). This becomes

zν�t = (ν+ 1)(1 − t)ν
∫ t

0

[
I!

(ν+ 1)! (1 − s)ν+1

×
∫ s

0
� � �

∫ r

0︸ ︷︷ ︸
I−ν−1 integrals

[(
1 −φ(0� yq)

)
� � �

(
1 −φ(0� yr)

)]
dq � � � dr

]
1 −φ(0� ys)

(1 − s)ν+1 ds

which collapses to (26).
The integration domain of (26) consists of all (I − ν)-tuples (q� � � � � r� s) with 0 ≤ q ≤

· · · ≤ r ≤ s ≤ t and the integrand is symmetric in (q� � � � � r� s). Since there are (I − ν)!
permutations of the integration variables, (26) equals

zν�t = I!
ν!(I − ν)! (1 − t)ν

∫ t

0

∫ t

0
� � �

∫ t

0︸ ︷︷ ︸
I−ν integrals

[(
1 −φ(0� yq)

)
� � �

(
1 −φ(0� ys)

)]
dqdr � � � ds

=
(
I
ν

)
(1 − t)ν

(∫ t

0

(
1 −φ(0� ys)

)
ds

)I−ν
�

Summing over ν and using the binomial formula finishes the proof

1 − yt =
I∑
ν=0

zν�t =
(

(1 − t) +
∫ t

0

(
1 −φ(0� ys)

)
ds

)I

=
(

1 −
∫ t

0
φ(0� ys) ds

)I

�

APPENDIX B: PROOFS FROM SECTION 3

B.1. Proof of Proposition 2

We break the proof into four steps:
(1) Define the branching process.
(2) Characterize the limit adoption Xθ(c) and the equilibrium limit adoption x∗

θ asso-
ciated with the branching process.
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(3) Show that the induced cutoffs (c∗
d) are a limit equilibrium by showing that learning

curves y∗
I�d in GI converge to those associated with the branching process.

(4) Show that the limit equilibrium is unique.
While steps 1 and 2 may seem clear enough for the directed networks studied here, we
spell them out in formal detail to prepare the ground for the more involved case of undi-
rected networks with cliques in Proposition 2′.

B.1.1. Directed Branching Process

Here, we formalize the idea that the random network GI locally approximates a tree
for large I. Following Sadler (2020, Section 8.2), for any degree d ∈ N

� we consider a
multitype branching process Td where offspring equals d in the first step, and is distributed
according to D in all subsequent steps.29 For any radius r ∈ N, let Td�r be the random
rooted graph generated by Td , truncated after step r.

Turning to our finite networks, for agent i with degree d in network G, define i’s r-
neighborhood Gi�r as the subgraph consisting of all nodes and edges in G that can be
reached from i via paths of length at most r; e.g., for r = 1, Gi�r consists of i, her outlinks,
and her neighbors. Let GI�d�r be the random rooted graph generated by realizing a net-
work G from GI , choosing an agent i with degree d at random, and truncating G to i’s
r-neighborhood Gi�r .

We can now state our formal result, which mirrors Sadler’s Lemma 1.

LEMMA 3: GI�d�r can be coupled to Td�r with probability ρ̃I�d�r , where limI→∞ ρ̃I�d�r = 1 for
all d, r.

PROOF: We uncover the rooted graph Gi�r following a breadth-first search: Start by
connecting the dθ outlinks of root i to randomly chosen type-θ nodes for all θ; then con-
nect the outlinks of these neighbors, and so on untilGi�r is realized. The coupling with the
truncated branching process Td�r succeeds if at every step in this process, the respective
type-θ outlink connects to a previously unvisited type-θ node; this could fail (i) if type-θ
outlinks cannot be connected because no type-θ node was realized, or (ii) by realizing a
self-link or multi-link (which we then prune from the network), or (iii) by realizing a link
to a node that has already been visited (thenGi�r is not a tree). Since the expected number
of nodes in Gi�r is finite, the chance of either of these three causes of failure (aggregated
over all |Gi�r| nodes) vanishes for large I. Q.E.D.

B.1.2. Limit Adoption

Here, we compute limit adoption probabilities of agents on an infinite random tree,
generated by the branching process. Specifically, for any cost-cutoffs c = (cd) define the
limit adoption probabilities as the solution Xθ(c) of the ODE

ẋθ = E
[
φ

(
1 −

∏
θ′

(1 − xθ′)Dθ�θ′ �π−1(cDθ)
)]
� (27)

That is, when all agents in the branching process employ cost-cutoffs c, an agent with
degree d = (dθ′) sees an adoption with probability 1 − ∏

θ′ (1 − xθ′)dθ′ , in which case she

29In contrast, Sadler (2020) uses the forward distribution D′ − 1 to account for the friendship paradox in his
undirected networks. We follow that approach in Appendix B.4.1.
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adopts if κ≤ cd . Taking expectations over Dθ yields (27). This nests as a special case the
solution x∗

θ =Xθ(c∗) of (10) for cost cutoffs c∗
d := π(1 − ∏

θ′ (1 − x∗
θ′)dθ′ ).

B.1.3. Limit Equilibrium

We now turn to the proof of Proposition 2 proper, and show that c∗ = (c∗
d) is a limit

equilibrium. In analogy to the limit probabilities Xθ(c) and x∗
θ, we write YI�d(c) for the

social learning curve in GI when agents use cutoffs c = (cd), and y∗
I�d = YI�d(c∗). Then c∗ is

a limit equilibrium iff limI→∞π(y∗
I�d) = c∗

d or equivalently, iff

lim
I→∞

y∗
I�d = 1 −

∏
θ

(
1 − x∗

θ

)dθ
� (28)

Given a finite number of agents I, equation (28) fails for the usual two reasons: cor-
relating and backward links. We now show that these concerns vanish as I grows large.
Lemma 3 showed that any agent i’s neighborhood in G resembles a tree. We comple-
ment this argument by showing that i’s social learning in our model only depends on i’s
neighborhood in G.

To formalize this statement, say that a path i= i0 → i1 → ·· · → ir of length r is a learn-
ing path of agent i if tiν−1 > tiν for all ν = 1� � � � � r; the chance of this is 1/(r + 1)!. Let
pθ�r be the probability that a type-θ node has no learning path of length r in the infinite
random tree generated by the branching process. The expected number of length-r paths
is bounded above by (maxθ

∑
θ′ E[Dθ�θ′])r . Thus, pθ�r ≥ 1 − (maxθ

∑
θ′ E[Dθ�θ′])r/(r + 1)!

and so limr→∞pθ�r = 1. For an agent i with degree d = (dθ), the probability of the event
E that “all of i’s neighbors have no learning path of length r − 1” equals pd�r := ∏

θ p
dθ
θ�r−1,

with limit limr→∞pd�r = 1.
Turning from the branching process to the random network GI , note that the probability

of event E depends on the network G only via i’s r-neighborhood Gi�r . Thus, conditional
on the coupling of GI�d�r and Td�r in Lemma 3, pd�r also equals the probability of E in GI .
All told, write ρI�d�r = ρ̃I�d�rpd�r for the joint probability that the coupling succeeds and of
event E . Then limr→∞ limI→∞ ρI�d�r = limr→∞pd�r limI→∞ ρ̃I�d�r = 1.

We can now study adoption probabilities on i’s neighborhood. Write y∗
I�d�r for i’s prob-

ability of observing an adoption, conditional on the intersection of three events: i’s r-
neighborhood being coupled to the branching process, i having d neighbors, and none of
these neighbors having a learning path of length r. Similarly, write x∗

θ�r for the adoption
probability of a type-θ agent in the branching process, conditional on her not having a
learning path of length r. By construction, y∗

I�d�r = 1 − ∏
θ(1 − x∗

θ�r)
dθ .

We now return to equation (28), which states that the social learning curve on GI con-
verges to the learning curve on the branching process. The triangle inequality implies

∣∣∣∣y∗
I�d −

(
1 −

∏
θ

(
1 − x∗

θ

)dθ)∣∣∣∣ ≤ ∣∣y∗
I�d − y∗

I�d�r

∣∣ +
∣∣∣∣y∗
I�d�r −

(
1 −

∏
θ

(
1 − x∗

θ�r

)dθ)∣∣∣∣
+

∣∣∣∣∏
θ

(
1 − x∗

θ�r

)dθ −
∏
θ

(
1 − x∗

θ

)dθ ∣∣∣∣
≤ (1 − ρI�d�r) + 0 +

∑
θ

dθ(1 −pθ�r) (29)
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for any r. Since the LHS does not depend on r, we get

lim sup
I→∞

∣∣∣∣y∗
I�d −

(
1 −

∏
θ

(
1 − x∗

θ

)dθ)∣∣∣∣ ≤ lim sup
r→∞

lim sup
I→∞

(1 − ρI�d�r) +
∑
θ

dθ(1 −pθ�r) = 0�

This implies (28) and thereby establishes that (c∗
d) is indeed a limit equilibrium.

B.1.4. Uniqueness

Uniqueness of the limit equilibrium follows immediately: Since the asymptotic inde-
pendence of adoptions (28) does not rely on the optimality of the cutoffs (c∗

d), the same
argument implies that for any cutoffs c = (cd) �= c∗,

lim
I→∞

YI�d(c) = 1 −
∏
θ

(
1 −Xθ(c)

)dθ
� (30)

But since the solution to (10) is unique, we have π(1 − ∏
θ(1 − Xθ(c))dθ) �= cd . Thus,

limI→∞π(YI�d(c)) �= cd , and so c is not a limit equilibrium.

B.2. Example 5: Two Links vs. Infinite Chain

When agent i has two uninformed neighbors j, k, each neighbor’s adoption curve
equals xj = xk = F (π0)t. Hence the probability that at least one adopts is

y(t) := 1 − (
1 − F (π0)t

)2
� (31)

With an infinite chain, agent i’s social learning curve is given by ẋ = �(x) ≤ 1 − (1 −
x)(1 − F (π0)). Solving this ODE,

xt ≤ ζ(t) := 1 − 1 − F (π0)e(1−F (π0))t

1 − F (π0)
� (32)

We wish to show that y(t) − ζ(t) ≥ 0 for all t. It suffices to show this inequality for t = 1;
this follows since y(t) − ζ(t) is concave and y(0) − ζ(0) = 0.

Setting t = 1, abbreviating δ := 1 − F (π0) ∈ (0�1], and multiplying by δ, we thus wish
to show that ξ(δ) := 1 − (1 − δ)eδ − δ3 ≥ 0. Differentiating, one can see that ξ has a
unique local extremum δ∗ on [0�1] and that ξ′′(δ∗) ≤ 0. Thus, it is quasi-concave with
ξ(0) = ξ(1) = 0, and hence is positive everywhere.

B.3. The Single-Crossing Lemma

We use the following version of Milgrom and Weber (1982, Lemma 2) that allows for
weak inequality at the initial condition.

LEMMA 4: Let (xt), (x̃t) solve ẋ= ψ(x) and ˙̃x= ψ̃(x̃) with x0 = x̃0 = 0, where ψ(x) >
ψ̃(x) > 0 for all x ∈ (0�1] and ψ(0) = ψ̃(0) > 0. Then xt > x̃t for all t > 0.

PROOF: For any ε > 0, define xε : [ε�1] → R as the solution of ẋε = ψ(xε) with initial
condition xεε = x̃ε. Then xεt > x̃t for all t > ε by Milgrom and Weber (1982, Lemma 2).

Since the solution of a differential equation is continuous in its initial conditions, we
have limε→0 x

ε
t = xt and so xt ≥ x̃t for all t > 0. But xt ≥ x̃t > 0 implies xt′ > x̃t′ for all

t ′ > t, and so we get xt > x̃t for all t > 0. Q.E.D.
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B.4. Proof of Proposition 2′

The proof of Proposition 2′ mirrors the proof Proposition 2. Instead of repeating all of
the arguments, we only discuss where they need to be adapted.

B.4.1. Undirected Branching Process

Define a two-type branching process with bilateral and triangle types. In the first step,
the number of offspring are given by some fixed degree (d̄�2d̂). In every subsequent
step, the (forward) degree is drawn from (D̄′ − 1�2D̂) for bilateral offspring, and from
(D̄�2(D̂′ − 1)) for triangle offspring; all draws are independent and generate distinct
nodes, including the draws from two triangle offspring on the same triangle. The resulting
undirected network consists of the tree generated by the branching process and the links
connecting neighbors on any given triangle.

Next, we couple the r-neighborhoods30 of agent i with degree (d̄�2d̂) in the finite net-
work and the branching process, GI�(d̄�2d̂)�rand T(d̄�2d̂)�r . This is where we have to account for
the friendship paradox: When uncovering i’s neighbor j on a bilateral link, the probability
distribution of j’s bilateral degree Pr(D̄j = d) must be reweighted by d/E[D̄]; that is, it
is drawn from D′, defined in (12). Also, one of j’s D′ bilateral links goes back to i, and
so only D̄′ − 1 go forward to additional nodes. Since j’s bilateral and triangle links D̄j ,
D̂j are independent, D̂j simply follows D̂. All told, conditional on a successful coupling,
the “forward-degree” of a bilateral neighbor follows (D̄′ − 1�2D̂). The argument that the
degree of a triangle neighbor follows (D̄�2(D̂′ − 1)) is analogous.

B.4.2. Limit Adoption

Following Section B.1.2, we now characterize neighbors’ adoption probabilities in the
infinite network generated by the branching process for arbitrary strategies c = (cd̄�d̂).
Indeed, let X̄(c), X̂(c) be the solution of

˙̄x=E[
φ

(
1 − (1 − x̄)D̄

′−1(1 − x̂)2D̂�π−1(cD̄′�D̂)
)]
� (33)

˙̂x=E[
φ

(
1 − (1 − x̄)D̄(1 − x̂)2(D̂′−1)�π−1(cD̄�D̂′)

)]
� (34)

We claim that (i) X̄(c) is the adoption probability of i’s bilateral neighbor j at ti, and (ii)
X̂(c) is the first adopter probability in a triangle (i� j�k); more precisely, (1 − X̂(c))2 is
the probability that neither j nor k have adopted at ti.

Claim (i) follows by the standard argument that j has D′ neighbors, but that includes
i, who has not yet adopted at t < ti. Claim (ii) is more subtle and follows by the proof of
Lemma 2. As in that proof define zν as the probability that ν ∈{0�1�2} of i’s neighbors j,
k in a given triangle have not yet entered, while the other 2 − ν have entered but chose
not to adopt. In the triangle, when one of the remaining ν neighbors enters she observes
no adoption, and hence adopts herself with probability φ(0� y), where y := 1 − ∑2

ν=0 zν .
Here, a triangular neighbor j has additional D̄ bilateral links and D̂′ − 1 additional trian-
gular link pairs, so observes an adoption with probability 1 − (1 − x̄)D̄(1 − x̂)2(D̂′−1), and

30In undirected networks, we define an agent’s r-neighborhood of agent i as all agents and all undirected
edges that can be reached from agent i via paths of length at most r.
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is assumed to employ the exogenous cutoffs cD̄�D̂′ upon seeing no adoption. Thus, from
i’s perspective, j’s adoption rate is given by the RHS of (34). Subject to substituting this
term for φ(0� y), the proof of Lemma 2 applies as stated, yielding (34).

The solution X̄(c), X̂(c) of (33)–(34) nests as a special case the solution x̄∗ = X̄(c∗),
x̂∗ = X̂(c∗) of (18)–(19) for cost cutoffs c∗

d̄�d̂
= π(1 − (1 − x̄∗)d̄(1 − x̂∗)2d̂).

B.4.3. Limit Equilibrium, Uniqueness, and Limit of Equilibria

The arguments in Sections B.1.3, B.1.4, and D.1 only require adapting the notation.
Indeed, write YI�d̄�d̂(c) for the social learning curve in ĜI when agents use cutoffs c =
(cd̄�d̂), and y∗

I�d̄�d̂
= YI�d̄�d̂(c∗). Then, at the most general level, (30) generalizes to

lim
I→∞

sup
c

∣∣YI�d̄�d̂(c) − [
1 − (

1 − X̄(c)
)d̄(

1 − X̂(c)
)2d̂]∣∣ = 0� (35)

The fact that c∗ is a limit equilibrium then follows by substituting c∗ into (35) and recalling
that c∗

d̄�d̂
= π(1 − (1 − x̄∗)d̄(1 − x̂∗)2d̂).

Uniqueness follows by substituting any other cutoffs c �= c∗ into (35) and noting that
cd̄�d̂ �= π(1 − (1 − X̄(c))d̄(1 − X̂(c))2d̂).

Finally, the exact equilibria cI of ĜI converge to the limit equilibrium c∗ by the same
reasoning as in Appendix D.1 in the Online Supplementary Material, invoking Arzela–
Ascoli to obtain a convergent subsequence of cI and then using (35) to show that its limit
must equal c∗.

APPENDIX C: IMPERFECT SOCIAL LEARNING

C.1. Proof of Lemma 1′

Given π0 = 1/2, the unconditional probability of (d�a) is yd�a = (yHd�a + yLd�a)/2, and
equation (20) implies that yHd�a = 2πd�ayd�a and yLd�a = 2(1 −πd�a)yd�a. Thus, we can rewrite
(21) as

ẋHd = 2αH
∑
a≤d
yd�a

[
πd�aF

(
c(πd�a)

)] = 2αHE
[
�dF

(
c(�d)

)]
� (36)

ẋLd = 2αL
∑
a≤d
yd�a

[
(1 −πd�a)F

(
c(πd�a)

)] = 2αLE
[
(1 −�d)F

(
c(�d)

)]
� (37)

where the expectation E[·] is taken over the realizations πd�a of the random posterior
�d . Given assumption (22), a mean-preserving spread of �d raises the RHS of (36) and
lowers the RHS of (37).

C.2. Proof of Theorem 1′

For part (a), we discretize time {t�} for t = 0�1�2� � � � and argue by induction over t.
That is, we interpret (21) as a finite difference equation, establish the Blackwell-rankings
for any �, and then conclude by taking the continuous time limit �→ 0.

At t = 0, there is no social information, so the Blackwell-ranking obtains (weakly). Now
assume by induction that social information is ranked by Ỹd�t �BW Yd�t at all times t < s.
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We first argue that adoption rates then obey the same ranking

˙̃xHθ�t = E
[ ˙̃xH

D̃θ�t

] ≥E[
ẋH
D̃θ�t

] ≥E[
ẋHDθ�t

] = ẋHθ�t �
The first (weak) inequality follows by induction and (the discrete-time version of)
Lemma 1′. The second inequality follows also by Lemma 1′, together with the inequal-
ity D̃θ �FOSD Dθ and the fact that observing (FOSD) fewer neighbors amounts to some-
times losing some adoption signals, which Blackwell-decreases social information; it is
strict when D̃θ �FOSD Dθ. Integrating over t < s, we get x̃Hθ�s ≥ xHθ�s , with strict inequalities
if D̃θ �FOSD Dθ. The analogous argument implies x̃Lθ�s ≤ xLθ�s .

We now show that observing type-θ’s time-s adoption in the network generated by D̃ is
Blackwell-sufficient for observing this under D. The above imply

x̃Hθ�s

x̃Lθ�s
≥ xHθ�s

xLθ�s
and

1 − x̃Hθ�s
1 − x̃Lθ�s

≤ 1 − xHθ�s
1 − xLθ�s

� (38)

Denote by �θ�s the random posterior of an agent in network D with one type-θ neighbor
and no other neighbors, and by πθ�1�s, πθ�0�s the realized posteriors upon observing that
type-θ neighbor adopt/not-adopt; analogously define �̃θ�s and π̃θ�1�s, π̃θ�0�s for network D̃.
Bayes’ rule (20) and equation (38) imply π̃θ�1�s ≥ πθ�1�s ≥ πθ�0�s ≥ π̃θ�0�s, so �̃θ�s is a mean-
preserving spread of �θ�s and observing type-θ’s adoption in the network generated by D̃
is Blackwell-sufficient for observing this under D. Since adoption is independent across
neighbors, we get Ỹd�s �BW Yd�s, concluding the induction step.

Part (b) follows from ỸD̃θ�s �BW YD̃θ�s �BW YDθ�s. The first inequality follows by substi-
tuting the random degree D̃θ into part (a). The second inequality follows by our above
argument that observing (FOSD) fewer neighbors amounts to sometimes losing some
adoption signals.

C.3. Proof of Proposition 3

(a) and (b). We follow the proof of Theorem 1′. Let α̃H ≥ αH and α̃L ≤ αL. We must
show that Ỹd �BW Yd . At t = 0, there is no social information, so the Blackwell-ranking
obtains (weakly). Now assume by induction that Ỹd�t �BW Yd�t for all t < s. Since there
is more information, α̃H ≥ αH , and α̃L ≤ αL, equation (21) and the proof of Lemma 1′

imply that x̃Hθ�s ≥ xHθ�s and x̃Lθ�s ≤ xLθ�s. Then, as in Theorem 1′, observing type-θ’s adoption
state is Blackwell-better for adoption rates α̃q compared to αq. By independence across
neighbors, Ỹd�s �BW Yd�s , concluding the induction step.

(c) As in parts (a,b), suppose by induction that Ỹd�t �BW Yd�t for all times t < s. Since
α̃H/αH = α̃L/αL =: ξ > 1, the proof of Lemma 1′ implies ˙̃xHθ�t ≥ ξẋHθ�t and ˙̃xLθ�t ≤ ξẋLθ�t , and
so x̃Hθ�s > x

H
θ�s and x̃Hθ�s/x̃

L
θ�s ≥ xHθ�s/xLθ�s . Moreover, (1 −xHθ )/(1 −xLθ ) = (1/xHθ − 1)/(1/xHθ −

xLθ /x
H
θ ) falls in both xHθ and in xHθ /x

L
θ , and so (1 − x̃Hθ�s)/(1 − x̃Lθ�s) ≤ (1 − xHθ�s)/(1 − xLθ�s).

Thus, observing whether or not a type-θ neighbor has adopted is more informative under
α̃q compared to αq.

C.4. Backward Links

Compare the directed and undirected pair in Example 3. With i→ j, agent j has no
information, and his adoption follows ẋqj = αqF (c(π0)). With i ↔ j, define x̄q to be j’s
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adoption probability conditional on quality q and t ≤ ti. His posterior upon observing no
adoption becomes π := (1 − x̄H)π0/((1 − x̄H)π0 + (1 − x̄L)(1 −π0)) <π0. Analogous to
(13), ˙̄xq = αqF (c(π)).

We claim that agent i has Blackwell-more information in the directed pair than in the
undirected pair. Indeed, x̄q = ζxqj for ζ := F (c(π))/F (c(π0)) < 1. That is, observing j in
the undirected pair is like observing him in the directed pair and losing the signal with
probability 1 − ζ, and hence Blackwell-inferior.

C.5. Correlating Links

As in Example 6, suppose agent i initially observes agents j, k, and consider the effect
of an additional link j → k. Suppose agents’ cost is equi-likely low or high, κ ∈ {0� κ̄},
with κ̄= c(αHπ0/[αHπ0 +αL(1 −π0)]), and suppose the agent inspects if indifferent. The
low-cost agent always inspects, and information has no value to her. The high-cost agent
only benefits from social information if it pushes her posterior strictly above κ̄, which
only ever happens in either network when i observes both j and k adopt. Thus, we need
to compare the (unconditional) probability of this event x{j�k}�i = π0x

H
{j�k}�i + (1 −π0)xL{j�k}�i

and the induced posterior belief π{j�k}�i across the two networks. Given π0 = 1/2, the value
of information then equals 1

2x{j�k}�i(π{j�k}�i − κ̄).
In either network, k has no information and only her low-cost type inspects; the prob-

ability that she adopts good q by time t thus equals 1
2α

qt. Without the correlating link, by
symmetry and independence of j and k, the probability they both adopt product q equals
x
q

{j�k}�i = ( 1
2α

qt)2 and the posterior belief equals π{j�k}�i = (αH)2π0/[(αH)2π0 + (αL)2(1 −
π0)].

The correlating link raises j’s adoption probability conditional on k having adopted:
If j enters first, only low-cost j adopts and the probability is unchanged; but if k enters
first, j inspects with certainty. Thus, the joint probability that both j and k adopt rises to
x̂
q

{j�k}�i = 1
2α

qt · 3
4α

qt, while the posterior belief is unchanged, π̂{j�k}�i = π{j�k}�i. All told, the
correlating link j → k is valuable to i because it increases the probability of observing j
adopt in the event that k also adopts, which is precisely when this information is most
valuable to i. Note the contrast to Example 6, where j’s adoption was valuable to i in the
complementary event, when k had not adopted.
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